CD-ROM Included!

* 23 bonus chapters
* 300 ready-to-run scripts
* 10 real-world JavaScript applications

Danny Goodman with Michael Morrison

Foreword by Brendan Eich, JavaScript's creator

JavaScript

Sixth Edition

Modernize your Web
site with interactivity

Write scripts that run
on today’s browsers

Use document object
models, including Ajax

JavaScript Bible

Sixth Edition

Danny Goodman
with Michael Morrison

With a foreword by Brendan Eich, JavaScript’s creator

11807 [
2| HWILEY|;
SN2 00N

2 >

|||||||||||

Wiley Publishing, Inc.

Praise for Danny Goodman’s JavaScript®Bible

“JavaScript® Bible is the definitive resource in JavaScript programming. I am never more than three feet
from my copy.”

—Steve Reich, CEO, PageCoders
“This book is a must-have for any web developer or programmer.”
—Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to develop advanced
Web sites. Mr. Goodman did an excellent job of organizing this book and writing it so that even a begin-
ning programmer can understand it.”

—TJason Hensley, Director of Internet Services, NetVoice, Inc.
“Goodman is always great at delivering clear and concise technical books!”
—Dwayne King, Chief Technology Officer, White Horse
“JavaScript® Bible is well worth the money spent!”
—Yen C.Y. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group
“A must-have book for any internet developer.”
—Uri Fremder, Senior Consultant, TopTier Software
“I love this book! T use it all the time, and it always delivers. It’s the only JavaScript book I use!”
—TJason Badger, Web Developer
“Whether you are a professional or a beginner, this is a great book to get.”
—Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I'd ever teach programming before reading your book [JavaScript® Bible]. It’s so simple to
use—the Programming Fundamentals section brought it all back! Thank you for such a wonderful book,
and for breaking through my programming block!”

—Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“Danny Goodman is very good at leading the reader into the subject. JavaScript® Bible has everything we
could possibly need.”

—Philip Gurdon

“An excellent book that builds solidly from whatever level the reader is at. A book that is both witty and
educational.”

—Dave Vane
“I continue to use the book on a daily basis and would be lost without it.”
—Mike Warner, Founder, Oak Place Productions
“JavaScript® Bible is by far the best JavaScript resource I've ever seen (and I've seen quite a few).”

—Robert J. Mirro, Independent Consultant, RIM Consulting

JavaScript Bible

Sixth Edition

Danny Goodman
with Michael Morrison

With a foreword by Brendan Eich, JavaScript’s creator

11807 [
2| HWILEY|;
SN2 00N

2 >

|||||||||||

Wiley Publishing, Inc.

JavaScript® Bible, Sixth Edition

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2007 by Danny Goodman

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-06916-5

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal

Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Goodman, Danny.

JavaScript bible / Danny Goodman with Michael Morrison ; with a foreword by Brendan Eich. — 6th ed.

p. cm.

Includes index.

ISBN-13: 978-0-470-06916-5 (paper/cd-rom)

ISBN-10: 0-470-06916-3 (paper/cd-rom)

1. JavaScript (Computer program language) I. Morrison, Michael, 1970- II. Title.

QA76.73J39G65 2007

005.13'3—dc22 2006101137

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission. JavaScript is a
registered trademark of Sun Microsystems Inc. in the United States and other countries. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

www.wiley.com

About the Authors

Danny Goodman is the author of numerous critically acclaimed and best-selling books, including The
Complete HyperCard Handbook, Danny Goodman’s AppleScript Handbook, Dynamic HTML: The Definitive
Reference, and JavaScript & DHTML Cookbook. He is a renowned authority and expert teacher of computer
scripting languages. His writing style and pedagogy continue to earn praise from readers and teachers
around the world. To help keep his finger on the pulse of real-world programming challenges, Goodman
frequently lends his touch as consulting programmer and designer to leading-edge World Wide Web and
intranet sites from his home base in the San Francisco area.

Michael Morrison is a writer, developer, toy inventor, and author of a variety of books covering topics such
as Java, C++, Web scripting, XML, game development, and mobile devices. Some of Michael’s notable writ-
ing projects include Faster Smarter HTML and XML, Teach Yourself HTML & CSS in 24 Hours, and Beginning
Game Programming. Michael is also the founder of Stalefish Labs (www.stalefishlabs.com), an enter-
tainment company specializing in unusual games, toys, and interactive products.

Credits

Acquisitions Editor
Kit Kemper

Senior Development Editor
Kevin Kent

Copy Editor
Travis Henderson

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group

Publisher
Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Project Coordinator
Lynsey Osborn

Graphics and Production Specialists
Brooke Graczyk

Joyce Haughey

Jennifer Mayberry

Alicia B. South

Quality Control Technicians
David Faust
John Greenough

Media Development Project Supervisor
Laura Atkinson

Media Development Specialist
Kate Jenkins

Proofreading
David Faust
Kathy Simpson
Sossity Smith

Indexing
Valerie Haynes Perry

Anniversary Logo Design
Richard Pacifico

his sixth edition is the second time I've been fortunate enough to have Michael Morrison—a first-

rate author and scripter in his own right—help bring the content of the book up to date. When

you add the hundreds of pages on the CD-ROM to the 1,200+ pages of the printed book, the job
of revising JavaScript Bible is monumental in scale. I therefore appreciate the personal sacrifices Michael
made while he kept the motor running during extensive revision cycles. Many thanks to the hard-
working folks at Wiley Publishing, Kit Kemper and Kevin Kent. Above all, I want to thank the many
readers of the earlier editions of this book for investing in this ongoing effort. I wish I had the space here
to acknowledge by name so many who have sent e-mail notes and suggestions: Your input has been
most welcome and greatly appreciated.

About the Authors
Acknowledgments
Foreword
PrO ACE . e i

Part I: Getting Started with JavaScript 1

Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3

Competing for Web Trafficccooiiiiiiiiii e
Other Web Technologies
JavaScript: A Language for ALl ...
JavaScript: The Right Tool for the Right Job

Chapter 2: Authoring Challenges Amid the BrowserWars9

L@APITOZ ..ttt
Duck and Cover.............c.........
Compatibility Issues Today..............
Developing a Scripting Strategy

Chapter 3: Your First JavaScriptScript 17

The SOFtWATe TOOLS ..ottt 17
Setting Up Your Authoring ENVITONIMENTccooiiiiiiiiiiiiiiiiiic i 18
What Your FIirst SCript WILL DO.......o.viiiiiiiiiiiie e 21
Entering Your First Script .
Examining the SCTIPToooiiiiiiiiii e
Have Some FUN ...

Part Il: JavaScript Tutorial 27

Chapter 4: Browser and Document Objects29

Seripts RUN the SHOW ...t
When to Use JavaScript
The Document Object Model ...
When a Document Loads.......... .
ODBJECt RETETOTICES ...ttt
NOde TeTTINOLOZY ...ttt
What Defines an Object?
EXETCISES ..o

Contents

Chapter 5: Scripts and HTML Documents 45

Where Scripts Go in Documents
JaVASCTIPL SLALEINIEIILS ...ttt
When Script Statements Execute
Viewing SCTIPt EITOTSoiiiiiiiiii e
Scripting versus Programming
Exercises

Chapter 6: Programming Fundamentals, Part1. 57

What Language Is TRIS?cooiiiiiiiiii i 57
Working with Information
Variables.............ccccocoiiii
Expressions and Evaluation
Data TyPe CONVETSIONSouiiiiiiiiii ettt
Operators
Exercises

Chapter 7: Programming Fundamentals, Part1l 67

Decisions and Loops
COMUTOL SEIUCTUTES ...ttt
About Repeat Loops
Functions

Exercises

Chapter 8: Window and Document Objects. 81

TOP-LeVEl ODJECES. ...ttt
The WINAOW ODJECE ...ttt ettt
Window Properties and Methods

The location Object
The navigator Object
The dOCUMENT ODJECL......iiiiiieiei ettt
Exercises

Chapter 9: Forms and FormElements. 95

The fOTm ODBJECL...viiiiiiie e
Form Controls as Objects
Passing Form Data and Elements to FUNCHONScooiiiiiiiiiiiii 104
Submitting and Prevalidating FOTMS. ..ot 106
EXETCISES ..ottt 108

Chapter 10: Strings, Math,andDates. 109

COTe LaNGUAZE ODJECS. .. oviiiiii ettt 109
SUNE OBJECLS. ..ttt

The Math Object
The Date Object
Date Calculations
Exercises

Contents

Chapter 11: Scripting Frames and Multiple Windows 119

Frames: Parents and Children
References Among Family MemDeTSccoociiiiiiiiiiii e 121
Frame-Scripting Tips
About iframe EIeMents ..ot 124
Controlling Multiple Frames: Navigation Barsccccoiiiiiiiiiiiiiiiiieee e 124
References for Multiple Windows
Exercises

Chapter 12: Images and DynamicHTML 129

The TMAaE ODJECL ...ttt
Rollovers Without Scripts........

The javascript: Pseudo-URL
Popular Dynamic HTML TeChNIQUESvoviiiiiiiiiiiii e 138
Exercises

Part Ill: Document Objects Reference 141

Chapter 13: JavaScript Essentials

JAVASCIIPE VRTSIONS ...
Core Language Standard: ECMASCIIPLvouiiiiiiiiiiiia e
Embedding Scripts in HTML Documents
Browser Version Detection
Designing for Compatibilitycocooeoiiiiiin.

Language Essentials for Experienced Programmers......

Onward to OBJect MOdELSooiiiiiiiiiiiic e

Chapter 14: Document Object Model Essentials 163

The Object Model HIETarChycooiiiiiiiiiii i 163
How Document Objects Are BOTTLoiiiiiiiiiiiiiii e 166
Object Properties
ODBJECt METNOAS ...t
Object Event HandleTsooooiiiiiiiiii e
Object Model Smorgasbord ...
Basic ODbJect MOdeL.........coiiiiiiiiiiii e
Basic Object Model Plus Images
Navigator 4—Only EXIENSIONSc.oviiiiiiiieie et
Internet Explorer 4+ Extensions
Internet Explorer 5+ Extensions
The W3C DOM
SCTIPUNG TIETIAS ...t
Standards Compatibility Modes (DOCTYPE Switching)
Where t0 GO from HETEooiiiiiiiiiiii i

Chapter 15: Generic HTML Element Objects.

GENETIC ODJECES ...ttt

xii

Contents

Chapter 16: Window and Frame Objects

WINAOW TeITIHNOLOZY ...ttt
Frames ...
window Object.......c.ccoovevereinnn.
frame Element Object................
frameset Element Object
iframe Element Object
POPUP ODBJECL ..ttt

Chapter 17: Location and History Objects

LOCAON ODJECE ..ttt
RISEOTY ODBJECE ..ttt

Chapter 18: The Document and Body Objects519

AOCUIMENIE ODBJECT ..
body Element Object
TreeWalker ODBJECToiiiiiiiiii e

Chapter 19: Link and Anchor Objects.

Anchor, Link, and a Element ODJECSccooiiiiiiiiiiiiii et

Chapter 20: Image, Area, Map, and Canvas Objects

Image and img Element Objects
area Element Object
map Element Object....
canvas Element Object

Chapter 21: The Form and Related Objects. 645

The Form in the Object Hierarchycocooiiiiiiiiiii e
form ODbJectocooviviiiiiiii

fieldset and legend Element Objects
label E1emMent ODBJECEvcuiiiiiiiiieee et
Scripting and Web FOrmS 2.0 ...t 666

Chapter 21: ButtonObjects669

The button Element Object, and the Button, Submit, and Reset Input Objects
checkbox INPUL OBJECT......oouiiiiiiiiii e

TadI0 INPUE OBJECT ...t
IMAZE INPUL ODJECE .ttt

Chapter 23: Text-Related Form Objects.

TeXE INPUL ODBJEC ...ttt
password Input Object
hidden INPUL OBJECT. ...ouiiiiiiiiie e
textaread Element OBDJECTooiiiiiiiiiii i

Chapter 24: Select, Option, and FileUpload Objects

select EIOMENt ODBJECT.......ooiiiiiiiiiii et
option Element OBJECTcoiiiiiiiiiiii i
optgroup Element Object
file Input Element Object

Contents

Chapter 25: EventObjects. 739
WY “EVEIIES? ...ttt 740
EVent Propagation ... 741

Referencing the eVent ODJECT.coiviiiiiiiiiit et 753

BINAING EVETIES ...ttt 754
event Object Compatibility............ccooiiiiiiiiiii i 758
Dueling EVent MOAES ..ot 760
EVENE TIPS oo 763
TE4+ @VENE ODJECL. ...ttt 766
NNO+/Moz/Safari eVent ODJECT........coviuiiiiiiiiiiii e 787
Chapter 26: Style Sheet and Style Objects 811
Making Sense of the Object NAIMESc.oiiiiiiiiiiiiiii i 812
IMPOTted SEYIESRERLS ..ottt 813
Reading Style PrOPETUESo.viiieiiiiiiiiii e 813
style Element Object
SEYIESHEET ODJECT ...t
€sSRULE AN TULE ODJECLS ..viviiiiiiiiiii e
currentStyle, runtimeStyle, and style Objects
FILEET ODJECE vttt
Chapter 27: Ajaxand XML. 867
Elements and NOGeS.ociiiiiiiiiii e 868
KM EIeMENt ODJECT ...ttt 869
XMLHUPREGUESE OBJECE ...t 871
Part IV: JavaScript Core Language Reference 881
Chapter 28: The String Object. P : 1: %
String and Number Data TYPeS.........cooiiiiiiiiiiiiiiiiie e 883
String Object

String Utility Functions
URL String Encoding and DeCOdINgccviiiiiiiiiiiie e 912
Chapter 29: The Math, Number, and Boolean Objects. 913
INUMDETS 1N JAVASCIIPL ...t 913
ML ODJECL ..
Number Object
Boolean Object
Chapter 30: The DateObject 927
Time Zones and GMT ..o 927
The DALE ODJECL . vvii ittt 929
Validating Date Entries in FOITIISc.ccooiiiiiiiiiiiiiiic e 941

eee

X

Contents

Chapter 31: The ArrayObject

STTUCTUTEA DALA ..ottt
Creating an EMPLY ATTAYcoiiiiiiiiiiiiii e
Populating an Arrayc.ccooceeirennn
JavaScript Array Creation Enhancements
Deleting ATTaY ENITIESo.iiuiiiiiiii ittt
Parallel Arrays

Multidimensional Arrays ...

Simulating a Hash Table
Array Object Properties
ArTay ObJect MEthOSiiiiiiiiii e

Chapter 32: Control Structures and Exception Handling 969

If and If. . (EIse D@CISIONS ...ttt
Conditional Expressions .
REPEAL (FOT) LOOPS ..ot
The WHIle LOOP ..viiiiiit i
The do-while Loop
Looping through Properties (fOr-In)ocooiiiiiiiii e
The With STATEMENT ... e
Labeled Statements.............
The switch Statement
Exception Handlingccccocooen
Using try-catch-finally Constructions
Throwing EXCEPLIOISeouiiiiiiiiiit ettt
EITOT ODJOCT 1.ttt

Chapter 33: JavaScriptOperators 1001

OPETAtOT CALEGOTIES ...ttt ettt 1001
COmMPATISOT OPETALOTS ...ttt 1002
Equality of Disparate Data TYPESc.ciiiuiiiiiiiaiiiiieit ettt 1003
Connubial Operators
ASSIZNMENT OPETALOTSiiiiiiiiiiii ettt 1008
Boolean Operators
Bitwise Operators.....
Object Operators

Miscellaneous Operators ...

OPerator PrECEARTICEiiiiiiiiiiiiii i

Chapter 34: Functions and Custom Objects.

FUNCHON ODJECL ...ttt
Function APpHCAtION NOEScviiiiiiiiiiiiit e
Creating Your Own Objects with Object-Oriented JavaScript
Object-Oriented COMCEPLScuiiiiiiiiiiiiiieiitt ettt
ODBJECE ODBJECL ..ttt ettt

Chapter 35: Global Functions and Statements

FUNCHONIS ...
SEALETIIETILS ...ttt e e

Xiv

Contents

Part V: Appendixes 1077
Appendix A: JavaScript and Browser Objects Quick Reference 1079
Appendix B: JavaScript ReservedWords. 1087
Appendix C: Answers to Tutorial Exercises 1089
CRAPLET 4 ATISWETSouitiiieii ettt ettt 1089
CRAPLET 5 ATISWETS ...ttt ettt ettt ettt 1090
CRAPLET 6 ATISWETS ...ttt 1092
CRAPLET 7 ATISWETSttt 1092
CRAPLET 8 ATISWETSu ittt 1097
CRAPLET O ANISWETSuiiiiiii ettt 1098
CRaPLEr 10 ATISWETS ...ttt 1101
CRaPLET 11 ATNISWETS ...ttt 1103
CRAPLET 12 ATISWETS ...ttt 1103
Appendix D: JavaScript and DOM Internet Resources 1105
Support and Updates for This BOOK ..ottt 1105
INEWSGIOUDS ... 1106
FAQS e 1106
Online DOCUMENTALION ...t 1107
World Wide Web ...t 1107
Appendix E: Whatsonthe CD-ROM 1109
System ReQUITETIEIITS ...ttt 1109
DISC COMEETILS ... ettt 1110
THOUDIESNOOUNG ...t 1111
CUSTOMIET CATE ... 1111
Index. L e 1113
Part VI: Bonus Chapters On the CD-ROM

Chapter 36: Body Text Objects

Chapter 37: HTML Directive Objects

Chapter 38: Table and List Objects

Chapter 39: The Navigator and Other Environment Objects
Chapter 40: Positioned Objects

Chapter 41: Embedded Objects

Chapter 42: The Regular Expression and RegExp Objects

XV

Xvi

Contents

Chapter 43:
Chapter 44:
Chapter 45:
Chapter 46:
Chapter 47:
Chapter 48:
Chapter 49:
Chapter 50:
Chapter 51:
Chapter 52:
Chapter 53:
Chapter 54:
Chapter 55:
Chapter 56:
Chapter 57:
Chapter 58:

Data-Entry Validation

Scripting Java Applets and Plug-Ins

Debugging Scripts

Security and Netscape Signed Scripts

Cross-Browser Dynamic HTML Issues

Internet Explorer Behaviors

Application:
Application:
Application:
Application:
Application:
Application:
Application:
Application:
Application:
Application:

Tables and Calendars

A Lookup Table

A Poor Man’s Order Form
Outline-Style Table of Contents
Calculations and Graphics
Intelligent “Updated” Flags
Decision Helper

Cross-Browser DHTML Map Puzzle
Transforming XML Data

Creating Custom Google Maps

s JavaScript’s creator, I would like to say a few words about where JavaScript has been, where it is
going, and how the book you're holding will help you to make the most of the language.

JavaScript was born out of a desire to let HTML authors write scripts directly in their documents. This
may seem obvious now, but in the spring of 1995 it was novel and more than a little at odds with both
the conventional wisdom (that HTML should describe static document structure only) and the Next Big
Thing (Java applets, which were hyped as the one true way to enliven and extend web pages). Once 1
got past these contentions, JavaScript quickly shaped up along the following lines:

B “Java-lite” syntax. Although the “natural language” syntax of HyperTalk was fresh in my
mind after a friend lent me The Complete HyperCard Handbook by some fellow named
Goodman, the Next Big Thing weighed heavier, especially in light of another goal: scripting
Java applets. If the scripting language resembled Java, then those programmers who made the
jump from JavaScript to Java would welcome similarities in syntax. But insisting on Java’ class
and type declarations, or on a semicolon after each statement when a line ending would do,
were out of the question—scripting for most people is about writing short snippets of code,
quickly and without fuss.

B Events for HTML elements. Buttons should have onClick event handlers. Documents load
and unload from windows, so windows should have onLoad and onUnload handlers. Users
and scripts submit forms: thus the onSubmi t handler. Although not initially as flexible as
HyperCard’s messages (whose handlers inspired the onEvent naming convention), JavaScript
events let HTML authors take control of user interaction from remote servers and respond
quickly to user gestures and browser actions. With the adoption of the W3C DOM Level 2
event handling recommendations, JavaScript in modern browsers has fully flexible control
over events.

B Objects without classes. The Self programming language proved the notion of prototype-
based inheritance. For JavaScript, I wanted a single prototype per object (for simplicity and
efficiency), based by default on the function called using the new operator (for consonance
with Java). To avoid distinguishing constructors from methods from functions, all functions
receive the object naming them as the property that was called in the parameter. Although
prototypes didn't appear until Navigator 3, they were prefigured in Version 2 by quoted text
being treated as an object (the Strong object prototype, to which users could attach methods).

B Generated HTML. Embedding JavaScript in HTML gave rise to a thought: Let the script speak
HTML, as if the emitted text and markup were loaded in place of the script itself. The possibil-
ities went beyond automating current or last-modified dates, to computing whole trees of
tables where all the repeated structure was rolled up in a scripted loop, while the varying con-
tents to be tabulated came in minimal fashion from JavaScript objects forming a catalog or
mini-database.

This foreword originally appeared as the foreword to JavaScript Bible, Fourth Edition.

Xvii

Foreword

At first, T thought JavaScript would most often find use in validating input to HTML forms. But before long,
[was surprised to see how many web designers devised compelling applications by way of script-generated
HTML and JavaScript objects. It became clear from user demonstration and feedback that web designers
sought to build significant applications quickly and effectively with just a few images, HTML, and
JavaScript. Eventually they demanded that the browser support what is now known as Dynamic HTML
(one fun link: http://www.javascript-games.org/).

As legions of web authors embraced the authoring power of JavaScript, they, in turn, demonstrated the cru-
cial advantages of a scripting environment over old-school application development. Not only were the
HTML and JavaScript languages comparatively easy to use, but development did not require the program-
ming expertise needed to light all pixels and handle all events as in a big, traditional application.

The primacy of JavaScript on the Web today vindicates our early belief in the value of a scripting language
for HTML authors. By keeping the “pixel-lighting” bar low, HTML with images has made web designers out
of millions of people. By keeping the event-handling bar low, JavaScript has helped many thousands of
those designers become programmers. Perhaps the ultimate example of web development’s convergence
with application development is the Mozilla browser, wherein all of the user-interface and even some cus-
tom widgets and modular components are implemented entirely using JavaScript, Cascading Style Sheets
(CSS), custom XML-based markup languages, and images.

JavaScript is also a general language, useful apart from HTML and XML. It has been embedded in servers,
authoring tools, browser plug-ins, and other kinds of browsers (for such things as 3D graphical worlds). Its
international standard, ECMA-262 (ISO 16262), has advanced to a Third Edition. But compared to languages
such as Perl and even Java, it is still relatively young. Work toward a Fourth Edition of the language, support-
ing optional types, classes, and versioning facilities progresses within the ECMA technical committee (see the
JS2 proposal to the ECMA technical committee documented at http: //www.mozilla.org/js/
language/js20/).

It is clear to me that JavaScript would not have survived without a creative, loyal, and patient community of
developers; I owe them each a huge debt of thanks. Those developers who took up the beta releases of
Navigator 2, and disseminated vital workarounds and feature requests by e-mail and net-news, are the lan-
guage’s godparents. Developer support and feedback continue to make JavaScript the eclectic, rambunctious
success it is.

The book in your hands compiles thousands of those developer miles with the insight of an expert guide
and teacher. Danny didn’t know at the time how much inspiration I found in his HyperCard book, but it
was on my desk throughout the development of JavaScript in 1995. His energy, compassion, and clear prose
helped me keep the goal of creating “a language for all” in mind. It is enormously gratifying to write the
foreword of this book, which has earned so many satisfied reader miles.

I highly recommend Danny Goodman’s JavaScript Bible to anyone who wants to learn JavaScript, and espe-
cially to those HTML authors who've so far written only a few scripts or programs—you’re in for a lifetime
of fun on the scripting road with a trusty guide at your side.

Brendan Eich
The Mozilla Organization (http: //www.mozilla.org)

or over 25 years, | have written the books I wished had already been written to help me learn or

use a new technology. Whenever possible, I like to get in at the very beginning of a new authoring

or programming environment, feel the growing pains, and share with readers the solutions to my
struggles. This sixth edition of JavaScript Bible represents knowledge and experience accumulated over
ten years of daily work in JavaScript and a constant monitoring of newsgroups for questions, problems,
and challenges facing scripters at all levels. My goal is to help you avoid the same frustration and head
scratching I and others have experienced through multiple generations of scriptable browsers.

Although the earliest editions of this book focused on the then predominant Netscape Navigator
browser, the browser market share landscape has changed through the years. For many years, Microsoft
took a strong lead with its Internet Explorer, but more recently, other browsers that support industry
standards are finding homes on users’ computers. The situation still leaves an age-old dilemma for con-
tent developers: designing scripted content that functions equally well in both standards-compliant and
proprietary environments. The job of a book claiming to be a bible is not only to present both the stan-
dard and proprietary details when they diverge, but also to show you how to write scripts that blend the
two so that they work on the wide array of browsers visiting your sites or web applications. Empowering
you to design and write good scripts is my passion, regardless of browser. Its true that my bias is toward
industry standards, but not to the exclusion of proprietary features that may be necessary to get your
content and scripting ideas flowing equally well on today’s and tomorrow’s browsers.

Organization and Features of This Edition

Like the previous two editions of JavaScript Bible, this sixth edition contains far more information than can
be printed and bound into a single volume. The complete contents can be found in the electronic version
of this book (in PDF form) on the CD-ROM that accompanies the book. This new edition is structured in
such a way as to supply the most commonly needed information in its entirety in the printed portion of
the book. Content that you use to learn the fundamentals of JavaScript and reference frequently are at
your fingertips in the printed version, whereas chapters with more advanced content are in the searchable
electronic version on the CD-ROM. Here are some details about the book’s structure.

Part |

Part I of the book begins with a chapter that shows how JavaScript compares with Java and discusses its
role within the rest of the World Wide Web. The web browser and scripting world have undergone sig-
nificant changes since JavaScript first arrived on the scene. Thats why Chapter 2 is devoted to address-
ing challenges facing scripters who must develop applications for both single- and cross-platform
browser audiences amid rapidly changing standards efforts. Chapter 3 provides the first foray into
JavaScript, where you get to write your first practical script.

Xix

XX

Preface

Part 11

All of Part 11 is handed over to a tutorial for newcomers to JavaScript. Nine lessons provide you with a grad-
ual path through browser internals, basic programming skills, and genuine browser scripting with an
emphasis on industry standards as supported by most of the scriptable browsers in use today. Exercises fol-
low at the end of each lesson to help reinforce what you just learned and challenge you to use your new
knowledge (you'll find answers to the exercises in Appendix C). The goal of the tutorial is to equip you with
sufficient experience to start scripting simple pages right away while making it easier for you to understand
the in-depth discussions and examples in the rest of the book.

Part Il

Part III, the largest section of the book, provides in-depth coverage of the document object models as
implemented in today’s browsers, including the object used for modern Ajax applications. In all reference
chapters, a compatibility chart indicates the browser version that supports each object and object feature.
One chapter in particular, Chapter 15, contains reference material that is shared by most of the remaining
chapters of Part I1I. To help you refer back to Chapter 15 from other chapters, a dark tab along the outside
edge of the page shows you at a glance where the chapter is located. Additional navigation aids include
guide words near the top of most pages to indicate which object and object feature is covered on the page.

Part 1V

Reference information for the core JavaScript language fills Part IV. As with reference chapters of Part 11, the
JavaScript chapters display browser compatibility charts for every JavaScript language term. Guide words
near the top of pages help you find a particular term quickly.

PartV

Several appendices at the end of the book provide helpful reference information. These resources include a
JavaScript and Browser Objects Quick Reference in Appendix A, a list of JavaScript reserved words in
Appendix B, answers to Part II's tutorial exercises in Appendix C, and Internet resources in Appendix D. In
Appendix E, you also find information on using the CD-ROM that comes with this book, which includes
numerous bonus chapters and examples.

CD-ROM

The CD-ROM is a gold mine of information. It begins with a PDF version of the entire contents of this sixth
edition of JavaScript Bible. This version includes bonus chapters covering:

B Dynamic HTML, data validation, plug-ins, and security
B Techniques for developing and debugging professional web-based applications
B Ten full-fledged JavaScript real-world applications

Another treasure trove on the CD-ROM is the Listings folder, where you'll find over 300 ready-to-run
HTML documents that serve as examples of most of the document object model and JavaScript vocabulary
words in Parts III and IV. All of the bonus chapter example listings are also included. You can run these
examples with your JavaScript-enabled browser, but be sure to use the index.html page in the Listings
folder as a gateway to running the listings. I could have provided you with humorous little sample code
fragments out of context, but I think that seeing full-fledged HTML documents (simple though they may
be) for employing these concepts is important. I intentionally omitted the script listings from the tutorial

Preface

part (Part II) of this book to encourage you to type the scripts. I believe you learn a lot, even by aping list-
ings from the book, as you get used to the rhythms of typing scripts in documents.

Be sure to check out the Chapter 13 listing file called evaluator.html. Many segments of Parts III and
IV invite you to try out an object model or language feature with the help of an interactive workbench,
called The Evaluator—a JavaScript Bible exclusive! You see instant results and quickly learn how the feature
works.

The Quick Reference from Appendix A is in PDF format on the CD-ROM for you to print out and assemble
as a handy reference, if desired. Adobe Reader is also included on the CD-ROM, in case you don't already
have it, so that you can read both of these PDF files.

Prerequisites to Learning JavaScript

Although this book doesn’t demand that you have a great deal of programming experience behind you, the
more Web pages you've created with HTML, the easier you will find it to understand how JavaScript inter-
acts with the familiar elements you normally place in your pages. Occasionally, you will need to modify
HTML tags to take advantage of scripting. If you are familiar with those tags already, the JavaScript enhance-
ments will be simple to digest.

Fortunately, you won’t need to know about server scripting or passing information from a form to a server.
The focus here is on client-side scripting, which operates independently of the server after the JavaScript-
enhanced HTML page is fully loaded into the browser.

The basic vocabulary of the current HTML standard should be part of your working knowledge. You should
also be familiar with some of the latest document markup standards, such as XHTML and Cascading Style
Sheets (CSS). You don’t need to be an expert, by any means. Web searches for these terms will uncover
numerous tutorials on the subjects.

If you've never programmed before

Don't be put off by the size of this book. JavaScript may not be the easiest language in the world to learn,
but believe me, it’s a far cry from having to learn a full programming language, such as Java or C. Unlike
developing a full-fledged monolithic application (such as the productivity programs you buy in the stores),
JavaScript enables you to experiment by writing small snippets of program code to accomplish big things.
The JavaScript interpreter built into every scriptable browser does a great deal of the technical work for you.

Programming, at its most basic level, consists of nothing more than writing a series of instructions for the
computer to follow. We humans follow instructions all the time, even if we don't realize it. Traveling to a
friend’s house is a sequence of small instructions: Go three blocks that way; turn left here; turn right there.
Amid these instructions are some decisions that we have to make: If the stoplight is red, then stop; if the
light is green, then go; if the light is yellow, then floor it. Occasionally, we must repeat some operations sev-
eral times (kind of like having to go around the block until a parking space opens up). A computer program
not only contains the main sequence of steps, but it also anticipates what decisions or repetitions may be
needed to accomplish the program’s goal (such as how to handle the various states of a stoplight or what to
do if someone just stole the parking spot you were aiming for).

The initial hurdle of learning to program is becoming comfortable with the way a programming language
wants its words and numbers organized in these instructions. Such rules are called syntax, the same as in a
living language. Because computers generally are dumb electronic hulks, they aren’t very forgiving if you

XXl

Preface

don’t communicate with them in the specific language they understand. When speaking to another human,
you can flub a sentence’s syntax and still have a good chance of the other person’s understanding you fully.
Not so with computer programming languages. If the syntax isn't perfect (or at least within the language’s
range of knowledge that it can correct), the computer has the brazenness to tell you that you have made a
Syntax error.

The best thing you can do is to just chalk up the syntax errors you receive as learning experiences. Even
experienced programmers make them. Every syntax error you get—and every resolution of that error made
by rewriting the wayward statement—adds to your knowledge of the language.

If you've done a little programming before

Programming experience in a procedural language, such as BASIC, may almost be a hindrance rather than a
help to learning JavaScript. Although you may have an appreciation for precision in syntax, the overall con-
cept of how a program fits into the world is probably radically different from JavaScript. Part of this has to
do with the typical tasks a script performs (carrying out a very specific task in response to user action
within a web page), but a large part also has to do with the nature of object-oriented programming.

In a typical procedural program, the programmer is responsible for everything that appears on the screen
and everything that happens under the hood. When the program first runs, a great deal of code is dedicated
to setting up the visual environment. Perhaps the screen contains several text entry fields or clickable but-
tons. To determine which button a user clicks, the program examines the coordinates of the click and com-
pares those coordinates against a list of all button coordinates on the screen. Program execution then
branches out to perform the instructions reserved for clicking in that space.

Object-oriented programming is almost the inverse of that process. A button is considered an object—
something tangible. An object has properties, such as its label, size, alignment, and so on. An object may
also contain a script. At the same time, the system software and browser, working together, can send a mes-
sage to an object—depending on what the user does—to trigger the script. For example, if a user clicks in a
text entry field, the system/browser tells the field that somebody has clicked there (that is, has set the focus
to that field), giving the field the task of deciding what to do about it. That’s where the script comes in. The
script is connected to the field, and it contains the instructions that the field carries out after the user acti-
vates it. Another set of instructions may control what happens when the user types an entry and tabs or
clicks out of the field, thereby changing the content of the field.

Some of the scripts you write may seem to be procedural in construction: They contain a simple list of
instructions that are carried out in order. But when dealing with data from form elements, these instructions
work with the object-based nature of JavaScript. The form is an object; each radio button or text box is an
object as well. The script then acts on the properties of those objects to get some work done.

Making the transition from procedural to object-oriented programming may be the most difficult challenge
for you. When 1 was first introduced to object-oriented programming a number of years ago, I didn’t get it
at first. But when the concept clicked—a long, pensive walk helped—so many light bulbs went on inside
my head that I thought I might glow in the dark. From then on, object orientation seemed to be the only
sensible way to program.

If you've programmed in C before

By borrowing syntax from Java (which, in turn, is derived from C and C++), JavaScript shares many syntacti-
cal characteristics with C. Programmers familiar with C will feel right at home. Operator symbols, conditional
structures, and repeat loops follow very much in the C tradition. You will be less concerned about data types
in JavaScript than you are in C. In JavaScript, a variable is not restricted to any particular data type.

Preface

With so much of the JavaScript syntax familiar to you, you will be able to concentrate on document object
model concepts, which may be entirely new to you. You will still need a good grounding in HTML to put
your expertise to work in JavaScript.

If you've programmed in Java before

Despite the similarity in their names, the two languages share only surface aspects: loop and conditional
constructions, C-like dot object references, curly braces for grouping statements, several keywords, and a
few other attributes. Variable declarations, however, are quite different, because JavaScript is a loosely typed
language. A variable can contain an integer value in one statement and a string in the next (although I'm not
saying that this is good style). What Java refers to as methods, JavaScript calls methods (when associated
with a predefined object) or functions (for scripter-defined actions). JavaScript methods and functions may
return values of any type without having to state the data type ahead of time.

Perhaps the most important aspects of Java to suppress when writing JavaScript are the object-oriented
notions of classes, inheritance, instantiation, and message passing. These aspects are simply non-issues
when scripting. At the same time, however, the designers of JavaScript knew that you’d have some hard-to-
break habits. For example, although JavaScript does not require a semicolon at the end of each statement
line, if you type one in your JavaScript source code, the JavaScript interpreter won't balk.

If you've written scripts (or macros) before

Experience with writing scripts in other authoring tools or macros in productivity programs is helpful for
grasping a number of JavaScript concepts. Perhaps the most important concept is the idea of combining a
handful of statements to perform a specific task on some data. For example, you can write a macro in
Microsoft Excel that performs a data transformation on daily figures that come in from a corporate financial
report on another computer. The macro is built into the Macro menu, and you run it by choosing that
menu item whenever a new set of figures arrives.

Some modern programming environments, such as Visual Basic, resemble scripting environments in some
ways. They present the programmer with an interface builder, which does most of the work of displaying
screen objects with which the user will interact. A big part of the programmer’ job is to write little bits of
code that are executed when a user interacts with those objects. A great deal of the scripting you will do
with JavaScript matches that pattern exactly. In fact, those environments resemble the scriptable browser
environment in another way: They provide a finite set of predefined objects that have fixed sets of proper-
ties and behaviors. This predictability makes learning the entire environment and planning an application
easier to accomplish.

Formatting and Naming Conventions

The script listings and words in this book are presented in a monospaced font to set them apart from the
rest of the text. Because of restrictions in page width, lines of script listings may, from time to time, break
unnaturally. In such cases, the remainder of the script appears in the following line, flush with the left mar-
gin of the listing, just as they would appear in a text editor with word wrapping turned on. If these line
breaks cause you problems when you type a script listing into a document yourself, I encourage you to
access the corresponding listing on the CD-ROM to see how it should look when you type it.

As soon as you reach Part III of this book, you won't likely go for more than a page before reading about an
object model or language feature that requires a specific minimum version of one browser or another. To

xxiii

XXiv

Preface

make it easier to spot in the text when a particular browser and browser version is required, most browser
references consist of an abbreviation and a version number. For example, WinlE5 means Internet Explorer 5
for Windows; NN4 means Netscape Navigator 4 for any operating system; Moz stands for the modern
Mozilla browser (from which Firefox, Netscape 6 or later, and Camino are derived); and Safari is Apple’s
own browser for Mac OS X. If a feature is introduced with a particular version of browser and is supported
in subsequent versions, a plus symbol (+) follows the number. For example, a feature marked WinIE5.5+
indicates that Internet Explorer 5.5 for Windows is required at a minimum, but the feature is also available
in WinlE7 and probably future WinlE versions. If a feature was implemented in the first release of a modern
browser, a plus symbol immediately follows the browser family name, such as Moz+ for all Mozilla-based
browsers. Occasionally, a feature or some highlighted behavior applies to only one browser. For example, a
feature marked NN4 means that it works only in Netscape Navigator 4.x. A minus sign (for example,
WinlE-) means that the browser does not support the item being discussed.

The format of HTML and code listings in this edition follow XHTML coding conventions, which dictate all-
lowercase tag and attribute names, as well as self-closing tags that do not act as containers (such as the
XHTML
 tagin place of the HTML
 tag).

Note, Tip, Caution, and Cross-Reference icons occasionally appear
in the book to flag important points or suggest where to find more
information.

Getting Started
with JavaScript

IN THIS PART

Chapter 1
JavaScript’s Role in the World
Wide Web and Beyond

Chapter 2
Authoring Challenges Amid
the Browser Wars

Chapter 3
Your First JavaScript Script

any of the technologies that make the World Wide Web possible have

far exceeded their original goals. Envisioned at the outset as a medium

for publishing static text and image content across a network, the Web
is forever being probed, pushed, and pulled by content authors. By taking for
granted so much of the “dirty work” of conveying the bits between server and
client computers, content developers and programmers dream of exploiting that
connection to generate new user experiences and practical applications. It’s not
uncommon for a developer community to take ownership of a technology and
mold it to do new and exciting things. But with so many Web technologies —
especially browser programming with JavaScript — being within reach of every-
day folks, we have witnessed an unprecedented explosion in turning the World
Wide Web from a bland publishing medium into a highly interactive, operating
system—agnostic authoring platform.

The JavaScript language, working in tandem with related browser features, is a
Web-enhancing technology. When employed on the client computer, the lan-
guage can help turn a static page of content into an engaging, interactive, and
intelligent experience. Applications can be as subtle as welcoming a site’s visitor
with the greeting “Good morning!” when it is morning in the client computer’s
time zone — even though it is dinnertime where the server is located. Or applica-
tions can be much more obvious, such as delivering the content of a slide show
in a one-page download while JavaScript controls the sequence of hiding, show-
ing, and “flying slide” transitions while navigating through the presentation.

Of course, JavaScript is not the only technology that can give life to drab Web
content. Therefore, it is important to understand where JavaScript fits within the
array of standards, tools, and other technologies at your disposal. The alternative
technologies described in this chapter are HTML, Cascading Style Sheets (CSS),
server programs, and plug-ins. In most cases, JavaScript can work side by side
with these other technologies, even though the hype around some make them
sound like one-stop shopping places for all your interactive needs. That’s rarely
the case. Finally, you learn about the origins of JavaScript and what role it plays
in today’s advanced Web browsers.

IN THIS CH

How JavaScript blends with
other Web-authoring
technologies

The history of JavaScript

What kinds of jobs you should
and should not entrust to
JavaScript

Getting Started with JavaScript

Competing for Web Traffic

Web-page publishers revel in logging as many visits to their sites as possible. Regardless of the questionable
accuracy of Web page hit counts, a site consistently logging 10,000 dubious hits per week is clearly far more
popular than one with 1,000 dubious hits per week. Even if the precise number is unknown, relative popu-
larity is a valuable measure. Another useful number is how many links from outside pages lead to a site. A
popular site will have many other sites pointing to it— a key to earning high visibility in Web searches.

Encouraging people to visit a site frequently is the Holy Grail of Web publishing. Competition for viewers is
enormous. Not only is the Web like a 50 million—channel television, but also, the Web competes for view-
ers’ attention with all kinds of computer-generated information. That includes anything that appears
onscreen as interactive multimedia.

Users of entertainment programs; multimedia encyclopedias; and other colorful, engaging, and mouse-finger-
numbing actions are accustomed to high-quality presentations. Frequently, these programs sport first-rate
graphics, animation, live-action video, and synchronized sound. By contrast, the lowest-common-denominator
Web page has little in the way of razzle-dazzle. Even with the help of Dynamic HTML and stylesheets, the lay-
out of pictures and text is highly constrained compared with the kinds of desktop publishing documents you
see all the time. Regardless of the quality of its content, an unscripted, vanilla HTML document is flat. At best,
interaction is limited to whatever navigation the author offers in the way of hypertext links or forms whose
filled-in content magically disappears into the Web site’s server.

Other Web Technologies

With so many ways to spice up Web sites and pages, you can count on competitors for your site’s visitors to
do their darnedest to make their sites more engaging than yours. Unless you are the sole purveyor of infor-
mation that is in high demand, you continually must devise ways to keep your visitors coming back and
entice new ones. If you design for an intranet, your competition is the drive for improved productivity by
colleagues who use the internal Web sites for getting their jobs done.

These are all excellent reasons why you should care about using one or more Web technologies to raise your
pages above the noise. Let’s look at the major technologies you should know about.

Hypertext Markup Language (HTML and XHTML)

As an outgrowth of SGML (Standard Generalized Markup Language), HTML is generally viewed as nothing
more than a document formatting, or tagging, language. The tags (inside <> delimiter characters) instruct a
viewer program (the browser or, more generically, the client) how to display chunks of text or images.

Relegating HTML to the category of a tagging language does disservice not only to the effort that goes into
fashioning a first-rate Web page, but also to the way users interact with the pages. To my way of thinking,
any collection of commands and other syntax that directs the way users interact with digital information is
programming. With HTML, a Web-page author controls the user experience with the content just as the
engineers who program Microsoft Excel craft the way users interact with spreadsheet content and functions.

Version 4.0 and later of the published HTML standards endeavor to define the purpose of HTML as assign-
ing context to content, leaving the appearance to a separate standard for stylesheets. In other words, it’s not
HTMIS role to signify that some text is italic but, rather, to signify why it is italic. For example, you would
tag a chunk of text that conveys emphasis (via the tag) regardless of how the stylesheet or browser sets
the appearance of that emphasized text.

JavaScript’s Role in the World Wide Web and Beyond _

XHTML is a more recent adaptation of HTML that adheres to stylistic conventions established by the XML
(eXtensible Markup Language) standard. No new tags come with XHTML, but it reinforces the notion of
tagging to denote a document’s structure and content.

Cascading Style Sheets (CSS)

Specifying the look and feel of a Web page via stylesheets is a major trend taking over the modern Web. The
basic idea is that given a documents structure spelled out by its HTML or XHTML, a stylesheet defines the
layout, colors, fonts, and other visual characteristics to present the content. Applying a different set of CSS
definitions to the same document can make it look entirely different, even though the words and images are
the same.

Mastery of the fine points of CSS takes time and experimentation, but the results are worth the effort. The
days of using HTML tables and transparent “spacer” images to generate elaborate multicolumn layouts are
very much on the wane. Every Web developer should have a solid grounding in CSS.

Server programming

Web sites that rely on database access or change their content very frequently incorporate programming on
the server that generates the HTML output for browsers and/or processes forms that site visitors fill out on
the page. Even submissions from a simple login or search form ultimately trigger some server process that
sends the results to your browser. Server programming takes on many guises, the names of which you may
recognize from your surfing through Web development sites. PHP, ASP, .Net, JSP, and Coldfusion are among
the most popular. Associated programming languages include Perl, Python, Java, C++, C#, Visual Basic, and
even server-side JavaScript in some environments.

Whatever language you use, the job definitely requires the Web-page author to be in control of the server,
including whatever back-end programs (such as databases) are needed to supply results or massage the
information coming from the user. Even with the new, server-based Web site design tools available, server
scripting often is a task that a content-oriented HTML author will need to hand off to a more experienced
programumer.

As powerful and useful as server scripting can be, it does a poor job of facilitating interactivity in a Web
page. Without the help of browser scripting, each change to a page must be processed on the server, caus-
ing delays for the visitor and an extra burden on the server for simple tasks. This wastes desktop processing
horsepower, especially if the process running on the server doesn’t need to access big databases or other
external computers.

Working together, however, server programming and browser scripting can make beautiful applications
together. The pair come into play with what has become known as Ajax — Asynchronous JavaScript and
XML. The “asynchronous” part runs in the browser, requesting XML data from, or posting data to, the
server entirely in the background. XML data returned by the server can then be examined by JavaScript in
the browser to update portions of the Web page. That’s how many popular Web-based email user interfaces
work, as well as the draggable satellite-photo closeups of Google Maps (http://maps.google.com).

Of helpers and plug-ins

In the early days of the World Wide Web, a browser needed to present only a few kinds of data before a

user’s eyes. The power to render text (tagged with HTML) and images (in popular formats such as GIF and
JPEG) was built into browsers intended for desktop operating systems. Not wanting to be limited by those
data types, developers worked hard to extend browsers so that data in other formats could be rendered on

Getting Started with JavaScript

the client computer. It was unlikely, however, that a browser would ever be built that could download and
render, say, any of several sound-file formats.

One way to solve the problem was to allow the browser, upon recognizing an incoming file of a particular
type, to launch a separate application on the client machine to render the content. As long as this helper
application was installed on the client computer (and the association with the helper program was set in the
browser’ preferences), the browser would launch the program and send the incoming file to that program.
Thus, you might have one helper application for a MIDI sound file and another for an animation file.

Beginning with Netscape Navigator 2 in early 1996, software plug-ins for browsers enabled developers to
extend the capabilities of the browser without having to modify the browser. Unlike a helper application, a
plug-in can enable external content to blend into the document seamlessly.

The most common plug-ins are those that facilitate the playback of audio and video from the server. Audio
may include music tracks that play in the background while visiting a page or live (streaming) audio, simi-
lar to a radio station. Video and animation can operate in a space on the page when played through a plug-
in that knows how to process such data.

Today’s browsers tend to ship with plug-ins that decode the most common sound-file types. Developers of
plug-ins for Internet Explorer for the Windows operating system commonly implement plug-ins as ActiveX
controls —a distinction that is important to the underpinnings of the operating system but not to the user.

Plug-ins and helpers are valuable for more than just audio and video playback. A popular helper application
is Adobe Acrobat Reader, which displays Acrobat files that are formatted just as though they were being
printed. But for interactivity, developers today frequently rely on Macromedia Corporation’s Flash plug-in.
Created using the Macromedia Flash authoring environment, a Flash document can have active clickable
areas and draggable elements. Some authors even simulate artistic video games and animated stories in
Flash. A browser equipped with the Flash plug-in displays the content in a rectangular area embedded
within the browser page.

One potential downside for authoring interactive content in Flash or similar environments is that if the user
does not have the correct plug-in version installed, it can take some time to download the plug-in (if the
user even wants to bother). Moreover, once the plug-in is installed, highly graphic and interactive content
can take longer to download to the client (especially on a dial-up connection) than some users are willing to
wait. This is one of those situations in which you must balance your creative palette with the user’s desire
for your interactive content.

Another client-side technology — the Java applet— was popular for a while in the late 1990s but has fallen
out of favor for a variety of reasons (some technical, some corporate—political). But this has not diminished
the use of Java as a language for server and even cellular telephone programming, extending well beyond
the scope of the language’s founding company, Sun Microsystems.

JavaScript: A Language for All

Sun’s Java language is derived from C and C++, but it is a distinct language. Its main audience is the experi-
enced programmer. That leaves out many Web-page authors. I was dismayed by this situation when I first
read about Java’s preliminary specifications in 1995. I would have preferred a language that casual program-
mers and scripters who were comfortable with authoring tools, such as Apple’s once-formidable HyperCard
and Microsoft’s Visual Basic, could adopt quickly. As these accessible development platforms have shown,
nonprofessional authors can dream up many creative applications, often for very specific tasks that no pro-
fessional programmer would have the inclination to work on. Personal needs often drive development in
the classroom, office, den, or garage. But Java was not going to be that kind of inclusive language.

JavaScript’s Role in the World Wide Web and Beyond _

My spirits lifted several months later, in November 1995, when I heard of a scripting language project brew-
ing at Netscape Communications, Inc. Born under the name LiveScript, this language was developed in par-
allel with a new version of Netscape’s Web server software. The language was to serve two purposes with the
same syntax. One purpose was as a scripting language that Web server administrators could use to manage
the server and connect its pages to other services, such as back-end databases and search engines for users
looking up information. Extending the “Live” brand name further, Netscape assigned the name LiveWire to
the database connectivity usage of LiveScript on the server.

On the client side —in HTML documents — authors could employ scripts written in this new language to
enhance Web pages in a number of ways. For example, an author could use LiveScript to make sure that the
user had filled in a required text field with an e-mail address or credit card number. Instead of forcing the
server or database to do the data validation (requiring data exchanges between the client browser and the
server), the user’s computer handles all the calculation work — putting some of that otherwise-wasted com-
puting horsepower to work. In essence, LiveScript could provide HTML-level interaction for the user.

LiveScript becomes JavaScript

In early December 1995, just prior to the formal release of Navigator 2, Netscape and Sun Microsystems
jointly announced that the scripting language thereafter would be known as JavaScript. Though Netscape
had several good marketing reasons for adopting this name, the changeover may have contributed more
confusion to both the Java and HTML scripting worlds than anyone expected.

Before the announcement, the language was already related to Java in some ways. Many of the basic syntax
elements of the scripting language were reminiscent of the Java style. For client-side scripting, the language
was intended for very different purposes than Java — essentially to function as a programming language
integrated into HTML documents rather than as a language for writing applets that occupy a fixed rectangu-
lar area on the page (and that are oblivious to anything else on the page). Instead of Java’s full-blown pro-
gramming language vocabulary (and conceptually more difficult to learn object-oriented approach),
JavaScript had a small vocabulary and a more easily digestible programming model.

The true difficulty, it turned out, was making the distinction between Java and JavaScript clear to the world.
Many computer journalists made major blunders when they said or implied that JavaScript provided a sim-
pler way of building Java applets. To this day, some new programmers believe JavaScript is synonymous
with the Java language: They post Java queries to JavaScript-specific Internet newsgroups and mailing lists.

The fact remains that client-side Java and JavaScript are more different than they are similar. The two lan-
guages employ entirely different interpreter engines to execute their lines of code.

Enter Microsoft and others

Although the JavaScript language originated at Netscape, Microsoft acknowledged the potential power and
popularity of the language by implementing it (under the JScript name) in Internet Explorer 3. Even if
Microsoft might prefer that the world use the VBScript (Visual Basic Script) language that it provides in the
Windows versions of IE, the fact that JavaScript is available on more browsers and operating systems makes
it the client-side scripter’s choice for anyone who must design for a broad range of users.

With scripting firmly entrenched in the mainstream browsers from Microsoft and Netscape, newer browser
makers automatically provided support for JavaScript. Therefore, you can count on fundamental scripting
services in browsers such as Opera or the Apple Safari browser (the latter built upon an Open Source
browser called KHTML). Not that all browsers work the same way in every detail — a significant challenge
for client-side scripting that is addressed throughout this book.

Getting Started with JavaScript

JavaScript: The Right Tool for the Right Job

Knowing how to match an authoring tool to a solution-building task is an important part of being a well-
rounded Web site author. A Web designer who ignores JavaScript is akin to a plumber who bruises his
knuckles by using pliers instead of the wrench from the bottom of the toolbox.

By the same token, JavaScript won't fulfill every dream. The more you understand about JavaScript’s inten-
tions and limitations, the more likely you will be to turn to it immediately when it is the proper tool. In par-
ticular, look to JavaScript for the following kinds of solutions:

B Getting your Web page to respond or react directly to user interaction with form elements (input
fields, text areas, buttons, radio buttons, checkboxes, selection lists) and hypertext links

B Distributing small collections of databaselike information and providing a friendly interface to
that data

B Controlling multiple-frame navigation, plug-ins, or Java applets based on user choices in the
HTML document

B Preprocessing data on the client before submission to a server

B Changing content and styles in modern browsers dynamically and instantly in response to user
interaction

At the same time, it is equally important to understand what JavaScript is not capable of doing. Scripters
waste many hours looking for ways of carrying out tasks for which JavaScript was not designed. Most of the
limitations are designed to protect visitors from invasions of privacy or unauthorized access to their desktop
computers. Therefore, unless a visitor uses a modern browser and explicitly gives you permission to access
protected parts of his or her computer, JavaScript cannot surreptitiously perform any of the following
actions:

W Setting or retrieving the browser’s preferences settings, main window appearance features, action
buttons, and printing
Launching an application on the client computer

Reading or writing files or directories on the client or server computer

Capturing live data streams from the server for retransmission

B Sending secret e-mails from Web site visitors to you

Web site authors are constantly seeking tools that will make their sites engaging (if not cool) with the least
amount of effort. This is particularly true when the task is in the hands of people more comfortable with
writing, graphic design, and page layout than with hard-core programming. Not every Webmaster has
legions of experienced programmers on hand to whip up some special, custom enhancement for the site.
Neither does every Web author have control over the Web server that physically houses the collection of
HTML and graphics files. JavaScript brings programming power within reach of anyone familiar with
HTML, even when the server is a black box at the other end of a telephone line.

f you are starting to learn JavaScript at this point in the history of scriptable

browsers, you have both a distinct advantage and disadvantage. The advan-

tage is that you have the wonderful capabilities of mature browser offerings
from Microsoft, The Mozilla Foundation (under brand names such as Firefox,
Netscape, and Camino), Apple, and others at your bidding. The disadvantage is
that you have not experienced the painful history of authoring for older browser
versions that were buggy and at times incompatible with one another due to a
lack of standards. You have yet to learn the anguish of carefully devising a
scripted application for the browser version you use, only to have site visitors
sending you voluminous e-mail messages about how the page triggers all kinds
of script errors when run on a different browser brand, generation, or operating
system platform.

Welcome to the real world of scripting Web pages with JavaScript. Several
dynamics are at work to help make an author life difficult if the audience for the
application uses more than a single type of browser. This chapter introduces you
to these challenges before you type your first word of JavaScript code. My fear is
that the subjects I raise may dissuade you from progressing further into
JavaScript and its powers. But as a developer myself — and as someone who has
been using JavaScript since the earliest days of its public prerelease availability —
[dare not sugar-coat the issues facing scripters today. Instead, I want to make
sure you have an appreciation of what lies ahead to assist you in learning the lan-
guage. [believe if you understand the big picture of the browser-scripting world
as it stands in the year 2007, you will find it easier to target JavaScript usage in
your Web application development and be successful at it.

Leapfrog

Browser compatibility has been an issue for authors since the earliest days of the
Web gold rush — long before JavaScript. Despite the fact that browser developers
and other interested parties voiced their opinions during formative stages of stan-

IN THIS CHA

How leapfrogging browser
developments help and hurt
Web developers

Separating the core JavaScript
language from document objects

The importance of developing a
cross-browser strategy

Getting Started with JavaScript

10

dards development, HTML authors could not produce a document that appeared the same pixel by pixel on
all client machines. It may have been one thing to establish a set of standard tags for defining heading levels
and line breaks, but it was rare for the actual rendering of content inside those tags to look identical on dif-

ferent brands of browsers on different operating systems.

Then, as the competitive world heated up —and Web browser development transformed itself from a vol-
unteer undertaking into profit-seeking businesses — creative people defined new features and new tags that
helped authors develop more flexible and interesting-looking pages. As happens a lot in any computer-
related industry, the pace of commercial development easily surpassed the studied progress of standards. A
browser maker would build a new HTML feature into a browser and only then propose that feature to the
relevant standards body. Web authors were using these features (sometimes for prerelease browser versions)
before the proposals were published for review.

When the deployment of content depends almost entirely on an interpretive engine on the client computer
receiving the data— the HTML engine in a browser, for example — authors face an immediate problem.
Unlike a stand-alone computer program that can extend and even invent functionality and have it run on
everyone’s computer (at least for a given operating system), Web content providers must rely on the func-
tionality built into the browser. This led to questions such as “If not all browsers coming to my site support
a particular HTML feature, then should I apply newfangled HTML features for visitors only at the bleeding
edge?” and “If I do deploy the new features, what do I do for those with older browsers?”

Authors who developed pages in the earliest days of the Web wrestled with these questions for many HTML
features that we today take for granted. Tables and frames come to mind. Eventually, the standards caught
up with the proposed HTML extensions — but not without a lot of author woe along the way.

Despite the current dominance of the Microsoft Internet Explorer browser on the dominant Windows operat-
ing system, the number of browsers that people use is not shrinking. Several recent browsers, including the
modern Netscape and Firefox browsers, are based on an Open Source browser called Mozilla. The Macintosh
operating system now includes its own Apple-branded browser, Safari (released in 2003). And the independ-
ent Opera browser also has a home on some users’ computers. All of these non-Microsoft browser makers
obviously believe that they bring improvements to the world to justify their development — building better
mousetraps, you might say.

Duck and Cover

Today’s browser wars are fought on different battlegrounds than in the early days of the Web. The breadth
and depth of established Web standards have substantially fattened the browser applications— and the
books developers read to exploit those standards for their content. On one hand, most developers clamor
for deeper standards support in new browser versions. On the other hand, everyday users care little about
standards. All they want is to have an enjoyable time finding the information they seek on the Web. Most
users are slow to upgrade their browsers, holding out until their favorite sites start breaking in their ancient
browsers.

Industry standards don't necessarily make the Web developer’s job any easier. For one thing, the standards
are unevenly implemented across the latest browsers. Some browsers go further in their support than oth-
ers. Then there are occasional differences in interpretation of vague standards details. And sometimes the
standards don'’t provide any guidance in areas that are vital to content developers. At times we are left to the
whims of browser makers who fill the gaps with proprietary features in the hope that those features will
become de facto standards.

Authoring Challenges Amid the Browser Wars

As happens in war, civilian casualties mount when the big guns start shooting. The browser battle lines
shifted dramatically in only a few years. The huge market-share territory once under Netscape’s command
came under Microsoft’s sway. More recently, however, concerns about privacy and security on the Windows
platform have driven many users to seek less vulnerable browsers. Mozilla Firefox has so far been the
biggest beneficiary in the search for alternatives. Although a fair amount of authoring common ground
exists between the latest versions of today’s browsers, uneven implementation of the newest features causes
the biggest problems for authors wishing to deploy on all browsers. Trying to define the common denomi-
nator may be the toughest part of the authoring job.

Compatibility Issues Today

Allow me to describe the current status of the compatibility situation among the top three browser families:
Microsoft Internet Explorer, browsers based on Mozilla, and Apple Safari. The discussion in the next few
sections intentionally does not get into specific scripting technology very deeply; some of you may know
very little about programming at this point. In many chapters throughout Parts III and IV, I offer scripting
suggestions to accommodate a variety of browsers.

Separating language from objects

Although early JavaScript authors initially treated client-side scripting as one environment that permitted
the programming of page elements, the scene has changed as the browsers have matured. Today, a clear dis-
tinction exists between specifications for the core JavaScript language and for the elements you script in a
document (for example, buttons and fields in a form).

On one level, this separation is a good thing. It means that one specification exists for basic programming
concepts and syntax, which could become the programming language in any number of other environ-
ments. You can think of the core language as basic wiring. When you know how electric wires work, you
can connect them to all kinds of electrical devices. Similarly, JavaScript today is used to wire together ele-
ments in an HTML document. Tomorrow, operating systems could use the core language to enable users to
wire together desktop applications that need to exchange information automatically.

At the ends of today’s JavaScript wires inside browsers are the elements on the page. In programming jar-
gon, these items are known as document objects. By keeping the specifications for document objects separate
from the wires that connect them, you can use other kinds of wires (other languages) to connect them. It’s
like designing telephones that can work with any kind of wire, including a type of wire that hasn’t been
invented yet. Today, the devices can work with copper wire or fiber-optic cable. You get a good picture of
this separation in Internet Explorer, whose set of document objects can be scripted with JavaScript or
VBScript. They're the same objects — just different wiring.

The separation of core language from document objects enables each concept to have its own standards
effort and development pace. But even with recommended standards for each factor, each browser maker is
free to extend the standards. Furthermore, authors may have to expend more effort to devise one version of
a page or script that plays on multiple browsers unless the script adheres to a common denominator (or
uses some other branching techniques to let each browser run its own way).

11

Getting Started with JavaScript

12

Core language standard

Keeping track of JavaScript language versions requires a brief history lesson. The first version of JavaScript
(in Netscape Navigator 2) was version 1, although that numbering was not part of the language usage.
JavaScript was JavaScript. Version numbering became an issue when Navigator 3 was released. The version
of JavaScript associated with that Navigator version was JavaScript 1.1. The first appearance of the
Navigator 4 generation increased the language version one more notch with JavaScript 1.2.

Microsoft’s scripting effort contributes confusion for scripting newcomers. The first version of Internet
Explorer to include scripting was Internet Explorer 3. The timing of Internet Explorer 3 was roughly coinci-
dental to Navigator 3. But as scripters soon discovered, Microsoft’s scripting effort was one generation
behind. Microsoft did not license the JavaScript name. As a result, the company called its language JScript.
Even so, the HTML tag attribute that lets you name the language of the script inside the tags could be either
JScript or JavaScript for Internet Explorer. Internet Explorer 3 could understand a JavaScript script written
for Navigator 2.

During this period of dominance by Navigator 3 and Internet Explorer 3, scripting newcomers were often
confused because they expected the scripting languages to be the same. Unfortunately for the scripters, there
were language features in JavaScript 1.1 that were not available in the older JavaScript version in Internet
Explorer 3. Microsoft improved JavaScript in IE3 with an upgrade to the .dll file that gives IE its JavaScript
syntax. However, it was hard to know which .dll is installed in any given visitor’s IE3. The situation
smoothed out for Internet Explorer 4. Its core language was essentially up to the level of JavaScript 1.2, as in
early releases of Navigator 4. Microsoft still officially called the language JScript. Almost all language features
that were new in Navigator 4 were understood when you loaded the scripts into Internet Explorer 4.

While all of this jockeying for JavaScript versions was happening, Netscape, Microsoft, and other concerned
parties met to establish a core language standard. The standards body is a Switzerland-based organization
originally called the European Computer Manufacturer’s Association and now known simply as ECMA
(commonly pronounced “ECK-ma”). In mid-1997, the first formal language specification was agreed on and
published (ECMA-262). Due to licensing issues with the JavaScript name, the body created a new name for
the language: ECMAScript.

With only minor and esoteric differences, this first version of ECMAScript was essentially the same as
JavaScript 1.1, used in Navigator 3. Both Navigator 4 and Internet Explorer 4 officially supported the
ECMAScript standard. Moreover, as happens so often when commerce meets standards bodies, both
browsers went beyond the ECMAScript standard. Fortunately, the common denominator of this extended
core language is broad, lessening authoring headaches on this front.

JavaScript version 1.3 was implemented in Netscape Navigator 4.06 through 4.7x. This language version is
also the one supported in IE 5, 5.5, and 6. A few new language features are incorporated in JavaScript 1.5,
as implemented in Mozilla-based browsers (including Navigator 6 and later). A few more core language fea-
tures were added to JavaScript 1.6, first implemented in Mozilla 1.8 (Firefox 1.5).

In practice, so many browsers in use today support all but a few leading-edge features of the Mozilla
browsers that JavaScript version numbers are mostly irrelevant. Other compatibility issues with older
browsers will likely get in your way before core language problems do. The time has come to forget about
elaborate workarounds for the inadequacies of the oldest browsers.

Document object model

If prevalent browsers have been close to one another in core JavaScript language compatibility, nothing could
be further from the truth when it comes to the document objects. Internet Explorer 3 based its document
object model (DOM) on that of Netscape Navigator 2, the same browser level it used as a model for the core

Authoring Challenges Amid the Browser Wars

language. When Netscape added a couple of new objects to the model in Navigator 3, the addition caused
further headaches for neophyte scripters who expected those objects to appear in Internet Explorer 3.
Probably the most commonly missed object in Internet Explorer 3 was the image object, which lets scripts
swap the image when a user rolls the cursor atop a graphic — mouse rollovers, they’re commonly called.

In the Level 4 browsers, however, Internet Explorer's DOM jumped way ahead of the object model that
Netscape implemented in Navigator 4. The two most revolutionary aspects of IE4 were the ability to script
virtually every element in an HTML document and the instant reflow of a page when the content changed.
This opened the way for HTML content to be genuinely dynamic without requiring the browser to fetch a
rearranged page from the server. NN4 implemented only a small portion of this dynamism without expos-
ing all elements to scripts or reflowing the page. It introduced a proprietary layering concept that was aban-
doned at the end of the Navigator 4.x lifetime. Inline content could not change in NN#4 as it could in IE4.
Suffice it to say that IE4 was an enviable implementation.

At the same time, a DOM standard was being negotiated under the auspices of the World Wide Web
Consortium (W3C). The hope among scripters was that after a standard was in place, it would be easier to
develop dynamic content for all browsers that supported the standard. The resulting standard — the

W3C DOM — formalized the notion of being able to script every element on the page, as in IE4. But it also
invented an entirely new object syntax that no browser had used. The race was on for browsers to support
the W3C DOM standards.

An arm of the Netscape company called Mozilla.org was formed to create an all-new browser dedicated to
supporting industry standards. The engine for the Mozilla browser became the basis for the all-new
Navigator 6. It incorporated all of the W3C DOM Level 1 and a good chunk of Level 2. Mozilla 1.01
became the basis for the Netscape 7 browser, whereas Netscape 7.1 was built on the Mozilla 1.4 generation.
In the summer of 2003, Netscape’s parent company, AOL Time Warner, decided to end further Netscape-
branded browser development. The work on the underlying Mozilla browser, however, continues under an
independent organization called The Mozilla Foundation. Mozilla-based browsers and others using the
same engine (such as Firefox and Camino) continue to be upgraded and released to the public. The Mozilla
engine offers arguably the most in-depth support for the W3C DOM standards.

Even though Microsoft participated in W3C DOM standards development, IE5 and 5.5 implemented only
some of the W3C DOM standard — in some cases, just enough to allow simple cross-browser scripting that
adheres to the standard. Microsoft further filled out W3C DOM support in IE6 but chose to omit several
important parts. Despite the long time gap between releases of IE6 and IE7, the latter includes no additional
W3C DOM support — much to the chagrin of Web developers.

The Apple Safari browser has raced forward in its comparatively short life to offer substantial W3C DOM
support. This is especially true of version 2, which was first released as part of Mac OS X version 10.4.

With this seemingly tortuous history of DOM development and browser support leading to the present day,
you may wonder how anyone can approach DOM scripting with hope of success. Yet you'd be amazed by
how much you can accomplish with today’s browsers. You'll certainly encounter compatibility issues along
the way, but this book will guide you through the most common problems and equip you to tackle others.

Cascading Style Sheets

Navigator 4 and Internet Explorer 4 were the first browsers to claim compatibility with a W3C recommen-
dation called Cascading Style Sheets Level 1 (CSS1). This specification provided designers an organized way to
customize the look and feel of a document (and thus minimized the HTML in each tag). As implementa-
tions go, NN4 had a lot of rough edges, especially when trying to mix stylesheets and tables. But IE4 was no

13

Getting Started with JavaScript

14

angel, either, especially when comparing the results of stylesheet assignments as rendered in the Windows
and Macintosh versions of the browser (developed by two separate teams).

CSS Level 2 adds more style functionality to the standard, and IE6, Mozilla-based browsers, and Safari sup-
port a good deal of Level 2 (albeit unevenly) with the latest versions, such as Mozilla 1.8+ and Safari 2+
beginning support for CSS Level 3 features. Rendering of styled content is more harmonious among
browsers, largely thanks to guidelines about how styles should render. Complex layouts, however, still need
careful tweaking from time to time because of different interpretations of the standard.

JavaScript plays a role in stylesheets in IE4+, Mozilla, and Safari because those browsers’” object models per-
mit dynamic modification to styles associated with any content on the page. Stylesheet information is part
of the object model and therefore is accessible and modifiable from JavaScript.

Dynamic HTML and positioning

Perhaps the biggest improvements to the inner workings of the Level 4 browsers from both Netscape and
Microsoft revolved around a concept called Dynamic HTML (DHTML). The ultimate goal of DHTML was to
enable scripts in documents to control the content, content position, and content appearance in response to
user actions. To that end, the W3C organization developed another standard for the precise positioning of
HTML elements on a page as an extension of the CSS standards effort. The CSS-Positioning recommenda-
tion was later blended into the CSS standard, and both are now part of CSS Level 2. With positioning, you
can define an exact location on the page where an element should appear, whether the item should be visi-
ble, and what stacking order it should take among all the items that might overlap it.

1E4+ adheres to the positioning-standard syntax and makes positionable items subject to script control.
Navigator 4 followed the standard from a conceptual point of view, but it implemented an alternative
methodology involving an entirely new, and eventually unsanctioned, tag for layers. Such positionable items
were scriptable in Navigator 4 as well, although a lot of the script syntax differed from that used in Internet
Explorer 4. Fortunately for DHTML authors, Mozilla, through its adherence to the CSS standard, is more
syntactically in line with DHTML style properties employed in IE4+.

Of more interest these days is the ability to modify the inline content of a Web page without reloading the
entire page. Fundamental standards from the W3C DOM Level 1 are supported by a wide range of
browsers, including IE5+, Mozilla, Safari, and Opera. You can accomplish quite a lot using the same basic
syntax across all of these browsers. Some challenges remain, however, as you'll see throughout this book.

Developing a Scripting Strategy

Browsers representing the latest generation contain a hodgepodge of standards and proprietary extensions.
Even if you try to script to a common denominator among today’s browsers, your code probably won't take
into account the earlier versions of both the JavaScript core language and the browser DOMs.

The true challenge for authors is determining the audience for which scripted pages are intended. Each new
browser generation not only brings with it new and exciting features you are probably eager to employ in
your pages, but also adds to the fragmentation of the audience visiting a publicly accessible page. With each
new browser upgrade, fewer existing users are willing to download megabytes of browser merely to have
the latest and greatest browser version. For many pioneers— and certainly for most nontechie users —
there is a shrinking imperative to upgrade browsers unless the new browser comes via a new computer or
operating system upgrade.

Authoring Challenges Amid the Browser Wars

At this stage in the history of scriptable browsers, I take the stand that we should assume that a typical Web
surfer arrives with a browser equipped with support for at least simple W3C DOM and DHTML capabili-
ties. That certainly won't be the case 100 percent of the time, so it is also your obligation to apply scripting
in an additive, or value-added, manner. By this I mean that your pages should convey their primary infor-
mation to nonscriptable browsers designed for users with vision or motor-skill impairments as well as less-
feature-rich browsers built into cellular telephones. But the scripting efforts you make can give visitors with
recent scriptable browsers a more enjoyable experience — better interactivity, faster performance, and a
more engaging presentation. You will not only be contributing to the state of the art, but also carrying on
the original vision of scripting in the browser.

15

n this chapter, you set up a productive scriptwriting and previewing environ-
ment on your computer; then you write a simple script whose results you
can see in your JavaScript-compatible browser.

Because of differences in the way various personal computing operating systems
behave, I present details of environments for two popular variants: Windows

(95 through XP) and Mac OS X. For the most part, your JavaScript authoring
experience is the same regardless of the operating system platform you use —
including Linux or Unix. Although there may be slight differences in font designs
depending on your browser and operating system, the information remains the
same. Most illustrations of browser output in this book are made from the
Windows XP version of Internet Explorer 6. If you run another browser or ver-
sion, don't fret if every pixel doesn’t match the illustrations in this book.

The Software Tools

The best way to learn JavaScript is to type the HTML and scripting code into
documents in a text editor. Your choice of editor is up to you, although I provide
you some guidelines for choosing a text editor in the next section.

Choosing a text editor

For the purposes of learning JavaScript in this book, avoid WYSIWYG (What You
See Is What You Get) web-page authoring tools, such as FrontPage and
Dreamweaver, for now. These tools certainly will come in handy afterward when
you can productively use those facilities for molding the bulk of your content
and layout. But the examples in this book focus more on script content (which
you must type anyway), so there isn’t much HTML that you have to type. Files
for all complete web-page listings in this book (except for the tutorial chapters)
also appear on the companion CD-ROM.

17

INTHIS C

How to choose basic JavaScript
authoring tools

How to set up your authoring
environment

How to enter a simple script
to a web page

Getting Started with JavaScript

An important factor to consider in your choice of editor is how easy it is to save standard text files with an
.htm1 filename extension. In the case of Windows, any program that not only saves the file as text by
default but also enables you to set the extension to .htmor .htm1 prevents a great deal of problems. If you
use Microsoft Word, for example, the program tries to save files as binary Word files— something that no
web browser can load. To save the file initially as a . txt or .htm1 extension file requires mucking around
in the Save As dialog box. This requirement is truly a nuisance.

Nothing’s wrong with using bare-essentials text editors. In Windows, that includes the WordPad program or
a more fully featured product such as the shareware editor called TextPad. For Mac OS X, the bundled
TextEdit application is also fine. Favorites among Mac HTML authors and scripters include BBEdit (Bare
Bones Software) and SubEthaEdit (www.codingmonkeys.de/subethaedit).

Choosing a browser

The other component that is required for learning JavaScript is the browser. You don’t have to be connected
to the Internet to test your scripts in the browser. You can perform all testing offline. This means you can
learn JavaScript and create cool, scripted web pages with a laptop computer — even on a boat in the middle
of an ocean.

The browser brand and version you use are up to you. Because the tutorial chapters in this book teach the
W3C DOM syntax, you should be using a recent browser. Any of the following will get you through the
tutorial: Internet Explorer 5 or later (Windows or Macintosh); any Mozilla-based browser (including
Firefox, Netscape 7 or later, and Camino); Apple Safari; and Opera 7 or later.

Many example listings in Parts 11l and IV of this book demonstrate language or document object
% model (DOM) features that work on only specific browsers and versions. Check the compatibil-
ity listing for that language or DOM feature to make sure you use the right browser to load the page.

Setting Up Your Authoring Environment

To make the job of testing your scripts easier, you want to have your text editor and browser running simul-
taneously. You need to be able to switch quickly between editor and browser as you experiment and repair
any errors that may creep into your code. The typical workflow entails the following steps:

1. Enter HTML and script code into the source document in the text editor.
2. Save the latest version to disk.
3. Switch to the browser.
4. Do one of the following:
If this is a new document, open the file through the browser’s Open menu.
If the document is already loaded, reload the file into the browser.
Steps 2 through 4 are the key ones you will follow frequently. I call this three-step sequence the save-
switch-reload sequence. You will perform this sequence so often as you script that the physical act quickly

will become second nature to you. How you arrange your application windows and effect the save-switch-
reload sequence varies according to your operating system.

18

FIGURE 3-1

Editor and browser-window arrangement in Windows XP.

Windows

Your First JavaScript Script

You don't have to have either the editor or browser window maximized (at full screen) to take advantage of
them. In fact, you may find them easier to work with if you adjust the size and location of each window so
both windows are as large as possible while still enabling you to click a sliver of the other’s window. Or

you can leave the taskbar visible so you can click the desired program’s button to switch to its window

(see Figure 3-1). A monitor that displays more than 800 x 600 pixels certainly helps in offering more screen

real estate for the windows and the taskbar.

\SJ

& The Evaluator - Windows Intemnet Explorer

[—

-WordPad

File Edit View Insert Format Help

DEE S 64 @ B

=

1

Done

function walkChildNodes (ohiRef, n) (
var ohj
if (ok3Ref} {
if (typeof objRef == "string") {
obj = document.getElementByld(obiRef)
b oelse ¢
chj = ohjRef
} EIEL {
ohj = (document.body.parentElement] ?
document .body. parentElement : document.body.parentHode
+
wvar output =
var indent = "
var i, group, txt
if (n) {
for (i =0; i < n; it4) {
indent += "4---"
¥
) else {
n =20
output += "Child Nodes of <" + obj.tagHame
OULPUE += "r\nss===================ypf
+
group = obj.childNodes

For 45 = M- 5o cronn lamethe saay o

A [

[
(2]

For Help, press F1

w @ The Evaluator - wind...

| D@D 43Em

In practice, however, the Windows Alt+Tab task-switching keyboard shortcut makes the job of the save-
switch-reload steps outlined earlier a snap. If you run Windows and also use a Windows-compatible text
editor (which more than likely has a Ctrl+S file-saving keyboard shortcut), you can effect the save-switch-
reload sequence from the keyboard your the left hand: Ctrl+S (save the source file), Alt+Tab (switch to the

browser), and Ctrl+R (reload the saved source file).

As long as you keep switching between the browser and text editor via Alt+Tab task switching, either pro-

gram is always just an Alt+Tab away.

Mac OS X

In Mac OS X you can change between your text editor and browser applications via the Dock or, more con-
veniently, by pressing 8+Tab. As long as you stay in those two applications, the other program is only one

38+Tab away (see Figure 3-2).

19

Getting Started with JavaScript

FIGURE 3-2

Editor and browser-window arrangement on the Macintosh screen.

@ BBEdit File Edit Text Font Search Tools Markup Window # & Help

Z i) (=1 (95% Mon 4:55:29PM & &)
= The Evaluator

~(Q- Google

1 MacintoshFE HD
666 |41 evaluator.html

7 LastSaved: 12/06/03 11:03:14PM |
= File Path: /Volumes/Macintosh HD/Library/WebServ. . ocuments/Listings/Chap! 3 fevaluator html
function walkChi ldiodes(objRef, n} €
war obj
Results: (¥ it {objRef) {

i1 (tupeaf objRef == 'string
bj = document. ge!ElEmentHgld(nthaf}

Enter an exp

Yelse {
)'m abjer
T
Yoz
abj = {document dody.parent Lenent) 2
, 5 e Laman e docunent. body.panentH
Enterarefen o Tnifn:
— VOB e e
if (n) £
for {i =8 i <n} \+i){
indent 4= "4

}elzse {
e
Now is the tin autput += "ChiLd
output += "ol

« taghame
=

group = obj .cni dhades
= growelengtny i) €
sutput’ += ind
switeh {groupli I.nockTipe) €
cose 13

S ——— . tagtian
et S T T
cutput += {grauplilinaned 2 1 HAEST + group (il
autput += 13yn
breck

case
o - ol | noevatue subste(o 15
output += txt r‘aplaca(/[\?‘\h]f‘g “éeryn)
it Caroupl 1 ﬂlua Lerath > 15

Sutput 4= 0 T
braak

cass B
output += " [ICOMMENT! Ihn"
break

default:

output += "[Hode Tupe = * + growpli l.nodeType + 140"

£
If faralall].ch ilodss Length > 23
wtput += wulth\ldNudes(gruup[\].)

With this setup, the save-switch-reload sequence is a simple affair:

1. Press 38+S (save the source file).
2. Press 3+Tab (switch to the browser).

3. Press 38+R (reload the saved source file).

To return to editing the source file, press 8+Tab again.

Reloading issues

For the most part, a simple page reload is enough to let you test a revised version of a script right away. But
sometimes the browser’s cache (with its default settings) can preserve parts of the previous page’s attributes
when you reload, even though you have changed the source code. To perform a more thorough reload, hold
down the Shift key while clicking the browser’s Reload/Refresh button. Alternatively, you can turn off the

browser’s cache in the preferences area, but that setting may negatively affect the overall performance of the
browser during your regular web surfing.

20

FIGURE 3-3

Your First JavaScript Script

What Your First Script Will Do

For the sake of simplicity, the kind of script you look at in the next section is the kind that runs automati-
cally immediately after the browser loads the HTML page. Although all scripting and browsing work here is
done offline, the behavior of the page is identical if you place the source file on a server and someone
accesses it through the web.

Figure 3-3 shows the page as it appears in the browser after you're finished. (The exact wording differs
slightly if you run your browser on an operating system platform other than Windows XP or if you use a
browser other than Internet Explorer.) The part of the page that is defined in regular HTML contains noth-
ing more than an <h1> header with a horizontal rule under it. If someone does not use a JavaScript-
equipped browser, he or she sees only the header and horizontal rule (unless that person has a truly
outmoded browser, in which case some of the script words appear in the page).

The finished page of your first JavaScript script.

& Wy First Script - Windows Internet Explorer oo
Q 3~ g‘hltp:ﬂleZ‘168‘1‘lEIEI/JEBS/L\St\ngs/[hapDS[V] *5|| % g
N — »
% & | @My First Soript [] -8 & - [hree~ oo~

Let's Seript...

Your browser says it is: Mozilla’4 0 (compatible; MSIE 7.0; Windows NT 5.1).

Done

[& € Internet H100% v

Below the rule, the script displays plain body text that combines static text with information about the
browser you use to load the document. The script, which fires as a result of the page completing its loading
process, inserts some HTML into an initially empty placeholder element. In particular, the script displays
the same kind of information that your browser reports to a web server each time it requests a page. The
script also takes advantage of cascading style sheets (CSS) to format the browser-specific information in a
red color on the page.

Entering Your First Script

It’s time to start creating your first JavaScript script. Launch your text editor and browser. If your browser
offers to dial your Internet service provider (ISP) or begins dialing automatically, cancel or quit the dialing
operation. If the browser’s Stop button is active, click it to halt any network searching it may try to do. You
may receive a dialog-box message or page indicating that the URL for your browser’s home page (usually the

21

Getting Started with JavaScript

home page of the browsers publisher — unless you've changed the settings) is unavailable. Thats fine. You
want the browser open, but you don't need to be connected to your ISP, If you're automatically connected to
the Internet through a local area network in your office or school or cable modem or DSL, that’s also fine.
However, you don't need the network connection for now. Next, follow these steps to enter and preview
your first JavaScript script
1. Activate your text editor and create a new, blank document.
2. Type the script in the window exactly as shown in Listing 3-1.
Follow the example slowly and carefully, paying special attention to:
a. The uppercase and lowercase letters
b. The placement of single (') and double (") quote symbols
c. The usage of parentheses, angle brackets (< and >), and curly braces ({ and })

LISTING 3-1

Source Code for script1.html

<htm1>

<head>

<title>My First Script</title>

{style type="text/css">

.highlight {color: red}

</style>

{script type="text/javascript">

function showBrowserType() {
document.getElementById("readout").innerHTML =
"Your browser says it is: " +
"<{span class="'highlight'>" +
navigator.userAgent + ".<hr />";

1

window.onload = showBrowserType;

</script>

</head>

<body>

<hl>Let's Script...</hl>
<hr>

<hl>Let's Script...</h1>
<hr />

<div id="readout"></div>
</body>

</html>

3. Save the document with the name scriptl.html.
Switch to your browser.
5. Choose Open (or Open File on some browsers) from the File menu, and select scriptl.html.

(On some browsers, you have to click a Browse button to reach the File dialog box.)

22

Your First JavaScript Script

If you typed all lines as directed, the document in the browser window should look like the one in Figure 3-3
(with minor differences for your computer’s operating system and browser version). If the browser indicates
that a mistake exists somewhere as the document loads, don’t do anything about it for now. (Click the OK
button if you see a script error dialog box.)

Lets first examine the details of the entire document so that you understand some of the finer points of
what the script is doing.

Examining the Script

You do not need to memorize any of the commands or syntax discussed in this section. Instead, relax and
watch how the lines of the script become what you see in the browser.

The HTML document

Ignore the <script> tag for a moment, and look at the rest of the HTML in the document. It5s all very
standard HTML (actually, the HTML complies with the newer XHTML standard), with one CSS rule in the
head portion.

Perhaps the only oddity in the markup is the <div> tag. It has an id attribute assigned to it, giving the
HTML element a name (readout) that a script can use to give it instructions. But there is no initial content
between the <div> and </div> tags. This element serves strictly as a placeholder. In other words, if
scripting is turned off in the browser, the user sees nothing in the document where this element is located.
Thats a good thing, because for public web sites, scripting should add value to the page rather than be
mission critical.

The <script> tag

Any time you include JavaScript verbiage in an HTML document, you must enclose those lines inside a
<script>...</script> tag pair. These tags alert the browser program to begin interpreting all the text
between these tags as a script, rather than HTML to render. Because other scripting languages (such as
Microsoft VBScript) can take advantage of these script tags, you must specify the kind of language in which
the enclosed code is written. Therefore, when the browser receives the signal that your script is of the type
text/javascript, it employs its built-in JavaScript interpreter to handle the code. You can find parallels
to this setup in real life: If you have a French interpreter at your side, you need to know that the person
with whom you’re conversing also knows French. If you encounter someone from Russia, the French inter-
preter can’t help you. Similarly, if your browser has only a JavaScript interpreter inside, it can’t understand
code written in VBScript.

Now is a good time to instill an aspect of JavaScript that will be important to you throughout all your
scripting ventures: JavaScript is case sensitive. Therefore, you must enter any item in your script that uses a
JavaScript word with the correct uppercase and lowercase letters. Your HTML tags (including the <script>
tag) can be in the case of your choice, but everything in JavaScript is case sensitive. When a line of
JavaScript doesn’t work, look for the wrong case first. Always compare your typed code against the listings
printed in this book and against the various vocabulary entries discussed throughout it.

& XHTML style, if you intend to follow its conventions, requires all lowercase tags and attribute
% names. This is the style observed throughout this book.

23

Getting Started with JavaScript

24

The trigger that runs the script

The script in this page needs to have the div element in place before it can run so that the script can point
to that element and insert some HTML into that space. Therefore, the script needs a trigger — something to
get it going when the time is right. That time, it turns out, is after the entire HTML document has loaded.

As you learn in Chapter 8, the browser fires what is known as an event immediately upon completion of
loading the page and whatever content it may contain. For example, an image in the page is downloaded
separately from the HTML page, but the page’s onload event fires only after the HTML text and image(s)
have arrived in the browser.

To get the script to run after the page has loaded, the script includes one statement that instructs the
browser to run a specific routine whenever the page receives that event. For this page, the script will run
some JavaScript code grouped together in a routine named showBrowserType.

Inserting some text

Now we'll look briefly at the rest of the JavaScript code lines inside the <script>...</script> tag pair.
All JavaScript routines are defined as functions. Therefore, the first line of the routine simply alerts the
browser that all the stuff between the curly braces ({ }) belongs to the function named showBrowserType.

Despite the four indented lines shown in Listing 3-1, the code is actually just one statement divided into
lines for the convenience of printing in this book. Dividing a long statement into lines has to follow some
rules, which you will learn in Chapter 6. Therefore, when you enter the script, divide the lines precisely as
shown in Listing 3-1.

The basic operation of this routine is to plug some new HTML content inside the div element in the docu-
ments body. To do that, we need three key ingredients:

1. A way to refer to the div element

2. A way to insert some new text inside the element

3. The new HTML text that is to go inside the element
In plain language, the routine in the script forces the HTML inside the element (whose ID is "readout™) to

become whatever new stuff arrives from the right side of the equal (=) sign. To refer to the readout div,
the script uses the industry standard way to refer to any HTML element that has an ID attribute:

document.getElementById()

To specify which element in the document you mean, include the element’s ID (in quotes) inside the paren-
theses:

document.getElementById("readout")

That points to the element. Now go one step further to point to the property of the element of interest to
you: the innerHTML property here. Anything you assign to this property replaces whatever is inside the ele-
ment5s tag pair. Because the readout div element is empty when the page initially loads, you're simply
replacing an empty space with whatever is to the right of the equal sign.

Now let’s look at the stuff to the right of the equal sign.

The plus (+) signs in the series of lines after the equal sign are the JavaScript way of stringing together
batches of text — like stringing beads on a necklace. By placing the combined sequence of text (which
includes an HTML tag) to the right of the reference to the element and its innerHTML property, the
text is said to be assigned to the innerHTML property of the readout element.

Your First JavaScript Script

Note that neither JavaScript nor the + symbol knows anything about words and spaces. Therefore, the script
is responsible for making sure that proper spaces are included in the strings of characters. Notice, for exam-
ple, that an extra space exists after the word 1s: in the first line of script after the equal sign.

Getting browser information

To fetch the information about the browser version and name to be displayed in the page, you call upon
JavaScript to extract the desired property from a special object called the navigator object. This object fea-
tures several properties that reveal specifics about the web browser that runs the script. One such property,
userAgent, is a copy of the way the browser identifies itself to a server each time it requests a web page.
Although you did it earlier in the chapter with the innerHTML property, it’s a little clearer here to see how
you obtain a copy of a property by appending the property name to the object name (navigator, in this
case) and separating the two names with a period. If you're searching for some English to assign mentally to
this scheme as you read it, start from the right side, and call the right item a property of the left side: the
userAgent property of the navigator object. The reference to the property in the script tells the
JavaScript interpreter to insert the value of that property into the spot where the call is made. For your first
attempt at the script, JavaScript substitutes the internal information about the browser as part of the text
string that gets inserted into the div element.

Finally, notice the semicolon character at the end of the long JavaScript statement in the showBrowserType ()
function. Trailing semicolons — which you can think of as periods at the end of sentences —are purely
optional in JavaScript. There is no penalty for leaving them out. If you intend to investigate other program-
ming languages, such as Java or C++, for example, you'll find those semicolons are required. Program listings
in this book use semicolons.

If you have another browser installed on your computer, load the page into that browser, too. Compare the
way that each browser identifies itself.

Have Some Fun

If you encounter an error in your first attempt at loading this document into your browser, go back to the
text editor, and check the lines of the script section against Listing 3-1, looking carefully at each line in light
of the explanations. There may be a single character out of place, a lowercase letter where an uppercase one
belongs, or a quote or parenthesis missing. Make necessary repairs, switch to your browser, and click Reload.

To see how dynamic the script in scriptl.html is, go back into the text editor, and replace the word
browser with client software. Save, switch, and reload to see how the script changes the text in the document.
Feel free to substitute other text for the quoted text part of the statement to the right of the equal sign.
Always be sure to save, switch, and reload to see the results of your handiwork.

25

JavaScript Tutorial

IN THIS PART

Chapter 4
Browser and Document Objects

Chapter 5
Scripts and HTML Documents

Chapter 6
Programming Fundamentals, Part |

Chapter 7
Programming Fundamentals, Part 11

Chapter 8
Window and Document Objects

Chapter 9
Forms and Form Elements

Chapter 10
Strings, Math, and Dates

Chapter 11
Scripting Frames and Multiple
Windows

Chapter 12
Images and Dynamic HTML

his chapter marks the first of nine tutorial chapters tailored to web

authors who have at least basic grounding in HTML concepts. In particu-

lar, you should already be familiar with common HTML tags and their
attributes, as well as the fundamentals of Cascading Style Sheets (CSS). In this
chapter, you see several practical applications of JavaScript and begin to see how
a JavaScript-enabled browser turns familiar HTML elements into objects that
your scripts control. This tutorial teaches concepts and terminology that apply to
modern browsers, with special focus on standards compatibility to equip you to
work with today’s and tomorrow’s browsers. You should study this tutorial in
conjunction with any of the following browsers: Internet Explorer 5 or later
(Windows or Macintosh), any Mozilla-based browser (Firefox, Netscape 7 or
later, or Camino), Apple Safari, or Opera 7 or later.

Scripts Run the Show

If you have authored web pages with HTML, you are familiar with how HTML
tags influence the way content is rendered on a page when viewed in the
browser. As the page loads, the browser recognizes angle-bracketed tags as for-
matting instructions. Instructions are read from the top of the document down-
ward, and elements defined in the HTML document appear onscreen in the same
order in which they appear in the document’s source code. As an author, you do
a little work one time and up front — adding the tags to text content —and the
browser does a lot more work every time a visitor loads the page into a browser.

Assume for a moment that one of the elements on the page is a text input field
inside a form. The user is supposed to enter some text in the text field and then
click the Submit button to send that information back to the web server. If that
information must be an Internet e-mail address, how do you ensure the user
includes the @ symbol in the address?

29

IN THIS

What client-side scripts do

What happens when a
document loads

How the browser creates objects

How scripts refer to objects

What distinguishes one object
from another

m JavaScript Tutorial

30

One way is to have a Common Gateway Interface (CGI) program on the server inspect the submitted form
data after the user clicks the Submit button and the form information is transferred to the server. If the user
omits or forgets the @ symbol, the CGI program sends the page back to the browser — but this time with
an instruction to include the symbol in the address. Nothing is wrong with this exchange, but it means a
significant delay for the user to find out that the address does not contain the crucial symbol. Moreover, the
web server has to expend some of its resources to perform the validation and communicate back to the visi-
tor. If the web site is a busy one, the server may try to perform hundreds of these validations at any given
moment, probably slowing the response time to the user even more.

Now imagine that the document containing that text input field has some intelligence built into it that
makes sure the text-field entry contains the @ symbol before ever submitting one bit (literally!) of data to
the server. That kind of intelligence would have to be embedded in the document in some fashion —
downloaded with the page’s content so it can stand ready to jump into action when called upon. The
browser must know how to run that embedded program. Some user action must start the program, perhaps
when the user clicks the Submit button. If the program runs inside the browser and detects the lack of the
@ symbol, an alert message should appear to bring the problem to the users attention. The same program
also should be capable of deciding whether the actual submission can proceed or whether it should wait
until a valid e-mail address is entered in the field.

This kind of presubmission data entry validation is but one of the practical ways JavaScript adds intelligence
to an HTML document. Looking at this example, you might recognize that a script must know how to look
into what is typed in a text field; a script must also know how to let a submission continue or how to abort
the submission. A browser capable of running JavaScript programs conveniently treats elements such as the
text field as objects. A JavaScript script controls the action and behavior of objects — most of which you see
onscreen in the browser window.

When to Use JavaScript

With so many web-oriented development tools and languages at your disposal, you should focus your
client-side JavaScript efforts on tasks for which they are best suited. When faced with a web application
task, I look to client-side JavaScript for help with the following requirements:

B Data entry validation. If form fields need to be filled out for processing on the server, I let client-
side scripts prequalify the data entered by the user.

B Serverless CGlIs. I use this term to describe processes that, were it not for JavaScript, would be
programmed as CGls on the server, yielding slow performance because of the interactivity required
between the program and user. This includes tasks such as small data collection lookup, modifica-
tion of images, and generation of HTML in other frames and windows based on user input.

B Dynamic HTML interactivity. It's one thing to use DHTMI capabilities to position elements pre-
cisely on the page; you don’t need scripting for that. But if you intend to make the content dance
on the page, scripting makes that happen.

B CGI prototyping. Sometimes you want a CGI program to be at the root of your application
because it reduces the potential incompatibilities among browser brands and versions. It may be
easier to create a prototype of the CGI in client-side JavaScript. Use this opportunity to polish the
user interface before implementing the application as a CGL.

B Offloading a busy server. If you have a highly trafficked web site, it may be beneficial to convert
frequently used CGI processes to client-side JavaScript scripts. After a page is downloaded, the
server is free to serve other visitors. Not only does this lighten server load, but users also experi-
ence quicker response to the application embedded in the page.

Browser and Document Objects _

B Adding life to otherwise-dead pages. HTML by itself is pretty flat. Adding a blinking chunk of
text doesn’t help much; animated GIF images more often distract from, rather than contribute to,
the user experience at your site. But if you can dream up ways to add some interactive zip to your
page, it may engage the user and encourage a recommendation to friends or repeat visits.

B Creating web pages that “think.” If you let your imagination soar, you may develop new, intrigu-
ing ways to make your pages appear “smart.” For example, in the application Intelligent “Updated”
Flags (Chapter 54 on the CD-ROM), you see how (without a server CGI or database) an HTML
page can “remember” when a visitor last came to the page. Then any items that have been updated
since the last visit — regardless of the number of updates you've done to the page — are flagged for
that visitor. That’s the kind of subtle, thinking web page that best displays JavaScript’s powers.

By the same token, web pages and applications intended for public access should not rely exclusively on
JavaScript. Make sure that your primary data is accessible to visitors who have JavaScript turned off or who
use browsers that don't interpret JavaScript. Let your scripting enhance the experience for the majority of
visitors who have JavaScript-enabled browsers.

The Document Object Model

Before you can truly start scripting, you should have a good feel for the kinds of objects you will be script-
ing. A scriptable browser does a lot of the work of creating software objects that generally represent the visi-
ble objects you see in an HTML page in the browser window. Obvious objects include form controls (text
boxes and buttons) and images. However, there may be other objects that aren't so obvious by looking at a
page but that make perfect sense when you consider the HTML tags used to generate a page’s content —
paragraph objects or frames of a frameset, for example.

To help scripts control these objects —and to help authors see some method to the madness of potentially
dozens of objects on a page — the browser makers define a document object model (DOM). A model is like a
prototype or plan for the organization of objects on a page.

Evolution of browser DOMs has caused much confusion and consternation among scripters due to a lack of
compatibility across succeeding generations and brands of browsers. Fortunately, the DOM world is stabiliz-
ing around a formal specification published by the World Wide Web Consortium (W3C). Today’s modern
browsers continue to support some of the “old ways” of the earliest DOM because so much existing script
code on the Web relies on these traditions continuing to work (you'll see some of these in Chapter 9). But
with the vast majority of browsers in use today supporting the basic W3C DOM syntax and terminology,
scripters should aim toward standards compatibility whenever possible.

HTML structure and the DOM

An important trend in HTML markup is applying markup solely to define the structure of a document and
the context of each piece of content in the document. The days of using HTML tags solely to influence the
appearance of a chunk of text are drawing to a close. It is no longer acceptable to enclose a line of text in,
say, an <h1> tag because you want the line to appear in the text size and weight that browsers automatically
apply to text tagged in that way. An <h1> element has a special context within a documents structure: a
first-level heading. In today’s HTML world, if you wish to display a stand-alone line of text with a particular
style, the text would likely be in a simple paragraph (<p>) tag; the precise look of that paragraph would be
under the control of a Cascading Style Sheet (CSS) rule. Current practice even frowns upon the application
of and <1i> tags to assign boldface and italic styles to a span of text. Instead, surround the text with a
contextual tag (such as the element to signify emphasis), and define the CSS style you wish applied to
any emphasized text in the document.

31

FIGURE 4-1

JavaScript Tutorial

The result of applying strict structural design to your HTML tagging is a document that has a well-defined
hierarchy of elements based on their nesting within one another. For example, an empty HTML document
has the following minimum elements:

<htm1>
<head></head>
<body></body>
</html>

The htm1 element contains two nested elements: head and body. The hierarchy of elements can be charted
like a corporate organizational chart, as shown in Figure 4-1. For the sake of upcoming terminology les-
sons, however, it is more convenient to visualize the chart in Figure 4-1 as a family tree — except that
unlike most real family trees, each point that spawns children is a single parent. In the empty HTML docu-
ment, the htm1 element is the parent of two child elements: head and body. The htm1 element is, in turn, a
child of the document.

Element hierarchy of an empty HTML document.

document

html

head body

FIGURE 4-2

The DOM in a browser window

As its name implies, the formal DOM focuses primarily on the HTML document and the content nested
inside it. From a practical standpoint, however, scripters often need to control the environment that con-
tains the document: the window. The window object is the top of the hierarchy that browser scripts work
with. The basic structure of the object model in modern browsers (given an empty HTML document) is
shown in Figure 4-2.

Basic object model for all modern browsers.

window

navigator screen history location

32

document

Browser and Document Objects _

It’s not important to memorize the model. But to give you a sense of the relationships among these top-level
objects, the following describes their respective roles:

B window object. At the very top of the hierarchy is the window. This object represents the content
area of the browser window where HTML documents appear. In a multiple-frame environment,
each frame is also a window (but don't concern yourself with this just yet). Because all document
action takes place inside the window, the window is the outermost element of the object hierar-
chy. Its physical borders contain the document.

B navigator object. This is the closest your scripts come to accessing the browser program,
primarily to read the brand and version of browser that holds the current document. This object
is read-only, protecting the browser from inappropriate manipulation by rogue scripts.

B screen object. This is another read-only object that lets scripts learn about the physical environ-
ment in which the browser is running. For example, this object reveals the number of pixels high
and wide available in the monitor.

B history object. Although the browser maintains internal details about the browser’ recent his-
tory (such as the list available under the Back button), scripts have no access to the details. At
most, this object assists a script in simulating a click of the Back or Forward button.

B location object. This object is the primary avenue to loading a different page into the current
window or frame. URL information about the window is available under very controlled circum-
stances so that scripts cannot track access to other web sites.

B document object. Each HTML document that gets loaded into a window becomes a document
object. The document object contains the content that you are likely to script. Except for the
html, head, and body element objects that are found in every HTML document, the precise
makeup and structure of the element object hierarchy of the document depend on the content
you put into the document.

When a Document Loads

Programming languages, such as JavaScript, are convenient intermediaries between your mental image of
how a program works and the true inner workings of the computer. Inside the machine, every word of a
program code listing influences the storage and movement of bits (the legendary 1s and Os of the com-
puter’s binary universe) from one RAM storage slot to another. Languages and object models are inside the
computer (or, in the case of JavaScript and the DOM, inside the browser’s area of the computer) to make it
easier for programmers to visualize how a program works and what its results will be. The relationship
reminds me a lot of knowing how to drive an automobile from point A to point B without knowing exactly
how an internal-combustion engine, steering linkages, and all that other internal “stuff” works. By control-
ling high-level objects such as the ignition key, gearshift, gas pedal, brake, and steering wheel, I can get the
results I need.

Of course, programming is not exactly like driving a car with an automatic transmission. Even scripting
requires the equivalent of opening the hood and perhaps knowing how to check the transmission fluid or
change the oil. Therefore, now it’s time to open the hood and watch what happens to a document’s object
model as a page loads into the browser.

33

JavaScript Tutorial

A simple document

Figure 4-3 shows the HTML and corresponding object model for a document that I'll be adding to in a
moment. The figure shows only the document object portion; the window object and its other top-level
objects (including the document object) are always there, even for an empty document. When this page
loads, the browser maintains in its memory a map of the objects generated by the HTML tags in the docu-
ment. At this point, only three objects exist inside the document object: one for the outermost htm1 ele-
ment and one each for its two nested elements.

FIGURE 4-3

Object map of an empty document.
<htm1>
<head></head> document
<body></body>
</htm1>
html

head body

Add a paragraph element

Now [modify the HTML file to include an empty paragraph element and reload the document. Figure 4-4
shows what happens to both the HTML (changes in boldface) and the object map as constructed by the
browser. Even though no content appears in the paragraph, the <p> tags are enough to tell the browser to
create that p element object. Also note that the p element object is contained by the body element object in
the hierarchy of objects in the current map. In other words, the p element object is a child of the body ele-
ment object. The object hierarchy matches the HTML tag containment hierarchy.

FIGURE 4-4

Adding an empty paragraph element.

<html>
<head></head>
<body>
<p></p>
</body>
</htm1>

document

html

head

body

34

FIGURE 4-5

Browser and Document Objects

Add paragraph text

I modify and reload the HTML file again, this time inserting the text of the paragraph between the element’s
start and end tags, as shown in Figure 4-5. A run of text extending between tags is a special kind of object
in the DOM called a text node. A text node always has an element acting as its container. Applying the offi-
cial genealogy metaphor to this structure, the text node is a child of its parent p element. We now have a
branch of the document object tree that runs several generations: document->htm1->body->p->text node.

Adding a text node to the p element object.

<html>

<head></head> document

<body> |

<p>This is the one and
only paragraph.</p> html

</body>

</html1> |
| |
head body

“This is the one and only paragraph.”

Make a new element

The last modification I make to the file is to wrap a portion of the paragraph text in an tag to signify
emphasis for the enclosed text. This insertion has a large effect on the hierarchy of the p element object, as
shown in Figure 4-6. The p element goes from having a single (text node) child to having three children:
two text nodes with an element between them. In the W3C DOM, a text node cannot have any children
and therefore cannot contain an element object. The bit of the text node now inside the em element is no
longer a child of the p element, but a child of the em element. That text node is now a grandchild of the p
element object.

Now that you see how objects are created in memory in response to HTML tags, the next step is to figure
out how scripts can communicate with these objects. After all, scripting is mostly about controlling these
objects.

35

m JavaScript Tutorial

Inserting an element into a text node.

<html>
<head></head> document
<body> |
<p>This is the one and
only paragraph.</p> html
</body>
</html> I
I |
head body
I
[
[[|
“Thisis the” em “paragraph.”
I
“one and only”

Object References

After a document is loaded into the browser, all of its objects are safely stored in memory in the containment
hierarchy structure specified by the browsers DOM. For a script to control one of those objects, there must
be a way to communicate with an object and find out something about it (such as “Hey, Mr. Text Field, what
did the user type?”). To let your scripts talk to an object, you need a way to refer to that object. That is pre-

cisely what an object reference in a script does for the browser.

Object naming

The biggest aid in creating script references to objects is assigning a name to every scriptable object in your
HTML. In the W3C DOM (and current HTML specification), the way to assign a name to an element is by

way of the id attribute. This attribute is optional, but if you plan to use scripts to access an element in the

page, it is most convenient to assign a name to that element’s id attribute directly in the HTML code. Here

are some examples of 1d attributes added to typical tags:

<p id="firstParagraph" >

<div class="draggable" id="puzzlePiece">

36

Browser and Document Objects _

The only rules about object IDs (also called identifiers) are that they:

B May not contain spaces

B Should not contain punctuation except for the underscore character
B Must be inside quotes when assigned to the id attribute

B Must not start with a numeric character

B May not occur more than once in the same document

Think of assigning IDs as the same way as sticking name tags on everyone attending a conference meeting.
To find a particular conference attendee whose name you know, you could wait at the entrance and scan
each name tag until you find the name you're looking for, or you could bump around the attendees at
random in the hope that you'll find a known name. But it would be more efficient if you had a way to target
an attendee by name immediately — such as broadcasting the name on the public address system to the
whole crowd.

Referencing a particular object

The W3C DOM provides that kind of instant access to any named element in the document. If you haven't

programmed before, the syntax for this access command may be intimidating in its length — a hazard when
a standard such as the W3C DOM is designed by programmers. Like it or not, we're stuck with this syntax.

Here is the syntax you will use frequently in your browser scripting:

window.document.getElementById("elementID")

You substitute the ID of the element you wish to reference for e1ementID. For example, if you want to
reference the paragraph element whose ID is firstParagraph, the reference would be

window.document.getElementById("firstParagraph")

Be careful! JavaScript is case sensitive. Be sure that you use uppercase for the three uppercase letters in the
command and a lowercase d at the end, and that you capitalize the ID accurately as well.

The getElementById() command belongs to the document object, meaning that the entire document’s
collection of elements is subject to this instantaneous search for a matching ID. The dot —a traditional
period character —is the JavaScript way of indicating that the item to the left of the dot (the document
object here) has the item to the right of the dot (getETementById() here) as a resource to call upon when-
ever needed. Each type of object has a list of such resources, as you'll see in a moment (and as summarized
in Appendix A).

id versus name Attributes

rior to the HTML 4.0 specification’s introduction of the id attribute, scripts could access a handful of ele-

ments that also supported the name attribute. Elements supporting the name attribute are predominantly
related to forms, images, and frames. You will see how name attributes work in forms in Chapter 9. In fact,
most browsers still require the name attribute for forms and form controls (text fields, buttons, and select lists)
for their data to be submitted to a server. It is permissible to assign the same identifier to both the id and name
attributes of an element.

37

FIGURE 4-7

JavaScript Tutorial

Node Terminology

W3C DOM terminology uses metaphors to assist programmers in visualizing the containment hierarchy of a
document and its content. One concept you should grasp early in your learning is that of a node; the other
concept is the family relationship among objects in a document.

About nodes

Although the English dictionary contains numerous definitions of node, the one that comes closest to its
application in the W3C DOM implies a knob or bump on a tree branch. Such nodules on a branch usually
lead to one of two things: a leaf or another branch. A leaf is a dead end in that no further branches emanate
from the leaf; the branch kind of node leads to a new branch that can itself have further nodes, whether
they be leaves or more branches. When you define the structure of an HTML document, you also define a
node structure (also called a node tree) whose placement of branches and leaves depends entirely on your
HTML elements and text content.

In the W3C DOM, the fundamental building block is a simple, generic node. But inside an HTML docu-
ment, we work with special kinds of nodes that are tailored to HTML documents. The two types of nodes
that scripts touch most often are element nodes and text nodes. These node types correspond exactly to
HTML elements and the text that goes between an element’s start and end tags. You've been working with
element and text nodes in your HTML authoring, and you didn’t even know it.

Look again at the simple document you assembled earlier, along with its containment hierarchy diagram in
Figure 4-7. All of the boxes representing HTML elements (htm1, head, body, p, and em) are element nodes;
the three boxes containing actual text that appears in the rendered document are text nodes. You saw in the
transition from one long text node (Figure 4-5) to the insertion of the em element (Figure 4-6) that the long
text node divided into three pieces. Two text node pieces stayed in the same position in the hierarchy rela-
tive to the containing p element. The new em element bullied its way into the tree between the two text
nodes and shifted the third text node one level away from the p element.

A simple HTML document node tree.

<html>
<head></head> document
<body>
<p>This is the one and
only paragraph.</p> html
</body>
</html> |
| |
head body
|
[
[[|
“This is the” em “paragraph.”

38

“one and only”

Browser and Document Objects _

Parents and children

Looking more closely at the p element and its content in Figure 4-7, you can see that element has three child
nodes. The first and last are of the text node type, whereas the middle one is an element node. When an
element contains multiple child nodes, the sequence of child nodes is entirely dependent upon the HTML
source code order. Thus, the first child node of the p element is the text node containing the text “This is
the . In the case of the em element, a single child text node is the sole descendant of the element.

Element node children are not always text nodes; neither do branches always end in text nodes. In Figure 4-7,
the htm1 element has two child nodes, both of which are element nodes; the body element has one child
node, the p element. Even though the head element node appears to be at the end of a branch, it is still an
element node because it is capable of containing other nodes (such as a tit1e element). A tag in the HTML
indicates an element node, whether or not it has any child nodes. Bt contrast, a text node can never contain
another node; it'’s one of those dead-end leaf type of nodes.

Notice that a child node is always contained by one element node. That container is the parent node of its
child or children. For example, from the point of view of the em element node, it has both one child (a text
node) and one parent (the p element node). A fair amount of W3C DOM terminology (which you'll meet in
Chapter 14) concerns itself with assisting scripts to start at any point in a document hierarchy and obtain a
reference to a related node if necessary. For instance, if a Dynamic HTML script wants to modify the text
inside the em element of Figure 4-7, it typically would do so by starting with a reference to the em element
via the document.getElementById() command (assuming that the em element has an ID assigned to it)
and then modifying the elements child node.

In case you're wondering, the document object at the top of the node tree is itself a node. Its place in the
tree is special and is called simply the document node. Each loaded HTML document contains a single docu-
ment node, and that node becomes the scripter’s gateway to the rest of the documents nodes. It’s no acci-
dent that the syntax for referencing an element node — document.getElementById() — begins with a
reference to the document object.

What Defines an Object?

When an HTML tag defines an object in the source code, the browser creates a slot for that object in memory
as the page loads. But an object is far more complex internally than, say, a mere number stored in memory.
The purpose of an object is to represent some thing. In the browser and its DOM, the most common objects
are those that correspond to elements, such as a text input form field, a table element, or the entire rendered
body of the document. Outside the pared-down world of the DOM, an object can also represent abstract
entities, such as a calendar program’s appointment entry or a layer of graphical shapes in a drawing program.
It is common for your browser scripts to work with both DOM objects and abstract objects of your own
design.

Every type of DOM object is unique in some way, even if two or more objects look identical to you in the
browser. Three very important facets of an object define what it is, what it looks like, how it behaves, and
how scripts control it. Those three facets are properties, methods, and events (also known as handlers).
They play such key roles in your future DOM scripting efforts that the Object Quick Reference in Appendix
A summarizes the properties, methods, and events for each object in the object models implemented in var-
ious browser generations.

39

m JavaScript Tutorial

40

Properties

Any physical object you hold in your hand has a collection of characteristics that defines it. A coin, for
example, has shape, diameter, thickness, color, weight, embossed images on each side — and any number
of other attributes that distinguish it from, say, a feather. Each of those features is called a property. Each
property has a value of some kind attached to it (even if the value is empty or null). For example, the shape
property of a coin might be circle—in this case, a text value. By contrast, the denomination property is
most likely a numeric value.

You may not have known it, but if you've written HTML for use in a scriptable browser, you have set object
properties without writing one iota of JavaScript. Tag attributes are the most common way to set an HTML
element object’ initial properties. For example, the following HTML tag defines an input element object
that assigns four property values:

{input type="button" id="clicker" name="clicker" value="Hit Me...">

In JavaScript parlance, then, the type property holds the word button; the 1d and name properties hold the
same word, clicker; and the value property is the text that appears on the button label, Hit Me. . . . In truth,
a button input element has more properties than just these, but you don’t have to set every property for
every object. Most properties have default values that are automatically assigned if nothing special is set in
the HTML or later from a script.

The contents of some properties can change after a document has loaded and the user interacts with the
page. Consider the following text input tag:

{nput type="text" id="entry" name="entry" value="User Name?">

The id and name properties of this object are the same word: entry. When the page loads, the text of the
value attribute setting is placed in the text field — the automatic behavior of an HTML text field when the
value attribute is specified. But if a user enters some other text into the text field, the value property
changes —not in the HTML, but in the memory copy of the object model that the browser maintains.
Therefore, if a script queries the text field about the content of the value property, the browser yields the
current setting of the property — which isn’t necessarily the one specified by the HTML.

To gain access to an object’s property, you use the same kind of dot-notation addressing scheme you saw
earlier for objects. A property is a resource belonging to its object, so the reference to it consists of the refer-
ence to the object plus one more extension naming the property. Therefore, for the button and text object
tags just shown, references to various properties are

document.getElementById("clicker").name
document.getElementById("cTicker").value
document.getElementById("entry").value

You may wonder what happened to the window part of the reference. It turns out that there can be only one
document contained in a window, so references to objects inside the document can omit the window por-
tion and start the reference with document. You cannot omit the document object from the reference,
however.

Methods

If a property is like a descriptive adjective for an object, a method is a verb. A method is all about action
related to the object. A method either does something to the object or with the object that affects other parts
of a script or document. Methods are commands of a sort whose behaviors are tied to a particular object.

Browser and Document Objects

Internet Explorer References

Before the W3C DOM came into existence, Microsoft had created its own way of referencing element
objects by way of their 1d attributes. You will find many instances of this syntax in existing code that has
been written only for Internet Explorer 4 or later. The syntax uses a construction called document.all.
Although there are a few different ways to use this construction, the most commonly applied way is to con-
tinue the dot notation to include the ID of the element. For example, if a paragraph element’s ID is
myParagraph, the IE-only reference syntax is

document.all.myParagraph
You can also omit the lead-in parts of the reference and simply refer to the ID of the element:
myParagraph

Be aware, however, that none of these approaches is supported in the W3C DOM standard. Both the IE-
specific and W3C DOM reference syntax styles are implemented in IE5 or later. Going forward, you should
migrate existing code to the W3C DOM style to be compatible with more browsers.

An object can have any number of methods associated with it (including none at all). To set a method into
motion (usually called invoking a method), a JavaScript statement must include a reference to it, via its object
with a pair of parentheses after the method name, as in the following examples:

document.getElementById("orderForm").submit()
document.getElementById("entry").focus()

The first is a scripted way of sending a form (named orderForm) to a server. The second gives focus to a
text field named entry.

Sometimes a method requires that you send additional information with it so that it can do its job. Each
chunk of information passed with the method is called a parameter or argument (you can use the terms
interchangeably). The document.getElementById() method is one that requires a parameter; the identi-
fier of the element object to be addressed for further action. This method’s parameter must be in a format
consisting of straight text, signified by the quotes around the identifier.

Some methods require more than one parameter. If so, the multiple parameters are separated by commas.
For example, modern browsers support a window object method that moves the window to a particular
coordinate point onscreen. A coordinate point is defined by two numbers that indicate the number of pixels
from the left and top edges of the screen where the top-left corner of the window should be. To move the
browser window to a spot 50 pixels from the left and 100 pixels from the top, the method is

window.moveTo(50,100)

As you learn more about the details of JavaScript and the document objects you can script, pay close atten-
tion to the range of methods defined for each object. They reveal a lot about what an object is capable of
doing under script control.

41

m JavaScript Tutorial

LISTING 4-1

Events

One last characteristic of a DOM object is the event. Events are actions that take place in a document, usu-
ally as the result of user activity. Common examples of user actions that trigger events include clicking a
button or typing a character in a text field. Some events, such as the act of loading a document into the
browser window or experiencing a network error while an image loads, are not so obvious.

Almost every DOM object in a document receives events of one kind or another — summarized for your
convenience in the Object Quick Reference of Appendix A. Your job as scripter is to write the code that tells
an element object to perform an action whenever the element receives a particular type of event. The action
is simply executing some additional JavaScript code.

The simplest way to begin learning about events is to add an event-related attribute to the elements HTML
tag. The attribute’s name consists of the type of event (for example, c11ck) preceded by the preposition on —
as in “on receiving the c1ick event . . .”. The attribute’s value (to the right of the equal sign, just like any
HTML attribute) consists of the JavaScript instructions to follow whenever the event reaches the element.
Listing 4-1 shows a very simple document that displays a single button with one event handler defined for it.

A Simple Button with an Event Handler

<htm1>
<body>
<form>
<input type="button" value="Click Me" onclick="window.alert ('Quch!')">
</form>
</body>
</html>

42

The form definition contains what for the most part looks like a standard input element. But notice the last
attribute, onclick="window.alert('Ouch!"')". Button input objects, as you see in their complete
descriptions in Chapter 22, react to mouse clicks. When a user clicks the button, the browser sends a
click event to the button. In this button’s definition, the attribute says that whenever the button receives
that event, it should invoke one of the window objects methods, alert (). The alert () method displays a
simple alert dialog box whose content is whatever text is passed as a parameter to the method. Like most
arguments to HTML attributes, the attribute setting to the right of the equal sign goes inside quotes. If addi-
tional quotes are necessary, as in the case of the text to be passed along with the event handler, those inner
quotes can be single quotes. In actuality, JavaScript doesn’t distinguish between single or double quotes but
does require that each pair be of the same type. Therefore, you can write the attribute this way:

onclick="alert("OQuch!")'

You will learn about other ways to connect scripting instructions to events in Chapter 14 and Chapter 25.

Browser and Document Objects

Exercises

1.

Which of the following applications are well suited to client-side JavaScript? Why or why not?
a. Product catalog page that lets visitors view the product in five different colors

b. A counter that displays the total number of visitors to the current page

c. Chat room

d. Graphical Fahrenheit-to-Celsius temperature calculator

e. All of the above

f. None of the above
Which of the following object names are valid in JavaScript? For each one that is invalid, explain
why.

a. lastName

b. company_name

c. 1stLineAddress

d. zip code

e. today's_date
Using the diagram from Figure 4-7 for reference, draw a diagram of the object model containment
hierarchy that the browser would create in its memory for the following HTML. Write the script
reference to the second paragraph element using W3C DOM syntax.
<html>

<head>

<title>Search Form</title>

</head>

<body>

<p id="logoPar"><img src="images/logo.jpg" height="90" width="300"
alt="Logo" /></p>

<p id="formPar">

{form name="searchForm" action="cgi-bin/search.pl" method="POST">
Search for: <input type="text" name="searchText" />

<input type="submit" value="Search" />

</form>

</p>

</body>

</html>
Describe at least two characteristics that a text node and an element node have in common;
describe at least two characteristics that distinguish a text node from an element node.

Write the HTML tag for a button input element named Hi, whose visible label reads Howdy and
whose action upon being clicked displays an alert dialog box that says He11o to you, too!

43

n this chapter’ tutorial, you begin to see how scripts are embedded within

HTML documents and what comprises a script statement. You also see how

script statements can run when the document loads or in response to user
action. Finally, you find out where script error information may be hiding.

Where Scripts Go in Documents

Chapter 4 did not thoroughly cover what scripts look like or how you add them
to an HTML document. That’s where this lesson picks up the story.

The <script> tag

To assist the browser in recognizing lines of code in an HTML document as
belonging to a script, you surround lines of script code with a
{script>...</script> tagset. This is common usage in HTML, where start
and end tags encapsulate content controlled by that tag, whether the tag set is for
a form or a paragraph.

Depending on the browser, the <script> tag has a variety of attributes you can
set that govern the script. One attribute, type, advises the browser to treat the
code within the tag as JavaScript. Some other browsers accept additional lan-
guages (such as Microsoft’s VBScript in Windows versions of Internet Explorer).
The following setting is one that all modern scriptable browsers accept:

{script type="text/javascript">

Be sure to include the ending tag for the script. Lines of JavaScript code go
between the two tags:

{script type="text/javascript">
one or more lines of JavaScript code here
</script>

If you forget the closing script tag, the script may not run properly, and the
HTML elsewhere in the page may look strange.

45

IN THIS

Where to place scripts in
HTML documents

What a JavaScript statement is

What makes a script run

Viewing script errors

m JavaScript Tutorial

The Old language Attribute

Another <{script> tag attribute, Tanguage, used to be the way to specify the scripting language for the
enclosed code. That attribute allowed scripters to specify the language version. For example, if the scripts
included code that required JavaScript syntax available only in version 4 browsers (which implemented
JavaScript version 1.2), the <script> tag used to be written as follows:

<script language="JavaScriptl.2">...</script>

The Tanguage attribute was never part of the HTML 4.0 specification and is now falling out of favor. If W3C
validation is one of your development concerns, the attribute does not validate in strict versions of HTML
4.01 or XHTML 1.0. Older browsers that do not know the type attribute automatically default to JavaScript
anyway. Use only the type attribute.

Although you don't work with it in this tutorial, another attribute works with more recent browsers to
blend the contents of an external script file into the current document. An src attribute (similar to the src
attribute of an tag) points to the file containing the script code. Such files must end with a js exten-
sion. The tag set looks like the following:

{script type="text/javascript" src="myscript.js"></script>

All script lines are in the external file, so no script lines are included between the start and end script tags in
the document. The end tag is still required.

Tag positions

Where do these tags go within a document? The answer is, anywhere they're needed in the document. Most
of the time, it makes sense to include the tags nested within the <head>...</head> tag set; other times, it
is essential that you drop the script into a very specific location in the <body>...</body> section.

In the following four listings, I demonstrate — with the help of a skeletal HTML document — some of the
possibilities of <script> tag placement. Later in this lesson, you see why scripts may need to go in differ-
ent places within a page depending on the scripting requirements.

Listing 5-1 shows the outline of what may be the most common position of a <script> tag set in a docu-
ment: in the <head> tag section. Typically, the Head is a place for tags that influence noncontent settings for
the page — so-called HTML directive elements, such as <meta> tags and the document title. It turns out that
this is also a convenient place to plant scripts that are called on in response to user action.

LISTING 5-1

Scripts in the Head

<htm1>

<head>

<title>A Document</title>

<script type="text/javascript">
//script statement(s) here

</script>

46

Scripts and HTML Documents

</head>
<body>

</body>
</html1>

On the other hand, if you need a script to run as the page loads so that the script generates content in the
page, the script goes in the <body> portion of the document, as shown in Listing 5-2.

LISTING 5-2

A Script in the Body

<html>

<head>

<title>A Document</title>

</head>

<body>

<script type="text/javascript">
//script statement(s) here

</script>
</body>
</html>

It’s also good to know that you can place an unlimited number of <script> tag sets in a document. For
example, Listing 5-3 shows a script in both the Head and Body portions of a document. Perhaps this
document needs the Body script to create some dynamic content as the page loads, but the document also
contains a button that needs a script to run later. That script is stored in the Head portion.

LISTING 5-3

Scripts in the Head and Body

<html>

<head>

<title>A Document</title>

<script type="text/javascript">
//script statement(s) here

</script>

</head>

<body>

<script type="text/javascript">
//script statement(s) here

</script>
</body>
</html>

47

LISTING 5-4

JavaScript Tutorial

You are not limited to one <script> tag set in either the Head or Body. You can include as many <script>
tag sets in a document as are needed to complete your application. In Listing 5-4, for example, two <script>
tag sets are located in the Head portion. One set is used to load an external . js library; the other includes
code specifically tailored to the current page.

Two Scripts in the Body

<html1>
<head>
<title>A Document</title>
</head>
<script type="text/javascript" src="js/jslibrary.js"></script>
<script type="text/javascript">
//script statement(s) here

</script>
<body>
</body>
</htm1>

LISTING 5-5

Handling non-JavaScript browsers

Only browsers that include JavaScript know to interpret the lines of code between the <script>...</script>
tag pair as script statements and not HTML text for display in the browser. This means that a pre-JavaScript
browser or a simplified browser in a cell phone not only ignores the tags, but also treats the JavaScript code as
page content. The results can be disastrous to a page.

You can reduce the risk of non-JavaScript browsers displaying the script lines by playing a trick. The trick is
to enclose the script lines between HTML comment symbols, as shown in Listing 5-5. Most nonscriptable
browsers ignore the content between the <! -- and - -> comment tags, whereas scriptable browsers ignore
those comment symbols when they appear inside a <script> tag set.

Hiding Scripts from Most Old Browsers

{script type="text/javascript">

<1--

//script statement(s) here

/1 -->
</script>

48

Scripts and HTML Documents

The odd construction right before the ending script tag needs a brief explanation. The two forward slashes
are a JavaScript comment symbol. This symbol is necessary because JavaScript otherwise tries to interpret
the components of the ending HTML symbol (- ->). Therefore, the forward slashes tell JavaScript to skip
the line entirely; a nonscriptable browser simply treats those slash characters as part of the entire HTML
comment to be ignored.

Despite the fact that this technique is often called hiding scripts, it does not disguise the scripts entirely. All
client-side JavaScript scripts are part of the HTML document and download to the browser just like all
other HTML. Furthermore, you can view them as part of the documents source code. Do not be fooled into
thinking that you can hide your scripts entirely from prying eyes.

JavaScript Statements

Virtually every line of code that sits between a <script>... </script> tag pair is a JavaScript statement.
To be compatible with habits of experienced programmers, JavaScript accepts a semicolon at the end of
every statement (the computer equivalent of a period at the end of a sentence). Fortunately for newcomers,
this semicolon is optional: The carriage return at the end of a statement suffices for JavaScript to know that
the statement has ended. It is possible that in the future, the semicolon will be required, so its a good idea
to get into the semicolon habit now.

A statement must be in the script for a purpose. Therefore, every statement does something relevant to the
script. The kinds of things that statements do are

Define or initialize a variable

Assign a value to a property or variable

Change the value of a property or variable

Invoke an object’s method

Invoke a function routine

B Make a decision

If you don't yet know what all of these things mean, don’t worry; you will by the end of this tutorial. The
point I want to stress is that each statement contributes to the scripts you write. The only statement that
doesn’t perform any explicit action is the comment. A pair of forward slashes (no space between them) is the
most common way to include a comment in a script. You add comments to a script for your benefit. They
usually explain in plain language what a statement or group of statements does. The purpose of including
comments is to remind you six months from now how your script works.

When Script Statements Execute

Now that you know where scripts go in a document, it’s time to look at when they run. Depending on what
you need a script to do, you have four choices for determining when a script runs:

B While a document loads
B Immediately after a document loads
B In response to user action

B When called upon by other script statements

The determining factor is how the script statements are positioned in a document.

49

m JavaScript Tutorial

LISTING 5-6

50

While a document loads: immediate execution

Listing 5-6 is a variation of your first script from Chapter 3. In this version, the script writes the browser
information to the page while the page loads. The document.write() method is the primary way to cause
dynamic content — the values of the two navigator object properties in this case — to be rendered in the
page during loading. I call the kinds of statements that run as the page loads immediate statements.

HTML Page with Immediate Script Statements

<html>

<head>

<title>My First Script--1I</title>
{style type="text/css">

.highlight {font-weight: bold}
</style>

</head>

<body>

<hl>Let's Script...</hl1>

<hr>

<script type="text/javascript">

<!-- hide from old browsers

document.write("This browser is version + navigator.appVersion);
document.write(" of " + navigator.appName + ".");
// end script hiding -->

<{/script>

</body>

</htm1>

Deferred scripts

The other three ways that script statements run are grouped together as what I call deferred scripts. To
demonstrate these deferred script situations, I must introduce you briefly to a concept covered in more
depth in Chapter 7: the function. A function defines a block of script statements summoned to run some
time after those statements load into the browser. Functions are clearly visible inside a <script> tag
because each function definition begins with the word function followed by the function name (and
parentheses). After a function is loaded into the browser (commonly in the Head portion so that it loads
early), it stands ready to run whenever called upon.

Run after loading

One of the times a function is called upon to run is immediately after a page loads. The window object has
an event handler property called onload. Unlike most event handlers, which are triggered in response to
user action (for example, clicking a button), the window’s on1oad event handler fires the instant that all of
the page’s components (including images, Java applets, and embedded multimedia) are loaded into the
browser.

LISTING 5-7

Scripts and HTML Documents

There are two cross-browser ways to connect the onload event handler to a function: via an HTML event
attribute or an object event property. For the HTML attribute approach, the <body> element stands in to
represent the window. Therefore, you can include the onload event attribute in the <body> tag, as shown
in Listing 5-7. Recall from Chapter 4 (Listing 4-1) that an event handler can run a script statement directly.
But if the event handler must run several script statements, it is usually more convenient to put those state-
ments in a function definition and then have the event handler invoke that function. Thats what happens in
Listing 5-7: When the page completes loading, the onToad event handler triggers the done () function.
That function (simplified for this example) displays an alert dialog box.

Running a Script from the onload Event Handler

<html>
<head>
<title>An onload script</title>
<script type="text/javascript">

<1--

function done() {
alert("The page has finished loading.");

}

/]-=>

</script>

</head>

<body onload="done()">

Here

is some body text.

</body>
</htm1>

Don't worry about the curly braces or other oddities in Listing 5-7 that may cause you concern at this point.
Focus instead on the structure of the document and the flow. The entire page loads without running any
script statements, although the page loads the done () function in memory so that it is ready to run at a
moment’s notice. After the document loads, the browser fires the onload event handler, which causes the
done () function to run. Then the user sees the alert dialog box.

Although the HTML event attribute approach dates back to the earliest JavaScript browsers, the trend these
days is to separate HTML markup from specifics of style and behavior (scripts). To the scripter’s rescue
come the equivalent event handler properties of objects. To get the on1oad attribute out of the <body> tag,
you can instead assign the desired JavaScript function to the object’s event as a property, as in:

window.onload = done;

Such statements typically go near the end of scripts in the Head portion of the document. Note, too, that in
this version, the right side of the statement is merely the function’s name, with no quotes or parentheses.
Because it is easier to learn about event handlers when they’re specified as HTML attributes, most examples
in this tutorial continue with that approach. I needed to show you the property version, however, because
you will see lots of real-life code using that format.

51

m JavaScript Tutorial

LISTING 5-8

Run by user

Getting a script to execute in response to a user action is very similar to the preceding example for running
a deferred script right after the document loads. Commonly, a script function is defined in the Head por-
tion, and an event handler in, say, a form element calls upon that function to run. Listing 5-8 includes a
script that runs when a user clicks a button.

Running a Script from User Action

<htm1>
<head>
<title>An onclick script</title>
<script type="text/javascript">

<--

function alertUser() f{

alert("OQuch!");

11 ==>

</script>

</head>

<body>

Here is some body text.
<form>

<input type="text" name="entry">
<input type="button" name="oneButton" value="Press Me!" onclick="alertUser()">

</form>
</body>
</html>

52

Not every object must have an event handler defined for it, as shown in Listing 5-8 — only the ones for
which scripting is needed. No script statements execute in Listing 5-8 until the user clicks the button. The
alertUser() function is defined as the page loads, and it waits to run as long as the page remains loaded
in the browser. If it is never called upon to run, there’s no harm done.

Called by another function

The last scenario for when script statements run also involves functions. In this case, a function is called
upon to run by another script statement. Before you see how that works, it helps to read the next lesson
(Chapter 6). Therefore, I will hold off on this example until later in the tutorial.

Viewing Script Errors

In the early days of JavaScript in browsers, script errors displayed themselves in very obvious dialog boxes.
These boxes were certainly helpful for scripters who wanted to debug their scripts. However, if a bug got
through to a page served up to a nontechnical user, the error alert dialog boxes were not only disruptive,
but also scary. To prevent such dialog boxes from disturbing unsuspecting users, the browser makers tried
to diminish the visual impact of errors in the browser window. Unfortunately for scripters, it is often easy to

Scripts and HTML Documents

overlook the fact that your script contains an error because the error is not so obvious. Recent browser ver-
sions have different ways of letting scripters see the errors.

In IE5+, you can set its preferences so that scripts do not generate error dialog boxes (choose Tools =
Internet Options = Advanced = Browsing, and find the checkbox entry that says Display a notification
about every script error). Even with error dialog boxes turned off, error indications are displayed subtly at
the left edge of the browser window’ status bar. An alert icon and message (“Error on page”) appear in the
status bar. If you double-click the icon, the error dialog box appears (see Figure 5-1). Be sure to expand the
dialog box by clicking the Show Details button. Unless you turn on script-error dialog boxes and keep them
coming, you have to train yourself to monitor the status bar when a page loads and after each script runs.

FIGURE 5-1

The expanded IE error dialog box.

& Internet Explorer

or functioning propery. In the future, you can display this message by

Problems with this Web page might prevent it from being displayed properdy
& double-clicking the waming icon displayed in the status bar.

Mways display this message when a page contains emors.

Hide Details <<
Line: 28
Char: 5
Emor: 'fred' is undefined
Code:0

URL: http:/#1532.168.1.100./evaluator. html

For Mozilla-based browsers, choose Tools &> Web Development = JavaScript (or Error) Console. The
JavaScript console window opens to reveal the error message details (see Figure 5-2). You can keep this
window open all the time if you like. Unless you clear the window, subsequent error messages are
appended to the bottom of the window.

FIGURE 5-2

The Mozilla 1.4 JavaScript console window.

@ Error Console B[]
] 0 |@ Emors /1 Wamings Q:j IMessages | J& Clear

Evaluate

) fred is not defined
http:/192.165.1.100/evaluator htrl Ling: 28

53

m JavaScript Tutorial

54

Safari records script errors, but it’s not obvious how to read them. You first must enable Safari’s Debug menu
by typing the following command in the Terminal application:

defaults write com.apple.Safari IncludeDebugMenu 1
Then, each time you launch Safari, choose Debug => Show JavaScript Console.

Understanding error messages and doing something about them is a very large subject, reserved for
advanced discussion in Chapter 45 on the CD-ROM. During this tutorial, however, you can use the error
messages to see whether you perhaps mistyped a script from a listing in the book.

Scripting versus Programming

You may get the impression that scripting is easier than programming. Scripting simply sounds easier or
more friendly than programming. In many respects, this is true. One of my favorite analogies is the differ-
ence between a hobbyist who builds model airplanes from scratch and a hobbyist who builds model air-
planes from commercial kits. The “from scratch” hobbyist carefully cuts and shapes each piece of wood and
metal according to very detailed plans before the model starts to take shape. The commercial kit builder
starts with many prefabricated parts and assembles them into the finished product. When both builders are
finished, you may not be able to tell which airplane was built from scratch and which one came out of a
box of components. In the end, both builders used many of the same techniques to complete the assembly,
and each can take pride in the result.

Thanks to implementations of the document object model (DOM), the browser gives scripters many prefab-
ricated components with which to work. Without the browser, you'd have to be a pretty good programmer
to develop from scratch your own application that served up content and offered user interaction. In the
end, both authors have working applications that look equally professional.

Beyond the DOM, however, real programming nibbles its way into the scripting world. That's because
scripts (and programs) work with more than just objects. When I said earlier in this lesson that each state-
ment of a JavaScript script does something, that something involves data of some kind. Data is the informa-
tion associated with objects or other pieces of information that a script pushes around from place to place
with each statement.

Data takes many forms. In JavaScript, the common incarnations of data are numbers, text (called strings),
objects (both from the object model and others you can create with scripts), and true and false (called
Boolean values).

Each programming or scripting language determines numerous structures and limits for each kind of data.
Fortunately for newcomers to JavaScript, the universe of knowledge necessary for working with data is
smaller than in a language such as Java or C++. At the same time, what you learn about data in JavaScript is
immediately applicable to future learning you may undertake in any other programming language; don’t
believe for an instant that your efforts in learning scripting will be wasted.

Because deep down, scripting is programming, you need to have a basic knowledge of fundamental pro-
gramming concepts to consider yourself a good JavaScript scripter. In the next two lessons, I set aside most
discussion about the DOM and focus on the programming principles that will serve you well in JavaScript
and future programming endeavors.

Scripts and HTML Documents

Exercises

1. Write the complete script tag set for a script whose lone statement is

document.write("Hello, world.");

2. Build an HTML document, and include the answer to the previous question such that the page
executes the script as it loads. Open the document in your browser to test the results.

3. Add a comment to the script in the previous answer that explains what the script does.

Create an HTML document that displays an alert dialog box immediately after the page loads and
displays a different alert dialog box when the user clicks a form button.

5. Carefully study the document in Listing 5-9. Without entering and loading the document, predict
a. What the page looks like
b. How users interact with the page
c. What the script does

Then type the listing into a text editor as shown. (Observe all capitalization and punctuation.) Do
not type a carriage return after the = sign in the upperMe function statement; let the line
word-wrap as it does in the following listing. It's OK to use a carriage return between attribute
name/value pairs, as shown in the first <input> tag. Save the document as an HTML file, and
load the file into your browser to see how well you did.

LISTING 5-9

How Does This Page Work?

<html>

<head>

<title>Text Object Value</title>

<script type="text/javascript">

<--

function upperMe() {
document.getElementById("output").value =

document.getElementById("input").value.toUpperCase();

}

/1l -=>

</script>

</head>

<body>
Enter lowercase letters for conversion to uppercase:

<form name="converter">

<input type="text" name="input" id="input"

value="sample" onchange="upperMe()" />

<input type="text" name="output" id="output" value="" />
</form>
</body>
</html>

55

he tutorial breaks away from HTML and documents for a while as you

begin to learn programming fundamentals that apply to practically every

scripting and programming language you will encounter. Here, you start
learning about variables, expressions, data types, and operators — things that
might sound scary if you haven't programmed before. Don’t worry. With a little
practice, you will become quite comfortable with these terms and concepts.

What Language Is This?

The language you're studying is called JavaScript. But the language has some
other names that you may have heard. JScript is Microsoft’s name for the lan-
guage. By leaving out the ava, the company doesn’t have to license the Java name
from its trademark owner: Sun Microsystems.

A standards body called ECMA (pronounced “ECK-ma”) now governs the specifi-
cations for the language (no matter what you call it). The document that provides
all of the details about the language is known as ECMA-262 (it’s the 262nd stan-
dard published by ECMA). Both JavaScript and JScript are ECMA-262 compati-
ble. Some earlier browser versions exhibit very slight deviations from ECMA-262
(which came later than the earliest browsers). The most serious discrepancies are
noted in the core language reference in Part IV of this book.

Working with Information

With rare exceptions, every JavaScript statement you write does something with a
hunk of information — data. Data may be text information displayed onscreen by a
JavaScript statement or the on/off setting of a radio button in a form. Each single
piece of information in programming is also called a value. Outside of program-
ming, the term value usually connotes a number of some kind; in the programming

57

IN THIS CHA

What variables are and how to
use them

Why you must learn how to
evaluate expressions

How to convert data from one
type to another

How to use basic operators

m JavaScript Tutorial

TABLE 6-1

world, however, the term is not as restrictive. A string of letters is a value. A number is a value. The setting of a
checkbox (whether it is checked or not) is a value.

In JavaScript, a value can be one of several types. Table 6-1 lists JavaScript’s formal data types, with exam-
ples of the values you will see displayed from time to time.

JavaScript Value (Data) Types

Type Example Description

String "Howdy" A series of characters inside quote marks

Number 4.5 Any number not inside quote marks

Boolean true A logical true or false

Null null Devoid of any content but a value just the same

Object A software thing that is defined by its properties and
methods (arrays are also objects)

Function A function definition

58

A language that contains these few data types simplifies programming tasks, especially those involving what
other languages consider to be incompatible types of numbers (integers versus real or floating-point values).
In some definitions of syntax and parts of objects later in this book, I make specific reference to the type of
value accepted in placeholders. When a string is required, any text inside a set of quotes sulffices.

You will encounter situations, however, in which the value type may get in the way of a smooth script step.
For example, if a user enters a number into a form’s text input field, the browser stores that number as a
string value type. If the script is to perform some arithmetic on that number, you must convert the string to a
number before you can apply the value to any math operations. You see examples of this later in this lesson.

Variables

Cooking up a dish according to a recipe in the kitchen has one advantage over cooking up some data in a
program. In the kitchen, you follow recipe steps and work with real things: carrots, milk, or a salmon filet.
A computer, on the other hand, follows a list of instructions to work with data. Even if the data represents
something that looks real, such as the text entered into a form’s input field, once after value gets into the
program, you can no longer reach out and touch it.

In truth, the data that a program works with is merely a collection of bits (on and off states) in your com-
puter’s memory. More specifically, data in a JavaScript-enhanced web page occupies parts of the computer’s
memory set aside for exclusive use by the browser software. In the olden days, programmers had to know
the numeric address in memory (RAM) where a value was stored to retrieve a copy of it for, say, some addi-
tion. Although the innards of a program have that level of complexity, programming languages such as
JavaScript shield you from it.

Programming Fundamentals, Part | _

The most convenient way to work with data in a script is first to assign the data to a variable. It’s usually eas-
ier to think of a variable as a basket that holds information. How long the variable holds the information
depends on a number of factors. But the instant a web page clears the window (or frame), any variables it
knows about are discarded.

Creating a variable

You have a couple of ways to create a variable in JavaScript, but one covers you properly in all cases. Use
the var keyword, followed by the name you want to give that variable. Therefore, to declare a new variable
called myAge, the JavaScript statement is

var myAge;

That statement lets the browser know that you can use that variable later to hold information or to modify
any of the data in that variable.

To assign a value to a variable, use one of the assignment operators. The most common one by far is the equal
sign. If I want to assign a value to the myAge variable at the same time I declare it (a combined process
known as initializing the variable), 1 use that operator in the same statement as the var keyword:

var myAge = 45;

On the other hand, if I declare a variable in one statement and later want to assign a value to it, the
sequence of statements is

var myAge;
myAge = 45;

Use the var keyword only for declaration or initialization — once for the life of any variable name in a
document.

A JavaScript variable can hold any value type. Unlike many other languages, you don’t have to tell
JavaScript during variable declaration what type of value the variable will hold. In fact, the value type of a
variable can change during the execution of a program. (This flexibility drives experienced programmers
crazy because they're accustomed to assigning both a data type and a value to a variable.)

Variable names

Choose the names you assign to variables with care. You'll often find scripts that use vague variable names,
such as single letters. Other than a few specific times where using letters is a common practice (for example,
using i as a counting variable in repeat loops in Chapter 7), I recommend using names that truly describe a
variable’s contents. This practice can help you follow the state of your data through a long series of state-
ments or jumps, especially for complex scripts.

A number of restrictions help instill good practice in assigning names. First, you cannot use any reserved
keyword as a variable name. That includes all keywords currently used by the language and all others held
in reserve for future versions of JavaScript. The designers of JavaScript, however, cannot foresee every key-
word that the language may need in the future. By using the kind of single words that currently appear in
the list of reserved keywords (see Appendix B), you always run a risk of a future conflict.

To complicate matters, a variable name cannot contain space characters. Therefore, one-word variable
names are fine. Should your description really benefit from more than one word, you can use one of two
conventions to join multiple words as one. One convention is to place an underscore character between the

59

m JavaScript Tutorial

60

words; the other is to start the combination word with a lowercase letter and capitalize the first letter of
each subsequent word within the name —I refer to this as the interCap format. Both of the following
examples are valid variable names:

my_age
myAge

My preference is for the second version. I find it easier to type as I write JavaScript code and easier to read
later. In fact, because of the potential conflict with future one-word keywords, using multiword combina-
tions for variable names is a good idea. Multiword combinations are less likely to appear in the list of
reserved words.

Variable names have a couple of other important restrictions. Avoid all punctuation symbols except for the
underscore character. Also, the first character of a variable name cannot be a numeral. If these restrictions
sound familiar, it’s because they’re identical to those for HTML element identifiers described in Chapter 4.

Expressions and Evaluation

Another concept closely related to the value and variable is expression evaluation — perhaps the most impor-
tant concept in learning how to program a computer.

We use expressions in our everyday language. Remember the theme song of “The Beverly Hillbillies™?:

Then one day he was shootin’ at some food
And up through the ground came a-bubblin’ crude
Oil, that is. Black gold. Texas tea.

At the end of the song, you find four quite different references (crude, oil, black gold, and Texas tea). They
all mean oil. They're all expressions for oil. Say any one of them, and other people know what you mean. In
our minds, we evaluate those expressions to mean one thing: oil.

In programming, a variable always evaluates to its contents, or value. For example, after assigning a value to
a variable, such as

var myAge = 4b;

any time the variable is used in a statement, its value (45) is automatically applied to whatever operation
that statement calls. Therefore, if you're 15 years my junior, [can assign a value to a variable representing
your age based on the evaluated value of myAge:

var yourAge = myAge - 15;

The variable, yourAge, evaluates to 30 the next time the script uses it. If the myAge value changes later in
the script, the change has no link to the yourAge variable because myAge evaluated to 45 when it was used
to assign a value to yourAge.

Expressions in scripts

You probably didn't recognize it at the time, but you have seen how expression evaluation came in handy in
several scripts in previous chapters. Let’s look at one in particular — from Listing 5-6 — where a script
writes dynamic text to the page as the page loads. Recall the second document.write() statement:

document.write(" of " + navigator.appName + ".");

Programming Fundamentals, Part |

Testing JavaScript Evaluation

ou can begin experimenting with the way JavaScript evaluates expressions with the help of The Evaluator
Jr. (shown in the following figure), an HTML page you can find on the companion CD-ROM. (I introduce

the Senior version in Chapter 13.) Enter any JavaScript expression into the top text box, and either press
Enter/Return or click the Evaluate button.

/& The Evaluator Jr. - Windows Internet Explorer

8[=[x]
e

£ httpi/j192.168.1, 100jListings/ChapOjevalustor Robtml || 43| X

Y &t | @ The Evaluator Jt T R~

>
= v |fPage v {3 Tools

~

The Evaluator Jr.

Enter an expression to evaluate:

Eva\ualekj
Results:

15

Enter a reference to an object
List Properties

€ Internet F100% <

The Evaluator Jr. for testing expression evaluation.

The Evaluator Jr. has 26 variables (lowercase a through z) predefined for you. Therefore, you can assign values
to variables, test comparison operators, and even do math here. Using the age variable examples from earlier
in this chapter, type each of the following statements in the upper text box, and observe how each expression

evaluates in the Results field. Be sure to observe case sensitivity in your entries. The trailing semicolons are
optional in The Evaluator.

= 45;
=) Gl = 1691

’

>

b;
b

[« =T @ o < il <R e)

To start over, click the Reload/Refresh button.

The document.write() method (remember, JavaScript uses the term method to mean command) requires a
parameter in the parentheses: the text string to be displayed on the web page. The parameter here consists
of one expression that joins three distinct strings:

"o

navigator.appName

61

m JavaScript Tutorial

62

The plus symbol is one of JavaScript's ways of joining strings. Before JavaScript can display this line, it must
perform some quick evaluations. The first evaluation is the value of the navigator.appName property.
This property evaluates to a string of the name of your browser. With that expression safely evaluated to a
string, JavaScript can finish the job of joining the three strings in the final evaluation. The evaluated string
expression is what ultimately appears on the web page.

Expressions and variables

As one more demonstration of the flexibility that expression evaluation offers, this section shows you a
slightly different route to the document.write() statement. Rather than join those strings as the direct
parameter to the document.write() method, I can gather the strings in a variable and then apply the
variable to the document.write() method. Heres how that sequence looks, as I simultaneously declare a
new variable and assign it a value:

var textToWrite = " of " + navigator.appName +
document.write(textToWrite);

This method works because the variable, textToWrite, evaluates to the combined string. The
document.write() method accepts that string value and does its display job. As you read a script or try to
work through a bug, pay special attention to how each expression (variable, statement, object property)
evaluates. I guarantee that as you learn JavaScript (or any language), you will end up scratching your head
from time to time because you haven't stopped to examine how expressions evaluate when a particular kind
of value is required in a script.

Data Type Conversions

I mentioned earlier that the type of data in an expression can trip up some script operations if the expected
components of the operation are not of the right type. JavaScript tries its best to perform internal conver-
sions to head off such problems, but JavaScript cannot read your mind. If your intentions differ from the
way JavaScript treats the values, you won't get the results you expect.

A case in point is adding numbers that may be in the form of text strings. In a simple arithmetic statement
that adds two numbers, you get the expected result:

3+3 // result = 6

But if one of those numbers is a string, JavaScript leans toward converting the other value to a string— thus
turning the plus sign’s action from arithmetic addition to joining strings. Therefore, in the statement

3+ "3" // result = "33"

the stringness of the second value prevails over the entire operation. The first value is automatically converted
to a string, and the result joins the two strings. Try this yourself in The Evaluator Jr.

1f I take this progression one step further, look what happens when another number is added to the statement:
3+ 3+ "3" /1 result = "63"

This might seem totally illogical, but there is logic behind this result. The expression is evaluated from left
to right. The first plus operation works on two numbers, yielding a value of 6. But as the 6 is about to be
added to the 3, JavaScript lets the stringness of the 3 rule. The 6 is converted to a string, and two string val-
ues are joined to yield 63.

Programming Fundamentals, Part | _

Most of your concern about data types will focus on performing math operations like the ones here.
However, some object methods also require one or more parameters of particular data types. Although
JavaScript provides numerous ways to convert data from one type to another, it is appropriate at this
stage of the tutorial to introduce you to the two most common data conversions: string to number and
number to string.

Converting strings to numbers

As you saw in the preceding section, if a numeric value is stored as a string— as it is when entered into a
form text field — your scripts may have difficulty applying that value to a math operation. The JavaScript
language provides two built-in functions to convert string representations of numbers to true numbers:
parseInt() and parseFloat().

There is a difference between integers and floating-point numbers in JavaScript. Integers are always whole
numbers, with no decimal point or numbers to the right of a decimal. Floating-point numbers, on the other
hand, have fractional values to the right of the decimal. By and large, JavaScript math operations don’t dif-
ferentiate between integers and floating-point numbers: A number is a number. The only time you need to
be cognizant of the difference is when a method parameter requires an integer because it can’t handle frac-
tional values. For example, parameters to the scrol1() method of a window require integer values of the
number of pixels vertically and horizontally you want to scroll the window. That’s because you can't scroll a
window a fraction of a pixel onscreen.

To use either of these conversion functions, insert the string value you wish to convert as a parameter to the
function. For example, look at the results of two different string values when passed through the
parselnt() function:

parselnt("42") /] result = 42
parselnt("42.33") /] result = 42

Even though the second expression passes the string version of a floating-point number to the function, the
value returned by the function is an integer. No rounding of the value occurs here (although other math
functions can help with that if necessary). The decimal and everything to its right are simply stripped off.

The parseFloat() function returns an integer if it can; otherwise, it returns a floating-point number, as
follows:

parsefFloat("42") /] result = 42
parsefFloat("42.33") // result = 42.33

Because these two conversion functions evaluate to their results, you simply insert the entire function
wherever you need a string value converted to a number. Therefore, modifying an earlier example in which
one of three values was a string, the complete expression can evaluate to the desired result:

3+ 3 + parselnt("3") // result =9

Converting numbers to strings

You'll have less need for converting a number to its string equivalent than the other way around. As you saw
in the previous section, JavaScript gravitates toward strings when faced with an expression containing
mixed data types. Even so, it is good practice to perform data type conversions explicitly in your code to
prevent any potential ambiguity. The simplest way to convert a number to a string is to take advantage of

63

m JavaScript Tutorial

64

JavaScript’s string tendencies in addition operations. By adding an empty string to a number, you convert
the number to its string equivalent:

("" + 2500) // result = "2500"
("" + 2500).7ength /] result = 4

In the second example, you can see the power of expression evaluation at work. The parentheses force the
conversion of the number to a string. A string is a JavaScript object that has properties associated with it.
One of those properties is the Tength property, which evaluates to the number of characters in the string.
Therefore, the length of the string "2500" is 4. Note that the Tength value is a number, not a string.

Operators

You will use lots of operators in expressions. Earlier, you used the equal sign (=) as an assignment operator
to assign a value to a variable. In the preceding examples with strings, you used the plus symbol (+) to join
two strings. An operator generally performs some kind of calculation (operation) or comparison with two
values (the value on each side of an operator is called an operand) to reach a third value. In this lesson, 1
briefly describe two categories of operators: arithmetic and comparison. Chapter 33 covers many more
operators, but after you understand the basics here, the others are easier to grasp.

Arithmetic operators

It may seem odd to talk about text strings in the context of arithmetic operators, but you have already seen
the special case of the plus (+) operator when one or more of the operands is a string. The plus operator
instructs JavaScript to concatenate (pronounced “kon-KAT-en-eight”), or join, two strings together precisely
where you place the operator. The string concatenation operator doesn’t know about words and spaces, so
the programmer must make sure that any two strings to be joined have the proper word spacing as part of
the strings, even if that means adding a space:

firstName = "John";
lastName = "Doe";
fullName = firstName + " " + TastName;

JavaScript uses the same plus operator for arithmetic addition. When both operands are numbers, JavaScript
knows to treat the expression as an arithmetic addition rather than a string concatenation. The standard math
operators for addition, subtraction, multiplication, and division (+, -, *, /) are built into JavaScript.

Comparison operators

Another category of operator helps you compare values in scripts — whether two values are the same, for
example. These kinds of comparisons return a value of the Boolean type: true or false. Table 6-2 lists the
comparison operators. The operator that tests whether two items are equal consists of a pair of equal signs
to distinguish it from the single-equal-sign assignment operator.

Programming Fundamentals, Part |

TABLE 6-2

JavaScript Comparison Operators

Symbol Description

== Equals

= Does not equal

> Is greater than

>= Is greater than or equal to
< Is less than

<= Is less than or equal to

Comparison operators come into greatest play in the construction of scripts that make decisions as they
run. A cook does this in the kitchen all the time: If the sauce is too watery, add a bit of flour. You see com-
parison operators in action in Chapter 7.

Exercises

1. Which of the following are valid variable declarations or initializations? Explain why each one is
or is not valid. If an item is invalid, how do you fix it so that it is?

a. my_name = "Cindy";

b. var howmany = 25;

c. var zipCode = document.getElementById("zip").value
d. var laddress = document.("addressl").value;

2. Assume that the following statements operate rapidly in sequence, where each statement relies on
the result of the one before it. For each of the statements in the sequence, write down how the
someVal expression evaluates after the statement executes in JavaScript.
var someVal = 2;
someVal = someVal + 2;
someVal = someVal * 10;

someVal = someVal + "20";
someVal = "Robert";

3. Name the two JavaScript functions that convert strings to numbers. How do you give the function
a string value to convert to a number?

4. Type and load the HTML page and script shown in Listing 6-1. Enter a three-digit number in the
top two fields, and click the Add button. Examine the code, and explain what is wrong with the
script. How do you fix the script so that the proper sum is displayed in the output field?

65

m JavaScript Tutorial

What's Wrong with This Page?

<html>

<head>

<title>Sum Maker</title>

{script type="text/javascript">

<l--

function addIt() {
var valuel = document.getElementById("inputA").value;
var value2 = document.getElementById("inputB").value;
document.getElementById("output”).value = valuel + valueZ2;

}

/1 -=>

</script>

</head>

<body>

<form name="adder">

<input type="text" name="inputA" id="inputA" value="0" size="4" />

<input type="text" name="inputB" id="inputB" value="0" size="4" />
<input type="button" value="Add" onclick="addIt()">

<p> </p>

<input type="text" name="output" id="output" size="6" />
</form>

</body>

</htm1>

5. What does the term concatenate mean in the context of JavaScript programming?

66

our tour of programming fundamentals continues in this chapter with
subjects that have more intriguing possibilities. For example, I show you
how programs make decisions and why a program must sometimes repeat
statements over and over. Before you're finished here, you also will learn how
to use one of the most powerful information holders in the JavaScript language:
the array.

Decisions and Loops

Every waking hour of every day, you make decisions of some kind; most of the
time, you probably don’t even realize it. Don't think so? Well, look at the number
of decisions you make at the grocery store, from the moment you enter the store
to the moment you clear the checkout aisle.

No sooner do you enter the store than you are faced with a decision. Based on
the number and size of items you intend to buy, do you pick up a hand-carried
basket or attempt to extricate a shopping cart from the metallic conga line near
the front of the store? That key decision may have impact later, when you see a
special offer on an item that is too heavy to put in the handbasket.

Next, you head for the food aisles. Before entering an aisle, you compare the
range of goods stocked in that aisle with items on your shopping list. If an item
you need is likely to be found in this aisle, you turn into the aisle and start
looking for the item; otherwise, you skip the aisle and move to the head of the
next aisle.

Later, you reach the produce section in search of a juicy tomato. Standing in front
of the bin of tomatoes, you begin inspecting them one by one — picking one up,
feeling its firmness, checking the color, looking for blemishes or signs of pests.
You discard one, pick up another, and continue this process until one matches
the criteria you set in your mind for an acceptable morsel. Your last stop in the
store is the checkout aisle. “Paper or plastic?” the clerk asks. One more decision

67

INTHIS C

How control structures
make decisions

How to define functions

Where to initialize variables
efficiently

What those darned curly
braces are all about

The basics of data arrays

m JavaScript Tutorial

68

to make. What you choose affects how you get the groceries from the car to the kitchen, as well as your
recycling habits.

In your trip to the store, you go through the same kinds of decisions and repetitions that your JavaScript
programs encounter. If you understand these frameworks in real life, you can look into the JavaScript
equivalents and the syntax required to make them work.

Control Structures

In the vernacular of programming, the kinds of statements that make decisions and loop around to repeat
themselves are called control structures. A control structure directs the execution flow through a sequence of
script statements based on simple decisions and other factors.

An important part of a control structure is the condition. Just as you may travel different routes to work
depending on certain conditions (for example, nice weather, nighttime, attending a soccer game), so, too,
does a program sometimes have to branch to an execution route if a certain condition exists. Each condition
is an expression that evaluates to true or false—one of those Boolean data types mentioned in Chapter
6. The kinds of expressions commonly used for conditions are expressions that include a comparison oper-
ator. You do the same in real life: If it is true that the outdoor temperature is less than freezing, you put on a
coat before going outside. In programming, however, the comparisons are strictly comparisons of values.

JavaScript provides several kinds of control structures for different programming situations. Three of the
most common control structures you'll use are if constructions, if...else constructions, and for loops.

Chapter 32 covers in great detail other common control structures you should know. For this tutorial, how-
ever, you need to learn about the three common ones just mentioned.

if constructions

The simplest program decision is to follow a special branch or path of the program if a certain condition is
true. Formal syntax for this construction follows. Items in italics get replaced in a real script with expres-
sions and statements that fit the situation.

if (condition) {
statement[s] if true

}

Don't worry about the curly braces yet. Instead, get a feel for the basic structure. The keyword, if, is a
must. In the parentheses goes an expression that evaluates to a Boolean value. This is the condition being
tested as the program runs past this point. If the condition evaluates to true, one or more statements inside
the curly braces execute before continuing with the next statement after the closing brace. If the condition
evaluates to false, the statements inside the curly braces are ignored, and processing continues with the
next statement after the closing brace.

The following example assumes that a variable, myAge, has had its value set earlier in the script (exactly
how is not important for this example). The condition expression compares the value myAge against a
numeric value of 18:

if (myAge < 18) {
alert("Sorry, you cannot vote.");

Programming Fundamentals, Part Il

In this example, the data type of the value inside myAge must be a number so that the proper comparison
(via the <, or less than, comparison operator) does the right thing. For all instances of myAge less than 18,
the nested statement inside the curly braces runs and displays the alert to the user. After the user closes the
alert dialog box, the script continues with whatever statement follows the entire i f construction.

if . . . else constructions

Not all program decisions are as simple as the one shown for the if construction. Rather than specifying
one detour for a given condition, you might want the program to follow either of two branches depending
on that condition. It is a fine but important distinction. In the plain if construction, no special processing
is performed when the condition evaluates to false. But if processing must follow one of two special paths,
you need the i f...else construction. The formal syntax definition for an if...else construction is as
follows:

if (condition) {
statement[s] if true
} else {
statement[s] if false

}

Everything you know about the condition for an if construction applies here. The only difference is the
else keyword, which provides an alternative path for execution to follow if the condition evaluates to
false.

As an example, the following if. . .else construction determines how many days are in February for a
given year. To simplify the demo, the condition simply tests whether the year divides equally by 4. (True
testing for this value includes special treatment of end-of-century dates, but I'm ignoring that for now.) The
% operator symbol is called the modulus operator (covered in more detail in Chapter 33). The result of an
operation with this operator yields the remainder of division of the two values. If the remainder is zero, the
first value divides evenly by the second.

var febDays;
var theYear = 2004;
if (theYear % 4 == 0) {

febDays = 29;
} else {
febDays = 28;

}

The important point to see from this example is that by the end of the if...else construction, the
febDays variable is set to either 28 or 29. No other value is possible. For years evenly divisible by 4, the
first nested statement runs. For all other cases, the second statement runs. Then processing picks up with
the next statement after the 1 f. . .else construction.

About Repeat Loops

Repeat loops in real life generally mean the repetition of a series of steps until some condition is met, thus
enabling you to break out of that loop. Such was the case earlier in this chapter, when you looked through a
bushel of tomatoes for the one that came closest to your ideal tomato. The same can be said for driving
around the block in a crowded neighborhood until a parking space opens up.

69

m JavaScript Tutorial

70

A repeat loop lets a script cycle through a sequence of statements until some condition is met. For example,
a JavaScript data validation routine might inspect every character that you enter in a form text field to make
sure that each one is a number. Or if you have a collection of data stored in a list, the loop can check
whether an entered value is in that list. When that condition is met, the script can break out of the loop and
continue with the next statement after the loop construction.

The most common repeat loop construction used in JavaScript is called the for loop. It gets its name from
the keyword that begins the construction. A for loop is a powerful device because you can set it up to keep
track of the number of times the loop repeats itself. The formal syntax of the for loop is as follows:

for ([initial expression]; [condition]; [update expression]) {
statement[s] inside Toop

}

The square brackets mean that the item is optional. However, until you get to know the for loop better, I
recommend designing your loops to use all three items inside the parentheses. The initial expression portion
usually sets the starting value of a counter variable. The condition — the same kind of condition you saw for
i f constructions — defines the condition that forces the loop to stop going around and around. Finally, the
update expression is a statement that executes each time all the statements nested inside the construction
complete running.

A common implementation initializes a counting variable, 1; increments the value of i by 1 each time through
the loop; and repeats the loop until the value of i exceeds some maximum value, as in the following:

for (var i = startValue; i <= maxValue; i++) {
statement[s] inside Toop
}

Placeholders startValue and maxValue represent any numeric values, including explicit numbers or vari-
ables holding numbers. In the update expression is an operator you have not seen yet. The ++ operator
adds 1 to the value of i each time the update expression runs at the end of the loop. If startValueis 1,
the value of 1 is 1 the first time through the loop, 2 the second time through, and so on. Therefore, if
maxValue is 10, the loop repeats itself 10 times (in other words, as long as i is less than or equal to 10).
Generally speaking, the statements inside the loop use the value of the counting variable in their execution.
Later in this lesson, I show how the variable can play a key role in the statements inside a loop. At the same
time, you will see how to break out of a loop prematurely and why you may need to do this in a script.

Functions

In Chapter 5, you saw a preview of the JavaScript function. A function is a definition of a set of deferred
actions. Functions are invoked by event handlers or by statements elsewhere in the script. Whenever possi-
ble, good functions are designed for reuse in other documents. They can become building blocks you use
over and over again.

If you have programmed before, you can see parallels between JavaScript functions and other languages’
subroutines. But unlike some languages that distinguish between procedures (which carry out actions) and
functions (which carry out actions and return values), only one classification of routine exists for JavaScript.
A function is capable of returning a value to the statement that invoked it, but this is not a requirement.
However, when a function does return a value, the calling statement treats the function call like any

Programming Fundamentals, Part Il

expression — plugging in the returned value right where the function call is made. I will show some
examples in a moment.

Formal syntax for a function is as follows:

function functionName ([parameterl]...[,parameterN]) {
statement[s]
}

Names you assign to functions have the same restrictions as names you assign to HTML elements and vari-
ables. You should devise a name that succinctly describes what the function does. I tend to use multiword
names with the interCap (internally capitalized) format that start with a verb because functions are action
items, even if they do nothing more than get or set a value.

Another practice to keep in mind as you start to create functions is to keep the focus of each function as
narrow as possible. It is possible to generate functions that are literally hundreds of lines long. Such func-
tions are usually difficult to maintain and debug. Chances are that you can divide the long function into
smaller, more tightly focused segments.

Function parameters

In Chapter 5, you saw how an event handler invokes a function by calling the function by name. A typical
call to a function, including one that comes from another JavaScript statement, works the same way: A set
of parentheses follows the function name.

You also can define functions so they receive parameter values from the calling statement. Listing 7-1 shows
a simple document that has a button whose onc1ick event handler calls a function while passing text data
to the function. The text string in the event handler call is in a nested string—a set of single quotes inside
the double quotes required for the entire event handler attribute.

LISTING 7-1

Calling a Function from an Event Handler

<html>
<head>
{script type="text/javascript">
function showMsg(msg) {
alert("The button sent: " + msg);
}
<{/script>
</head>
<body>
<form>
<input type="button" value="Click Me"
onclick="showMsg('The button has been clicked!"')">
</form>
</body>
</html1>

71

m JavaScript Tutorial

72

Parameters (also known as arguments) provide a mechanism for handing off a value from one statement to
another by way of a function call. If no parameters occur in the function definition, both the function defi-
nition and the call to the function have only empty sets of parentheses (as shown in Chapter 5, Listing 5-8).

When a function receives parameters, it assigns the incoming values to the variable names specified in the
function definition’s parentheses. Consider the following script segment:

function sayHiToFirst(a, b, ¢) {
alert("Say hello, " + a);

}

sayHiToFirst("Gracie", "George", "Harry");

sayHiToFirst("Larry", "Moe", "Curly");

After the function is defined in the script, the next statement calls that very function, passing three strings as
parameters. The function definition automatically assigns the strings to variables a, b, and c. Therefore, before
the alert () statement inside the function ever runs, a evaluates to "Gracie", b evaluates to "George", and
c evaluates to "Harry". In the alert () statement, only the a value is used, and the alert reads

Say hello, Gracie

When the user closes the first alert, the next call to the function occurs. This time through, different values
are passed to the function and assigned to a, b, and c. The alert dialog box reads

Say hello, Larry

Unlike other variables that you define in your script, function parameters do not use the var keyword to
initialize them. They are automatically initialized whenever the function is called.

Variable scope

Speaking of variables, it’s time to distinguish between variables that are defined outside and those that are
defined inside functions. Variables defined outside functions are called global variables; those defined inside
functions with the var keyword are called local variables.

A global variable has a slightly different connotation in JavaScript than it has in most other languages. For a
JavaScript script, the globe of a global variable is the current document loaded in a browser window or
frame. Therefore, when you initialize a variable as a global variable, it means that all script statements in the
page (including those inside functions) have direct access to that variable’s value via the variable’s name.
Statements can retrieve and modify global variables from anywhere in the page. In programming terminol-
ogy, this kind of variable is said to have global scope because every statement on the page can see it.

It is important to remember that the instant a page unloads itself, all global variables defined in that page
disappear from memory forever. If you need a value to persist from one page to another, you must use other
techniques to store that value (for example, as a global variable in a framesetting document, as described in
Chapter 16, or in a cookie, as described in Chapter 18). Although the var keyword is usually optional for
initializing global variables, I strongly recommend that you use it for all variable initializations to guard
against future changes to the JavaScript language.

In contrast to the global variable, a local variable is defined inside a function. You already saw how parame-
ter variables are defined inside functions (without var keyword initializations). But you can also define
other variables with the var keyword (absolutely required for local variables; otherwise, they become recog-
nized as global variables). The scope of a local variable is only within the statements of the function. No
other functions or statements outside functions have access to a local variable.

Programming Fundamentals, Part Il

Local scope allows for the reuse of variable names within a document. For most variables, I strongly discour-
age this practice because it leads to confusion and bugs that are difficult to track down. At the same time, it
is convenient to reuse certain kinds of variable names, such as for loop counters. These are safe because
they are always reinitialized with a starting value whenever a for loop starts. You cannot, however, nest one
for loop inside another without specifying a different loop-counting variable in the nested loop.

To demonstrate the structure and behavior of global and local variables —and show you why you shouldn’t
reuse most variable names inside a document — Listing 7-2 defines two global and two local variables.
intentionally use bad form by initializing a local variable that has the same name as a global variable.

LISTING 7-2

Global and Local Variable Scope Demonstration

<html>

<head>

<script type="text/javascript">

var aBoy = "Charlie Brown"; // global
var hisDog = "Snoopy"; // global

function demo() {
// using improper design to demonstrate a point
var hisDog = "Gromit"; // local version of hisDog
var output = hisDog + " does not belong to " + aBoy + ".
";
document.write(output);

}

</script>

</head>

<body>

<script type="text/javascript">

demo(); // runs as document loads

document.write(hisDog + " belongs to " + aBoy + ".");

</script>

</body>

</html>

When the page loads, the script in the Head portion initializes the two global variables (aBoy and hisDog)
and defines the demo () function in memory. In the Body, another script begins by invoking the function.
Inside the function, a local variable is initialized with the same name as one of the global variables: hisDog.
In JavaScript, such a local initialization overrides the global variable for all statements inside the function.
(But note that if the var keyword is left off the local initialization, the statement reassigns the value of the
global version to "Gromit".)

Another local variable, output, is merely a repository for accumulating the text that is to be written to the
screen. The accumulation begins by evaluating the local version of the hisDog variable. Then it concate-
nates some hard-wired text (note the extra spaces at the edges of the string segment). Next comes the evalu-
ated value of the aBoy global variable; any global not overridden by a local is available for use inside the
function. The expression is accumulating HTML to be written to the page, so it ends with a period and a

 tag. The final statement of the function writes the content to the page.

73

m JavaScript Tutorial

74

When the function completes its task, the next statement in the Body script writes another string to the
page. Because this script statement is executing in global space (that is, not inside any function), it accesses
only global variables — including those defined in another <script> tag set in the document. By the time
the complete page finishes loading, it contains the following text lines:

Gromit does not belong to Charlie Brown.
Snoopy belongs to Charlie Brown.

About Curly Braces

Despite the fact that you probably rarely —if ever — use curly braces ({ }) in your writing, there is no mys-
tery to their usage in JavaScript (and many other languages). Curly braces enclose blocks of statements that
belong together. Although they do assist humans who are reading scripts in knowing what’s going on, curly
braces also help the browser know which statements belong together. You always must use curly braces in
matched pairs.

You use curly braces most commonly in function definitions and control structures. In the function defini-

tion in Listing 7-2, curly braces enclose four statements that make up the function definition (including the
comment line). The closing brace lets the browser know that whatever statement comes next is a statement
outside the function definition.

Physical placement of curly braces is not critical. (Neither is the indentation style you see in the code I pro-
vide.) The following function definitions are treated identically by scriptable browsers:

function sayHiToFirst(a, b, c) {
alert("Say hello, " + a);
}

function sayHiToFirst(a, b, c)
{

alert("Say hello, " + a);
1

function sayHiToFirst(a, b, c) {alert("Say hello, " + a);}

Throughout this book, I use the style shown in the first example because I find that it makes lengthy and
complex scripts easier to read — especially scripts that have many levels of nested control structures.

Arrays

The JavaScript array is one of the most useful data constructions you have available to you. You can visual-
ize the structure of a basic array as though it were a single-column spreadsheet. Each row of the column
holds a distinct piece of data, and each row is numbered. Numbers assigned to rows are in strict numerical
sequence, starting with zero as the first row. (Programmers tend to start counting with zero.) This row num-
ber is called an index. To access an item in an array, you need to know the name of the array and the index
for the row. Because index values start with zero, the total number of items of the array (as determined by
the array’s 1ength property) is always one more than the highest index value of the array. More advanced
array concepts enable you to create the equivalent of an array with multiple columns (described in Chapter
31). For this tutorial, I stay with the single-column basic array.

Programming Fundamentals, Part Il

Data elements inside JavaScript arrays can be any data type, including objects. And unlike a lot of other
programming languages, JavaScript allows different rows of the same array to contain different data types.

Creating an array

An array is stored in a variable, so when you create an array, you assign the new array object to the variable.
(Yes, arrays are objects, but they belong to the core JavaScript language rather than to the document object
model [DOM].) A special keyword — new — preceding a call to the JavaScript function that generates arrays
creates space in memory for the array. An optional parameter to the Array () function enables you to spec-
ify at the time of creation how many elements (tows) of data eventually will occupy the array. JavaScript is
very forgiving about this because you can change the size of an array at any time. Therefore, if you omit a
parameter when generating a new array, your script incurs no penalty.

To demonstrate the array creation process, I create an array that holds the names of the 50 states plus the
District of Columbia (a total of 51). The first task is to create that array and assign it to a variable of any
name that helps me remember what this collection of data is about:

var USStates = new Array(bl);

At this point, the USStates array is sitting in memory like a 51-row table with no data in it. To fill the
rows, [must assign data to each row. Addressing each row of an array requires a special way of indicating
the index value of the row: square brackets after the name of the array. The first row of the USStates array
is addressed as:

USStates[0]

To assign the string name of the first state of the alphabet to that row, I use a simple assignment operator:
USStates[0] = "Alabama";

To fill in the rest of the rows, I include a statement for each row:

USStates[1] = "Alaska";
USStates[2] = "Arizona";
USStates[3] "Arkansas";

USStates[50]1 = "Wyoming";

Therefore, if you want to include a table of information in a document from which a script can look up
information without accessing the server, you include the data in the document in the form of an array cre-
ation sequence. When the statements run as the document loads, by the time the document finishes loading
into the browser, the data collection array is built and ready to go. Despite what appears to be the potential
for a lot of statements in a document for such a data collection, the amount of data that must download for
typical array collections is small enough not to affect page loading severely — even for dial-up users. In
Chapter 31, you also see some syntax shortcuts for creating arrays that reduce source code character counts.

Accessing array data

The array index is the key to accessing an array element. The name of the array and an index in square
brackets evaluates to the content of that array location. For example, after the USStates array is built, a
script can display an alert with Alaska’s name in it with the following statement:

alert("The Targest state is " + USStates[1] + ".");

75

m JavaScript Tutorial

FIGURE 7-1

Just as you can retrieve data from an indexed array element, you can change the element by reassigning a
new value to any indexed element in the array.

Parallel arrays

Now I show you why the numeric index methodology works well in JavaScript. To help with the demon-
stration, I generate another array that is parallel with the USStates array. This new array is also 51 ele-
ments long, and it contains the year in which the state in the corresponding row of USStates entered the
Union. That array construction looks like the following:

var stateEntered = new Array(51);

stateEntered [0] = 1819;
stateEntered [1] = 1959;
stateEntered [2] = 1912;
stateEntered [3] = 1836;

stateEntered [50] = 1890;

In the browser’s memory, then, are two data tables that you can visualize as looking like the model in Figure
7-1.1 can build more arrays that are parallel to these for items such as the postal abbreviation and capital
city. The important point is that the zeroth element in each of these tables applies to Alabama, the first state
in the USStates array.

Visualization of two related parallel data tables.

USStates stateEntered
"Alabama" [0] 1819

"Alaska” [1] 1959

"Arizona" [2] 1912
"Arkansas" [3] 1836
"Wyoming" [50] 1890

76

If a web page included these data tables and a way for a user to look up the entry date for a given state, the
page would need a way to look through all the USStates entries to find the index value of the one that
matches the user’s entry. Then that index value could be applied to the stateEntered array to find the

matching year.

For this demo, the page includes a text entry field in which the user types the name of the state to look up.
In a real application, this methodology is fraught with peril unless the script performs some error checking
in case the user makes a mistake. But for now, [assume that the user always types a valid state name.

(Don't ever make this assumption in your web site’s pages.) An event handler from either the text field or a

Programming Fundamentals, Part Il

clickable button calls a function that looks up the state name, fetches the corresponding entry year, and dis-
plays an alert message with the information. The function is as follows:

function getStateDate() {
var selectedState = document.getElementById("entry").value;
for (var i = 0; i < USStates.length; i++) {
if (USStates[i] == selectedState) {
break;

}
alert(selectedState + " entered the Union in " + stateEntered[i] + ".");

}

In the first statement of the function, I grab the value of the text box and assign the value to a variable,
selectedState. This is mostly for convenience, because I can use the shorter variable name later in the
script. In fact, the usage of that value is inside a for loop, so the script is marginally more efficient because
the browser doesn't have to evaluate that long reference to the text field each time through the loop.

The key to this function is in the for loop. Here is where I combine the natural behavior of incrementing a
loop counter with the index values assigned to the two arrays. Specifications for the loop indicate that the
counter variable, 1, is initialized with a value of zero. The loop is directed to continue as long as the value of
i is less than the length of the USStates array. Remember that the length of an array is always one more
than the index value of the last item. Therefore, the last time the loop runs is when i is 50, which is both
less than the length of 51 and equal to the index value of the last element. Each time after the loop runs, the
counter increments by 1 (i++).

Nested inside the for loop is an if construction. The condition tests the value of an element of the array
against the value typed by the user. Each time through the loop, the condition tests a different row of the
array, starting with row zero. In other words, this if construction can be performed dozens of times before
a match is found, but each time, the value of 1 is 1 larger than in the previous try.

The equality comparison operator (==) is fairly strict when it comes to comparing string values. Such com-
parisons respect the case of each letter. In our example, the user must type the state name exactly as it is
stored in the USStates array for the match to be found. In Chapter 10, you learn about some helper meth-
ods that eliminate case and sensitivity in string comparisons.

When a match is found, the statement nested inside the if construction runs. The break statement is
designed to help control structures bail out if the program needs it. For this application, it is imperative that
the for loop stop running when a match for the state name is found. When the for loop breaks, the value
of the 1 counter is fixed at the row of the USStates array containing the entered state. I need that index
value to find the corresponding entry in the other array. Even though the counting variable, 1, is initialized
in the for loop, it is still alive and in the scope of the function for all statements after the initialization.
That’s why I can use it to extract the value of the row of the stateEntered array in the final statement that
displays the results in an alert message.

This application of a for loop and array indexes is a common one in JavaScript. Study the code carefully,
and be sure you understand how it works. This way of cycling through arrays plays a role not only in the
kinds of arrays you create in your code, but also in the arrays that browsers generate for the DOM.

77

m JavaScript Tutorial

78

Document objects in arrays

If you look at the document object portions of the Quick Reference in Appendix A, you can see that the
properties of some objects are listed with square brackets after them. These are indeed the same kind of
square brackets you just saw for array indexes. That’s because when a document loads, the browser creates
arrays of like objects in the document. For example, if your page includes two <form> tag sets, two forms
appear in the document. The browser maintains an array of form objects for that document. References to
those forms are

document.forms[0]
document.forms[1]

Index values for objects are assigned according to the loading order of the objects. In the case of form
objects, the order is dictated by the order of the <form> tags in the document. This indexed array syntax is
another way to reference forms in an object reference. You can still use a form’s identifier if you prefer —
and [heartily recommend using object names wherever possible, because even if you change the physical
order of the objects in your HTML, references that use names still work without modification. But if your
page contains only one form, you can use the reference types interchangeably, as in the following examples
of equivalent references to the Tength property of a form’s elements array (the elements array contains
all the form controls in the form):

document.getElementById("entryForm").elements.length
document.forms[0].elements.Tength

In examples throughout this book, you can see that I often use the array type of reference to simple forms in
simple documents. But in my production pages, I almost always use named references.

Exercises

1. With your newly acquired knowledge of functions, event handlers, and control structures, use the
script fragments from this chapter to complete the page that has the lookup table for all the states
and the years they entered into the union. If you do not have a reference book for the dates, use
different year numbers, starting with 1800 for each entry. In the page, create a text entry field for
the state and a button that triggers the lookup in the arrays.

2. Examine the following function definition. Can you spot any problems with the definition? If so,
how can you fix the problems?

function format(ohmage) {
var result;
if ohmage >= le6 {
ohmage = ohmage / le6;
result = ohmage + " Mohms";
} else {
if (ohmage >= 1e3)
ohmage = ohmage / 1e3;
result = ohmage + " Kohms";
else
result = ohmage + " ohms";
}

alert(result);

Programming Fundamentals, Part Il

3. Devise your own syntax for the scenario of looking for a ripe tomato at the grocery store, and
write a for loop using that object and property syntax.

4. Modify Listing 7-2 so that it does not reuse the hisDog variable inside the function.

5. Given the following table of data about several planets of our solar system, create a web page that
enables users to enter a planet name and, at the click of a button, have the distance and diameter
appear either in an alert box or (as extra credit) in separate fields of the page.

Planet Distance from the Sun Diameter

Mercury 36 million miles 3,100 miles
Venus 67 million miles 7,700 miles
Earth 93 million miles 7,920 miles
Mars 141 million miles 4,200 miles

79

ow that you have exposure to programming fundamentals, it is easier to

demonstrate how to script objects in documents. Starting with this

lesson, the tutorial turns back to the document object model (DOM),
diving more deeply into objects you will place in many of your documents.

Top-Level Objects

As a refresher, study the hierarchy of top-level objects in Figure 8-1. This chapter
focuses on objects of this level that you'll frequently encounter in your scripting:
window, Tocation, navigator, and document. The goal is not only to equip
you with the basics so you can script simple tasks, but also to prepare you for in-
depth examinations of each object and its properties, methods, and event han-
dlers in Part III of this book. I introduce only the basic properties, methods, and
events for objects in this tutorial; you can find far more in Part III. Examples in
that part of the book assume that you know the programming fundamentals cov-
ered here in Part IL

81

INTHIS C

What the window object does

How to access key window
object properties and methods

How to trigger script actions
after a document loads

The purposes of the location and
navigator objects

How the document
object is created

How to access key document
object properties and methods

m JavaScript Tutorial

FIGURE 8-1

The top-level browser object model for all scriptable browsers.

window

navigator screen history location

82

document

The window Object

At the top of the object hierarchy is the window object. This object gains that exalted spot in the object food
chain because it is the master container for all content you view in the web browser. As long as a browser
window is open — even if no document is loaded in the window — the window object is defined in the cur-
rent model in memory.

In addition to the content part of the window where documents go, a window’s sphere of influence includes
the dimensions of the window and all the stuff that surrounds the content area. The area where scrollbars,
toolbars, the status bar, and (non-Macintosh) menu bar live is known as a window’s chrome. Not every
browser has full scripted control over the chrome of the main browser window, but you can easily script the
creation of additional windows sized the way you want and that have only the chrome elements you wish to
display in the subwindow.

Although the discussion of frames comes in Chapter 11, I can safely say now that each frame is also consid-
ered a window object. If you think about it, that makes sense, because each frame can hold a different docu-
ment. When a script runs in one of those documents, it regards the frame that holds the document as the
window object in its view of the object hierarchy.

As you learn in this chapter, the window object is a convenient place for the DOM to attach methods that
display modal dialog boxes and adjust the text that displays in the status bar at the bottom of the browser
window. A window object method enables you to create a separate window that appears onscreen. When
you look at all of the properties, methods, and events defined for the window object (see Chapter 16), it
should be clear why they are attached to window objects: Visualize their scope and the scope of a browser
window.

Accessing window properties and methods

You can word script references to properties and methods of the window object in several ways, depending
more on whim and style than on specific syntactical requirements. The most logical and common way to
compose such references includes the window object in the reference:

window.propertyName
window.methodName([parameters])

Window and Document Objects

A window object also has a synonym when the script doing the referencing points to the window that
houses the document. The synonym is self. Then the reference syntax becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to reserve the use of self for
more complex scripts that involve multiple frames and windows. The self moniker more clearly denotes the
current window holding the scripts document. It makes the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always there when a script runs, you could
omit it from references to any objects inside that window. Therefore, the following syntax models assume
properties and methods of the current window:

propertyName
methodName([parameters])

In fact, as you will see in a few moments, some methods may be more understandable if you omit the
window object reference. The methods run just fine either way.

Creating a window

A script does not create the main browser window. A user does that by virtue of launching the browser or
by opening a URL or file from the browser’s menus (if the window is not already open). But a script can
generate any number of subwindows when the main window is open (and that window contains a docu-
ment whose script needs to open subwindows).

The method that generates a new window is window. open (). This method contains up to three parameters
that define window characteristics, such as the URL of the document to load, its name for target attribute
reference purposes in HTML tags, and physical appearance (size and chrome contingent). I don’t go into the
details of the parameters here (they’re covered in great depth in Chapter 16), but I do want to expose you to
an important concept involved with the window.open () method.

Consider the following statement, which opens a new window to a specific size and with an HTML docu-
ment from the same server directory that holds the current page:

var subWindow = window.open("define.html","def","height=200,width=300");

The important thing to note about this statement is that it is an assignment statement. Something gets
assigned to that variable subWindow. What is it? It turns out that when the window.open() method runs,
it not only opens that new window according to specifications set as parameters, but also evaluates to a ref-
erence to that new window. In programming parlance, the method is said to return a value —in this case, a
genuine object reference. The value returned by the method is assigned to the variable.

Now your script can use that variable as a valid reference to the second window. If you need to access one

of its properties or methods, you must use that reference as part of the complete reference. For example, to
close the subwindow from a script in the main window, use this reference to the close () method for that

subwindow:

subWindow.close();

If you issue window.close(), self.close(), orjust close() in the main window’s script, the method
closes the main window (after confirming with the user) and not the subwindow. To address another win-
dow, then, you must include a reference to that window as part of the complete reference. This has an

83

m JavaScript Tutorial

impact on your code because you probably want the variable holding the reference to the subwindow to be
valid as long as the main document is loaded into the browser. For that to happen, the variable has to be
initialized as a global variable, rather than inside a function (although you can set its value inside a func-
tion). That way, one function can open the window while another function closes it.

Listing 8-1 is a page that has a button for opening a blank, new window and a button for closing that win-
dow from the main window. To view this demonstration, shrink your main browser window to less than full
screen. Then, when the new window is generated, reposition the windows so you can see the smaller, new
window when the main window is in front. (If you lose a window behind another, use the browser’s
Window menu to choose the hidden window.) The key point of Listing 8-1 is that the newWindow variable
is defined as a global variable so that both the makeNewWindow() and closeNewWindow() functions have
access to it. When a variable is declared with no value assignment, its initial value is nu11. A nu11 value is
interpreted to be the same as false in a condition, whereas the presence of any nonzero value is the same
as true in a condition. Therefore, in the cl1oseNewWindow () function, the condition tests whether the
window has been created before issuing the subwindow’s c1ose() method. Then, to clean up, the function
sets the newlindow variable to nu11 so that another click of the Close button doesn't try to close a nonex-
istent window.

LISTING 8-1

References to Window Objects

<html>
<head>
<title>Window Opener and Closer</title>
<script type="text/javascript">
var newWindow;
function makeNewWindow() {
newWindow = window.open("","","height=300,width=300");
1
function closeNewWindow() {
if (newWindow) {
newWindow.close();
newWindow = null;
}
1
</script>
</head>

<body>
<form>
<input type="button" value="Create New Window" onclick="makeNewWindow()">
<input type="button" value="Close New Window" onclick="closeNewWindow()">
</form>
</body>
</html>

84

Window and Document Objects

Window Properties and Methods

The three methods for the window object described in this section have an immediate impact on user inter-
action by displaying dialog boxes of various types. They work with all scriptable browsers. You can find
extensive code examples in Part III for each property and method. You can also experiment with the one-
statement script examples by entering them in the top text box of The Evaluator Jr. (from Chapter 6).

One of the first questions that new scripters ask is how to customize the title bars, sizes, and button labels
of these dialog boxes. Each browser maker dictates how these dialogs are labeled. Because tricksters have
tried to use these dialog boxes for nefarious purposes over the years, browser makers now go to great
lengths to let users know that the dialog boxes emanate from web page scripts. Scripters cannot alter the
user interfaces of these dialog boxes.

window.alert() method

I have used the alert () method many times so far in this tutorial. This window method generates a dialog
box that displays whatever text you pass as a parameter (see Figure 8-2). A single OK button (whose label
you cannot change) enables the user to dismiss the alert.

FIGURE 8-2

A JavaScript alert dialog box (Firefox 1.5/Windows).

[http://192.168.1.100

-’fi.‘ This is a JavaScript alert dialog.

All three dialog-box methods are good cases for using a window object’s methods without the reference to
the window. Even though the alert () method technically is a window object method, no special relation-
ship exists between the dialog box and the window that generates it. In production scripts, I usually use the
shortcut reference:

alert("This is a JavaScript alert dialog.");

window.confirm() method

The second style of dialog box presents two buttons (Cancel and OK in most versions on most platforms)
and is called a confirm dialog box (see Figure 8-3). More important, this is one of those methods that
returns a value: true if the user clicks OK or false if the user clicks Cancel. You can use this dialog box
and its returned value as a way to have a user make a decision about how a script progresses.

85

m JavaScript Tutorial

FIGURE 8-3

A JavaScript confirm dialog box (IE7/WinXP style).

| Windows Internet Explorer
_‘5) Are you sure you want to start over?

Ok |[Cancel]

FIGURE 8-4

Because the method always returns a Boolean value, you can use the evaluated value of the entire method as
a condition statement in an if or i f...else construction. For example, in the following code fragment,
the user is asked about starting the application over. Doing so causes the default page of the site to load into
the browser.

if (confirm("Are you sure you want to start over?")) {
location.href = "index.html";
}

window.prompt() method

The final dialog box of the window object, the prompt dialog box (see Figure 8-4), displays a message that
you set and provides a text field for the user to enter a response. Two buttons, Cancel and OK, enable the

user to dismiss the dialog box with two opposite expectations: canceling the entire operation or accepting
the input typed in the dialog box.

A JavaScript prompt dialog box (Safari 2 style).

JavaScript

Fill in table for how many factors?

20

(" Cancel) @

86

The window.prompt () method has two parameters. The first is the message that acts as a prompt to the
user. You can suggest a default answer in the text field by including a string as the second parameter. If you
don’t want any default answer to appear, include an empty string (two double quotes without any space
between them).

This method returns one value when the user clicks either button. A click of the Cancel button returns a
value of nu11, regardless of what the user types in the field. A click of the OK button returns a string value
of the typed entry. Your scripts can use this information in conditions for if and i f...else constructions.
A value of nu11 is treated as false in a condition. It turns out that an empty string is also treated as false.

Window and Document Objects

Therefore, a condition can easily test for the presence of real characters typed in the field to simplify a
condition test, as shown in the following fragment:

var answer = prompt("What is your name?","");
if (answer) {
alert("Hello, " + answer + "!");

}

The only time the alert () method is called is when the user enters something in the prompt dialog box
and clicks the OK button.

load event

The window object reacts to several system and user events, but the one you will probably use most often is
the event that fires as soon as everything in a page finishes loading. This event waits for images, Java applets,
and data files for plug-ins to download fully to the browser. It can be dangerous to script access to elements
of a document object while the page loads because if the object has not loaded yet (perhaps due to a slow
network connection or server), a script error results. The advantage of using the 1oad event to invoke func-
tions is that you are assured that all document objects are in the browsers DOM. Window event handlers
may be placed inside the <body> tag. Even though you will come to associate the <body> tags attributes
with the document object’s properties, it is the window object’s event handlers that go inside the tag.

The location Object

Sometimes an object in the hierarchy represents something that doesn’t seem to have the kind of physical
presence that a window or a button does. That’s the case with the Tocation object. This object represents
the URL loaded into the window. This differs from the document object (discussed later in this lesson)
because the document is the real content; the location is simply the URL.

Unless you are truly web savvy, you may not realize that a URL consists of many components that define the
address and method of data transfer for a file. Pieces of a URL include the protocol (such as http:) and the
hostname (such as www.example.com). You can access all these items as properties of the Tocation

object. For the most part, though, your scripts will be interested in only one property: the href property,
which defines the complete URL.

Setting the Tocation.href property is the primary way your scripts navigate to other pages:
location.href = "http://www.dannyg.com";

You can generally navigate to a page in your own web site by specifying a relative URL (that is, relative to
the currently loaded page) rather than the complete URL with protocol and host information. For pages
outside the domain of the current page, you need to specify the complete URL.

If the page to be loaded is in another window or frame, the window reference must be part of the statement.
For example, if your script opens a new window and assigns its reference to a variable named newWindow,
the statement that loads a page into the subwindow is

newWindow.location.href = "http://www.dannyg.com";

87

m JavaScript Tutorial

88

The navigator Object

Despite a name reminiscent of the Netscape Navigator-branded browser, the navigator object is imple-
mented in all scriptable browsers. All browsers also implement a handful of properties that reveal the same
kind of information that browsers send to servers with each page request. Thus, the navigator.userAgent
property returns a string with numerous details about the browser and operating system. For example, a
script running in Internet Explorer 7 in Windows XP receives the following value for the
navigator.userAgent property:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
The same script running in Firefox 1.5 on a Macintosh reveals the following userAgent details:

Mozilla/5.0 (Macintosh; U; PPC Mac 0S X Mach-0; en-US; rv:1.8.0.7) Gecko/20060909
Firefox/1.5.0.7

You have already used the navigator.appVersion property: in your first script of Chapter 3. See Chapter 39
on the CD-ROM for more details about this object and the meaning of the values returned by its properties. It
once was used extensively to branch script execution according to various browser versions. Chapter 14
describes more modern ways to accomplish browser-version detection.

The document Object

The document object holds the real content of the page. Properties and methods of the document object
generally affect the look and content of the document that occupies the window. As you saw in your first
script in Chapter 3, all W3C DOM-compatible browsers allow script access to the text contents of a page
when the document has loaded. You also saw in Listing 5-6 that the document.write() method lets a
script create content dynamically as the page loads on any browser. Many document object properties are
arrays of other objects in the document, which provide additional ways to reference these objects (over and
above the document.getElementById() method).

Accessing a document object’s properties and methods is straightforward, as shown in the following syntax
examples:

[window. Jdocument.propertyName
[window. ldocument.methodName([parameters])

The window reference is optional when the script is accessing the document object that contains the script.
If you want a preview of the long list of document object properties of IE or a Mozilla-based browser, enter
document in the bottom text box of The Evaluator Jr. and press Enter/Return. The object’s properties, cur-

rent values, and value types appear in the Results box (as well as methods in Mozilla). Following are some

of the most commonly used properties and methods of the document object.

document.forms[] property

It is convenient that the document object contains a property — document . forms — whose value is an
array of all form element objects in the document. As you recall from the discussion of arrays in Chapter 7,
an index number inside an array’s square brackets points to one of the elements in the array. To find out
how many form objects are in the current document, use

document.forms.length

Window and Document Objects _

To access the first form in a document, for example, the reference is
document . forms[0]

As a further convenience, all scriptable browsers let you reference a form more directly by its name (that is,
the identifier assigned to the name attribute of the <form> tag) in one of two ways. The first way is via array
syntax, applying the form’s name as a string index value of the array:

document.forms[" formName"]

You will see in future chapters that scripts sometimes have only the string name of the form to work with.
To derive a valid reference to the form object indicated by that name, use this string index form with the
array.

The second, even shorter way to reference a form object by name is to append the name as a property of
the document object, as in:

document. formName

Either methodology reaches the same object. You will see many instances of the shortcut approach in form-
related example scripts throughout this book (including in Chapter 9 when working with form controls).
Although this syntax dates back to the earliest scriptable browsers, it is still valid in the most modern versions.

document.images[] property

Just as a document keeps track of forms in an array property, the document object maintain a collection
(array) of images inserted into the document by way of tags. Images referenced through the
document.images array may be reached either by numeric or string index of the img element’s name.
Just as with forms, the name attribute value is the identifier you use for a string index.

The presence of the document . images property indicates that the browser supports image swapping.
Therefore, you can use the existence of the property as a controller to make sure the browser supports
images as objects before attempting to perform any script action on an image. To do so, surround state-
ments that deal with images with an i f construction that verifies the property’s existence, as follows:

if (document.images) {
// statements dealing with img objects
}

Older browsers skip the nested statements, preventing them from displaying error messages to their users.

document.write() method

The document.write() method operates in both immediate scripts to create content in a page as it loads
and in deferred scripts that create new content in the same window or a different window. The method
requires one string parameter, which is the HTML content to write to the window or frame. Such string
parameters can be variables or any other expressions that evaluate to a string. Very often, the written con-
tent includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream automatically closes. After that, any
document.write() method issued to the current page opens a new stream that immediately erases the
current page (along with any variables or other values in the original document). Therefore, if you wish
to replace the current page with script-generated HTML, you need to accumulate that HTML in a variable
and perform the writing with just one document.write() method. You don't have to clear a document
explicitly and open a new data stream; one document.write() call does it all.

89

m JavaScript Tutorial

One last piece of housekeeping advice about the document .write () method involves its companion
method, document.close(). Your script must close the output stream when it finishes writing its content
to the window (either the same window or another). After the last document.write() method in a
deferred script, be sure to include a document.close() method. Failure to do this may cause images and
forms not to appear. Also, any document.write() method invoked later will only append to the page,
rather than clear the existing content to write anew.

To demonstrate the document.write() method, I show two versions of the same application. One writes
to the same document that contains the script; the other writes to a separate window. Type in each docu-
ment in a new text editor document, save it with an . htm1 file extension, and open it in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document, including HTML tags for a
new document title and color attribute for the <body> tag. An operator in the listing that may be unfamiliar
to you is +=. It appends a string on its right side to whatever string is stored in the variable on its left side.
This operator is a convenient way to accumulate a long string across several separate statements. With the
content gathered in the newContent variable, one document.write() statement blasts the entire new con-
tent to the same document, obliterating all vestiges of the content of Listing 8-2. The document.close()
statement, however, is required to close the output stream properly. When you load this document and
click the button, notice that the document title in the browser’s title bar changes accordingly. As you click
back to the original and try the button again, notice that the dynamically written second page loads much
faster than even a reload of the original document.

LISTING 8-2

Using document.write() on the Current Window

<html>

<head>

<title>Writing to Same Doc</title>

{script type="text/javascript">

function reWrite() {
// assemble content for new window
var newContent = "<html><head><title>A New Doc</title></head>";
newContent += "<body bgcolor='aqua'><h1>This document is brand new.</h1>";
newContent += "Click the Back button to see original document.";
newContent += "</body></html>";
// write HTML to new window document
document.write(newContent);
document.close(); // close layout stream

}

</script>

</head>

<body>

<form>

<input type="button" value="Replace Content" onclick="reWrite()">

</form>

</body>

</html>

In Listing 8-3, the situation is a bit more complex because the script generates a subwindow to which an
entirely script-generated document is written.

90

Window and Document Objects _

You will have to turn off blocking pop-up windows temporarily to run this script.

To keep the reference to the new window alive across both functions, the newlWindow variable is declared as
a global variable. As soon as the page loads, the onload event handler invokes the makeNewWindow ()
function. This function generates a blank subwindow. I added a property to the third parameter of the
window.open() method that instructs the status bar of the subwindow to appear.

A button in the page invokes the subWrite () method. The first task it performs is to check the closed
property of the subwindow. This property returns true if the referenced window is closed. If that’s the case
(if the user closed the window manually), the function invokes the makeNewWindow () function again to
reopen that window.

With the window open, new content is assembled as a string variable. As with Listing 8-2, the content is writ-
ten in one blast (although that isn't necessary for a separate window), followed by a c1ose () method. But
notice an important difference: Both the write() and close() methods explicitly specify the subwindow.

LISTING 8-3

Using document.write() on Another Window

<html>
<head>
<title>Writing to Subwindow</title>
<script type="text/javascript">
var newhWindow;
function makeNewWindow() {
newWindow = window.open("","","status,height=200,width=300");
}

function subWrite() {
// make new window if someone has closed it
if (newWindow.closed) {
makeNewWindow();
}
// bring subwindow to front
newWindow.focus();
// assemble content for new window
var newContent = "<html><head><title>A New Doc</title></head>";
newContent += "<body bgcolor='coral'><h1>This document is brand new.</h1>";
newContent += "</body></htm1>";
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close(); // close layout stream
}
</script>
</head>
<body onload="makeNewWindow()">
<form>
<input type="button" value="Write to Subwindow" onclick="subWrite()">
</form>
</body>
</html>

91

m JavaScript Tutorial

92

document.createElement() and
document.createTextNode() methods

The document.write() method works on a piece of a web page only while the page is loading into the
browser the first time. Any subsequent invocation of the method erases the page and writes a new page. But
if you want to add to or modify a page that has already loaded, you need to call upon the Dynamic HTML
capabilities of W3C DOM-compatible browsers. Your goal will be to add to, delete from, or replace sections
of the node hierarchy of the document. Most element objects have methods to perform those actions (see a
more in-depth discussion in Chapter 14). But if you need to add content, you'll have to create new element
or text nodes. The document object has the methods to do that.

The document.createElement () method lets you create in the browser’s memory a brand-new element
object. To specify the precise element you wish to create, pass the tag name of the element as a string
parameter of the method:

var newElem = document.createElement("p");

You may also wish to add some attribute values to the element, which you may do by assigning values to
the newly created object’s properties, even before the element becomes part of the document.

As you saw in Chapter 4's object hierarchy illustrations, an element object frequently needs text content
between its start and end tags. The W3C DOM way to create that text is to generate a brand-new text node
via the document.createTextNode () method and populate the node with the desired text. For example:

var newText = document.createTextNode("Greetings to all.");

The act of creating an element or text node does not by itself influence the document node tree. You must
invoke one of the various insertion or replacement methods to place the new text node in its element and
place the element in the document. You learn how to do this in the last tutorial chapter (Chapter 12).

document.getElementByld() method

You met the document.getElementById() method in Chapter 4 when learning about the syntax for ref-
erencing element objects. This W3C DOM method is one you will use a lot. Get to know its finger-twisting
name well. Be sure to honor the upper- and lowercase spelling of this all-important method.

The sole parameter of this method is a quoted string containing the ID of the element you wish to reference.
The Evaluator Jr. page from Chapter 6 (and in the CD-ROM listings) has three element objects (form fields)
with IDs input, output, and inspector. Type this method in the top text box with each ID, as in the fol-
lowing example:

document.getElementById("output")

The method returns a value, which you typically preserve in a variable for use by subsequent script
statements:

var oneTable = document.getElementById("salesResults");

After the assignment statement, the variable represents the element object, allowing you to get and set its
properties or invoke whatever methods belong to that type of object.

The next logical step past the document level in the object hierarchy is the form. That’s where you will
spend the next lesson.

Window and Document Objects

Exercises

1.

Which of the following references are valid, and which are not? Explain what is wrong with the
invalid references.

a. window.document.form[0]

b. self.entryForm.submit()

c. document.forms[2].name

d. document.getElementByID("firstParagraph")
e. newWindow.document.write("Howdy")

Write the JavaScript statement that displays an (annoying) dialog box welcoming visitors to your
web page.

Write the JavaScript statement that executes while the page loads to display the same message
from question 2 to the document as an <h1>-level headline on the page.

Create a page that prompts the user for his or her name as the page loads (via a dialog box) and
then welcomes the user by name in the body of the page.

Create a page with any content you like, but one that automatically displays a dialog box after the
page loads to show the user the URL of the current page.

93

ost interactivity between a web page and the user takes place inside a
form. That's where a lot of the interactive HTML stuff lives for every
browser: text fields, buttons, checkboxes, option lists, and so on.

As described in earlier chapters, you may use the modern document object
model (DOM) document.getElementById() method to reference any element,
including forms and form controls. But this chapter focuses on an older, yet
equally valid way of referencing forms and controls. It's important to be familiar
with this widely used syntax so that you can understand existing JavaScript
source code written according to the original (and fully backward-compatible)
form syntax: the so-called DOM Level 0 syntax.

The form Object

Using the original DOM Level 0 syntax, you can reference a form object either by
its position in the array of forms contained by a document or by name (if you
assign an identifier to the name attribute inside the <form> tag). If only one form
appears in the document, it is still a member of an array (a one-element array)
and is referenced as follows:

document.forms[0]
Or use the string of the element’s name as the array index:
document.forms[" formName"]

Notice that the array reference uses the plural version of the word, followed by a

set of square brackets containing the index number (zero is always first) or name

of the element. Alternatively, you can use the form’s name (not as a quoted string)
as though it were a property of the document object:

document. formName

95

INTHIS C

What the form object represents

How to access key form object
properties and methods

How text, button, and select
objects work

How to submit forms
from a script

How to pass information from
form elements to functions

m JavaScript Tutorial

FIGURE 9-1

Form as object and container

Unlike the modern DOM’s ID reference model — which lets a script dive anywhere into a document to grab
an element object reference — DOM Level O form syntax imposes a hierarchical approach. It treats the form
object as a container whose contents consist of the form control element objects (input, select, and
textarea elements). Figure 9-1 shows the structure of this hierarchy and its place relative to the document
object. You'll see the effect this structure has on the way you reference form control elements in a moment.
This structure echoes perfectly the HTML tag organization within the <form> and </form> tag bookends.

DOM Level 0 hierarchy for forms and controls.

96

window

document

r

L7
N

text | | radio | | button | | select |
[[[I
| textarea | | checkbox | | reset | | option |
[[[
| password | | hidden | | submit |

In addition to a large collection of properties and methods it has in common with all HTML element
objects, the form object features a number of items that are unique to this object. Almost all of these unique
properties are scripted representations of the form elements attributes (action, target, and so on).
Scriptable browsers allow scripts to change these properties under script control, which gives your scripts
potentially significant power to direct the behavior of a form submission in response to user selections on
the page.

Accessing form properties

Forms are created entirely from standard HTML tags in the page. You can set attributes for name, target,
action, method, and enctype. Each of these is a property of a form object, accessed by all-lowercase
versions of those words, as in:

document.forms[0].action
document. formName.action

Forms and Form Elements m

To change any of these properties, simply assign new values to them:

document.forms[0].action = "http://www.example.com/cgi/login.pl";

form.elements[] property

In addition to keeping track of each type of element inside a form, the browser maintains a list of all control
elements within a form. This list is another array, with items listed according to the order in which their
HTML tags appear in the source code. It is generally more efficient to create references to elements directly,
using their names. However, sometimes a script needs to look through all of the elements in a form. This is
especially true if the content of a form changes with each loading of the page because the number of text
fields changes based on the user’s browser type (for example, a script on the page uses document.write()
to add an extra text box for information required only from Windows users).

The following code fragment shows the form.elements[] property at work in a for repeat loop that
looks at every element in a form to set the contents of text fields to an empty string. The script cannot sim-
ply barge through the form and set every element’s content to an empty string because some elements may
be types (for example, a button) whose value properties have different purposes.

var form = window.document.forms[0];
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == "text") {
form.elements[i].value = "";
}
}

In the first statement, I create a variable — form — that holds a reference to the first form of the document.
I do this so that when I make many references to form elements later in the script, the typical length of each
reference is much shorter (and marginally faster). I can use the form variable as a shortcut to building refer-
ences to items more deeply nested in the form.

Next, I start looping through the items in the eTements array for the form. Each form control element has
a type property, which reveals what kind of form control it is: text, button, radio, checkbox, and so on.
I'm interested in finding elements whose type is text. For each of those, I set the value property to an
empty string.

I return to forms later in this chapter to show you how to submit a form without a Submit button and how
client-side form validation works.

Form Controls as Objects

Three kinds of HTML elements nested inside a <form> tag become scriptable objects in all browser DOMs.
Most of the objects owe their existence to the <input> tag in the page’s source code. Only the value
assigned to the type attribute of an <input> tag determines whether the element is a text box, password
entry field, hidden field, button, checkbox, or radio button. The other two kinds of form controls,
textarea and select, have their own tags.

To reference a particular form control as an object in DOM Level 0 syntax, you build the reference as a hier-
archy starting with the document, through the form, and then to the control. You've already seen how many
ways you can reference merely the form part — all of which are valid for building form control references.

97

m JavaScript Tutorial

98

But if you are using only the identifiers assigned to the form and form control elements (that is, none of the
associated arrays of elements), the syntax is as follows:

document. formName. controlName
For example, consider the following simple form:

<form name="searchForm" action="cgi-bin/search.pl">
{input type="text" name="entry">
<input type="submit" name="sender" value="Search">
</form>

The following sample references to the text input control are all valid:

document.searchForm.entry
document.searchForm.elements[0]
document.forms["searchForm"].elements["entry"]
document.forms["searchForm"].entry

Although form controls have several properties in common, some properties are unique to a particular
control type or related types. For example, only a seTect object offers a property that reveals which item in
its list is currently selected. But checkboxes and radio buttons both have a property that indicates whether
the control is currently set to on. Similarly, all text-oriented controls operate the same way for reading and
modifying their content.

Having a good grasp of the scriptable features of form control objects is important to your success with
JavaScript. In the next sections, you meet the most important form control objects and see how scripts
interact with them.

Text-related input objects

Each of the four text-related HTML form elements — input elements of the text, password, and hidden
types, plus the textarea element —is an element in the document object hierarchy. All but the hidden
object display themselves in the page, enabling users to enter information. These objects also display text
information that changes in the course of using a page (although browsers capable of modern Dynamic
HTML also allow the scripted change of other body text in a document).

To make these form control objects scriptable in a page, you do nothing special to their normal HTML
tags — with the possible exception of assigning a name attribute. I strongly recommend assigning unique
names to every text-related form control element if your scripts will be getting or setting properties or
invoking their methods. Besides, if the form is actually submitted to a server program, the name attributes
must be assigned for the server to receive the element’s data.

For the visible objects in this category, event handlers are triggered from many user actions, such as giving a
field focus (getting the text insertion pointer in the field) and changing text (entering new text and leaving
the field). Most of your text-field actions are triggered by the change of text (the onchange event handler).
In current browsers, events fire in response to individual keystrokes as well.

Without a doubt, the single most-used property of a text-related element is the value property. This prop-
erty represents the current contents of the text element. A script can retrieve and set its content at any time.
Content of the value property is always a string. This may require conversion to numbers (see Chapter 6)

if text fields are used to enter values for some math operations.

Forms and Form Elements m

Text Object Behavior

any scripters look to JavaScript to solve what are perceived as shortcomings or behavioral anomalies
with text-related objects in forms. | want to single these out early in your scripting experience so that
they do not confuse you later.

First, only the most recent browsers let scripts reliably alter the font, font size, font style, and text alignment of
a text object’s content. You can access changes through the element’s style-related properties (see Chapter 26).

Second, most browser forms practice a behavior that was recommended long ago as an informal standard by
web pioneers. When a form contains only one text input object, a press of the Enter/Return key while the text
object has focus automatically submits the form. For two or more fields in browsers other than IE5/Mac and
Safari, you need another way to submit the form (for example, a Submit button). This one-field submission
scheme works well in many cases, such as the search page of most web search sites. But if you are experi-
menting with simple forms containing only one field, you can submit the form with a press of the Enter/Return
key. Submitting a form that has no other action or target specified means the page performs an unconditional
reload, wiping out any information entered into the form. You can, however, cancel the submission through
an onsubmit event handler in the form, as shown later in this chapter. You can also script the press of the
Enter/Return key in any text field to submit a form (see Chapter 25).

To demonstrate how a text field’s value property can be read and written, Listing 9-1 provides a complete
HTML page with a single-entry field. Its onchange event handler invokes the upperMe () function, which
converts the text to uppercase. In the upperMe () function, the first statement assigns the text object refer-
ence to a more convenient variable: field. A lot goes on in the second statement of the function. The right
side of the assignment statement performs a couple of key tasks. The reference to the value property of the
object (field.value) evaluates to whatever content is in the text field at that instant. Then that string is
handed over to one of JavaScript’s string functions, toUpperCase (), which converts the value to uppercase.
The evaluated result of the right-side statement is then assigned to the second variable: upperCaseVersion.
Nothing has changed yet in the text box. That comes in the third statement, where the value property of the
text box is assigned whatever the upperCaseVersion variable holds. The need for the second statement is
more for learning purposes so that you can see the process more slowly. In practice, you can combine the
actions of steps 2 and 3 into one power-packed statement:

field.value = field.value.toUpperCase();

LISTING 9-1

Getting and Setting a Text Object’s value Property

<html>
<head>
<title>Text Object value Property</title>
{script type="text/javascript">
function upperMe() {
var field = document.forms[0].converter;

continued

99

m JavaScript Tutorial
LISTING 9-1 |(Eelligli=e)

}

var upperCaseVersion = field.value.toUpperCase();
field.value = upperCaseVersion;

</script>

</head>

<body>

<form onsubmit="return false">

<input type="text" name="converter" value="sample" onchange="upperMe()">
</form>

</body>

</html1>

LISTING 9-2

Later in this chapter, I show you how to reduce even further the need for explicit references in functions such as
upperMe () in Listing 9-1. In the meantime, notice for a moment the onsubmit event handler in the <form>
tag. I delve more deeply into this event handler later in this chapter, but I want to point out the construction
that prevents a single-field form from being submitted when you press the Enter key. If the event handler
weren't there, a press of the Enter key would reload the page, returning the field to its original text. Try it!

The button input object

I have used the button-type input element in many examples up to this point in the tutorial. The button is
one of the simplest objects to script. In the simplified object model of this tutorial, the button object has
only a few properties that are rarely accessed or modified in day-to-day scripts. Like the text object, the
visual aspects of the button are governed not by HTML or scripts, but by the operating system and browser
that the page visitor uses. By far the most useful event of the button object is the c11ick event. It fires when-
ever the user clicks the button. Simple enough. No magic here.

The checkbox input object

A checkbox is also a simple element of the form object, but some of the properties may not be entirely intu-
itive. Unlike the value property of a plain button object (the text of the button label), the value property
of a checkbox is any other text you want associated with the object. This text does not appear on the page
in any fashion, but the property (initially set via the value attribute) might be important to a script that
wants to know more about the purpose of the checkbox within the form.

The key property of a checkbox object is whether the box is checked. The checked property is a Boolean
value: true if the box is checked, false if not. When you see that a property is a Boolean value, it’s a clue
that the value might be usable inan if or if...else condition expression. In Listing 9-2, the value of the
checked property determines which alert box the user sees.

The Checkbox Object’s checked Property

<html1>
<head>
<title>Checkbox Inspector</title>

100

Forms and Form Elements m

{script type="text/javascript">
function inspectBox() {
if (document.forms[0].checkThis.checked) {
alert("The box is checked.");
} else {
alert("The box is not checked at the moment.");
}
}
</script>
</head>
<body>
<form>
<input type="checkbox" name="checkThis">Check here

<input type="button" value="Inspect Box" onclick="inspectBox()">
</form>
</body>
</html1>

Checkboxes are generally used as preference setters rather than as action inducers. Although a checkbox
object has an onc1ick event handler, a click of a checkbox should never do anything drastic, such as navi-
gate to another page.

The radio input object

Setting up a group of radio objects for scripting requires a bit more work. To let the browser manage the
highlighting and unhighlighting of a related group of buttons, you must assign the same name to each of
the buttons in the group. You can have multiple radio groups within a form, but each member of the same
group must have the same name.

Assigning the same name to a form element forces the browser to manage the elements differently than if
they each had a unique name. Instead, the browser maintains an array list of objects with the same name.
The name assigned to the group becomes the name of the array. Some properties apply to the group as a
whole; other properties apply to individual buttons within the group and must be addressed via array index
references. For example, you can find out how many buttons are in a radio group by reading the Tength
property of the group:

document.forms[0].groupName.length

If you want to find out whether a particular button is currently highlighted, via the same checked property
used for the checkbox, you must access the button element individually:

document.forms[0].groupName[0].checked

Listing 9-3 demonstrates several aspects of the radio-button object, including how to look through a group
of buttons to find out which one is highlighted and how to use the value attribute and corresponding
property for meaningful work.

The page includes three radio buttons and a plain button. Each radio button’s value attribute contains the
full name of one of the Three Stooges. When the user clicks the button, the onc1ick event handler invokes
the fullName () function. In that function, the first statement creates a shortcut reference to the form.

101

m JavaScript Tutorial

Next, a for repeat loop looks through all the buttons in the stooges radio-button group. An if construc-
tion looks at the checked property of each button. When a button is highlighted, the break statement bails
out of the for loop, leaving the value of the i loop counter at the number where the loop broke ranks.
Then the alert dialog box uses a reference to the value property of the ith button so that the full name can
be displayed in the alert.

LISTING 9-3

Scripting a Group of Radio Objects

<html>
<head>
{title>Extracting Highlighted Radio Button</title>
{script type="text/javascript">
function fullName() {
var form = document.forms[0];
for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {
break;
1
1
alert("You chose
1
</script>
</head>

+ form.stooges[i].value + ".");

<body>

<form>

<p>Select your favorite Stooge:

<input type="radio" name="stooges" value="Moe Howard" checked>Moe
<input type="radio" name="stooges" value="Larry Fine">Larry
<input type="radio" name="stooges" value="Curly Howard">Curly

<input type="button" name="Viewer" value="View Full Name..."
onclick="fullName()"></p>

</form>

</body>

</htm1>

The select object

The most complex form control to script is the select element object. As you can see from the DOM Level
0 form object hierarchy diagram (see Figure 9-1), the select object is really a compound object: an object
that contains an array of option objects. Moreover, you can establish this object in HTML to display itself
as either a pop-up list or a scrolling list — the latter configurable to accept multiple selections by users. For
the sake of simplicity at this stage, this lesson focuses on deployment as a pop-up list that allows only single
selections.

102

Forms and Form Elements m

Some properties belong to the entire select object; others belong to individual options inside the select
object. If your goal is to determine which item the user selects, and you want the code to work on the
widest range of browsers, you must use properties of both the select and option objects.

The most important property of the select object itself is the selectedIndex property, accessed as follows:
document.forms[0].selectName.selectedIndex

This value is the index number of the currently selected item. As with most index counting schemes in
JavaScript, the first item (the one at the top of the list) has an index of zero. The seTectedIndex value is
critical for enabling you to access properties of the selected option. Two important properties of an option
item are text and value, accessed as follows:

document.forms[0].selectName.options[n].text
document.forms[0].selectName.options[n].value

The text property is the string that appears onscreen in the select objects list. It is unusual for this infor-
mation to be exposed as a form object property because in the HTML that generates a select object, the
text is defined as an <option> tags nested text. But inside the <option> tag, you can set a value attribute,
which, like the radio buttons shown earlier, enables you to associate some hidden string information with
each visible entry in the list.

To read the value or text property of a selected option most efficiently for all browsers, you can use the
select objects selectedIndex property as an index value to the option. References for this kind of oper-
ation get pretty long, so take the time to understand what’s happening here. In the following function, the
first statement creates a shortcut reference to the select object. Then the seTectedIndex property of the
select object is substituted for the index value of the options array of that same object:

function inspect() {

var 1ist = document.forms[0].choices;

var chosenltemText = list.options[list.selectedIndex].value;
}

To bring a select object to life, use the onchange event handler. As soon as a user makes a new selection
in the list, this event handler runs the script associated with that event handler. Listing 9-4 shows a com-
mon application for a select object. Its text entries describe places to go in and out of a web site, and the
value attributes hold the URLs for those locations. When a user makes a selection in the list, the onchange
event handler triggers a script that extracts the value property of the selected option and assigns that value
to the Tocation.href object property to effect the navigation. Under JavaScript control, this kind of navi-
gation doesn’t need a separate Go button on the page.

LISTING 9-4

Navigating with a select Object

<html>
<head>
<title>Select Navigation</title>
{script type="text/javascript">
function goThere() {
var Tist = document.forms[0].urlList;
location.href = list.options[list.selectedIndex].value;

continued

103

m JavaScript Tutorial
LISTING 9-4 [J{eluilrEe)

}

</script>
</head>

<body>

<form>

Choose a place to go:

<select name="urllList" onchange="goThere()">

<option selected value="index.html">Home Page
<option value="store.html">Shop Our Store

<option value="policies.html">Shipping Policies
<option value="http://www.google.com">Search the Web

</select>
</form>

</body>
</htm1>

104

Recent browsers also expose the value property of the selected option item by way of the
value property of the select object. This is certainly a logical and convenient shortcut, and
you can use it safely if your target browsers include IE, Mozilla-based browsers, and Safari.

There is much more to the select object, including the ability to change the contents of a list in newer
browsers. Chapter 24 covers the select object in depth.

Passing Form Data and Elements to Functions

In all the examples so far in this lesson, when an event handler invokes a function that works with form ele-
ments, the form or form control is explicitly referenced in the function. But valuable shortcuts exist for
transferring information about the form or form control directly to the function without dealing with those
typically long references that start with the window or document object level.

JavaScript features a keyword — th1is — that always refers to whatever object contains the script in which
the keyword is used. Thus, in an onchange event handler for a text field, you can pass a reference to the
text input object to the function by inserting the this keyword as a parameter to the function:

<input type="text" name="entry" onchange="upperMe(this)">

At the receiving end, the function defines a parameter variable that turns that reference into a variable that
the rest of the function can use:

function upperMe(field) {
statement[s]
}

The name you assign to the function’s parameter variable is purely arbitrary, but it is helpful to give it a
name that expresses what the reference is. It is important that this reference is a live connection back to the
object. Therefore, statements in the script can get and set property values of the object at will.

Forms and Form Elements m

For other functions, you may wish to receive a reference to the entire form, rather than just the object call-
ing the function. This is certainly true if the function needs to access other elements of the same form.
Because every form control object contains a property that points to the containing form, you can use the
this keyword to reference the current control, plus its form property as this.form, as in:

<input type="button" value="Click Here" onclick="inspect(this.form)">

Then the function definition should have a parameter variable ready to be assigned to the form object refer-
ence. Again, you decide the name of the variable. I tend to use the variable name form as a way to remind
me exactly what kind of object is referenced:

function inspect(form) {
statement[s]
}

Listing 9-5 demonstrates passing references to both an individual form element and the entire form in the
performance of two separate acts. This page makes believe that it is connected to a database of Beatles
songs. When you click the Process Data button, it passes the form object, which the processData()
function uses to access the group of radio buttons inside a for loop. Additional references using the passed
form object extract the value properties of the selected radio button and the text field.

The text field has its own event handler, which passes just the text field to the verifySong() function.
Notice how short the reference is to reach the value property of the song field inside the function.

LISTING 9-5

Passing a Form Object and Form Element to Functions

<html>
<head>
<title>Beatle Picker</title>
{script type="text/javascript">
function processData(form) {
for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) f{
break
}
}
// assign values to variables for convenience
var beatle = form.Beatles[il.value
var song = form.song.value
alert("Checking whether " + song + " features " + beatle + "...")
}

function verifySong(entry) {
var song = entry.value
alert("Checking whether " + song + " is a Beatles tune...")
}
</script>
</head>

<body>

continued

105

m JavaScript Tutorial
LISTING 9-5 |J{eluilEe)

<form onsubmit="return false">

<p>Choose your favorite Beatle:

<input type="radio" name="Beatles" value="John Lennon" checked>John
<input type="radio" name="Beatles" value="Paul McCartney">Paul
<input type="radio" name="Beatles" value="George Harrison">George
<input type="radio" name="Beatles" value="Ringo Starr">Ringo</p>

<p>Enter the name of your favorite Beatles song:

<input type="text" name="song" value = "Eleanor Rigby" onchange="verifySong(this)">
<input type="button" name="process" value="Process Request..."
onclick="processData(this.form)"></p>

</form>

</body>

</htm1>

106

If you're a bit puzzled by the behavior of this example, here’s an explanation of the programming logic
behind what you experience. When you enter a new song title in the text box and click the Process Request
button, the button c11ck action is interrupted by the onchange event handler of the text box. (Clicking
outside the text box or pressing the Tab key triggers the text fields onchange event handler before anything
really happens outside the text box.) In other words, the button doesn’ really get clicked, because the
onchange alert dialog box comes up first. That's why you have to click it what seems to be a second time to
get the combined song/Beatle verification. If you don't change the text in the field, your click of the button
occurs without interruption, and the combined verification takes place.

Get to know the usage of the this keyword in passing form and form element objects to functions. The
technique not only saves you typing in your code, but also ensures accuracy in references to those objects.

As noted earlier, the trend to move scripting out of HTML tag markup is catching on.

% Unfortunately, discrepancies between the ways that IE and other browsers handle event assign-
ments and event processing require explanations beyond the scope of this tutorial. You’ll meet them soon
enough, however, beginning in Chapter 14.

Submitting and Prevalidating Forms

The scripted equivalent of submitting a form is the form objects submit () method. All you need in the
statement is a reference to the form and this method:

document.forms[0].submit();

Before you get ideas about having a script silently submit a form to a URL bearing the mailto: protocol,
forget it. Because such a scheme could expose visitors’ e-mail addresses without their knowledge, mailto:
submissions are either blocked or revealed to users as a security precaution.

Before a form is submitted, you may wish to perform some last-second validation of data in the form or in
other scripting (for example, changing the form’s action property based on user choices). You can do this
in a function invoked by the form’s onsubmit event handler. Specific validation routines are beyond the
scope of this tutorial (but are explained in substantial detail in Chapter 43 on the CD-ROM), but I want to
show you how the onsubmit event handler works.

Forms and Form Elements m

You can let the results of a validation function cancel a submission if the validation shows some incorrect
data or empty fields. To control submission, the onsubmit event handler must evaluate to return true (to
allow submission to continue) or return false (to cancel submission). This is a bit tricky at first because
it involves more than just having the function called by the event handler return true or false. The
return keyword must be part of the final evaluation.

Listing 9-6 shows a page with a simple validation routine that ensures that all fields have something in them
before allowing submission to continue. (The sample form has no action attribute, so this sample form
doesn’t get sent to the server.) Notice that the onsubmit event handler (which passes a reference to the
form object as a parameter — in this case, the this keyword points to the form object because its tag holds
the event handler) includes the return keyword before the function name.

The if condition performs two tests. The first is to make sure that we're examining form controls whose
type properties are text (so as not to bother with, say, buttons). Next, it checks to see whether the value of
the text field is empty. The && operator (called a Boolean AND operator) forces both sides to evaluate to true
before the entire condition expression inside the parentheses evaluates to true. If either subtest fails, the
whole condition fails. When the function returns its true or false value, the event handler evaluates to
the requisite return true or return false

LISTING 9-6

Last-Minute Checking Before Form Submission

<html>
<head>
<title>Validator</title>
{script type="text/javascript">
function checkForm(form) {
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == "text" && form.elements[i].value == "") {
alert("Fill out ALL fields.");
return false;
}
}
return true;
}
</script>
</head>

<body>

<form onsubmit="return checkForm(this)">

Please enter all requested information:

First Name:<input type="text" name="firstName">

Last Name:<input type="text" name="TlastName">

Rank:<input type="text" name="rank">

Serial Number:<input type="text" name="serialNumber">

<input type="submit">
</form>
</body>
</html>

107

m JavaScript Tutorial

One quirky bit of behavior involving the submit () method and onsubmit event handler needs explana-
tion. Although you might think (and logically so, in my opinion) that the submit () method would be the
exact scripted equivalent of a click of a real Submit button, it's not. The submit () method does not cause
the form’s submit event to fire at all. If you want to perform validation on a form submitted via the

submit () method, invoke the validation in the script function that ultimately calls the submit () method.

108

So much for the basics of forms and form controls. In Chapter 10, you step away from HTML for a moment
to look at more advanced JavaScript core language items: strings, math, and dates.

°
Exercises
1. Rework Listings 9-1, 9-2, 9-3, and 9-4 so that all the script functions receive the most efficient
form or form element references directly from the invoking event handler.
2. For the following form (assume that it’s the only form on the page), write at least 10 ways to refer-
ence the text input field as an object in all modern scriptable browsers.
<form name="subscription" action="cgi-bin/maillist.pl" method="post">
<input type="text" id="email" name="email">
<input type="submit">
</form>
3. In the following HTML tag, what kind of information do you think is being passed with the event
handler? Write a function that displays in an alert dialog box the information being passed.
<input type="text" name="phone" onchange="format(this.value)">
4. A document contains two forms, specifications and accessories. Inthe accessories
form is a field named accl. Write at least two different statements that set the contents of that
field to Leather Carrying Case.
5. Create a page that includes a select object to change the background color of the current page.

The property that you need to set is document.bgColor, and the three values you should offer as
options are red, yellow, and green. In the seTect object, the colors should display as Stop,
Caution, and Go.

or most of the lessons in the tutorial so far, the objects at the center of

attention belong to the document object model (DOM). But as indicated in

Chapter 2, a clear dividing line exists between the DOM and the JavaScript
language. The language has some of its own objects that are independent of the
DOM. These objects are defined such that if a vendor wished to implement
JavaScript as the programming language for an entirely different kind of product,
the language would still use these core facilities for handling text, advanced math
(beyond simple arithmetic), and dates. You can find formal specifications of these
objects in the ECMA-262 recommendation.

Core Language Objects

It is often difficult for newcomers to programming — or even experienced pro-
grammers who have not worked in object-oriented worlds before — to think
about objects, especially when attributed to things that don't seem to have a
physical presence. For example, it doesn’t require lengthy study to grasp the
notion that a button on a page is an object. It has several physical properties that
make perfect sense. But what about a string of characters? As you learn in this
chapter, in an object-based environment such as JavaScript, everything that
moves is treated as an object — each piece of data from a Boolean value to a date.
Each such object probably has one or more properties that help define the con-
tent; such an object may also have methods associated with it to define what the
object can do or what you can do to the object.

I call all objects that are not part of the DOM core language objects. You can see
the full complement of them in the first two pages of the Quick Reference in
Appendix A. In this chapter, I focus on the String, Math, and Date objects.

109

IN THIS

How to modify strings with
common string methods

When and how to use
the Math object

How to use the Date object

m JavaScript Tutorial

110

String Objects

You have used String objects many times in earlier lessons. A string is any text inside a quote pair. A quote
pair consists of either double quotes or single quotes. This allows one string to nest inside another, as often
happens in event handlers defined as tag attributes. In the following example, the alert () method
requires a quoted string as a parameter, but the entire method call also must be inside quotes:

onclick="alert('Hello, all")

JavaScript imposes no practical limit on the number of characters that a string can hold. However, most
older browsers have a limit of 255 characters for a script statement. This limit is sometimes exceeded when
a script includes a lengthy string that is to become scripted content in a page. You need to divide such lines
into smaller chunks, using techniques described in a moment.

You have two ways to assign a string value to a variable. The simplest is a basic assignment statement:
var myString = "Howdy";

This works perfectly well except in some exceedingly rare instances. You can also create a string object
using the more formal syntax that involves the new keyword and a constructor function (that is, it con-
structs a new object):

var myString = new String("Howdy");

Whichever way you use to initialize a variable with a string, the variable receiving the assignment can
respond to all String object methods.

Joining strings

Bringing two strings together as a single string is called concatenating strings, a term you learned in Chapter
6. String concatenation requires one of two JavaScript operators. Even in your first script in Chapter 3, you
saw how the addition operator (+) linked multiple strings to produce the HTML that gets inserted into a
placeholder element:

document.getElementById("readout").innerHTML =
"Your browser says it is: " + "" +
navigator.userAgent + ".<hr />";

As valuable as that operator is, another operator can be even more scripter friendly. This operator is helpful
when you are assembling large strings in a single variable. The strings may be so long or cumbersome that

you need to divide the building process into multiple statements. The pieces may be combinations of string
literals (strings inside quotes) or variable values. The clumsy way to do it (perfectly doable in JavaScript) is

to use the addition operator to append more text to the existing chunk:

var msg = "Four score";
msg = msg + " and seven";
msg = msg + " years ago,";

But another operator, called the add-by-value operator, offers a handy shortcut. The symbol for the operator
is a plus and equal sign together (+=). This operator means append the stuff on the right of me to the end of the
stuff on the left of me. Therefore, the preceding sequence is shortened as follows:

var msg = "Four score";
msg += " and seven";
msg += " years ago,";

Strings, Math, and Dates

You can also combine the operators if the need arises:

var msg = "Four score";
msg += " and seven" +

" years ago";
I use the add-by-value operator a lot when accumulating HTML text to be written to the current document
or another window.

String methods

Of all the core JavaScript objects, the String object has the most diverse collection of methods associated
with it. Many methods are designed to help scripts extract segments of a string. Another group, rarely used
and now obsolete in favor of Cascading Style Sheets (CSS), wraps a string with one of several style-oriented
tags (a scripted equivalent of tags for font size, style, and the like).

In a string method, the string being acted upon becomes part of the reference followed by the method
name. All methods return a value of some kind. Most of the time, the returned value is a converted version
of the string object referred to in the method call —but the original string is still intact. To capture the
modified version, you need to assign the results of the method to a variable:

var result = myString.methodName();

The following sections introduce you to several important string methods available to all browser brands
and versions.

Changing string case
Two methods convert a string to all uppercase or all lowercase letters:

var result = string.toUpperCase();
var result = string.tolLowerCase();

Not surprisingly, you must observe the case of each letter of the method names if you want them to work.
These methods come in handy when your scripts need to compare strings that may not have the same case
(for example, a string in a lookup table compared with a string typed by a user). Because the methods don’t
change the original strings attached to the expressions, you can simply compare the evaluated results of the
methods:

var foundMatch = false;

if (stringA.toUpperCase() == stringB.toUpperCase()) {
foundMatch = true;

}

String searches

You can use the string.index0f () method to determine whether one string is contained by another.
Even within JavaScript's own object data, this can be useful information. For example, the
navigator.userAgent property reveals a lot about the browser that loads the page. A script can investi-
gate the value of that property for the existence of, say, "Win" to determine that the user has a Windows
operating system. That short string might be buried somewhere inside a long string, and all the script needs
to know is whether the short string is present in the longer one — wherever it might be.

The string.index0f () method returns a number indicating the index value (zero-based) of the character
in the larger string where the smaller string begins. The key point about this method is that if no match
occurs, the returned value is -1. To find out whether the smaller string is inside, all you need to test is
whether the returned value is something other than -1.

111

m JavaScript Tutorial

112

Two strings are involved with this method: the shorter one and the longer one. The longer string is the one

that appears in the reference to the left of the method name; the shorter string is inserted as a parameter to

the index0f () method. To demonstrate the method in action, the following fragment looks to see whether
the user is running Windows:

var isWindows = false;
if (navigator.userAgent.indexOf("Win") != -1) {
isWindows = true;

}

The operator in the i f construction’s condition (!=) is the inequality operator. You can read it as meaning is
not equal to.

Extracting copies of characters and substrings

To extract a single character at a known position within a string, use the charAt () method. The parameter
of the method is an index number (zero-based) of the character to extract. When I say extract, I don’t mean
delete, but grab a snapshot of the character. The original string is not modified in any way.

For example, consider a script in a main window that is capable of inspecting a variable, stringA, in
another window that displays map images of different corporate buildings. When the window has a map of
Building C in it, the stringA variable contains "Building C". The building letter is always at the 10th
character position of the string (or number 9 in a zero-based counting world), so the script can examine
that one character to identify the map currently in that other window:

var stringA = "Building C";
var bldgletter = stringA.charAt(9);
// result: bldglLetter = "C"

Another method — string.substring() —enables you to extract a contiguous sequence of characters,
provided that you know the starting and ending positions of the substring of which you want to grab a
copy. It is important that the character at the ending-position value not be part of the extraction: All appli-
cable characters, up to but not including that character, are part of the extraction. The string from which the
extraction is made appears to the left of the method name in the reference. Two parameters specify the start-
ing and ending index values (zero-based) for the start and end positions:

var stringA = "banana daiquiri";
var excerpt = stringA.substring(2,6);
// result: excerpt = "nana"

String manipulation in JavaScript is fairly cambersome compared with that in some other scripting lan-
guages. Higher-level notions of words, sentences, or paragraphs are absent. Therefore, sometimes it takes a
bit of scripting with string methods to accomplish what seems like a simple goal. Yet you can put your
knowledge of expression evaluation to the test as you assemble expressions that utilize heavily nested con-
structions. For example, the following fragment needs to create a new string that consists of everything from
the larger string except the first word. Assuming that the first word of other strings can be of any length, the
second statement uses the string.index0f () method to look for the first space character and adds 1 to
that value to serve as the starting index value for an outer string.substring() method. For the second
parameter, the Tength property of the string provides a basis for the ending character’s index value (one
more than the actual character needed).

var stringA = "The United States of America";
var excerpt = stringA.substring(stringA.index0f(" ") + 1, stringA.length);
// result: excerpt = "United States of America"

Strings, Math, and Dates m

Creating statements like this one is not something you are likely to enjoy over and over again, so in
Chapter 27, I show you how to create your own library of string functions you can reuse in all of your
scripts that need their string-handling facilities. More powerful string-matching facilities are also built into
today’s browsers by way of regular expressions (see Chapter 28 and Chapter 42 on the CD-ROM).

The Math Object

JavaScript provides ample facilities for math — far more than most scripters who don't have a background
in computer science and math will use in a lifetime. But every genuine programming language needs these
powers to accommodate clever programmers who can make windows fly in circles onscreen.

The Math object contains all these powers. This object is unlike most of the other objects in JavaScript in
that you don’t generate copies of the object to use. Instead, your scripts summon a single Math object’s
properties and methods. (One Math object actually occurs per window or frame, but this has no impact
whatsoever on your scripts.) Programmers call this kind of fixed object a static object. That Math object
(with an uppercase M) is part of the reference to the property or method. Properties of the Math object are
constant values, such as pi and the square root of 2:

var piValue = Math.PI;
var rootOfTwo = Math.SQRTZ;

Math object methods cover a wide range of trigonometric functions and other math functions that work on
numeric values already defined in your script. For example, you can find which of two numbers is the
larger:

var larger = Math.max(valuel, value?);

Or you can raise one number to a power of 10:
var result = Math.pow(valuel, 10);

More common, perhaps, is the method that rounds a value to the nearest integer value:
var result = Math.round(valuel);

Another common request of the Math object is a random number. The Math.random() method returns a
floating-point number between 0 and 1. If you design a script to act like a card game, you need random
integers between 1 and 52; for dice, the range is 1 to 6 per die. To generate a random integer between 0 and
any top value, use the following formula

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math. f1oor returns the integer part of any floating-point number.) To gener-
ate random numbers between 1 and any higher number, use this formula

Math.floor(Math.random() * n) + 1
where n equals the top number of the range. For the dice game, the formula for each die is
newDieValue = Math.floor(Math.random() * 6) + 1;

To see this, enter the right part of the preceding statement in the top text box of The Evaluator Jr. and
repeatedly click the Evaluate button.

113

m JavaScript Tutorial

114

The Date Object

Working with dates beyond simple tasks can be difficult business in JavaScript. A lot of the difficulty comes
with the fact that dates and times are calculated internally according to Greenwich Mean Time (GMT) —
provided that the visitor’s own internal PC clock and control panel are set accurately. As a result of this
complexity, better left for Chapter 30, this section of the tutorial touches on only the basics of the JavaScript
Date object.

A scriptable browser contains one global Date object (in truth, one Date object per window) that is always
present, ready to be called upon at any moment. The Date object is another one of those static objects.
When you wish to work with a date, such as displaying today’s date, you need to invoke the Date object
constructor function to obtain an instance of a Date object tied to a specific time and date. For example,
when you invoke the constructor without any parameters, as in

var today = new Date();

the Date object takes a snapshot of the PCs internal clock and returns a date object for that instant. Notice
the distinction between the static Date object and a Date object instance, which contains an actual date
value. The variable, today, contains not a ticking clock but a value that you can examine, tear apart, and
reassemble as needed for your script.

Internally, the value of a Date object instance is the time, in milliseconds, from zero o’clock on January 1,
1970, in the GMT zone — the world standard reference point for all time conversions. Thats how a Date
object contains both date and time information.

You can also grab a snapshot of the Date object for a particular date and time in the past or future by speci-
fying that information as parameters to the Date object constructor function:

"

var someDate = new Date("Month dd, yyyy hh:mm:ss");
var someDate = new Date("Month dd, yyyy");
var someDate = new Date(yyyy,mm,dd,hh,mm,ss);
var someDate = new Date(yyyy,mm,dd);
(

var someDate = new Date(GMT milliseconds from 1/1/1970);

If you attempt to view the contents of a raw Date object, JavaScript converts the value to the local time-
zone string, as indicated by your PC’s control panel setting. To see this in action, use The Evaluator Jr.’s top
text box to enter the following:

new Date();

Your PC’s clock supplies the current date and time as the clock calculates them (even though JavaScript still
stores the date object’s millisecond count in the GMT zone). You can, however, extract components of the
Date object via a series of methods that you apply to a Date object instance. Table 10-1 shows an abbrevi-
ated listing of these properties and information about their values.

Strings, Math, and Dates

TABLE 10-1

Some Date Object Methods

Method Value Range Description

dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT
dateObj.getYear() 70-... Specified year minus 1900; four-digit year for 2000+
dateObj.getFullYear() 1970-... Four-digit year (Y2K-compliant); version 4+ browsers
dateObj.getMonth() 0-11 Month within the year (January = 0)
dateObj.getDate() 1-31 Date within the month

dateObj.getDay() 0-6 Day of week (Sunday = 0)

dateObj.getHours() 0-23 Hour of the day in 24-hour time
dateObj.getMinutes() 0-59 Minute of the specified hour
dateObj.getSeconds() 0-59 Second within the specified minute
dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT
dateObj.setYear(val) 70-... Specified year minus 1900; four-digit year for 2000+
dateObj.setMonth(val) 0-11 Month within the year (January = 0)
dateObj.setDate(val) 1-31 Date within the month

dateObj.setDay(val) 0-6 Day of week (Sunday = 0)
dateObj.setHours(val) 0-23 Hour of the day in 24-hour time
dateObj.setMinutes(val) 0-59 Minute of the specified hour
dateObj.setSeconds(val) 0-59 Second within the specified minute

Be careful about values whose ranges start with zero, especially the months. The getMonth ()
% and setMonth () method values are zero based, so the numbers are 1 less than the month
numbers you are accustomed to working with (for example, January is 0 and December is 11).

You may notice one difference about the methods that set values of a Date object. Rather than returning
some new value, these methods actually modify the value of the instance of the Date object referenced in
the call to the method.

Date Calculations

Performing calculations with dates frequently requires working with the millisecond values of the Date
objects. This is the surest way to compare date values. To demonstrate a few Date object machinations,
Listing 10-1 displays the current date and time as the page loads. Another script shows one way to calculate
the date and time seven days from the current date and time values.

115

LISTING 10-1

JavaScript Tutorial

Date Object Calculations

<html1>

<head>

<title>Date Calculation</title>

{script type="text/javascript">

function nextWeek() {
var todayInMS = today.getTime();
var nextWeekInMS = todayInMS + (60 * 60 * 24 * 7 * 1000);
return new Date(nextWeekInMS);

}

<{/script>
</head>

<body>

Today is:

{script type="text/javascript">
var today = new Date();
document.write(today);
</script>

Next

week will be:

{script type="text/javascript">
document.write(nextWeek());
</script>

</body>

</htm1>

116

In the Body portion, the first script runs as the page loads, setting a global variable (today) to the current
date and time. The string equivalent is written to the page. In the second Body script, the
document.write() method invokes the nextWeek () function to get a value to display. That function uses
the today global variable, copying its millisecond value to a new variable: today InMS. To get a date seven
days from now, the next statement adds the number of milliseconds in 7 days (60 seconds times 60 minutes
times 24 hours times 7 days times 1000 milliseconds) to today’s millisecond value. Now the script needs a
new Date object calculated from the total milliseconds. This requires invoking the Date object constructor
with the milliseconds as a parameter. The returned value is a Date object, which is automatically converted
to a string version for writing to the page.

To add time intervals to or subtract time intervals from a Date object, you can use a shortcut that doesn’t
require the millisecond conversions. By combining the date object’s set and get methods, you can let the
Date object work out the details. For example, in Listing 10-1, you could eliminate the function and let the
following two statements in the second Body script obtain the desired result:

today.setDate(today.getDate() + 7);
document.write(today);

Strings, Math, and Dates m

Because JavaScript tracks the date and time internally as milliseconds, the accurate date appears in the end,
even if the new date is into the next month. JavaScript automatically takes care of figuring out how many
days there are in a month, as well as in leap years.

Many other quirks and complicated behavior await you if you script dates in your page. As later chapters
demonstrate, however, the results may be worth the effort.

Exercises

1. Create a web page that has one form field for entry of the user’s e-mail address and a Submit but-
ton. Include a presubmission validation routine that verifies that the text field has the @ symbol
used in all e-mail addresses before you allow submission of the form.

2. Given the string "Internet Explorer”, fill in the blanks of the string.substring() method
parameters here that yield the results shown to the right of each method call.

var myString = "Internet Explorer";
myString.substring(___,) // result = "Int"
myString.substring(___ ,) // result = "plorer"
myString.substring(___,_) // result = "net Exp"

3. Fill in the rest of the function in the listing that follows so that it looks through every character of
the entry field and counts how many times the letter e appears in the field. (Hint: All that is miss-
ing is a for repeat loop.)

<html>

<head>

<title>Wheel o' Fortuna</title>

{script type="text/javascript">

function countE(form) {
var count = 0;
var inputString = form.mainstring.value.tolLowerCase();
missing code
var msg = "The string has " + count;
msg += " instances of the letter e.";
alert(msg);

}

<{/script>

</head>

<body>
<form>
Enter any string: <input type="text" name="mainstring" size="30">

<input type="button" value="Count the Es" onclick="countE(this.form)">
</form>
</body>
</html>

4. Create a page that has two fields and one button. The button should trigger a function that gener-
ates two random numbers between 1 and 6, placing each number in one of the fields. (Think of
using this page as a substitute for rolling a pair of dice in a board game.)

5. Create a page that displays the number of days between today and next Christmas.

117

ne of the attractive aspects of JavaScript for some applications on the

client is that it allows user actions in one frame or window to influence

what happens in other frames and windows. In this section of the tuto-
rial, you extend your existing knowledge of object references to the realm of mul-
tiple frames and windows.

Frames: Parents and Children

You've see in earlier top-level hierarchy illustrations (such as Figure 4-2) that the
window object is at the top of the chart. The window object also has several syn-
onyms, which stand in for the window object in special cases. For instance, in
Chapter 8, you learned that self is synonymous with window when the refer-
ence applies to the same window that contains the script’s document. In this les-
son, you learn the roles of three other references that point to objects behaving as
windows: frame, top, and parent.

Loading an ordinary HTML document into the browser creates a model in the
browser that starts out with one window object and the document it contains.
The top rungs of the hierarchy model are as simple as can be, as shown in Figure
11-1. This is where references begin with window or self (or with document
because the current window is assumed).

119

INTHIS C

Relationships among frames in
the browser window

How to access objects and
values in other frames

How to control navigation of
multiple frames

Communication skills between
separate windows

m JavaScript Tutorial

FIGURE 11-1

Single-frame window and document hierarchy.

Document

120

The instant a framesetting document loads into a browser, the browser starts building a slightly different
hierarchy model. The precise structure of that model depends entirely on the structure of the frameset
defined in that framesetting document. Consider the following skeletal frameset definition:

<htm1>
{frameset cols="50%,50%">
<{frame name="leftFrame" src="somedocl.html">
{frame name="rightFrame" src="somedoc2.html">
</frameset>
</html>

This HTML splits the browser window into two frames side by side, with a different document loaded into
each frame. The model is concerned only with structure; it doesn’t care about the relative sizes of the frames
or whether they’re set up in columns or rows.

Framesets establish relationships among the frames in the collection. Borrowing terminology from the
object-oriented programming world, the framesetting document loads into a parent window. Each of the
frames defined in that parent window document is a child frame. Figure 11-2 shows the hierarchical model
of a two-frame environment. This illustration reveals a lot of subtleties about the relationships among
framesets and their frames.

It is often difficult at first to visualize the frameset as a window object in the hierarchy. After all, with the
exception of the URL showing in the Location/Address field, you don't see anything about the frameset in
the browser. But that window object exists in the object model. Notice, too, that in the diagram the frame-
setting parent window has no document object showing. This may also seem odd, because the window
obviously requires an HTML file containing the specifications for the frameset. In truth, the parent window
has a document object associated with it, but it is omitted from the diagram to better portray the relation-
ships among parent and child windows. A frameset parents document cannot contain most of the typical
HTML objects such as forms and controls, so references to the parent’s document are rarely, if ever, used.

Scripting Frames and Multiple Windows

FIGURE 11-2

Two-frame window and document hierarchy.

<FRAMESET>

| <FRAME>

Document Document

<FRAME>

If you add a script to the framesetting document that needs to access a property or method of that window
object, references are like any single-frame situation. Think about the point of view of a script located in
that window. Its immediate universe is the very same window.

Things get more interesting when you start looking at the child frames. Each of these frames contains a
document object whose content you see in the browser window, and the structure is such that each frame’s
document is entirely independent of the other. It is as though each document lived in its own browser win-
dow. Indeed, that's why each child frame is also a window type of object. A frame has the same kinds of
properties and methods as the window object that occupies the entire browser.

From the point of view of either child window in Figure 11-2, its immediate container is the parent win-
dow. When a parent window is at the top of the hierarchical model loaded in the browser, that window is
also referred to as the top object.

References Among Family Members

Given the frame structure of Figure 11-2, it’s time to look at how a script in any one of those windows can
access objects, functions, or variables in the others. An important point to remember about this facility is
that if a script has access to an object, function, or global variable in its own window, that same item can be
reached by a script from another frame in the hierarchy (provided that both documents come from the same
web server).

A script reference may need to take one of three possible routes in the two-generation hierarchy described
so far: parent to child; child to parent; or child to child. Each of the paths between these windows requires
a different reference style.

121

m JavaScript Tutorial

Parent-to-child references

Probably the least common direction taken by references is when a script in the parent document needs to
access some element of one of its frames. The parent contains two or more frames, which means that the
parent maintains an array of the child frame objects. You can address a frame by array syntax or by the
name you assign to it with the name attribute inside the <frame> tag. In the following examples of refer-
ence syntax, I substitute a placeholder named 0bjFuncVarName for whatever object, function, or global
variable you intend to access in the distant window or frame. Remember that each visible frame contains a
document object, which generally is the container of elements you script; be sure that references to the ele-
ments include document. With that in mind, a reference from a parent to one of its child frames follows
any of these models:

[window.]frames[n].0bjFuncVarName
[window.]frames[" frameName"].0bjFuncVarName
[window.]frameName.0bjFuncVarName

Numeric index values for frames are based on the order in which their <frame> tags appear in the frame-
setting document. You will make your life easier, however, if you assign recognizable names to each frame
and use the frame’s name in the reference.

Child-to-parent references

It is not uncommon to place scripts in the parent (in the Head portion) that multiple child frames or multi
ple documents in a frame use as a kind of script library. By loading in the frameset, these scripts load only
once while the frameset is visible. If other documents from the same server load into the frames over time,
they can take advantage of the parent’s scripts without having to load their own copies into the browser.

From the child’s point of view, the next level up the hierarchy is called the parent. Therefore, a reference
from a child frame to items at the parent level is simply:

parent.0bjFuncVarName

If the item accessed in the parent is a function that returns a value, the returned value transcends the par-
ent/child borders down to the child without hesitation.

When the parent window is also at the top of the object hierarchy currently loaded into the browser, you
can optionally refer to it as the top window, as in:

top.0bjFuncVarName

Using the top reference can be hazardous if for some reason your web page gets displayed in some other
web site’s frameset. What is your top window is not the master frameset’s top window. Therefore, I recom-
mend using the parent reference whenever possible (unless you want to blow away an unwanted framer of
your web site).

Child-to-child references

The browser needs a bit more assistance when it comes to getting one child window to communicate with
one of its siblings. One of the properties of any window or frame is its parent (whose value is nu11 for a
single window). A reference must use the parent property to work its way out of the current frame to a
point that both child frames have in common — the parent, in this case. When the reference is at the parent
level, the rest of the reference can carry on as though it were starting at the parent. Thus, from one child to
one of its siblings, you can use any of the following reference formats:

122

Scripting Frames and Multiple Windows m

parent.frames[n].0bjFuncVarName
parent.frames["frameName"].0bjFuncVarName
parent.frameName.ObjFuncVarName

A reference from the other sibling back to the first looks the same, but the frames[] array index or
frameName part of the reference differs. Of course, much more complex frame hierarchies exist in HTML.
Even so, the object model and referencing scheme provide a solution for the most deeply nested and
gnarled frame arrangement you can think of — following the same precepts you just learned.

Frame-Scripting Tips

One of the first mistakes that frame-scripting newcomers make is writing immediate script statements that
call on other frames while the pages load. The problem here is that you cannot rely on the document load-
ing sequence to follow the frameset source-code order. All you know for sure is that the parent document
begins loading first. Regardless of the order of <frame> tags, child frames can begin loading at any time.
Moreover, a frame’s loading time depends on other elements in the document, such as images or Java
applets.

Fortunately, you can use a certain technique to initiate a script when all the documents in the frameset are
completely loaded. Just as the 1oad event for a window fires when that window’s document is fully loaded,
a parent’s 1oad event fires after the 1oad events in its child frames have fired. Therefore, you can specify an
onload event handler in the <frameset> tag. That handler might invoke a function in the framesetting
document that then has the freedom to tap the objects, functions, or variables of all frames throughout the
object hierarchy.

Make special note that a reference to a frame as a type of window object is quite separate from a reference to
the frame element object. An element object is one of those DOM element nodes in the document node
tree (see Chapter 4). The properties and methods of this node differ from the properties and methods that
accrue to a window-type object. It may be a difficult distinction to grasp, but it’s an important one. The way
you reference a frame — as a window object or element node — determines which set of properties and
methods are available to your scripts. See Chapter 15 for a more detailed introduction to element node
scripting.

If you start with a reference to the frame element object, you can still reach a reference to the document
object loaded into that frame, but the syntax is different, depending on the browser. [E4+ and Safari let you
use the same document reference as for a window; Mozilla-based browsers follow the W3C DOM standard
more closely, using the contentDocument property of the frame element. To accommodate both syntaxes,
you can build a reference as follows:

var docObj;
var frameObj = document.getElementById("myFrame");
if (frameObj.contentDocument) {
docObj = frameObj.contentDocument;
} else {
docObj = frameObj.document;
}

123

m JavaScript Tutorial

About iframe Elements

The iframe element is supported as a scriptable object in IE4+, Mozilla-based browsers, and Safari (among
other modern browsers). It is often used as a way to fetch and load HTML from a server without disturbing
the current HTML page. Therefore, it's not uncommon for an iframe to be hidden from view while scripts

handle all the processing between it and the main document.

An iframe element becomes another member of the current window’s frames collection, but you may also
reference the iframe as an element object through W3C DOM document.getElementById() terminol-
ogy. As with the distinction between the traditional frame-as-window object and DOM element object, a
script reference to the document object within an iframe element object needs special handling. See
Chapter 16 for additional details.

Controlling Multiple Frames: Navigation Bars

If you are enamored of frames as a way to help organize a complex web page, you may find yourself want-
ing to control the navigation of one or more frames from a static navigation panel. Here, I demonstrate
scripting concepts for such control using an application called Decision Helper (which you can find in
Chapter 55 on the CD-ROM). The application consists of three frames (see Figure 11-3). The top-left frame
is one image that has four graphical buttons in it. The goal is to turn that image into a client-side image map
and script it so that the pages change in the right and bottom frames. In the top-right frame, the script loads
an entirely different document along the sequence of five different documents that go in there. In the bot-
tom frame, the script navigates to one of five anchors to display the segment of instructions that applies to
the document loaded in the top-right frame.

FIGURE 11-3

The Decision Helper screen.

<

@ Decision Helper - Mozilla Firefox E]
File Edit View History Bookmarks Tools Help
E&- - (i [0 mp:i192.158.1.1000Listings/ChapSS/dhiindex. htm [=[] [C] &)
}3 Buying a FAX machine [a]
¢ Results | Ranking
Fax-O-Matic 1000 |47.2 |_
ﬁ/ InkyFax 300 556 |_ 3
LazyFax LX 72 [—
i Loose Cannon M-200 |72.4 |_
0
[}
(]

Step 5: Viewing Results

Results are calculated hased on the various weights and rankings you entered in previous screens. The specific numbers are not
particulatly impartant: their relative positions, however, are what yau're looking for. The highest number represents the alternative rating the
highest based on your input. Values are shown to four decimal places in case of close races

Unfortunately, this results screen cannot be printed or saved. Ifyou want to preserve this information take a screen shot using your
aperating system's screen capture utility (2.4, Windows 95: Press PrSc; MacOS: Press Cmd-Shift-3)

Review This Decigion || Start a New Decision

<

Done

124

Scripting Frames and Multiple Windows m

Listing 11-1 shows a slightly modified version of the actual file for the Decision Helper application’s naviga-
tion frame. The listing contains a couple of objects and concepts that have not yet been covered in this tuto-
rial, but as you will see, they are extensions to what you already know about JavaScript and objects. To help
simplify the discussion here, I remove the scripting and HTML for the top and bottom buttons of the area
map. In addition, I cover only the two navigation arrows.

LISTING 11-1

A Graphical Navigation Bar

<html>
<head>
<title>Navigation Bar</title>
<script type="text/javascript">
<I-- start
function goNext() {
var currOffset = parselnt(parent.currTitle);
if (currOffset < 5) {
currQffset += 1;

parent.entryForms.location.href = "dh" + currOffset + ".htm";
parent.instructions.location.hash = "help" + currOffset;
} else {

alert("This is the last form.");
}
}
function goPrev() {
var currOffset = parselnt(parent.currTitle);
if (currOffset > 1) {
currOffset -= 1;

parent.entryForms.location.href = "dh" + currOffset + ".htm";
parent.instructions.location.hash = "help" + currOffset;
I else {

alert("This is the first form.");

}
}
// end -->
</script>
</head>
<body bgcolor="white">
<map name="navigation">
<area shape="rect" coords="25,80,66,116" href="javascript:goNext()">
<area shape="rect" coords="24,125,67,161" href="javascript:goPrev()">
</map>
<img src="dhNav.gif" height="240" width="96" border="0" usemap="#navigation"
alt="navigation bar">
</body>
</html1>

125

m JavaScript Tutorial

126

Look first at the HTML section for the Body portion. Almost everything there is standard stuff for defining
client-side image maps. The coordinates define rectangles around each of the arrows in the larger image.
The href attributes for the two areas point to JavaScript functions defined in the Head portion of the docu-
ment. (The javascript: pseudo-URL is covered in Chapter 12.)

In the frameset that defines the Decision Helper application, names are assigned to each frame. The top-
right frame is called entryForms; the bottom frame is called instructions.

Knowing that navigation from page to page in the top-right frame requires knowledge of which page is cur-
rently loaded there, I build some other scripting into both the parent document and each of the documents
that loads into that frame. A global variable called currTitle is defined in the parent document. Its value
is an integer indicating which page of the sequence (1 through 5) is currently loaded. An onload event
handler in each of the five documents (named dh1.htm, dh2.htm, dh3.htm, dh4.htm, and dh5.htm)
assigns its page number to that parent global variable. This arrangement allows all frames in the frameset to
share that value easily.

When a user clicks the right-facing arrow to move to the next page, the goNext () function is called. The
first statement gets the currTit1e value from the parent window and assigns it to a local variable:
currOffset. An if...else construction tests whether the current page number is less than 5. If so, the
add-by-value operator adds 1 to the local variable so I can use that value in the next two statements.

In those next two statements, [adjust the content of the two right frames. Using the parent reference to
gain access to both frames, I set the Tocation.href property of the top-right frame to the name of the file
next in line (by concatenating the number with the surrounding parts of the filename). The second state-
ment sets the Tocation.hash property (which controls the anchor being navigated to) to the correspon-
ding anchor in the instructions frame (anchor names helpl, help2, help3, help4, and help5).

A click of the left-facing arrow reverses the process, subtracting 1 from the current page number (using the
subtract-by-value operator) and changing the same frames accordingly.

The example shown in Listing 11-1 is one of many ways to script a navigation frame in JavaScript.
Whatever methodology you use, much interaction occurs among the frames in the frameset.

References for Multiple Windows

In Chapter 8, you saw how to create a new window and communicate with it by way of the window object
reference returned from the window.open() method. In this section, I show you how one of those subwin-
dows can communicate with objects, functions, and variables in the window or frame that creates the sub-
window.

Every window object has a property called opener. This property contains a reference to the window or
frame that held the script whose window.open() statement generated the subwindow. For the main
browser window and frames therein, this value is nu11. Because the opener property is a valid window ref-
erence (when its value is not nu11), you can use it to begin the reference to items in the original window —
just like a script in a child frame uses parent to access items in the parent document. The parent—child ter-
minology doesn't apply to subwindows, however.

Listing 11-2 and Listing 11-3 contain documents that work together in separate windows. Listing 11-2 dis-
plays a button that opens a smaller window and loads Listing 11-3 into it. The main window document also
contains a text field that gets filled in when you enter text in a corresponding field in the subwindow.

Scripting Frames and Multiple Windows m

T Again, you may have to turn off pop-up blocking temporarily to experiment with these
& examples.

In the main window document, the newlindow() function generates the new window. Because no other
statements in the document require the reference to the new window just opened, the statement does not
assign its returned value to any variable. This is an acceptable practice in JavaScript if you don’t need the

returned value of a function or method.

LISTING 11-2

A Main Window Document

<html>

<head>

<title>Main Document</title>

<script type="text/javascript">

function newWindow() {
window.open("subwind.htm","sub","height=200,width=200");

}

</script>

</head>

<body>

<form>

<input type="button" value="New Window" onclick="newWindow()">

Text incoming from subwindow:

<input type="text" name="entry">

</form>

</body>

</htm1>

All the action in the subwindow document comes in the onchange event handler of the text field. It assigns
the subwindow field’s own value to the value of the field in the opener window’s document. Remember that
the contents of each window and frame belong to a document. So even after your reference targets a specific
window or frame, the reference must continue helping the browser find the ultimate destination, which is
generally some element of the document.

LISTING 11-3

A Subwindow Document

<html>
<head>
<title>A SubDocument</title>
</head>
<body>

continued

127

m JavaScript Tutorial
LISTING 11-3 [elleglicl

<form onsubmit="return false">

Enter text to be copied to the main window:

<input type="text"
onchange="opener.document.forms[0].entry.value = this.value">

</form>
</body>
</html1>

128

Just one more lesson to go before I let you explore all the details elsewhere in the book. I use the final tuto-
rial chapter to show you some fun things you can do with your web pages, such as changing images when
the user rolls the mouse atop a picture.

Exercises

Before answering the first three questions, study the structure of the following frameset for a web site that
lists college courses:

{frameset rows="85%,15%">

{frameset cols="20%,80%">
<{frame name="mechanics" src="historyl0IM.htm1">
<(frame name="description" src="historyl01D.htm1">
<{/frameset>
{frameset cols="100%">
<{frame name="navigation" src="navigator.html">
</frameset>

</frameset>
</htm1>

Each document that loads into the description frame has an onload event handler in its <body>
tag that stores in the framesetting documents global variable a course identifier called
currCourse. Write the onload event handler that sets this value to "historyl01".

Draw a block diagram that describes the hierarchy of the windows and frames represented in the
frameset definition.

Write the JavaScript statements located in the navigation frame that loads the file
"french201M.html" into the mechanics frame and the file "french201D.htm1" into the
description frame.

While a frameset is still loading, a JavaScript error message suddenly appears, saying,
“window.document.navigation.form.selector is undefined.” What do you think is happening in
the application’s scripts, and how can you solve the problem?

A script in a child frame of the main window uses window.open() to generate a second window.
How can a script in the second window access the Tocation object (URL) of the top (frameset-
ting) window in the main browser window?

he previous eight lessons have been intensive, covering a lot of ground for

both programming concepts and JavaScript. Now it’s time to apply those

fundamentals to learning more advanced techniques. I cover two areas
here. First, I show you how to implement the ever-popular mouse rollover, in
which images swap when the user rolls the cursor around the screen. Then I
introduce you to techniques for modifying a page’s style and content after the
page has loaded.

The Image Object

One of the objects contained by the document is the image object — supported
in all scriptable browsers since the days of NN3 and IE4. Image object refer-
ences for a document are stored in the object model as an array belonging to the
document object. Therefore, you can reference an image by array index or image
name. Moreover, the array index can be a string version of the image’s name.
Thus, all of the following are valid references to an image object:

document.images[n]
document.images["imageName"]
document. imageName

We are no longer constrained by ancient scriptable browser limitations that
required an image be encased within an a element to receive mouse events. You
may still want to do so if a click is intended to navigate to a new URL, but to use
a visitor’s mouse click to trigger local JavaScript execution, it’s better to let the
img element’s event handlers do all the work.

Interchangeable images

The advantage of having a scriptable image object is that a script can change the
image occupying the rectangular space already occupied by an image. In current

129

IN THIS CHA

How to precache images

How to swap images for mouse
rollovers

Changing stylesheet settings

Modifying Body content
dynamically

m JavaScript Tutorial

130

browsers, the images can even change size, with surrounding content automatically reflowing around the
resized image.

The script behind this kind of image change is simple enough. All it entails is assigning a new URL to the
img element object’s src property. The size of the image on the page is governed by the height and width
attributes set in the tag as the page loads. The most common image rollovers use the same size of
image for each of the rollover states.

Precaching images

Images take extra time to download from a web server until the images are stored in the browser’s cache. If
you design your page so that an image changes in response to user action, you usually want the same fast
response that users are accustomed to in other programs. Making the user wait seconds for an image to
change can severely detract from enjoyment of the page.

JavaScript comes to the rescue by enabling scripts to load images into the browser’s memory cache without
displaying the image, a technique called precaching images. The tactic that works best is to preload the image
into the browser’s image cache while the page initially loads. Users are less impatient for those few extra sec-
onds as the main page loads than they are waiting for an image to download in response to some mouse
action.

Precaching an image requires constructing an image object in memory. An image object created in memory
differs in some respects from the document img element object that you create with the tag.
Memory-only objects are created by script, and you don'’t see them on the page at all. But their presence in
the document code forces the browser to load the images as the page loads. The object model provides an
Image object constructor function to create the memory type of image object as follows:

var mylmage = new Image(width, height);

Parameters to the constructor function are the pixel width and height of the image. These dimensions
should match the width and height attributes of the tag. When the image object exists in memory,
you can then assign a filename or URL to the src property of that image object:

myImage.src = "someArt.gif";

When the browser encounters a statement assigning a URL to an image object’s src property, the browser
fetches and loads that image into the image cache. All the user sees is some extra loading information in the
status bar, as though another image were in the page. By the time the entire page loads, all images generated
in this way are tucked away in the image cache. You can then assign your cached image’s src property or
the actual image URL to the src property of the document image created with the tag:

document.images[0].src = myImage.src;
The change to the image in the document is instantaneous.

Listing 12-1 demonstrates a page that has one tag and a select list that enables you to replace the
image in the document with any of four precached images (including the original image specified for the
tag). If you type this listing, you can obtain copies of the four image files from the companion CD-ROM in
the Chapter 12 directory of listings. (You still must type the HTML and code, however.)

Images and Dynamic HTML

LISTING 12-1

Precaching Images

<html>
<head>

<title>Image Object</title>
{script type="text/javascript">
// initialize empty array
var imagelLibrary = new Array();
// pre-cache four images
imagelLibrary["imagel"] = new Image(120,90);
imagelLibrary["imagel"].src = "deskl.gif";
imagelLibrary["image2"] = new Image(120,90);
imagelLibrary["image2"].src = "desk2.gif";
imagelLibrary["image3"] = new Image(120,90);
imagelibrary["image3"].src = "desk3.gif";
imagelLibrary["imaged4"] = new Image(120,90);
imagelLibrary["imaged4"].src = "desk4.gif";

// load an image chosen from select list
function loadCached(1ist) {
var img = Tist.options[list.selectedIndex].value;
document.thumbnail.src = imagelLibrary[img].src;
}
</script>
</head>

<body >
<h2>Image Object</h2>

<form>
<select name="cached" onchange="loadCached(this)">
<option value="imagel">Bands
<option value="image2">Clips
<option value="image3">Lamp
<option value="imaged4">Erasers
</select>
</form>
</body>
</html>

As the page loads, it executes several statements immediately. These statements create an empty array that is
populated with four new memory image objects. Each image object has a filename assigned to its src prop-
erty. These images are loaded into the image cache as the page loads. Down in the Body portion of the doc-
ument, an tag stakes its turf on the page and loads one of the images as a starting image.

A select element lists user-friendly names for the pictures while housing (in the option values) the names
of image objects already precached in memory. When the user makes a selection from the list, the
ToadCached () function extracts the selected item’s value — which is a string index of the image within the

131

m JavaScript Tutorial

LISTING 12-2

imageLibrary array. The src property of the chosen image object is assigned to the src property of the
visible img element object on the page, and the precached image appears instantaneously.

Creating image rollovers

A favorite technique to add some pseudoexcitement to a page is to swap button images as the user rolls the
cursor atop them. The degree of change to the image is largely a matter of taste. The effect can be subtle (a
slight highlight or glow around the edge of the original image) or drastic (a radical change of color).
Whatever your approach, the scripting is the same.

When several of these graphical buttons occur in a group, I tend to organize the memory image objects as
arrays, and create naming and numbering schemes that facilitate working with the arrays. Listing 12-2
shows such an arrangement for four buttons that control a slide show. The code in the listing is confined to
the image-swapping portion of the application. This is the most complex and lengthiest listing of the tuto-
rial, so it requires a bit of explanation as it goes along. It begins with a stylesheet rule for each of the img
elements located in a controller container.

Image Rollovers

132

<head>

<title>S1ide Show/Image Rollovers</title>
{style type="text/css">
divffcontroller img {height: 70px; width: 136px; padding: 5px}
</style>
<script type="text/javascript">

Only browsers capable of handling image objects should execute statements that precache images. Therefore,
the entire sequence is nested inside an if construction that tests for the presence of the document. images
array. In older browsers, the condition evaluates to undefined, which an if condition treats as false:

if (document.images) {

Image precaching starts by building two arrays of image objects. One array stores information about the
images depicting the graphical button’s off position; the other is for images depicting their on position.
These arrays use strings (instead of integers) as index values. The string names correspond to the names
given to the visible img element objects whose tags come later in the source code. The code is clearer to
read (for example, you know that the of fImgArray["first"] entry has to do with the First button
image). Also, as you see later in this listing, rollover images don’t conflict with other visible images on the
page (a possibility if you rely exclusively on numeric index values when referring to the visible images for
the swapping).

After creating the array and assigning new blank image objects to the first four elements of the array, I go
through the array again, this time assigning file pathnames to the src property of each object stored in the
array. These lines of code execute as the page loads, forcing the images to load into the image cache along
the way:

}

Images and Dynamic HTML

// precache all 'off' button images

var offImgArray = new Array();
offImgArray["first"] = new Image(136,70);
offImgArray["prev"] = new Image(136,70);
offImgArray["next"] new Image(136,70);
offImgArray["last"] = new Image(136,70);

// off image array -- set 'off' image path for each button
offImgArray["first"].src = "images/firstoff.png";
offImgArray["prev"].src = "images/prevoff.png";
offImgArray["next"].src = "images/nextoff.png";
offImgArray["last"].src = "images/lastoff.png";

// precache all 'on' button images

var onImgArray = new Array();
onImgArray["first"] = new Image(136,70);
onImgArray["prev"] = new Image(136,70);
onImgArray["next"] = new Image(136,70);
onImgArray["last"] = new Image(136,70);

// on image array -- set 'on' image path for each button
onImgArray["first"].src = "images/firston.png";
onImgArray["prev"].src = "images/prevon.png";
onImgArray["next"].src = "images/nexton.png";
onImgArray["Tast"].src = "images/laston.png";

As you can see in the following HTML code, when the user rolls the mouse atop any of the visible docu-
ment image objects, the onmouseover event handler invokes the imageOn () function, passing the name of
the particular image. The imageOn () function uses that name to synchronize the document.images array
entry (the visible image) with the entry of the in-memory array of on images from the onImgArray array.
The src property of the array entry is assigned to the corresponding document image src property. At the
same time, the cursor changes to look like it does over active links.

// functions that swap images & status bar
function imageOn(imgName) {

}

if (document.images) {
document.images[imgName].style.cursor = "pointer";
document.images[imgName].src = onImgArray[imgName].src;

The same goes for the onmouseout event handler, which needs to turn the image off by invoking the
image0ff () function with the same index value.

function imageOff(imgName) {

if (document.images) {
document.images[imgName].style.cursor = "default";
document.images[imgName].src = offImgArray[imgName].src;

133

m JavaScript Tutorial

134

Both the onmouseover and onmouseout event handlers set the status bar text to a friendly descriptor —at
least in those browsers that still support displaying custom text in the status bar. The onmouseout event
handler sets the status bar message to an empty string.

function setMsg(msg) {
window.status = msg;
return true;

}

For this demonstration, I disable the functions that control the slide show. But I leave the empty function
definitions here so they catch the calls made by the clicks of the links associated with the images.

// controller functions (disabled)
function goFirst() {
}
function goPrev() {
}
function goNext(){
}
function golast() {
}
</script>
<{/head>

<body>
<h1>STide Show Controls</hl>

I elected to place the controller images inside a div element so that the group could be positioned or styled
as a group. Each img elements onmouseover event handler calls the imageOn () function, passing the
name of the image object to be swapped. Because both the onmouseover and onmouseout event handlers
require a return true statement to work in older browsers, I combine the second function call (to
setMsg()) with the return true requirement. The setMsg() function always returns true and is com-
bined with the return keyword before the call to the setMsg () function. It5s just a trick to reduce the
amount of code in these event handlers. In later chapters, you will learn how to create event handler func-
tions that can derive the ID of the element receiving the event, allowing you to remove these event handler
assignments from the tags entirely.

<div id="controller">
<img src="images/firstoff.png" name="first" id="first"
onmouseover="imageOn('first'); return setMsg('Go to first picture')"
onmouseout="image0ff('first'); return setMsg('"')" onclick="goFirst()">
<img src="images/prevoff.png" name="prev" id="prev"
onmouseover="imageOn('prev'); return setMsg('Go to previous picture')"
onmouseout="1imageO0ff('prev'); return setMsg('')" onclick="goPrev()">
<img src="images/nextoff.png" name="next" id="next"
onmouseover="imageOn('next'); return setMsg('Go to next picture')"
onmouseout="image0ff('next'); return setMsg('')" onclick="goNext()">
<img src="images/lastoff.png" name="Tast" id="last"
onmouseover="imageOn('Tast"'); return setMsg('Go to Tast picture')"
onmouseout="image0ff('last'); return setMsg('')" onclick="golast()">
</divo>
</body>
</htm1>

Images and Dynamic HTML

You can see the results of this lengthy script in Figure 12-1. As the user rolls the mouse atop one of the
images, it changes from a light to dark color by swapping the entire image. You can access the image files on
the CD-ROM, and I encourage you to enter this lengthy listing and see the magic for yourself.

FIGURE 12-1

Typical mouse rollover image swapping.

/& Slide Show/Image Rollovers - Windows Internet Explorer 8=

i

g ~ & hepnozaes. 100 [ae] [[|-
—)] -

W & [@we Showimage Rollovers]] T - B # - [rpage v (3 Taok v

Slide Show Controls

First ' Prev l m Last l

http:/{192.168.1,100; [3 @ internet #100% -

Rollovers Without Scripts

As cool as the rollover effect is, thanks to CSS technology, you don't always need JavaScript to accomplish
rollover dynamism. You can blend CSS with JavaScript to achieve the same effect. Listing 12-3 demonstrates
a version of Listing 12-2 but using CSS for the rollover effect, whereas JavaScript still handles the control of
the slide show.

The HTML for the buttons consists of 11 elements that are sized and assigned background images of the off
versions of the buttons. The text of each 11 element is surrounded by an a element so that CSS :hover
pseudoelements can be assigned. (Internet Explorer through version 7 requires this, whereas W3C DOM
browsers recognize :hover for all elements.) When the cursor hovers atop an a element, the background
image changes to the on version. Note, too, that onc1ick event handler assignments have been moved to
the script portion of the page, where they are performed after the page loads (to make sure the elements
exist).

LISTING 12-3

CSS Image Rollovers

<html>
<head>
<title>STide Show/Image Rollovers</title>
{style type="text/css">
fficontroller {position: relative}

continued

135

m JavaScript Tutorial
LISTING 12-3 R

ficontroller 1i {position: absolute; Tist-style: none; display: block;
height: 70px; width: 136px}
ficontroller a {display: block; text-indent: -999px; height: 70px}

#first {left: Opx}
#fprev {left: 146px)}
fnext {left: 292px}
f#last {left: 438px}

#first a {background-image: url("images/firstoff.png")}
#first a:hover {background-image: url("images/firston.png")}

ffprev
#fprev
fnext
fnext
#last
f#last
</style>

a
a
a
a
a
a

{background-image: url("images/prevoff.png")}

:hover {background-image: url("images/prevon.png")}

{background-image: url("images/nextoff.png")}

:hover {background-image: url("images/nexton.png")}

{background-image: url("images/lastoff.png")}

:hover {background-image: url("images/laston.png")}

{script type="text/javascript">
// controller functions (disabled)
function goFirst() {

}

function goPrev() {

}

function goNext(){

}

function golLast() {

}

// event handler assignments
function init() {
if (document.getElementById) {

document.getETementById("first").onclick = goFirst;
document.getElementById("prev").onclick = goPrev;
document.getElementById("next").onclick = goNext;
document.getElementById("Tast").onclick = golast;

}
}

window.onload = init;

<{/script>
</head>

<body>

<h1>Slide Show Controls</hl>

<ul id="controller">
<1i id="first">First</11>
<1i id="prev">Previous</1i>

136

Images and Dynamic HTML

<11 id="next">Next</1i>
<11 id="last">Last</1i>

</body>
</html1>

The need to wrap the 11 element text (which the CSS shifts completely offscreen, because we don't need the
text) for Internet Explorer forces scripters to address further considerations. In this application, a click of an
11 element is intended to run a local script, not load an external URL. But the a element’s default behavior
is to load another URL. The # placeholder shown in Listing 12-3 causes the current page to reload, which
will wipe away any activity of the onc11ck event handler function. It is necessary, therefore, to equip each
of the slide-show navigation functions with some extra code lines that prevent the a element from executing
its default behavior. You'll learn how to do that in Chapter 25 (it requires different syntax for incompatible
the W3C DOM and IE event models).

One other note about the CSS approach in Listing 12-3 is that there is no image precaching taking place.
You could add the precaching code for the on images from Listing 12-2 to get the alternative background
images ready for the browser to swap. That’s a case of CSS and JavaScript really working together.

The javascript: Pseudo-URL

You have seen instances in previous chapters of applying what is called the javascript: pseudo-URL to
the href attributes of <a> and <area> tags. This technique should be used sparingly at best, especially for
public web sites that may be accessed by users with nonscriptable browsers (for whom the links will be
inactive).

The technique was implemented to supplement the onc11ick event handler of objects that act as hyper-
links. Especially in the early scripting days, when elements such as images had no event handlers of their
own, hyperlinked elements surrounding those inactive elements allowed users to appear to interact directly
with elements such as images. When the intended action was to invoke a script function (rather than navi-
gate to another URL, as is usually the case with a hyperlink), the language designers invented the
javascript: protocol for use in assignments to the href attributes of hyperlink elements (instead of leav-
ing the required attribute empty).

When a scriptable browser encounters an href attribute pointing to a javascript: pseudo-URL, the
browser executes the script content after the colon when the user clicks the element. For example, the a ele-
ments of Listing 12-3 could have been written to point to javascript: pseudo-URLs that invoke script
functions on the page, such as:

Note that the javascript: protocol is not a published standard, despite its wide adoption by browser
makers. In a public web site that may be accessed by visitors with accessibility concerns (and potentially by
browsers having little or no JavaScript capability), a link should point to a server URL that performs an
action (for example, through a server program), which in turn replicates what client-side JavaScript does
(faster) for visitors with scriptable browsers.

137

m JavaScript Tutorial

138

Popular Dynamic HTML Techniques

Because today’s scriptable browsers uniformly permit scripts to access each element of the document and
automatically reflow the page’s content when anything changes, a high degree of dynamism is possible in
your applications. Dynamic HTML (DHTML) is a very deep subject, with lots of browser-specific peculiari-
ties. In this section of the tutorial, you will learn techniques that work in Internet Explorer and W3C DOM-
compatible browsers. I'll focus on two of the most common tasks for which DHTML is used: changing
element styles and modifying Body content.

Changing stylesheet settings

Each element that renders on the page (and even some elements that don’t) has a property called styTe.
This property provides script access to all CSS properties supported for that element by the current browser.
Property values are the same as those used for CSS specifications — frequently, a different syntax from simi-
lar settings that used to be made by HTML tag attributes. For example, if you want to set the text color of a
blockquote element whose ID is FranklinQuote, the syntax is

document.getElementById("FranklinQuote").style.color = "rgb(255, 255, 0)";

Because the CSS color property accepts other ways of specifying colors (such as the traditional hexadeci-
mal triplet — #f ff00), you may use those as well.

Some CSS property names, however, do not conform to JavaScript naming conventions. Several CSS prop-
erty names contain hyphens. When that occurs, the scripted equivalent of the property compresses the
words and capitalizes the start of each word. For example, the CSS property font-weight would be set in
script as follows:

document.getElementById("highlight").style.fontWeight = "bold";

A related technique puts more of the design burden on the CSS code. For example, if you define CSS rules

for two different classes, you can simply switch the class definition being applied to the element by way of

the element objects className property. Let’s say you define two CSS class definitions with different back-
ground colors:

.normal {background-color: #ffffff}
.highlighted {background-color: #ff0000}

In the HTML page, the element first receives its default class assignment as follows:
<p id="news" class="normal">...</p>

A script statement can then change the class of that element object so that the highlighted style applies to it:
document.getElementById("news").className = "highlighted";

Restoring the original class name also restores its look and feel. This approach is also a quick way to change
multiple style properties of an element with a single statement.

Dynamic content via W3C DOM nodes

In Chapter 8, you saw the document.createElement () and document.createTextNode() methods in
action. These methods create new document object model (DOM) objects out of thin air, which you may
then modify by setting properties (attributes) prior to plugging the new stuff into the document tree for all
to see.

Images and Dynamic HTML

As an introduction to this technique, I'll demonstrate the steps you would go through to add an element
and its text to a placeholding span element on the page. In this example, a paragraph element belonging to
a class called centered will be appended to a span whose ID is placeholder. Some of the text for the
content of the paragraph comes from a text field in a form (the visitor’ first name). Here is the complete
sequence:

var newElem = document.createElement("p");

newElem.className = "centered";

var newText = document.createTextNode("Thanks for visiting, " +
document.forms[0].firstName.value);

// insert text node into new paragraph

newElem.appendChild(newText);

// insert completed paragraph into placeholder

document.getElementById("placeholder").appendChild(newElem);

The W3C DOM approach takes a lot of tiny steps to create, assemble, and insert the pieces into their desti-
nations. After the element and text nodes are created, the text node must be inserted into the element node.
Because the new element node is empty when it is created, the DOM appendChild() method plugs the
text node into the element (between its start and end tags, if you could see the tags). When the paragraph
element is assembled, it is inserted at the end of the initially empty span element. Additional W3C DOM
methods (described in Chapter 15 and Chapter 16) provide more ways to insert, remove, and replace
nodes.

Dynamic content through the innerHTML property

Prior to the W3C DOM specification, Microsoft invented a property of all element objects: innerHTML. This
property first appeared in Internet Explorer 4 and became popular due to its practicality. The property’s
value is a string containing HTML tags and other content, just as it would appear in an HTML document
inside the current element’ tags. Even though the W3C DOM working group did not implement this prop-
erty for the published standard, the property proved to be too practical and popular for modern browser
makers to ignore. You can find it implemented as a de facto standard in Mozilla-based browsers and Safari,
among others.

To show you the difference in the approach, the following code example shows the same content creation
and insertion as shown in the previous W3C DOM section, but this time with the innerHTML property:

// accumulate HTML as a string

var newHTML = "<p class="centered'>Thanks for visiting,
newHTML += document.forms[0].firstName.value;

newHTML += "</p>";

// blast into placeholder element's content
document.getElementById("placeholder").innerHTML = newHTML;

",
s

Although the innerHTML version seems more straightforward — and makes it easier for HTML coders to
visualize what’s being added — the more code-intensive DOM node approach is more efficient when the
Body modification task entails lots of content. Extensive JavaScript string concatenation operations can slow
browser script processing. Sometimes, the shortest script is not necessarily the fastest.

And so ends the final lesson of the JavaScript Bible tutorial. If you have gone through every lesson and tried
your hand at the exercises, you are ready to dive into the rest of the book to learn the fine details and many
more features of both the DOM and the JavaScript language. You can work sequentially through the chap-
ters of Parts III and IV, but before too long, you should also take a peek at Chapter 45 on the CD-ROM to
learn some debugging techniques that help the learning process.

139

m JavaScript Tutorial

Exercises

140

1.

Explain the difference between a document img element object and the memory type of an image
object.

Write the JavaScript statements needed to precache an image file named jane. jpg that later will
be used to replace the document image defined by the following HTML:

With the help of the code you wrote for question 2, write the JavaScript statement that replaces
the document image with the memory image.

Backward-compatible img element objects do not have event handlers for mouse events. How do
you trigger scripts needed to swap images for mouse rollovers?

Assume that a tab1le element contains an empty table cell (td) element whose ID is
forwardLink. Using W3C DOM node creation techniques, write the sequence of script state-
ments that create and insert the following hyperlink into the table cell:

Next Page

Sedhnl Bt

Document Objects
Referenc

IN THIS PART

Chapter 13
JavaScript Essentials

Chapter 14
Document Object Model Essentials

Chapter 15

Generic HTML Element Objects
Chapter 16

Window and Frame Objects

Chapter 17
Location and History Objects

Chapter 18
The Document and Body Objects

Chapter 19
Link and Anchor Objects

Chapter 20
Image, Area, Map, and Canvas Objects

Chapter 21
The Form and Related Objects

Chapter 22
Button Objects

Chapter 23
Text-Related Form Objects

Chapter 24
Select, Option, and File Upload
Objects

Chapter 25
Event Objects

Chapter 26
Style Sheet and Style Objects

Chapter 27
AJAX and XML

henever JavaScript is discussed in the context of the web browser

environment, it is sometimes difficult to distinguish between

JavaScript the scripting language and the objects that you use the
language to control. Even so, its important to separate the language from the
object model just enough to help you make important design decisions when
considering JavaScript-enhanced pages. You may come to appreciate the separa-
tion in the future if you use JavaScript for other object models, such as server-
side programming or scripting Flash animations. All the basics of the language
are identical. Only the objects differ.

This chapter elaborates on many of the fundamental subjects about the core
JavaScript language raised throughout the tutorial (Part II), particularly as they
relate to deploying scripts in a world in which visitors to your pages may use a
wide variety of browsers. Along the way, you receive additional insights into the
language itself. Fortunately, browser differences as they apply to JavaScript have
lessened considerably as modern browsers continue to inch closer to consistently
supporting the JavaScript (ECMAScript) standard. You can find details about the
JavaScript core language syntax in Part IV.

JavaScript Versions

The JavaScript language has its own numbering system, which is completely
independent of the version numbers assigned to browsers. The Mozilla
Foundation, successor to the Netscape browser development group that created
the language, continues its role as the driving force behind the JavaScript version
numbering system.

The first version, logically enough, was JavaScript 1.0. This was the version
implemented in Navigator 2 and the first release of Internet Explorer 3. As the
language evolved with succeeding browser versions, the JavaScript version num-
ber incremented in small steps. JavaScript 1.2 is the version that has been the

143

INTHIS C

JavaScript language versions

How to separate the language
from the document object model

Where scripts go in your
documents

Language highlights for
experienced programmers

a8 |[IN Document Objects Reference

144

most long lived and stable, currently supported by Internet Explorer 7. Mozilla-based browsers and others
have inched forward with some new features in JavaScript 1.5 (Mozilla 1.0 and Safari), JavaScript 1.6
(Mozilla 1.8 browsers), and JavaScript 1.7 (Mozilla 1.8.1 and later).

Each successive generation of JavaScript employs additional language features. For example, in JavaScript
1.0, arrays were not developed fully, causing scripted arrays not to track the number of items in the array.
JavaScript 1.1 filled that hole by providing a constructor function for generating arrays and an inherent
Tength property for any generated array.

The JavaScript version implemented in a browser is not always a good predictor of core language features
available for that browser. For example, although JavaScript 1.2 (as implemented by Netscape in Netscape
Navigator 4) included broad support for regular expressions, not all of those features appeared in
Microsoft’s corresponding JScript implementation in Internet Explorer 4. By the same token, Microsoft
implemented try-catch error handling in its JScript in Internet Explorer 5, but Netscape didn’t include
that feature until the Mozilla-based Netscape Navigator 6 implementation of JavaScript 1.5. Therefore, the
language version number is an unreliable predictor in determining which language features are available for
you to use.

Core Language Standard: ECMAScript

Although Netscape first developed the JavaScript language, Microsoft incorporated the language in Internet
Explorer 3. Microsoft did not want to license the Java name from its trademark owner (Sun Microsystems),
which is why the language became known in the Internet Explorer environment as JScript. Except for some
very esoteric exceptions and the pace of newly introduced features, the two languages are essentially identi-
cal. The levels of compatibility between browser brands for a comparable generation are remarkably high
for the core language (unlike the vast disparities in object model implementations discussed in Chapter 14).

As mentioned in Chapter 2, standards efforts have been under way to create industrywide recommendations
for browser makers to follow (to make developers’ lives easier). The core language was among the first com-
ponents to achieve standard status. Through the European standards body called ECMA, a formal standard
for the language was agreed to and published. The first specification for the language, dubbed ECMAScript
by the standards group, was roughly the same as JavaScript 1.1 in Netscape Navigator 3. The standard
defines how various data types are treated, how operators work, what a particular data-specific syntax looks
like, and other language characteristics. A newer version (called version 3) added many enhancements to
the core language (version 2 was version 1 with errata fixed). The current version of ECMAScript is known
as ECMA-262, and you can access its specification at http://www.ecma-international.org/. If you
are a student of programming languages, you will find the document fascinating; if you simply want to
script your pages, you will probably find the minutia mind-boggling.

All mainstream browser developers have pledged to make their browsers compliant with the ECMA stan-
dard. The vast majority of the ECMAScript standard has appeared in Navigator since version 3 and Internet
Explorer since version 4, and as new features are added to the ECMA standard, they tend to find their way
into newer browsers as well. The latest version of ECMAScript is version 3, which has been supported in all
mainstream browsers for the past few years.

Version 4 of ECMAScript is currently in the works, along with comparable implementations of
JavaScript 2.0 and JScript by The Mozilla Foundation and Microsoft, respectively. An extension
to ECMAScript called E4X (ECMAScript for XML) was finalized in late 2005 and is implemented in browsers
based on Mozilla 1.8.1 or later (for example, Firefox 2.0). The Adobe ActionScript 3 language, which is used
in the development of Flash animations, fully supports E4X.

JavaScript Essentials

Embedding Scripts in HTML Documents

Scriptable browsers offer several ways to include scripts or scripted elements in your HTML documents.
Not all approaches are available in all versions of every browser, but you have sufficient flexibility starting
with Navigator 3 and some versions of Internet Explorer 3. When you consider that a healthy percentage of
computer users are now using browsers released within the past few years, it’s safe to assume a core level of
script support among web users. Exceptions to this rule include users who have specifically turned off
scripting in their browsers, some organizations that install browsers with scripting turned off, users with
physical disabilities who require specialized browsers, and users with mobile devices that have limited or no
script support. You should not forget these users when designing JavaScript in your pages; you want the
core information conveyed by your pages to reach all visitors, and scripting should enhance the experience
or convenience of those visiting with suitably equipped scriptable browsers.

<script> tags

The simplest and most compatible way to include script statements in an HTML document is inside a
<script>. . .</script> tag set that specifies the scripting language through the type attribute. You can
have any number of such tag sets in your document. For example, you can define some functions in the
Head section to be called by event handlers in HTML tags within the Body section. Another tag set can reside
within the Body section to write part of the content of the page as the page loads. Place only script statements
and comments between the start and end tags of the tag set. Do not place any HTML tags inside unless they
are part of a string parameter to a document .write() statement that creates content for the page.

Every opening <script> tag should specify the type attribute. Because the <script> tagis a generic tag
indicating that the contained statements are to be interpreted as executable script and not renderable
HTML, the tag is designed to accommodate any scripting language the browser knows.

Specifying the language version

Browsers starting with Internet Explorer 5, Mozilla 1 (Moz1), and Safl support the type attribute of the
<{script> tag. This attribute accepts the type of a script as a MIME type. For example, the MIME type of
JavaScript is specified as type="text/javascript". Soa <script> block for JavaScript is coded as follows:

<script type="text/javascript">...</script>

The type attribute is required for the <script> tag as of HTML 4. Earlier versions of HTML and, therefore,
earlier browsers recognize the Tanguage="JavaScript" attribute setting as opposed to type. The
Tanguage attribute allows the scripter to write for a specific minimum version of JavaScript or, in the case
of Internet Explorer, other languages, such as VBScript. For example, the JavaScript interpreter built into
Navigator 3 knows the JavaScript 1.1 version of the language; Navigator 4 and Internet Explorer 4 include
the JavaScript 1.2 version. For versions beyond the original JavaScript, you may specify the language ver-
sion by appending the version number after the language name without any spaces, as in:

<script Tanguage="JavaScriptl.1">...<{/script>

{script language="davaScriptl.2">...</script>

It’s important to note that the Tanguage attribute was deprecated in HTML 4, with the type attribute being
the recommended way of specifying the scripting language for <script> tags. However, the type attribute
didn’t gain browser support until Internet Explorer 5, Mozilla, and W3C DOM-compatible browsers, which

145

a8 |[IN Document Objects Reference

146

leaves legacy browsers in the dark if you use type by itself. To be both backward compatible and forward
looking, you can specify both the Tanguage and type attributes in your <script> tags, because older
browsers ignore the type attribute. Following is an example of how you might do this:

<{script type="text/javascript" language="JavaScript 1.5">...</script>

Of course, if you're depending on features in JavaScript 1.5, you've forgone legacy browsers anyway. In this
case, just take the forward-looking approach and use the type attribute by itself.

<script for> tags

Internet Explorer 4 (and later) browsers offer a variation on the <script> tag that binds statements of a
{script> tag to a specific object and event generated by that object. In addition to the language specifica-
tion, the tags attributes must include for and event attributes (not part of the HTML 4.0 specification).
The value assigned to the for attribute is a reference to the desired object. Most often, this is simply the
identifier assigned to the object’s d attribute. (Since version 4, Internet Explorer enables you to reference
an object by either document.al1.objectID orjust objectID.) The event attribute is the event handler
name that you want the script to respond to. For example, if you design a script to perform some action
upon a mousedown event in a paragraph whose ID is myParagraph, the script statements are enclosed in
the following tag set:

{script for="myParagraph" event="onmousedown" type="text/javascript">
<{/script>
Statements inside the tag set execute only upon the firing of the event. No function definitions are required.

This way of binding an object’s event to a script means that there is no event handler defined in the ele-
ment’s tag. Therefore, it guarantees that only Internet Explorer 4 or later can carry out the script when the
event occurs. But the tag and attributes contain a lot of source code overhead for each object’s script, so this
is not a technique you should use for script statements that need to be called by multiple objects.

Also be aware that you cannot use this tag variation if non—Internet Explorer or pre—Internet Explorer 4
browsers load the page. In such browsers, script statements execute as the page loads, which certainly
causes script errors.

Hiding script statements from older browsers

Its wonderful news that the number of people using old web browsers that don't support scripting lan-
guages is rapidly approaching zero. However, new devices, such as mobile phones and pocket-size comput-
ers, often employ compact browsers that don't have built-in JavaScript interpreters. So in some ways,
mobile devices have sent JavaScript developers back to the drawing board in terms of crafting pages that
gracefully degrade when scripting isn’t supported.

Nonscriptable browsers do not know about the <script> tag. Normally, browsers ignore tags that they
don’t understand. That’s fine when a tag is just one line of HTML, but a <script> tag delineates any num-
ber of script statement lines in a document. Old and compact browsers don’t know to expect a closing
</script> tag. Therefore, their natural inclination is to render any lines they encounter after the opening
<{script> tag. Unfortunately, this places script code squarely in the rendered document — sure to confuse
anyone who sees such gibberish on the page.

You can, however, exercise a technique that tricks most nonscriptable browsers into ignoring the script
statements: surround the script statements (inside the <script> tag set) with HTML comment markers. An

JavaScript Essentials

HTML comment begins with the sequence <! -- and ends with -->. Therefore, you should embed these
comment sequences in your scripts according to the following format:

{script type="text/javascript">
h--

script statements here

/]-->

</script>

JavaScript interpreters know to ignore a line that begins with the HTML beginning comment sequence, but
they need a little help with the ending sequence. The close of the HTML comment starts with a JavaScript
comment sequence (//). This tells JavaScript to ignore the line; but a nonscriptable browser sees the ending
HTML symbols and begins rendering the page with the next HTML tag or other text in the document. An
older browser doesn’t know what the </script> tagis, so the tag is ignored, and rendering begins after
that.

Even with the assumption that most users have modern browsers, mobile devices put you in the position of
still having to account for the potential lack of script support. Thats why if you design your pages for public
access, its still a good idea to include these HTML comment lines in all your <script> tag sets. Make sure
they go inside the tags, not outside. Also note that most of the script examples in this book do not include
these comments for the sake of saving space in the listings.

Hiding scripts entirely?
It may be misleading to say that this HTML comment technique hides scripts from older browsers. In truth,

the comments hide the scripts from being rendered by the browsers. The tags and script statements, how-
ever, are still downloaded to the browser and appear in the source code when viewed by the user.

A common wish among authors is to truly hide scripts from visitors to a page. Client-side JavaScript must
be downloaded with the page and, therefore, is visible in the source view of pages. There are, of course,
some tricks you can implement that may disguise client-side scripts from prying eyes. The most easily
implemented technique is to let the downloaded page contain no visible elements — only scripts that
assemble the page that the visitor sees. Source code for such a page is simply the HTML for the page. But
that page is not interactive, because no scripting is attached unless it is written as part of the page — defeat-
ing the goal of hiding scripts. Any scripted solution for disguising scripts is immediately defeatable by the
user turning off scripting temporarily before downloading the page. All of your code is ready for source
view.

If you are worried about other scripters stealing your scripts, your best protection is to include a copyright
notification in your page’s source code. Not only are your scripts visible to the world, but so are a thief’s
scripts. This way, you can easily see when someone lifts your scripts verbatim.

I One other option for minimizing other people “borrowing” your JavaScript code is to use a

i JavaScript obfuscator, which is a special application that scrambles your code and makes it
much harder to read and understand. The code still works fine, but it is very hard to modify in any way. You
would use an obfuscator just before placing your code online, making sure to keep the original version for
making changes. A couple of JavaScript obfuscators that you might want to consider are Jasob (http://
www.jasob.com/) and JavaScript Obfuscator (http://www.stunnix.com/prod/jo/).

147

a8 |[IN Document Objects Reference

148

Hiding scripts from XHTML validators

If you are developing your pages in compliance with the XML version of HTML (a standard called XHTML),
some common characters you use in scripts— notably, the less-than (<) and ampersand (&) symbols —are
illegal in the XML world. When you attempt to run your XHTML code through a validation service that
tests for standard compliance, scripts will likely cause the validator to complain.

To get around this problem, you can encase your script statements in what is known as a CDATA (pro-
nounced “see-day-tah”) section. The syntax might look a little strange, with all the square brackets, but it is
the prescribed way to include such a section within a <script> tag, as follows:

{script type="text/javascript" language="JavaScript">
/1 <'LCDATAL
/] script statements here
111
</script>

XML validators know that a CDATA section can contain all kinds of non-XML code and thus ignore their
contents. The leading JavaScript comment symbols in front of the start and end portions let JavaScript inter-
preters ignore the XML markup (which otherwise would generate script errors). That’s some of the fun web-
page developers get to work with when making multiple standards work with one another.

Script libraries (.js files)

If you do a lot of scripting or script a lot of pages for a complex web application, you will certainly develop
some functions and techniques that you can use for several pages. Rather than duplicate the code in all
those pages (and go through the nightmare of making changes to all copies for new features or bug fixes),
you can create reusable script library files and link them to your pages.

Such an external script file contains nothing but JavaScript code —no <script> tags, no HTML. By remov-
ing the script code from the HTML document, you no longer have to worry about comment hiding or
CDATA section tricks.

The script file you create must be a text-only file, but its filename must end with the two-character exten-
sion . js. To instruct the browser to load the external file at a particular point in your regular HTML file,
you add a src attribute to the <script> tag as follows:

{script type="text/javascript" src="hotscript.js"></script>

This kind of tag should be the first <script> tag in the Head it loads before any other in-document
<{script> tags load. If you load more than one external library, include a series of these tag sets at the top
of the document.

Take notice of two features about this external script tag construction. First, the <script> </script> tag
pair is required, even though nothing appears between them. You can mix <script> tag sets that specify
external libraries with in-document scripts in the same document. Second, avoid putting other script state-
ments between the start and end tags when the start tag contains a src attribute.

How you reference the source file in the src attribute depends on its physical location and your HTML
coding style. In the preceding example, the . js file is assumed to reside in the same directory as the HTML
file containing the tag. But if you want to refer to an absolute URL, the protocol for the file is http:// (just
as with an HTML file):

{script type="text/javascript" src="http://www.cool.com/hotscript.js"></script>

JavaScript Essentials

A very important prerequisite for using script libraries with your documents is that your web server soft-
ware must know how to map files with the . js extension to a MIME type of application/x-
javascript. If you plan to deploy JavaScript in this manner, be sure to test a sample on your web server
beforehand and arrange for any necessary server configuration adjustments.

When a user views the source of a page that links in an external script library, code from the . js file does
not appear in the window, even though the browser treats the loaded script as part of the current document.
However, the name or URL of the . js file is plainly visible (displayed exactly as it appears in your source
code). Anyone can then turn off JavaScript in the browser and open that file (using the http:// protocol)
to view the . js file’s source code. In other words, an external JavaScript source file is no more hidden from
view than JavaScript embedded directly in an HTML file.

Browser Version Detection

Without question, the biggest challenge facing many client-side scripters is how to program an application
that accommodates a wide variety of browser versions and brands, each one of which can bring its own
quirks and bugs. Happy is the intranet developer who knows for a fact that the company has standardized
its computers with a particular brand and version of browser. But that is a rarity, especially in light of the
concept of the extranet— private corporate networks and applications that open for access to the company’s
suppliers and customers.

Scripters have used many techniques to deal with different browsers and versions through the years.
Unfortunately, as the matrix of versions and scriptable features grew, many of the old techniques proved to
be cumbersome, if not troublesome. Having learned from these experiences, the scripting community has
sensibly reduced the clutter to two basic approaches to working with a wide range of browsers. In the end,
both approaches assist you in designing pages that convey the basic information that all visitors — script-
enabled or not — should be able to view and then use scripting to enhance that basic content with addi-
tional features or conveniences. In other words, you create one page and let the browser determine how
many extra bells and whistles are available for the visitor.

Coding for nonscriptable browsers

Very often, the first decision an application must make is whether the client accessing the site is JavaScript-
enabled. Non-JavaScript-enabled browsers fall into two categories: JavaScript-capable browsers that have
JavaScript turned off in the preferences and browsers that have no built-in JavaScript interpreter.

Except for some of the earliest releases of NN2, all JavaScript-capable browsers have a preferences setting to
turn off JavaScript (and a separate one for Java). You should know that even though JavaScript is turned on
by default in most browsers, many institutional deployments turn it off when the browser is installed on
client machines. The reasons behind this MIS deployment decision vary from scares about Java security vio-
lations incorrectly associated with JavaScript, valid JavaScript security concerns on some browser versions,
and the fact that some firewalls try to filter JavaScript lines from incoming HTML streams.

All JavaScript-capable browsers include a set of <noscript>. . .</noscript> tags to balance the
<script>. . .</script> tagset. If one of these browsers has JavaScript turned off, the <script> tagis
ignored, but the <noscript> tagis observed. As with the <noframes> tag, you can use the body of a
<noscript> tag set to display HTML that lets users know JavaScript is turned off; therefore, the full benefit
of the page isn't available unless they turn on JavaScript. Listing 13-1 shows a skeletal HTML page that uses
these tags.

149

a8 |[IN Document Objects Reference

LISTING 13-1

Employing the <noscript> Tag

<html1>
<head>

<title>Some Document</title>
{script type="text/javascript">

// script statements

</script>

</head>

<body>

<noscript>Your browser has JavaScript turned off.

You will experience a more enjoyable time at this Web site if you
turn JavaScript on.

<hr /></noscript>

<h2>The body of your document.</h2>

</body>
</html>

150

You can display any standard HTML within the <noscript> tag set. An icon image is a colorful way to
draw the user’s attention to the special advice at the top of the page. If your document is designed to create
content dynamically in one or more places in the document, you may have to include a <noscript> tag set
after more than one <script> tag set to let users know what they’re missing. Do not include the HTML
comment tags that you use in hiding JavaScript statements from older browsers; their presence inside the
<noscript> tags prevents the HTML from rendering.

Scripting for different browsers

Concerns over cross-browser compatibility reign supreme in most scripters’ minds. Even though the most
recent browsers are doing a decent job of providing a workable lowest common denominator of scriptabil-
ity, you will likely still have to consider a small, but not insignificant, percentage of visitors with less-than-
modern browsers. The first step in planning for compatibility is determining what your goals are for various
visitor classes.

Establishing goals

After you map out what you'd like your scripts to do, you must look at the implementation details to see
which browser is required for the most advanced aspect of the application. For example, if the design calls
for image swapping on mouse rollovers, that feature requires Netscape Navigator 3 or later and Internet
Explorer 4 or later, which is a given these days except in some mobile browsers. In implementing Dynamic
HTML (DHTML) features, you potentially have three different ways to implement tricks (such as movable
elements or changeable content), because the document object model (DOMs) require different scripting
(and sometimes HTML) for Netscape Navigator 4; Internet Explorer 4 and later; and the W3C DOM imple-
mented in Mozilla, Internet Explorer 5 and later, Safari, and other recent browsers.

In an ideal scenario, you have an appreciation for the kinds of browsers that your visitors use. For example,
if you want to implement some DHTML features, you should be fine designing for Internet Explorer 4 or

JavaScript Essentials

later, Mozilla, Safari, and W3C DOM treat Netscape Navigator 4 as though it were nonscriptable. Or you
may wish to forget the past and design your DHTML exclusively for W3C DOM—compatible browsers, in
which case Internet Explorer 5.5 is the minimum on the Internet Explorer side of things. Even this is a rea-
sonable approach, considering how many users now have a modern browser. If your web hosting service
maintains a log of visitor activity to your site, you can study the browsers listed among the hits to see which
browsers your visitors use.

After you determine the lowest common denominator for the optimum experience, you must decide how
gracefully you want to degrade the application for visitors whose browsers do not meet the common
denominator. For example, if you plan a page or site that requires a W3C DOM-compatible browser for all
the fancy doodads, you can provide an escape path with content in a simple format that every browser from
the text-based Lynx to anything older than Internet Explorer 6 can view.

In case you have a notion of creating an application or site that has multiple paths for viewing the same
content, it may sound good at the outset, but don't forget that maintenance chores lie ahead as the site
evolves. Will you have the time, budget, and inclination to keep all paths up to date? Despite whatever
good intentions a designer of a new web site may have, in my experience, the likelihood that a site will be
maintained properly diminishes rapidly with the complexity of the maintenance task.

Obiject detection

The methodology of choice by far for implementing browser version branching is known as object detection.
The principle is simple: If an object type exists in the browser’s object model, it is safe to execute script
statements that work with that object.

Perhaps the best example of object detection is the way scripts can swap images on a page in browsers with-
out tripping up on the oldest browsers that don’t implement images as objects. In a typical image swap,
onmouseover and onmouseout event handlers (assigned to a link surrounding an image, to be backward
compatible) invoke functions that change the src property of the desired image. Each of those functions is
invoked for all scriptable browsers, but you want them to run their statements only when images can be
treated as objects.

Object models that implement images always include an array of image objects belonging to the document
object. The document . images array always exists, even with a length of zero when no images are on the
page. Therefore, if you wrap the image-swapping statements inside an i f construction that lets browsers
pass only if the document . images array exists, older browsers simply skip the statements:

function imageSwap(imgName, url) {
if (document.images) {
document.images[imgName].src = url;

}

Object detection works best when you know for sure how all browsers implement the object. In the case of
document.images, the implementation across browsers is identical, so it is a very safe branching condi-
tion. That’s not always the case, and you should use this feature with careful thought. For example, Internet
Explorer 4 introduced a document object array called document.al1, which is used very frequently in
building references to HTML element objects. Netscape Navigator 4, however, did not implement that
array; instead, it had a document-level array object called Tayers, which was not implemented in Internet
Explorer 4. Unfortunately, many scripters used the existence of these array objects not as prerequisites for
addressing those objects, but as determinants for the browser version. They set global variables signifying a
minimum version of Internet Explorer 4 if document.al1 existed and Netscape Navigator 4 if

151

a8 |[IN Document Objects Reference

document.layers existed. This is most dangerous, because there is no way of knowing whether a future ver-
sion of a browser may adopt the object of the other browser brand or eliminate a language feature. For example,
when the Mozilla-based Netscape version first arrived, it did so with all the layers stuff removed (replaced
by W3C standards—based features). Tons of scripts on the web used the existence of document.layers to
branch to Netscape-friendly code that didn’t even use document.layers. Thus, visitors using Netscape 6
or 7 found that scripts either broke or didnt work, even though the browsers were more than capable of
doing the job.

This is why I recommend object detection not for browser version sniffing but for object availability branch-
ing, as shown previously for images. Moreover, it is safest to implement object detection only when all
major browser brands (and the W3C DOM recommendation) have adopted the object so that behavior is
predictable wherever your page loads in the future.

Techniques for object detection include testing for the availability of an object’s method. A reference to an
object’s method returns a value, so such a reference can be used in a conditional statement. For example,
the following code fragment demonstrates how a function can receive an argument containing the string ID
of an element and convert the string to a valid object reference for three different DOMs:

function myFunc(elemID) {
var obj;
if (document.getElementById) {
obj = document.getElementById(elemID);
} else if (document.all) {
obj = document.all(elemID);
} else if (document.layers) {
obj = document.layers[elemID];
}
if (obj) {
// statements that work on the object
}
}

With this object detection scheme, it no longer matters which browser brand, operating system, and version
support a particular way of changing an element ID to an object reference. Whichever of the three document
object properties or method is supported by the browser (or the first one, if the browser supports more than
one), that is the property or method used to accomplish the conversion. If the browser supports none of
them, no further statements execute. Keep in mind, however, that the first approach in this example is suffi-
cient (and recommended) as the technique for obtaining all objects from an ID in modern browsers.

If your script wants to check for the existence of an object’s property or method, you may also have to check
for the existence of the object beforehand if that object is not part of all browsers’ object models. An attempt
to reference a property of a nonexistent object in a conditional expression generates a script error. To pre-
vent the error, you can cascade the conditional tests with the help of the && operator. The following frag-
ment tests for the existence of both the document.body object and the document.body.style property:

if (document.body && document.body.style) {
/] statements that work on the body's style property
}

If the test for document . body fails, JavaScript bypasses the second test.

152

JavaScript Essentials

One potential “gotcha” in using conditional expressions to test for the existence of an object’s property is
that even if the property exists, but its value is zero or an empty string, the conditional test reports that the
property does not exist. To work around this potential problem, the conditional expression can examine the
data type of the value to ensure that the property genuinely exists. A nonexistent property for an object
reports a data type of undefined. Use the typeof operator (discussed in Chapter 33) to test for a valid

property:
if (document.body && typeof document.body.scroll != "undefined") {

/] statements that work on the body's scroll property
}

I wholeheartedly recommend designing your scripts to take advantage of object detection in lieu of branch-
ing on particular browser name strings and version numbers. Scriptable features are gradually finding their

way into browsers embedded in a wide range of nontraditional computing devices. These browsers may not
go by the same names and numbering systems that we know today, yet such browsers may be able to inter-

pret your scripts. By testing for browser functionality, your scripts will likely require less maintenance in the
future.

Modifying content for scriptable browsers

Using object detection techniques, it is possible to alter the page so that visitors’ browsers with the desired
functionality have additional or alternative content available to them. Modern browsers that implement the
W3C DOM allow scripts to change elements and their attributes at will.

Changes of this type are typically made after the rest of the page has loaded so that your scripts can be
assured that any elements that are to be modified are present and ready to be scripted. Listing 13-2 is a sim-
ple example of how a function is triggered at load time to modify the destination of a link and insert some
text that only browsers supporting a basic W3C DOM feature see. The page also uses a <noscript> tagto
display content for those with scripting turned off.

LISTING 13-2

Presenting Different Content for Scriptable and Nonscriptable Browsers

<html>
<head>
<title><d/title>
<script type="text/javascript" Tanguage="JavaScript">
// modify page for scriptable browsers
function updatePage() {
if (document.getElementById) {
document.getElementById("mainLink").href = "http://www.dannyg.com";
document.getElementById("welcome").innerHTML =
"Howdy from the script!";
}
}
window.onload = updatePage;
</script>
</head>

continued

153

=148 |8 Document Objects Reference

<body bgcolor="#FFFFFF">

Where?
<hr />

<p id="welcome"></p>

<noscript><p>If you can read this, JavaScript is not
available.</p></noscript>

<p>Here's some stuff for everybody.</p>

</body>

</htm1>

154

As handy as it may be, in a strict W3C approach to JavaScript, you wouldn’t use the

% innerHTML property because it isn’t officially part of the W3C standard. However, it is often
too powerful a convenience property to ignore, as much of the code throughout this book is a testament. The
book does show the W3C node manipulation alternative to innerHTML in some examples. Refer to Chapter
18 for a thorough explanation and examples of the W3C alternative to innerHTML.

moom
A
o

You can see more object detection at work in Chapter 47 and Chapter 56 on the CD-ROM.

Designing for Compatibility

Each new major release of a browser brings compatibility problems for page authors. It’s not so much that
old scripts break in the new versions (well-written scripts rarely break in new versions). The problems
center on the new features that attract designers when the designers forget to accommodate visitors who
have not yet advanced to the latest and greatest browser version or who don't share your browser brand
preference.

Catering only to the lowest common denominator can more than double your development time, due to the
expanded testing matrix necessary to ensure a good working page in all operating systems and on all ver-
sions. Decide how important the scripted functionality you employ in a page is for every user. If you want
some functionality that works only in a later browser, you may have to be a bit autocratic in defining the
minimum browser for scripted access to your page; any lesser browser gets shunted to a simpler presenta-
tion of your site’s data.

Another possibility is to make a portion of the site accessible to most, if not all, browsers, and restrict the
scripting to the occasional enhancement that nonscriptable browser users won't miss. When the application
reaches a certain point in the navigation flow, the user needs a more capable browser to get to the really
good stuff. This kind of design is a carefully planned strategy that lets the site welcome all users up to a
point but then enables the application to shine for users of, say, W3C DOM~-compatible browsers.

The ideal page is one that displays useful content in any browser but whose scripting enhances the experi-
ence of the page visitor — perhaps by offering more efficient site navigation or interactivity with the page’s
content. That is certainly a worthy goal to aspire to. But even if you can achieve this ideal on only some
pages, you will reduce the need for defining entirely separate, difficult-to-maintain paths for browsers of
varying capabilities.

JavaScript Essentials

Regardless of your specific browser compatibility strategy, the good news is that time tends to minimize the
problem. Web standards have solidified greatly in the past few years, and browser vendors have made sig-
nificant strides toward fully supporting those standards.

Dealing with beta browsers

If you have crafted a skillfully scripted web page or site, you may be concerned when a prerelease (or beta)
version of a browser available to the public causes script errors or other compatibility problems to appear
on your page. Do yourself a favor: Don't overreact to bugs and errors that occur in prerelease browser ver-
sions. If your code is well written, it should work with any new generation of browser. If the code doesn't
work correctly, consider the browser to be buggy. Report the bug (preferably with a simplified test-case
script sample) to the browser maker.

The exception to the “its a beta bug” rule arose in the transition from Netscape Navigator 4 to the Mozilla
engine (first released as Netscape Navigator 6). As you learn in Chapter 14, a conscious effort to eliminate a
proprietary Netscape Navigator 4 feature (the <1ayer> tag and corresponding scriptable object) caused
many Netscape Navigator 4 scripts to break on Moz1 betas (and final release). Had scripters gone to report
the problem to the new browsers” developer (Mozilla), they would have learned about the policy change
and planned for the new implementation. It is extremely rare for a browser to eliminate a popular feature so
quickly, but it can happen. Stronger web standards have ideally minimized the chances of this situation
happening again any time soon.

It is often difficult to prevent yourself from getting caught up in a browser maker’s enthusiasm for a new
release. But remember that a prerelease version is not a shipping version. Users who visit your page with
prerelease browsers should know that there may be bugs in the browser. That your code does not work
with a prerelease version is not a sin; neither is it worth losing sleep over. Just be sure to connect with the
browser’s maker either to find out whether the problem will continue in the final release or to report the
bug so that the problem doesn’t make it into the release version.

The Evaluator Sr.

In Chapter 6, you were introduced to a slimmed-down version of The Evaluator Jr., which provides an
interactive workbench to experiment with expression evaluation and object inspection. At this point, you
should meet The Evaluator Sr., a tool you will use in many succeeding chapters to help you learn both core
JavaScript and DOM terminology.

IE Browser Version Headaches

As described more fully in the discussion of the navigator object in Chapter 39 on the CD-ROM, your
scripts can easily determine which browser is the one running the script. However, the properties that
reveal the version don’t always tell the whole story about Internet Explorer.

As you can see in detail in Chapter 39 on the CD-ROM, the navigator.appVersion property for Internet
Explorer 5, 5.5, 6, and 7 reports version 4 (the same as Internet Explorer 4). You can still sniff for specific ver-
sions (you can find the designation MSIE 6 or MSIE7 in the navigator.userAgent property), but the process
is not as straightforward as it could be. The best advice is to be vigilant when new browsers come on the
scene or adopt object detection techniques in your scripts.

155

a8 |[IN Document Objects Reference

FIGURE 13-1

Figure 13-1 shows the top part of the page. Two important features differentiate this full version from the Jr.
version in Chapter 6.

The Evaluator Sr.

The Evaluator - Mozilla Firefox B[]

File Edit View History Bookmarks Tools Help

— The Evaluator

Enter an expression to evaluate { []Use NI Code Base Security)

dacument getElementByldi"myF" innerHTHL

Results: {[¥] Use tab delimiters)
Mow is the time for <em id="myEM">all good men
to come to the aid of their country.

Enter a reference to an object

~

Now is the time for ¢/ good men to come to the aid of their country.
Thisis a
This is a table caption positioned
element
Quantity Description Price with a
whele
4 Primary Widget $14.96 bunch of
textin it.
10 Secondary Widget | $114.96
Larny
Moe
Curly
[Sample Checkbox
rchoose the Desired Performance |]

Done

156

First, you can try some Mozilla secure features if you have Code Base Principles turned on for your browser
(Chapter 46 on the CD-ROM) and you check the Use Code Base Security check box (Netscape Navigator 4

or later/Moz only). Second, the page has several HTML elements preinstalled, which you can use to explore
DOM properties and methods. As with the smaller version, a set of 26 one-letter global variables (a through
z) are initialized and ready for you to assign values for extended evaluation sequences.

You should copy the file evaluator.html from the companion CD-ROM to a local hard disk and set a
bookmark for it in all of your test browsers. Feel free to add your own elements to the bottom of the page to
explore other objects. I describe a version of The Evaluator for embedding in your projects as a debugging
tool in Chapter 45 on the CD-ROM, where you can learn more built-in functionality of The Evaluator.

Compatibility ratings in reference chapters

With the proliferation of scriptable browser versions since Navigator 2, it is important to know up front
whether a particular language or object model object, property, method, or event handler is supported in
the lowest common denominator for which you are designing. Therefore, beginning with Chapter 15 of this
reference part of the book, I include frequent compatibility ratings, such as the following example:

JavaScript Essentials

Compatibility: WinlE5+, MaclE5+, NN4+, Moz+, Safari+

A plus sign after a browser version number means that the language feature was first implemented in the
numbered version and continues to be supported in succeeding versions. A minus sign means that the fea-
ture is not supported in that browser. The browsers tested for compatibility include Internet Explorer for
Windows and Macintosh, Netscape Navigator, Mozilla (including all browsers based on the Mozilla engine),
and Apple Safari. I also recommend that you print the JavaScript and Browser Object Quick Reference file
shown in Appendix A. The file is on the companion CD-ROM in Adobe PDF format. This quick reference
clearly shows each object’s properties, methods, and event handlers, along with keys to the browser version
in which each language item is supported. You should find the printout to be valuable as a day-to-day
resource.

This is a great place to clarify what I mean by “all browsers based on the Mozilla engine.” There was a time,
not so long ago, when Mozilla pretty much meant Netscape, but those days are long gone. Now there are
several viable Mozilla-based browsers that fall under the Moz+ designation in the compatibility charts
throughout this book:

B Netscape
B Firefox
B Camino

The numbering systems of the individual browser brands are not linked to the underlying Mozilla engine
versions, making it difficult to know exactly which browser supports what feature. The following table
shows which individual browser brands and versions correspond to the Mozilla engine numbering system:

Mozilla Netscape Firefox Camino
m18 6.0 — —
0.9.4 6.2 — —
1.0.1 7.0 — —
1.4 7.1 — —
1.7.2 7.2 — —
1.7.5 8.0-8.1 1.0 —
1.8 — 1.5 1.0
1.8.1 — 2.0 —

As you can see, Netscape 6.0 and 6.2 were based on Mozilla versions less than 1. It is rare to see either of
these versions “in the wild” these days. The focus, therefore, is on Moz1 and later. Thus, the compatibility
charts use Moz1 as the baseline feature set.

In summary, when you see Moz+ in the compatibility charts, it ultimately resolves to Netscape 7 or later,
Firefox 1 or later, and Camino 1 or later, to name the most popular Mozilla-based browsers currently in use.

157

a8 |[IN Document Objects Reference

Language Essentials for
Experienced Programmers

In this section, experienced programmers can read the highlights about the core JavaScript language in
terms that may not make complete sense to those with limited or no scripting experience. This section is
especially for you if you found the tutorial of Part II rudimentary. Here, then, is the quick tour of the essen-
tial issues surrounding the core JavaScript language:

B JavaScript is a scripting language. The language is intended for use in an existing host environ-

ment (for example, a web browser) that exposes objects whose properties and behaviors are con-
trollable via statements written in the language. Scripts execute within the context of the host
environment. The host environment controls what, if any, external environmental objects may be
addressed by language statements running in the host environment. For security and privacy rea-
sons, web browsers generally afford little or no direct access through JavaScript to browser prefer-
ences, the operating system, or other programs beyond the scope of the browser. The exception to
this rule is that modern browsers allow deeper client access (with the user’s permission) through
trust mechanisms such as signed scripts (Mozilla) or trusted ActiveX controls (Microsoft).

B JavaScript is object based. Although JavaScript exhibits many syntactic parallels with the Java

language, JavaScript is not as pervasively object oriented as Java. The core language includes sev-
eral built-in static objects from which working objects are generated. Objects are created through
a call to a constructor function for any of the built-in objects plus the new operator. For example,
the following expression generates a String object and returns a reference to that object:

new String("Hello");

Table 13-1 lists the built-in objects with which scripters come into contact.

TABLE 13-1

JavaScript Built-In Objects

Array! Boolean Date Error?
EvalError? Function’ Math Namespace#*
Number! Object! QName* RangeError?
ReferenceError? RegExp? String! SyntaxError2
TypeError? URIError? XML4

TAlthough defined in ECMA Level 1, was first available in NN3 and 1E3/)2.
2Defined in ECMA Level 3; implemented in Moz1.

3Defined in ECMA Level 3; implemented fully in NN4 and IE6.

“Defined in E4X; implemented in Mozilla 1.8.1 (Firefox 2.0).

158

JavaScript Essentials

B JavaScript is loosely typed. Variables, arrays, and function return values are not defined to be of
any particular data type. In fact, an initialized variable can hold different data type values in subse-
quent script statements (obviously not good practice but possible nonetheless). Similarly, an array
may contain values of multiple types. The range of built-in data types is intentionally limited:

Boolean (true or false)

Null

Number (double-precision 64-bit format IEEE 734 value)
Object (encompassing the Array object)

String

Undefined

XML (in E4X)

B The host environment defines global scope. Web browsers traditionally define a browser win-
dow or frame to be the global context for script statements. When a document unloads, all global
variables defined by that document are destroyed.

B JavaScript variables have either global or local scope. A global variable in a web browser is
typically initialized in var statements that execute as the document loads. All statements in that
document can read or write that global variable. A local variable is initialized inside a function
(also with the var operator). Only statements inside that function may access that local variable.

B Scripts sometimes access JavaScript static object properties and methods. Some static objects
encourage direct access to their properties or methods. For example, all properties of the Math
object act as constant values (for example, Math.PI).

B You can add properties or methods to working objects at will. To add a property to an object,
simply assign a value of any type to it. For example, to add an author property to a string object
named myText, use

myText.author = "Jane";
Assign a function reference to an object property to give that object a new method:

// function definition
function doSpecial(argl) f{
// statements
}
// assign function reference to method name
my0Obj.handleSpecial = doSpecial;

// invoke method
my0Obj.handleSpecial(argValue);

Inside the function definition, the this keyword refers to the object that owns the method.

B JavaScript objects employ prototype-based inheritance. All object constructors create working
objects whose properties and methods inherit the properties and methods defined for the proto-
type of that object. Scripts can add and delete custom properties and methods associated with the
static object’s prototype so that new working objects inherit the current state of the prototype.
Scripts can freely override prototype property values or assign different functions to prototype
methods in a working object if desired without affecting the static object prototype. But if inher-
ited properties or methods are not modified in the current working object, any changes to the

159

=148 |8 Document Objects Reference

160

static object’s prototype are reflected in the working object. (The mechanism is that a reference to
an object’s property works its way up the prototype inheritance chain to find a match to the prop-
erty name.)

JavaScript includes a large set of operators. You can find most operators that you are accus-
tomed to working with in other languages.

JavaScript provides typical control structures. All versions of JavaScript offer 1 f, if-else,
for, and while constructions. JavaScript 1.2 (NN4+, [E4+, and all modern mainstream
browsers) added do-while and switch constructions. Iteration constructions provide break
and continue statements to modify control structure execution.

JavaScript functions may or may not return a value. There is only one kind of JavaScript func-
tion. A value is returned only if the function includes a return keyword followed by the value to
be returned. Return values can be of any data type.

JavaScript functions cannot be overloaded. A JavaScript function accepts zero or more argu-
ments, regardless of the number of parameter variables defined for the function. All arguments are
automatically assigned to the arguments array, which is a property of a function object.
Parameter variable data types are not predefined.

Values are passed by reference and by value. An object passed to a function is actually a refer-
ence to that object, offering full read/write access to properties and methods of that object. But
other types of values (including object properties) are passed by value, with no reference chain to
the original object. Thus, the following nonsense fragment empties the text box when the
onchange event fires:
function emptyMe(argl) {

argl.value = "";
}

<input type="text" value="Howdy" onchange="emptyMe(this)">
But in the following version, nothing happens to the text box:

function emptyMe(argl) {
argl = "
1

<input type="text" value="Howdy" onchange="emptyMe(this.value)">
The local variable (argl) simply changes from "Howdy" to an empty string.

The property assignment event handling technique in the previous example is a deliberate sim-
plification to make the code more readable. It is generally better to use the more modern

approach of binding events using the addEventListener() (NN6+/Moz/W3C) or attachEvent () (IE5+)
methods. A modern cross-browser event handling technique is explained in detail in Chapter 25.

B Error trapping techniques depend on JavaScript version. There was no error trapping in NN2

or IE3. Error trapping in NN3, NN4, and IE4 was event-driven in the web browser object model.
JavaScript, as implemented in IE5+ and Mozilla, Safari, and other recent browsers, supports try -
catch and throw statements, as well as built-in error objects that are not dependent on the host
environment.

Memory management is not under script control. The host environment manages memory
allocation, including garbage collection. Different browsers may handle memory in different ways.

JavaScript Essentials

B Whitespace (other than a line terminator) is insignificant. Space and tab characters may sepa-
rate lexical units (for example, keywords, identifiers, and so on).

B A line terminator is usually treated as a statement delimiter. Except in very rare construc-
tions, JavaScript parsers automatically insert the semicolon statement delimiter whenever they
encounter one or more line terminators (for example, carriage returns or line feeds). A semicolon
delimiter is required between two statements on the same physical line of source code. Moreover,
string literals may not have carriage returns in their source code (but an escaped newline charac-

ter (\n) may be part of the string).

Onward to Object Models

The core language is only a small part of what you work with while scripting web pages. The bulk of your
job entails understanding the ins and outs of DOMs as implemented in several generations of browsers.

That’s where Chapter 14 picks up the essentials story.

161

ithout question, the biggest challenge facing client-side web scripters

is the sometimes-baffling array of document object models (DOMs)

that have competed for our attention throughout the short history of
scriptable browsers. Netscape got the ball rolling in Navigator 2 with the first
object model. By the time the version 4 browsers came around, the original
object model had gained not only some useful cross-browser features, but also a
host of features that were unique to Navigator or Internet Explorer. The object
models were diverging, causing no end of headaches for page authors whose
scripts had to run on as many browsers as possible. A ray of hope emerged from
the standards process of the World Wide Web Consortium (W3C) in the form of
a DOM recommendation. The DOM brought forward much of the original object
model, plus new ways of consistently addressing every object in a document. The
goal of this chapter is to put each of the object models into perspective and help
you understand how modern browsers have alleviated most of the object model
compatibility problems. But before we get to those specifics, let’s examine the role
of the object model in designing scripted applications.

The Object Model Hierarchy

The tutorial chapters of Part II introduce the fundamental ideas behind a docu-
ment object hierarchy in scriptable browsers. In other object-oriented environ-
ments, object hierarchy plays a much greater role than it does in JavaScript-able
browsers. (In JavaScript, you don't have to worry about related terms, such as
classes, inheritance, and instances.) Even so, you cannot ignore the hierarchy
concept because some of your code relies on your ability to write references to
objects that depend on their positions within the hierarchy.

Calling these objects JavaScript objects is not correct. These are really browser
document objects: You just happen to use the JavaScript language to bring them
to life. Some scripters of Microsoft Internet Explorer use the VBScript language to

163

IN THIS CHA

Object models versus browser
versions

Proprietary model extensions

Structure of the W3C DOM

Scripting trends

a8 |[IN Document Objects Reference

164

script the very same document objects. Technically speaking, JavaScript objects apply to data types and
other core language objects separate from the document.

Hierarchy as road map

For the programmer, the primary role of the document object hierarchy is to provide scripts a way to refer-
ence a particular object among all the objects that a browser window can contain. The hierarchy acts as a
road map the script can use to know precisely which object to address.

Consider, for a moment, a scene in which you and your friend Tony are in a high-school classroom. It get-
ting hot and stuffy as the afternoon sun pours in through the wall of windows on the west side of the room.
You ask Tony, “Would you please open a window?” and motion your head toward a particular window in
the room. In programming terms, you've issued a command to an object (whether or not Tony appreciates
the comparison). This human interaction has many advantages over anything you can do in programming.
First, by making eye contact with Tony before you speak, he knows that he is the intended recipient of the
command. Second, your body language passes along some parameters with that command, pointing ever so
subtly to a particular window on a particular wall.

If, instead, you are in the principal’s office using the public address system, and you broadcast the same
command (“Would you please open a window?”), no one knows what you mean. Issuing a command with-
out directing it to an object is a waste of time, because every object thinks, “That can’t be meant for me.” To
accomplish the same goal as your one-on-one command, the broadcast command has to be something like
“Would Tony Jeffries in Room 312 please open the middle window on the west wall?”

Let’s convert this last command to JavaScript dot syntax form (see Chapter 4). Recall from the tutorial that a
reference to an object starts with the most global point of view and narrows to the most specific point of
view. From the point of view of the principal’s office, the location hierarchy of the target object is

room312.Jeffries.Tony

You can also say that Tony’s knowledge about how to open a window is one of Tony’s methods. The com-
plete reference to Tony and his method then becomes

room312.Jeffries.Tony.openWindow()

Your job isn’t complete yet. The method requires a parameter detailing which window to open. In this case,
the window you want is the middle window of the west wall of Room 312. Or, from the hierarchical point
of view of the principal’s office, it becomes

room312.westWall.middleWindow

This object road map is the parameter for Tony’s openWindow() method. Therefore, the entire command
that comes over the PA system is

room312.Jeffries.Tony.openWindow(room312.westWall.middTeWindow)

If, instead of barking out orders while sitting in the principals office, you attempt the same task through
radio from an orbiting space shuttle to all the inhabitants on Earth, imagine how laborious your object hier-
archy is. The complete reference to Tony’s openWindow () method and the window that you want opened
has to be mighty long to distinguish the desired objects from the billions of objects within the space shut-
tle’s view.

The point is that the smaller the scope of the object-oriented world you're programming, the more you can
assume about the location of objects. For client-side JavaScript, the scope is no wider than the browser

Document Object Model Essentials m

itself. In other words, every object that a JavaScript script can work with resides within the browser applica-
tion. With few exceptions, a script does not access anything about your computer hardware, operating sys-
tem, other applications, desktop, or any other stuff beyond the browser program.

The first browser document object road map

Figure 14-1 shows the lowest-common-denominator document object hierarchy that is implemented in all
scriptable browsers, including scriptable legacy browsers such as IE3 and NN2. Notice that the window
object is the topmost object in the entire scheme. Everything you script in JavaScript is in the browser’s
window.

Pay attention to the shading of the concentric rectangles. Every object in the same shaded area is at the
same level relative to the window object. When a line from an object extends to the next-darker shaded rec-
tangle, that object contains all the objects in darker areas. At most, one of these lines exists between levels.
The window object contains the document object; the document object contains a form object; a form
object contains many different kinds of form control elements.

FIGURE 14-1

The lowest-common-denominator browser document object hierarchy.

[)

Lframe self | top parend

|
|d0cument| | location |

|
o] [onor |

text | | radio | | button | | select |
[[I I
| textarea | | checkbox | | reset | | option |
I I
| password | | submit |

165

m Document Objects Reference

How Document Objects Are Born

Most of the objects that a browser creates for you are established when an HTML document loads into the
browser. The same kind of HTML code you use to create links, anchors, and input elements tells a
JavaScript-enhanced browser to create those objects in memory. The objects are there whether or not your
scripts call them into action.

The only visible differences to the HTML code for defining those objects are the one or more optional
attributes specifically dedicated to JavaScript. By and large, these attributes specify the event you want the
user interface element to react to and what JavaScript should do when the user takes that action. By relying
on the document’s HTML code to perform the object generation, you can spend more time figuring out how
to do things with those objects or have them do things for you.

Bear in mind that objects are created in their load order. And if you create a multiframe environment, a
script in one frame cannot communicate with another frame’s objects until both frames load. This trips up a
lot of scripters who create multiframe and multiwindow sites (more in Chapter 16).

Object Properties

A property generally defines a particular current setting of an object. The setting may reflect a visible attrib-
ute of an object, such as the state of a checkbox (selected or not); it may also contain information that is not
so obvious, such as the action and method of a submitted form.

Document objects have most of their initial properties assigned by the attribute settings of the HTML tags
that generate the objects. Thus, a property may be a word (for example, a name) or a number (for example,
a size). A property can also be an array, such as an array of images contained by a document. If the HTML
does not include all attributes, the browser usually fills in a default value for both the attribute and the cor-
responding JavaScript property.

A Note to Experienced Object-Oriented Programmers

Ithough the basic object model hierarchy appears to have a class/subclass relationship, many of the tradi-

tional aspects of a true object-oriented environment don’t apply to the model. The original JavaScript doc-
ument object hierarchy is a containment hierarchy, not an inheritance hierarchy. No object inherits properties
or methods of an object higher up the chain. Neither is there any automatic message passing from object to
object in any direction. Therefore, you cannot invoke a window’s method by sending a message to it through
the document or a form object. All object references must be explicit.

Predefined document objects are generated only when the HTML code containing their definitions loads into
the browser. In Chapter 34, you learn how to create your own objects, but those objects do not present new
visual elements on the page that go beyond what HTML, Java applets, and plug-ins can portray.

Inheritance does play a role, as you will see later in this chapter, in the object model defined by the W3C. This
newer hierarchy is of a more general nature to accommodate requirements of XML as well as HTML. But the
containment hierarchy for HTML objects, as described in this section, is still valid in W3C DOM-compatible
browsers.

166

Document Object Model Essentials m

When used in script statements, property names are case sensitive. Therefore, if you see a property name
listed as bgColor, you must use it in a script statement with that exact combination of lowercase and
uppercase letters. But when you set an initial value of a property by way of an HTML attribute, the attribute
name (like all of HTML) is not case sensitive. Thus, <BODY BGCOLOR="white"> and <body
bgcolor="white"> both set the same bgColor property value. Although XHTML won't validate correctly
if you use anything but lowercase letters for tag and attribute names, most browsers continue to be case
insensitive for markup, regardless of the HTML or XHTML version you specify for the page’s DOCTYPE. The
case for property names is not influenced by the case of the markup attribute name.

Each property determines its own read/write status. Some properties are read-only, whereas you can change
others on the fly by assigning a new value to them. For example, to put some new text into a text box
object, you assign a string to the object’s value property:

document.forms[0].phone.value = "555-1212";

When an object contained by the document exists (that is, its HTML is loaded into the document), you can
also add one or more custom properties to that object. This can be helpful if you want to associate some
additional data with an object for later retrieval. To add such a property, simply specify it in the same state-
ment that assigns a value to it:

n_n,
B

document.forms[0].phone.delimiter =

Any property you set survives as long as the document remains loaded in the window and scripts do not
overwrite the object. Be aware, however, that reloading the page usually destroys custom properties.

Object Methods

An object’s method is a command that a script can give to that object. Some methods return values, but that
is not a prerequisite for a method. Also, not every object has methods defined for it. In a majority of cases,
invoking a method from a script causes some action to take place. The resulting action may be obvious
(such as resizing a window) or something more subtle (such as sorting an array in memory).

All methods have parentheses after them, and methods always appear at the end of an object’s reference.
When a method accepts or requires parameters, the parameter values go inside the parentheses (with multi-
ple parameters separated by commas).

Although an object has its methods predefined by the object model, you can also assign one or more addi-
tional methods to an object that already exists (that is, after its HTML is loaded into the document). To do
this, a script in the document (or in another window or frame accessible by the document) must define a
JavaScript function and then assign that function to a new property name of the object. In the following
example, written to take advantage of modern browser features, the ful1Screen() function invokes two
window object methods. By assigning the function reference to the new window.maximize property, I
define a maximize () method for the window object. Thus, a button’s event handler can call that method
directly.

// define the function
function fullScreen() {
this.moveTo(0,0);
this.resizeTo(screen.availWidth, screen.availHeight);
}
// assign the function to a custom property

167

a8 |[IN Document Objects Reference

168

window.maximize = fullScreen;

<!-- invoke the custom method -->
{input type="button" value="Maximize Window" onclick="window.maximize()" />

Object Event Handlers

An event handler specifies how an object reacts to an event that is triggered by a user action (for example, a
button click) or a browser action (for example, the completion of a document load). Going back to the ear-
liest JavaScript-enabled browser, event handlers were defined inside HTML tags as extra attributes. They
included the name of the attribute, followed by an equal sign (working as an assignment operator) and a
string containing the script statement(s) or function(s) to execute when the event occurs (see Chapter 5).

Although event handlers are commonly defined in an objects HTML tag, you also have the power to assign
or change an event handler just as you assign or change the property of an object. The value of an event
handler property looks like a function definition. For example, given this HTML definition

input type="text" name="entry" onfocus="dolt()" />
the value of the object’s onfocus (all lowercase) property is

function onfocus() {
dolt();
}

You can, however, assign an entirely different function to an event handler by assigning a function reference
to the property. Such references don't include the parentheses that are part of the function’s definition. (You
see this again in Chapter 34 when you assign functions to object properties.)

Using the same text field definition you just looked at, you can assign a different function to the event han-
dler, because based on user input elsewhere in the document, you want the field to behave differently when
it receives the focus. If you define a function like this

function doSomethingElse() {
statements
}

you can then assign the function to the field with this assignment statement:
document.formName.entry.onfocus = doSomethingElse;

Because the new function reference is written in JavaScript, you must observe case for the function name.
Additionally, you are best served across all browsers by sticking with all-lowercase event handler names as
properties.

If your scripts create new element objects dynamically, you can assign event handlers to these objects by way
of event handler properties. For example, the following code uses W3C DOM syntax to create a new button
input element and assign an onc11ck event handler that invokes a function defined elsewhere in the script:

var newkElem = document.createElement("input");
newElem.type = "button";

newElem.value = "Click Here";

newElem.onclick = dolt;
document.forms[0].appendChild(newETem);

Document Object Model Essentials m

Object Model Smorgasbord

A survey of the entire evolution of scriptable browsers from NN2 and IE3 through IE7 and Mozilla 1
(Moz1) reveals six distinct DOM families. Even if your job entails developing content for just one current
browser version, you may be surprised that family members from more than one DOM inhabit your author-
ing space.

Studying the evolution of the object model is extremely valuable for newcomers to scripting. It is too easy to
learn the latest object model gadgets in your current browser, only to discover that your heroic scripting
efforts are lost on earlier browsers accessing your pages. Even if you plan on supporting only modern
browsers, a cursory knowledge of object model history is a useful part of your JavaScript knowledge base.
Therefore, take a look at the six major object model types and how they came into being. Table 14-1 lists
the object model families (in chronological order of their release) and the browser versions that support
them. Later in this chapter are some guidelines you can follow to help you choose the object model(s) that
best suit your users’ appetites.

TABLE 14-1

Object Model Families

Model Browser Support

Basic Object Model NN2, NN3, IE3/J1, IE3/)2, NN4, IE4, IE5, IE5.5, IE6, Moz1, Safari 1, Safari 1.3/2, IE7

Basic Plus Images NN3, IE3.01 (Mac only), NN4, IE4, IE5, IE5.5, IE6, Moz1, Safari 1, Safari 1.3/2, IE7

NN4 Extensions NN4

IE4 Extensions IE4, IE5, IE5.5, IE6, IE7 (some features in all versions require Win32 OS)

IE5 Extensions IE5, IE5.5, IE6, IE7 (some features in all versions require Win32 OS)

W3C DOM (I and II) IE5 (partial), IE5.5 (partial), IE6 (partial), Moz1 (most), Safari 1 (partial), Safari 1.3/2 (most),
IE7 (partial)

It's important to realize that even though browsers have come a long way toward providing unified support
for web standards, we're not quite there yet. As of this writing, no current browser fully and accurately sup-
ports Levels T and II of the W3C DOM. Mozilla 1.75 (Firefox, Camino, and so on), Safari 1.3/2, and Opera

9 have all closed the compatibility gap considerably, but some issues not severely impacting HTML author-

ing remain.

Basic Object Model

The first scriptable browser, Netscape Navigator 2, implemented a very basic DOM. Figure 14-1, which you
saw earlier in the chapter, provides a visual guide to the objects that were exposed to scripting. The hierar-
chical structure starts with the window and drills inward toward the document, forms, and form control
elements. A document is a largely immutable page on the screen. Only elements that are by nature interac-
tive — links and form elements such as text fields and buttons—are treated as objects with properties,
methods, and event handlers.

169

a8 |[IN Document Objects Reference

170

The heavy emphasis on form controls opened numerous possibilities that were radical ideas at the time.
Because a script could inspect the values of form controls, forms could be prevalidated on the client. If the
page included a script that performed some calculations, data entry and calculated results were displayed
via editable text fields.

Additional objects that exist outside the document—window, history, and 1ocation objects— provide
scriptable access to simple yet practical properties of the browser that loads the page. The most global view of
the environment is the navigator object, which includes properties about the browser brand and version.

When Internet Explorer 3 arrived on the scene, the short life of Navigator 2 was nearing its end. Even
though NN3 was already widely available in prerelease form, Internet Explorer 3 implemented the basic
object model from NN2 (plus one window object property from NN3). Therefore, despite the browser ver-
sion number discrepancy, NN2 and IE3 were essentially the same with respect to their DOMs. For a brief
moment in Internet Time, there was nearly complete harmony between Microsoft and Netscape DOMs —
albeit at a very simple level.

Basic Object Model Plus Images

A very short time after Internet Explorer 3 was released, Netscape released Navigator 3 with an object
model that built upon the original version. A handful of existing objects — especially the window object —
gained new properties, methods, and/or event handlers. Scripts could also communicate with Java applets
as objects. But the biggest new object on the scene was the Image object and the array of image objects
exposed to the document object.

Most of the properties for a Navigator 3 image object gave read-only access to values typically assigned to
attributes in the tag. But you could modify one property — the src property — after the page
loaded. Scripts could swap out images within the fixed image rectangle. Although these new image objects
didn’t have mouse-related event handlers, nesting an image inside a link (which had onmouseover and
new onmouseout event handlers) let scripts implement image rollovers to liven up a page.

As more new scripters investigated the possibilities of adding JavaScript to their pages, frustration ensued
when the image swapping they implemented for Navigator 3 failed to work in Internet Explorer 3.
Although you could easily script around the lack of an image object to prevent script errors in Internet
Explorer 3, the lack of this cool page feature disappointed many. Had they also taken into account the
installed base of Navigator 2 in the world, they would have been disappointed there, too. To confuse mat-
ters even more, the Macintosh version of Internet Explorer 3.01 (the second release of the Internet Explorer
for Mac browser) implemented scriptable image objects.

Despite these rumblings of compatibility problems to come, the object model implemented in Navigator 3
eventually became the baseline reference for future DOMs. With few exceptions, code written for this object
model runs on all browsers from Navigator 3 and Internet Explorer 4 through the latest versions of both
brands and other modern browsers.

Navigator 4—Only Extensions

The next browser released to the world was Netscape Navigator 4. Numerous additions to the existing
objects put more power into the hands of scripters. You could move and resize browser windows within the
context of script-detectable screen object properties (for example, how big the user’s screen was). Two con-
cepts that represented new thinking about the object model were an enhanced event model and the layer
object.

Document Object Model Essentials

Event capture model

Navigator 4 added many new events to the repertoire. Keyboard events and more mouse events (onmouse-
down and onmouseup) allowed scripts to react to more user actions on form control elements and links. All
of these events worked as they did in previous object models in which event handlers were typically
assigned as attributes to an element’s tag (although you could also assign event handlers as properties in
script statements). To facilitate some of the Dynamic HTML (DHTML) potential in the rest of the Navigator
4 object model, the event model was substantially enhanced.

At the root of the system is the idea that when a user performs some physical action on an event-aware
object (for example, clicking a form button), the event reaches that button from the top down through the
document object hierarchy. If you have multiple objects that share an event handler, it may be more con-
venient to capture that event in just one place —the window or document object level — rather than
assigning the same event handler to all the elements. The default behavior of Navigator 4 allowed the event
to reach the target object, just as it had in earlier browsers. But you could also turn on event capture in the
window, document, or layer object. When captured, the event could be handled at the upper level, pre-
processed before being passed onto its original target, or redirected to another object altogether.

Whether or not you capture events, the Navigator 4 event model produces an event object (lowercase e to
distinguish from the static Event object) for each event. That object contains properties that reveal more
information about the specific event, such as the keyboard character pressed for a keyboard event or the
position of a click event on the page. Any event handler can inspect event object properties to learn more
about the event and process the event accordingly.

Layers

Perhaps the most radical addition to the Navigator 4 object model was a new object that reflected an
entirely new HTML element: the Tayer element. A layer is a container that is capable of holding its own
HTML document, yet it exists in a plane in front of the main document. You can move, size, and hide a
layer under script control. This new element allowed, for the first time, overlapping elements in an HTML
page.

To accommodate the layer object in the document object hierarchy, Netscape defined a nesting hierarchy
such that a layer was contained by a document. As the result, the document object acquired a property
(document.Tayers) that was an array of layer objects in the document. This array exposed only the first
level of layer(s) in the current document object.

Each layer had its own document object because each layer could load an external HTML document if
desired. As a positionable element, a layer object had numerous properties and methods that allowed scripts
to move, hide, show, and change its stacking order.

Unfortunately for Netscape, the W3C did not agree to make the <1ayer> tag part of the HTML 4 specifica-
tion. As such, it is an orphan element that exists only in Navigator 4 (not implemented in Mozl or later).
The same goes for the scripting of the layer object and its nested references.

Internet Explorer 4+ Extensions

Microsoft broke important new ground with the release of Internet Explorer 4, which came several months
after the release of Navigator 4. The main improvements were in the exposure of all HTML elements,
scripted support of cascading style sheets (CSS), and a new event model. Some other additions were avail-
able only on Windows 32-bit operating system platforms.

171

a8 |[IN Document Objects Reference

172

HTML element objects

The biggest change to the object model world was that every HTML element became a scriptable object,
while still supporting the original object model. Microsoft invented the document.al1 array (also called a
collection). This array contains references to every element in the document, regardless of element nesting. If
you assign an identifier (name) to the id attribute of an element, you can reference the element by the fol-
lowing syntax:

document.all.elementID
In most cases, you can also drop the document.al1. part of the reference and begin with only the element ID.

Every element object has an entirely new set of properties and methods that give scripters a level of control
over document content unlike anything seen before. These properties and methods are explored in more
detail in Chapter 15. But several groups of properties deserve special mention here.

Four properties (innerHTML, innerText, outerHTML, and outerText) provide read/write access to the
actual content within the body of a document. This means that you no longer must use text boxes to dis-
play calculated output from scripts. You can modify content inside paragraphs, table cells, or anywhere on
the fly. The browser’s rendering engine immediately reflows a document when the dimensions of an ele-
ment’s content change. That feature puts the Dynamic in Dynamic HTML. To those of us who scripted the
static pages of earlier browsers, this feature — taken for granted today — was nothing short of a revelation.

The series of offset properties are related to the position of an element on the page. These properties are dis-
tinct from the kind of positioning performed by CSS. Therefore, you can get the dimensions and location of
any element on the page, making it easier to move positionable content atop elements that are part of the
document and may appear in various locations due to the browser window’s current size.

Finally, the style property is the gateway to CSS specifications defined for the element. It is important that
the script can modify the numerous properties of the sty1e object. Therefore, you can modify font specifi-
cations, colors, borders, and the positioning properties after the page loads. The dynamic reflow of the page
takes care of any layout changes that the alteration requires (for example, adjusting to a bigger font size).

Element containment hierarchy

Although Internet Explorer 4 still recognizes the element hierarchy of the original object model (see Figure
14-1), the DOM for Internet Explorer 4 does not extend this kind of hierarchy fully into other elements. If
it did, it would mean that td elements inside a table might have to be addressed via its next outer tr or
table element (just as a form control element must be addressed through its containing form element).
Figure 14-2 shows how all HTML elements are grouped under the document object. The document.all
array flattens the containment hierarchy as far as referencing objects goes. A reference to the most deeply
nested TD element is still document.al1.cel11ID. The highlighted pathway from the window object is the
predominant reference path used when working with the Internet Explorer 4 document object hierarchy.

Element containment in Internet Explorer 4, however, is important for other reasons. Because an element
can inherit some stylesheet attributes from an element that contains it, you should devise a document’s
HTML by embedding every piece of content in a container. Paragraph elements are text containers (with
start and end tags), not tall line breaks between text chunks. Internet Explorer 4 introduced the notion of a
parent—child relationship between a container and elements nested within it. Also, the position of an ele-
ment may be calculated relative to the position of its next outermost positioning context.

The bottom line here is that element containment doesn’t have anything to do with object references (like
the original object model). It has everything to do with the context of an element relative to the rest of the
page’s content.

Document Object Model Essentials

The Internet Explorer 4 document object hierarchy.

window
frame | self t0p| parent

I
|navigator| | screen | | history | |document| | location | |event |
I

[T1 I I I]
| link | |sterSheets| |app|ets | |f0rm| |images| |p|ugins | |embeds| | all |

[T I I | [elements]
| text | | radio | | button | |se|ect |

i
| textarea | |checkbox| | reset | |0ption|

| password| |submit |

Cascading Style Sheets

By arriving a bit later to market with its version 4 browser than Netscape, Microsoft benefited from having
the CSS Level 1 specification more fully developed before the browser’s release. Therefore, the implementa-
tion is far more complete than that of Navigator 4 (but it is not 100 percent compatible with the standard).

The scriptability of stylesheet properties is a bit at odds with the first-generation CSS specification, which
seemed to ignore the potential of scripting styles with JavaScript. Many CSS attribute names are hyphenated
words (for example, text-align, z-index). But hyphens are not allowed in identifier names in JavaScript.
This necessitated conversion of the multiword CSS attribute names to interCap JavaScript property names.
Therefore, text-align becomes textAlign, and z-index becomes zIndex. You can access all of these
properties through an element’s sty1e property:

document.all.elementID.style.stylePropertyName

One byproduct of the scriptability of stylesheets in Internet Explorer 4 and later is what some might call the
phantom page syndrome. This occurs when the layout of a page is handled after the primary HTML for the
page has downloaded to the browser. As the page loads, not all content may be visible, or it may be in a
visual jumble. An onload event handler in the page then triggers scripts to set styles or content for the
page. Elements jump around to get to their final resting places. This may be disconcerting to some users
who at first see a link to click, but by the time the cursor reaches the click location, the page has reflowed,
thereby moving the link somewhere else on the page.

For Internet Explorer users with 32-bit Windows operating systems, Internet Explorer 4

: includes some extra features in the object model that can enhance presentations. Filters are
stylesheet additives that offer a variety of visual effects on body text. For example, you can add a drop
shadow or a glowing effect to text simply by applying filter styles to the text, or you can create the equiva-
lent of a slide presentation by placing the content of each slide in a positioned div element. Although filters
follow the CSS syntax, they are not part of the W3C specification.

173

a8 |[IN Document Objects Reference

174

Event bubbling

Just as Netscape invented an event model for Navigator 4, so did Microsoft invent one for Internet Explorer
4. Unfortunately for cross-browser scripters, the two event models are quite different. Instead of events
trickling down the hierarchy to the target element, an Internet Explorer event starts at the target element
and, unless instructed otherwise, bubbles up through the element containment hierarchy to reach the
window object eventually. At any object along the way, an event handler can perform additional processing
on that event if desired. Therefore, if you want a single event handler to process all click events for the page,
assign the event handler to the body or window object so the events reach those objects (provided that the
event bubbling isn’t canceled by some other object along the containment hierarchy).

Internet Explorer also has an event object (a property of the window object) that contains details about the
event, such as the key pressed for a keyboard event and the location of a mouse event. Names for these
properties are entirely different from the event object properties of Navigator 4.

Despite what seem like incompatible, if not completely opposite, event models in Navigator 4 and Internet
Explorer 4, you can make a single set of scripts handle events in both browsers (see Chapter 25 and
Chapter 56 on the CD-ROM for examples). The Internet Explorer 4 event model continues to be the only
model supported by Internet Explorer through version 7.

Internet Explorer 5+ Extensions

With the release of Internet Explorer 5, Microsoft built more onto the proprietary object model it launched
in Internet Explorer 4. Although the range of objects remained pretty much the same, the number of prop-
erties, methods, and event handlers for the objects increased dramatically. Some of those additions were
added to meet some of the specifications of the W3C DOM (discussed in the next section), occasionally
causing a bit of incompatibility with Internet Explorer 4. But Microsoft also pushed ahead with efforts for
Windows users only that may not necessarily become industry standards: DHTML behaviors and HTML
applications.

A DHTML behavior is a chunk of script— saved as an external file— that defines some action (usually, a
change of one or more style properties) that you can apply to any kind of element. The goal is to create a
reusable component that you can load into any document whose elements require that behavior. As an
example of a DHTML behavior, you can define a behavior that turns an element’s text to red whenever the
cursor rolls atop it and reverts the text to black when the cursor rolls out. When you assign the behavior to
an element in the document (through CSS-like rule syntax), the element picks up that behavior and
responds to the user accordingly. You can apply that same behavior to any element(s) in the document. You
can see an example of a DHTML behavior in Chapter 15 in the description of the addBehavior () method
and read an extended discussion in Chapter 47 on the CD-ROM.

HTML applications (HTAs, in Microsoft parlance) are HTML files that include an XML element known as the
hta:application element. You can download an HTA to Internet Explorer 5 or later from the server as
though it were a web page (although its file extension is . hta rather than .htmor .htm1). A user can also
install an HTA on a client machine so that it behaves very much like an application, with a desktop icon
and significant control over the look of the window. HTAs are granted greater security privileges on the
client so that this application can behave more like a regular program. In fact, you can elect to turn off the
system menu bar and use DHTML techniques to build your own menu bar for the application.
Implementation details of HTAs are beyond the scope of this book, but you should be aware of their exis-
tence. More information is available at http://msdn.microsoft.com.

Document Object Model Essentials

The W3C DOM

Conlflicting browser object models from Netscape and Microsoft made life difficult for developers. Scripters
craved a standard that would serve as a common denominator, much as HTML and CSS standards did for
content and styles. The W3C took up the challenge of creating a DOM standard: the W3C DOM.

The charter of the W3C DOM working group was to create a DOM that could be applied to both HTML
and XML documents. Because an XML document can have tags of virtually any name (as defined by a
Document Type Definition), it has no intrinsic structure or fixed vocabulary of elements, as an HTML docu-
ment does. As a result, the DOM specification had to accommodate the known structure of HTML (as
defined in the HTML 4 specification) as well as the unknown structure of an XML document.

To make this work effectively, the working group divided the DOM specification into two sections. The first,
called the Core DOM, defines specifications for the basic document structure that HTML and XML docu-
ments share. This includes notions of a document containing elements that have tag names and attributes;
an element is capable of containing zero or more other elements. The second part of the DOM specification
addresses the elements and other characteristics that apply only to HTML. The HTML portion inherits all
the features of the Core DOM while providing a measure of backward compatibility to object models
already implemented in legacy browsers and providing a framework for new features.

It is important for veteran scripters to recognize that the W3C DOM does not specify all features from exist-
ing browser object models. Many features of the Internet Explorer 4 (and later) object model are not part of
the W3C DOM specification. This means that if you are comfortable in the Internet Explorer environment
and wish to shift your focus to writing for the W3C DOM spec, you have to change some practices as high-
lighted in this chapter. In many respects, especially with regard to DHTML applications, the W3C DOM is
an entirely new DOM with new concepts that you must grasp before you can successfully script in the envi-
ronment.

By the same token, you should be aware that whereas Mozilla-based browsers go to great lengths to imple-
ment all of DOM Level 1 and most of Level 2, Microsoft (for whatever reason) features only a partial imple-
mentation of the W3C DOM through Internet Explorer 5.5. Although IE6 and IE7 implement more W3C
DOM features, some important parts — notably, W3C DOM events — are missing. Other modern browsers,
such as Safari 1.3/2 and Opera 9, provide comprehensive W3C DOM support and have largely closed the
gap to compete with Mozilla in terms of supporting the W3C DOM.

DOM levels

Like most W3C specifications, one version is rarely enough. The job of the DOM working group was too
large to be swallowed whole in one sitting. Therefore, the DOM is a continually evolving specification. The
timeline of specification releases rarely coincides with browser releases. Therefore, it is very common for
any given browser release to include only some of the most recent W3C version.

The first formal specification, DOM Level 1, was released well after NN4 and 1E4 shipped. The HTML por-
tion of Level 1 includes the so-called DOM Level O (there is no published standard by that name). This is
essentially the object model as implemented in Navigator 3 (and for the most part in Internet Explorer 3
plus image objects). Perhaps the most significant omission from Level 1 is an event model (it ignores even
the simple event model implemented in NN2 and IE3).

175

a8 |[IN Document Objects Reference

176

DOM Level 2 builds on the work of Level 1. In addition to several enhancements of both the Core and
HTML portions of Level 1, Level 2 adds significant new sections (published as separate modules) on the
event model, ways of inspecting a document’s hierarchy, XML namespaces, text ranges, stylesheets, and style
properties. Some modules of the Level 3 DOM have reached Recommendation status but are likely still a
way off from being implemented in major browsers to any significant degree.

What stays the same

By adopting DOM Level 0 as the starting point of the HTML portion of the DOM, the W3C provided a way
for a lot of existing script code to work even in a W3C DOM—compatible browser. Every object you see in
the original object model, starting with the document object (see Figure 14-1) plus the image object, are in
DOM Level 0. Almost all of the same object properties and methods are also available.

More important, when you consider the changes to referencing other elements in the W3C DOM (discussed
in the next section), we're lucky that the old ways of referencing objects — such as forms, form control ele-
ments, and image — still work. Had the working group been planning from a clean slate, it is unlikely that
the document object would have been given properties consisting of arrays of forms, links, and images.

The only potential problems you could encounter with your existing code have to do with a handful of
properties that used to belong to the document object. In the new DOM, four style-related properties of the
document object (alinkColor, bgColor, TinkColor, and vl1inkColor) become properties of the body
object (referenced as document . body). In addition, the three link color properties pick up new names in
the process (aLink, 1ink, and vLink). It appears, however, that for now, IE6 and Mozl maintain backward
compatibility with the older document object color properties.

Also note that the DOM specification concerns itself only with the document and its content. Objects such
aswindow, navigator, and screen are not part of the DOM specification through Level 2. Scripters are
still at the mercy of browser makers for compatibility in these areas.

What isn’t available

As mentioned earlier, the W3C DOM is not simply a restatement of existing browser specifications. Many
convenience features of the Internet Explorer and Netscape Navigator object models do not appear in the
W3C DOM. If you develop DHTML content in Internet Explorer 4 or later or in Navigator 4, you have to
learn how to get along without some of these conveniences.

The Navigator 4 experiment with the <1ayer> tag was not successful in the W3C process. As a result, both
the tag and the scripting conventions surrounding it do not exist in the W3C DOM. To some scripters’
relief, the document . TayerName referencing scenario (even more complex with nested layers) disappears
from the object model. A positioned element is treated as just another element with some special stylesheet
attributes that enable you to move it anywhere on the page, stack it amid other positioned elements, and
hide it from view.

Among popular Internet Explorer 4+ features missing from the W3C DOM are the document.al1 collec-
tion of HTML elements and four element properties that facilitate dynamic content: innerHTML,
innerText, outerHTML, and outerText. A new W3C way provides for acquiring an array of all elements
in a document, but generating HTML content to replace existing content or to be inserted in a document
requires a tedious sequence of statements (see the section “New DOM concepts” later in this chapter). Most
new browsers, however, have implemented the innerHTML property for HTML element objects.

Document Object Model Essentials m

New HTML practices

Exploitation of DHTML possibilities in the W3C DOM relies on modern HTML practices that by now have
ideally been adopted by the majority of HTML authors. At the core of these practices (espoused by the
HTML 4 specification) is making sure that all content is within an HTML container of some kind.
Therefore, instead of using the <p> tag as a separator between blocks of running text, surround each para-
graph of the running text with a <p>...</p> tag set. If you don't do it, the browser treats each <p> tag as
the beginning of a paragraph and ends the paragraph element just before the next <p> tag or other block-
level element.

Although browsers continue to accept the omission of certain end tags (for td, tr, and 11 elements, for
instance) for backward compatibility, it is best to get into the habit of supplying these end tags if for no
other reason than that they help you visualize where an element’s sphere of influence truly begins and ends.

Any element that you intend to script — whether to change its content or its style — should have an identi-
fier assigned to the element’s 1d attribute. Form control elements still require name attributes if you submit
the form content to a server. But you can freely assign the same or a different identifier to a control’s id
attribute. Scripts can use either the 1d or the document . formReference.elementName reference to reach
a control object. Identifiers are essentially the same as the values you assign to the name attributes of form
and form input elements. Following the same rules for the name attribute value, an id identifier must be a
single word (no whitespace); it cannot begin with a numeral (to prevent conflicts in JavaScript); and it
should avoid punctuation symbols except for the underscore character.

New DOM concepts

With the W3C DOM come several concepts that may be new to you unless you have worked extensively
with the terminology of tree hierarchies. Concepts that have the most impact on your scripting are new
ways of referencing elements and nodes.

Element referencing

Script references to objects in the DOM Level 0 are observed in the W3C DOM for backward compatibility.
Therefore, a form input element whose name attribute is assigned the value userName is addressed just as it
always is

document.forms[0].userName
or
document. formName.userName

But because all elements of a document are exposed to the document object, you can use the document object
method designed to access any element whose ID is assigned. The method is document.getElementById(),
and the sole parameter is a string version of the identifier of the object whose reference you want to get. To
help put this in context with what you may have used with the Internet Explorer 4 object model, consider
the following HTML paragraph tag:

<p id="myParagraph">...</p>
In Internet Explorer 4 or later, you can reference this element with

var elem = document.all.myParagraph;

177

a8 |[IN Document Objects Reference

Although the document.al1 collection is not implemented in the W3C DOM, the document object
method (available in Internet Explorer 5 and later, Mozilla, Safari, and others) getETementById() enables
you to access any element by its ID:

var elem = document.getElementById("myParagraph");

This method is considered the appropriate technique for referencing an element based upon its ID.
Unfortunately for scripters, this method is difficult to type because it is case sensitive, so watch out for that
ending lowercase d.

A hierarchy of nodes

The issue surrounding containers (described earlier) comes into play for the underlying architecture of the
W3C DOM. Every element or free-standing chunk of text in an HTML (or XML) document is an object that
is contained by its next outermost container. Let’s look at a simple HTML document to see how this system
works. Listing 14-1 is formatted to show the containment hierarchy of elements and string chunks.

LISTING 14-1
A Simple HTML Document

<html>
<head>
<title>
A Simple Page
</title>
</head>
<body>
<p id="paragraphl">
This is the
<em id="emphasisl">
one and only

paragraph on the page.
</p>
</body>
</htm1>

What you don't see in the listing is a representation of the document object. The document object exists
automatically when this page loads into a browser. It is important that the document object encompasses
everything you see in Listing 14-1. Therefore, the document object has a single nested element: the htm1
element. The htm1 element in turn has two nested elements: head and body. The head element contains
the tit1e element, whereas the tit1e element contains a chunk of text. Down in the body element, the p
element contains three pieces: a string chunk, the em element, and another string chunk.

178

Document Object Model Essentials m

According to W3C DOM terminology, each container, stand-alone element (such as a br element), or text
chunk is known as a node — a fundamental building block of the W3C DOM. Nodes have parent—child
relationships when one container holds another. As in real life, parent—child relationships extend only
between adjacent generations, so a node can have zero or more children. However, the number of third-
generation nodes further nested within the family tree does not influence the number of children associated
with a parent. Therefore, in Listing 14-1, the htm1 node has two child nodes: head and body, which are
siblings that have the same parent. The body element has one child (p), even though that child contains
three children (two text nodes and an em element node).

If you draw a hierarchical tree diagram of the document in Listing 14-1, it should look like the illustration
in Figure 14-3.

FIGURE 14-3

Tree diagram of nodes for the document in Listing 14-1.

document
+--<html>
+--<head>
| +--<title>
| +--"A Simple Page"
+--<body>
+--<p ID="paragraph1">
+--"This is the "
+--<em ID="emphasis1">
| +--"one and only"
+--" paragraph on the page.”

' Seaes If the document’s source code contains a Document Type Definition (in a DOCTYPE element)
SRS above the <htm1> tag, the browser treats that DOCTYPE node as a sibling of the HTML ele-
ment node. In that case, the root document node contains two child nodes.

The W3C DOM (through Level 2) defines 12 different types of nodes, 7 of which have direct application in
HTML documents. These seven types of nodes appear in Table 14-2; the rest apply to XML. Of the 12
types, the three most common are the document, element, and text types. All W3C DOM browsers (includ-
ing Internet Explorer 5 and later, Mozilla, Safari, and others) implement the three common node types,
whereas Mozilla implements all of them, IE6 implements all but one, and Safaril implements all but two.

179

a8 |[IN Document Objects Reference

W3C DOM HTML-Related Node Types

Type Number nodeName nodeValue Description IE6+ Moz1 Safari 1
Element 1 tag name Null Any HTML or XML Yes Yes Yes
tagged element
Attribute 2 attribute name Attribute value A name-value Yes Yes Yes
attribute pair in
an element
Text 3 fitext text content A text fragment Yes Yes Yes
contained by
an element
Comment 8 ffcomment comment text HTML comment Yes Yes No
Document 9 ftdocument Null Root document Yes Yes Yes
object
DocumentType10 DOCTYPE Null DTD specification No Yes No
Fragment 11 ffdocument - Null Series of one or Yes Yes Yes
fragment more nodes outside

the document

Applying the node types of Table 14-2 to the node diagram in Figure 14-3, you can see that the simple page
consists of one document node, six element nodes, and four text nodes.

Node properties

A node has many properties, most of which are references to other nodes related to the current node. Table
14-3 lists all properties shared by all node types in DOM Level 2.

TABLE 14-3

Node Object Properties (W3C DOM Level 2)

Property Value Description IE6Win+ IE5Mac+ Mozl Safaril
nodeName String Varies with node type (see Table 14-2) Yes Yes Yes Yes
nodeValue String Varies with node type (see Table 14-2) Yes Yes Yes Yes
nodeType Integer Constant representing each type Yes Yes Yes Yes
parentNode Object Reference to next outermost container Yes Yes Yes Yes
childNodes Array All child nodes in source order Yes Yes Yes Yes
firstChild Object Reference to first child node Yes Yes Yes Yes
TastChild Object Reference to last child node Yes Yes Yes Yes
previousSibling Object Reference to sibling node up in Yes Yes Yes Yes

source order

180

Document Object Model Essentials

Property Value Description IE6Win+ IE5Mac+ Mozl Safaril

nextSibling Object Reference to sibling node next in Yes Yes Yes Yes
source order

attributes NodeMap Array of attribute nodes Some Some Yes Some

ownerDocument Object Containing document object Yes Yes Yes Yes

namespacelRI String URI to namespace definition No No Yes Yes
(element and attribute nodes only)

Prefix String Namespace prefix (element and No No Yes Yes
attribute nodes only)

localName String Applicable to namespace-affected No No Yes Yes
nodes

' You can find all of the properties shown in Table 14-3 that also show themselves to be imple-

& 4SS mented in Internet Explorer 6 or later or Moz1 in Chapter 15, in the listing of properties that
all HTML element objects have in common. That’s because an HTML element, as a type of node, inherits all
of the properties of the prototypical node.

To help you see the meanings of the key node properties, Table 14-4 shows the property values of several
nodes in the simple page shown in Listing 14-1. For each node column, find the node in Figure 14-3 and
then follow the list of property values for that node, comparing the values against the actual node structure
in Figure 14-3.

TABLE 14-4

Properties of Selected Nodes for a Simple HTML Document

Properties Nodes

document html p "one and only"
nodeType 9 1 1 3
nodeName ftdocument html P ftext
nodeValue Null null null "one and only"
parentNode Null document body em
previousSibling Null null null null
nextSibling Null null null null
childNodes Html head "This is the " (none)

body em
" paragraph on the page."

firstChild Html head "This is the " null
TastChild Html body " paragraph on the page." null

181

m Document Objects Reference

The nodeType property is an integer that is helpful in scripts that iterate through an unknown collection of
nodes. Most content in an HTML document is of type 1 (an HTML element) or 3 (a text node), with the
outermost container, the document, of type 9. A nodes nodeName property is either the name of the node’s
tag (for an HTML element) or a constant value (preceded by a # [hash mark] as shown in Table 14-2). And,
which may surprise some, the nodeValue property is nul1 except for the text node type, in which case the
value is the actual string of text of the node. In other words, for HTML elements, the W3C DOM does not
expose a containers HTML as a string.

The Object-Oriented W3C DOM

f you are familiar with concepts of object-oriented (OO) programming, you will appreciate the OO tenden-

cies in the way the W3C defines the DOM. The Node object includes sets of properties (see Table 14-3) and
methods (see Table 14-5) that are inherited by every object based on the Node. Most of the objects that inherit
the Node’s behavior have their own properties and/or methods that define their specific behaviors. The follow-
ing figure shows (in W3C DOM terminology) the inheritance tree from the Node root object. Most items are
defined in the Core DOM, whereas items shown in boldface are from the HTML DOM portion.

Node

+--Document

| +--HTMLDocument
+--CharacterData

| +-Text

| | +--CDATASection
| +--Comment

+--Attr

+--Element

| +--HTMLElement

| +-- (Each specific HTML element)
+--DocumentType
+--DocumentFragment
+--Notation

+--Entity

+--Entity Reference
+--ProcessinglInstruction

W3C DOM Node object inheritance tree.

You can see from the preceding figure that individual HTML elements inherit properties and methods from the
generic HTML element, which inherits from the Core Element object, which in turn inherits from the basic
Node.

It isn’t important to know the Node object inheritance to script the DOM. But it does help explain the ECMA
Script Language Binding appendix of the W3C DOM recommendation, as well as explain how a simple ele-
ment object winds up with so many properties and methods associated with it.

182

Document Object Model Essentials m

It is doubtful that you will use all of the relationship-oriented properties of a node, primarily because there
is some overlap in how you can reach a particular node from any other. The parentNode property is
important because it is a reference to the current node’s immediate container. Although the firstChild
and TastChild properties point directly to the first and last children inside a container, most scripts gener-
ally use the childNodes property with array notation inside a for loop to iterate through child nodes. If
there are no child nodes, the childNodes array has a length of zero.

Node methods

Actions that modify the HTML content of a node in the W3C DOM world primarily involve the methods
defined for the prototype Node. Table 14-5 shows the methods and their support in the W3C DOM-
capable browsers.

TABLE 14-5

Node Object Methods (W3C DOM Level 2)

Method Description IE5+ Mozl Safari1

appendChild(newChild) Adds child node to end of current node Yes Yes Yes

cloneNode(deep) Grabs a copy of the current node Yes Yes Yes
(optionally with children)

hasChildNodes() Determines whether current node has Yes Yes Yes
children (Boolean)

insertBefore(new, ref) Inserts new child in front of another child Yes Yes Yes

removeChild(old) Deletes one child Yes Yes Yes

replaceChild(new, o1d) Replaces an old child with a new one Yes Yes Yes

isSupported(feature, version) Determines whether the node supports a No Yes Yes

particular feature

The important methods for modifying content are appendChild(), insertBefore(), removeChild(),
and replaceChild(). Note, however, that all of these methods assume that the point of view for the
action is from the parent of the nodes being affected by the methods. For example, to delete an element
(using removeChild()), you don't invoke that method on the element being removed, but on its parent
element. This leaves open the possibility of creating a library of utility functions that obviate having to
know too much about the precise containment hierarchy of an element. A simple function that lets a script
appear to delete an element actually does so from its parent:

function removeElement(elemID) {
var elem = document.getElementById(elemID);
elem.parentNode.removeChild(elem);

}

If this seems like a long way to go to accomplish the same result as setting the outerHTML property of an
Internet Explorer 4 or later object to empty, you are right. Although some of this convolution makes sense
for XML, unfortunately, the W3C working group doesn’t seem to have HTML scripters’ best interests in
mind. All is not lost, however, as you see later in this chapter.

183

a8 |[IN Document Objects Reference

184

Generating new node content

The final point about the node structure of the W3C DOM focuses on the similarly gnarled way scripters
must go about generating content that they want to add or replace on a page. For text-only changes (for
example, the text inside a table cell), there is both an easy and a hard way to perform the task. For HTML
changes, there is only the hard way (plus a handy workaround discussed later). Let’s look at the hard way
first and then pick up the easy way for text changes.

To generate a new node in the DOM, you look to the variety of methods that are defined for the Core
DOM’s document object (and therefore are inherited by the HTML document object). A node creation
method is defined for nearly every node type in the DOM. The two important ones for HTML documents
are createElement () and createTextNode(). The first generates an element with whatever tag name
(string) you pass as a parameter; the second generates a text node with whatever text you pass.

When you first create a new element, it exists only in the browser’s memory and not as part of the docu-
ment containment hierarchy. Moreover, the result of the createElement () method is a reference to an
empty element except for the name of the tag. For example, to create a new p element, use

wan

var newkElem = document.createElement("p");

The new element has no ID, attributes, or any content. To assign some attributes to that element, you can
use the setAttribute() method (a method of every element object) or assign a value to the object’s corre-
sponding property. For example, to assign an identifier to the new element, use either

newElem.setAttribute("id", "newP");
or
newElem.id = "newP";

Both ways are perfectly legal. Even though the element has an ID at this point, it is not yet part of the docu-
ment, so you cannot retrieve it via the document.getElementById() method.

To add some content to the paragraph, next you generate a text node as a separate object:
var newText = document.createTextNode("This is the second paragraph.");

Again, this node is just sitting around in memory waiting for you to apply it as a child of some other node.
To make this text the content of the new paragraph, you can append the node as a child of the paragraph
element that is still in memory:

newElem.appendChild(newText);

If you were able to inspect the HTML that represents the new paragraph element, it would look like the
following:

<p id="newP">This is the second paragraph.</p>

The new paragraph element is ready for insertion into a document. Using the document shown in Listing
14-1, you can append it as a child of the body element:

document.body.appendChild(newElem);

At last, the new element is part of the document containment hierarchy. Now you can reference it just like
any other element in the document.

Document Object Model Essentials m

Replacing node content

The addition of the paragraph shown in the last section requires a change to a portion of the text in the
original paragraph (the first paragraph is no longer the one and only paragraph on the page). As mentioned
earlier, you can perform text changes via the replaceChild() method or by assigning new text to a text
node’s nodeValue property. Let’s see how each approach works to change the text of the first paragraph’s em
element from one and only to first.

To use replaceChild(), a script first must generate a valid text node with the new text:
var newText = document.createTextNode("first");

The next step is to use the replaceChild() method. But recall that the point of view for this method is
the parent of the child being replaced. The child here is the text node inside the em element, so you must
invoke the replaceChild() method on the em element. Also, the replaceChild() method requires two
parameters. The first parameter is the new node; the second is a reference to the node to be replaced.
Because the script statements get pretty long with the getETementById() method, an intermediate step
grabs a reference to the text node inside the em element:

var 01dChild = document.getElementById("emphasisl").childNodes[0];

Now the script is ready to invoke the replaceChild() method on the em element, swapping the old text
node with the new:

document.getElementById("emphasisl").replaceChild(newText, oldChild);

If you want to capture the old node before it disappears, be aware that the replaceChild() method
returns a reference to the replaced node (which is only in memory at this point and not part of the docu-
ment node hierarchy). You can assign the method statement to a variable and use that old node somewhere
else, if needed.

This may seem like a long way to go; it is, especially if the HTML you are generating is complex. Fortunately,
you can take a simpler approach for replacing text nodes. All it requires is a reference to the text node being
replaced. You can assign that node’s nodeValue property its new string value:

document.getElementById("emphasisl").childNodes[0].nodeValue = "first";

When an elements content is entirely text (for example, a table cell that already has a text node in it), this is
the most streamlined way to swap text on the fly using W3C DOM syntax. This doesn’t work for the cre-
ation of the second paragraph text earlier in this chapter because the text node did not exist yet. The
createTextNode () method had to create it explicitly.

Also remember that a text node does not have any inherent style associated with it. The style of the contain-
ing HTML element governs the style of the text. If you want to change not only the text node’ text, but also
how it looks, you have to modify the style property of the text node’s parent element. Browsers that per-
form these kinds of content swaps and style changes automatically reflow the page to accommodate changes
in the size of the content.

To summarize, Listing 14-2 is a live version of the modifications made to the original document shown in
Listing 14-1. The new version includes a button and script that make the changes described throughout this
discussion of nodes. Reload the page to start over.

185

Part 111

LISTING 14-2

Document Objects Reference

Adding/Replacing DOM Content

<html>

<head>
<title>A Simple Page</title>
{script type="text/javascript">
function modify() {

}

var newElem = document.createElement("p");

newElem.id = "newP";

var newText = document.createTextNode("This is the second paragraph.");
newElem.appendChild(newText);

document.body.appendChild(newElem);
document.getElementById("emphasisl").childNodes[0].nodeValue = "first";

<{/script>
</head>

<body>
<button onclick="modify()">Add/Replace Text</button>

<p id="paragraphl">This is the <em id="emphasisl">one and
only paragraph on the page.</p>

</body>

</htm1>

186

Chapter 15 details node properties and methods that are inherited by all HTML elements. Most are imple-
mented in all modern W3C DOM browsers. Also look to the reference material for the document object in
Chapter 18 for other valuable W3C DOM methods.

A de facto standard: innerHTML

Microsoft was the first to implement the innerHTML property of all element objects starting with Internet
Explorer 4. Although the W3C DOM has not supported this property, scripters frequently find it more con-
venient to modify content dynamically by way of a string containing HTML markup than by creating and
assembling element and text nodes. As a result, most modern W3C DOM browsers, including Moz1 and
Safari 1, support the read/write innerHTML property of all element objects as a de facto standard.

When you assign a string containing HTML markup to the innerHTML of an existing element, the browser
automatically inserts the newly rendered elements into the document node tree. You may also use
innerHTML with unmarked text to perform the equivalent of the Internet Explorer—only innerText

property.

Document Object Model Essentials

Despite the apparent convenience of the innerHTML property compared with the step-by-step process of
manipulating element and text node objects, browsers operate on nodes much more efficiently than on
assembly of long strings. This is one case where less JavaScript code does not necessarily translate to greater
efficiency.

Static W3C DOM HTML objects

The Mozl DOM (but unfortunately, not Internet Explorer 5 or later) adheres to the core JavaScript notion of
prototype inheritance with respect to the object model. When a page loads into Moz1, the browser creates
HTML objects based on the prototypes of each object defined by the W3C DOM. For example, if you use
The Evaluator Sr. (discussed in Chapter 13) to see what kind of object the myP paragraph object is— enter
document.getElementById("myP") in the top text box and click the Evaluate button — it reports that
the object is based on the HTMLParagraphElement object of the DOM. Every instance of a p element
object in the page inherits its default properties and methods from HTMLParagraphElement (which in turn
inherits from HTMLETement, Element, and Node objects—all detailed in the JavaScript binding appendix
of the W3C DOM specification).

You can use scripting to add properties to the prototypes of some of these static objects. To do so, you must
use new features added to Moz1. Two new methods—__defineGetter__ () and __defineSetter__ () —
enable you to assign functions to a custom property of an object.

7 ‘ These methods are Mozilla specific. To prevent their possible collision with standardized
‘ﬂf\ 4SS implementations of these features in future implementations of ECMAScript, the underscore
characters on either side of the method name are pairs of underscore characters.

The functions execute whenever the property is read — the function assigned via the
__defineGetter__() method — or modified — the function assigned through the __defineSetter_ ()
method. The common way to define these functions is in the form of an anonymous function (see Chapter
34). The formats for the two statements that assign these behaviors to an object prototype are as follows:

object.prototype.__defineGetter__("propName", function([paramll,...[,paramN]]]) {
/] statements
return returnlValue;

)

object.prototype.__defineSetter__("propName", function([paramll[,...[,paramN]]]) {
/] statements
return returnlValue;

)

The example in Listing 14-3 demonstrates how to add a read-only property to every HTML element object
in the current document. The property, called childNodeDetai1, returns an object. The object has two
properties: one for the number of element child nodes and one for the number of text child nodes. Note
that the this keyword in the function definition is a reference to the object for which the property is calcu-
lated. And because the function runs each time a script statement reads the property, any scripted changes
to the content after the page loads are reflected in the returned property value.

187

a8 |[IN Document Objects Reference

LISTING 14-3

Adding a Read-Only Prototype Property to All HTML Element Objects

{script type="text/javascript">
if (HTMLETement) {
HTMLETement.prototype. defineGetter_ ("childNodeDetail", function() {

}

P

var result = {elementNodes:0, textNodes:0 }
for (var i = 0; i < this.childNodes.length; i++) {
switch (this.childNodes[i].nodeType) {
case 1:
result.elementNodes++;
break;
case 3:
result.textNodes++;
break;
}
}
return result;

</script>

188

To access the property, use it like any other property of the object. For example:
var BodyNodeDetail = document.body.childNodeDetail;

The returned value in this example is an object, so you use regular JavaScript syntax to access one of the
property values:

var BodyElemNodesCount = document.body.childNodeDetail.elementNodes;

Bidirectional event model

Despite the seemingly conflicting event models of NN4 (trickle down) and 1E4 (bubble up), the W3C DOM
event model (defined in Level 2) manages to employ both event propagation models. This gives the scripter
the choice of where along an event’s propagation path the event gets processed. To prevent conflicts with
existing event model terminology, the W3C model invents many new terms for properties and methods for
events. Some coding probably requires W3C DOM-specific handling in a page aimed at multiple object
models.

The W3C event model also introduces a new concept called the event listener. An event listener is essentially
a mechanism that instructs an object to respond to a particular kind of event — very much like the way the
event handler attributes of HTML tags respond to events. But the DOM recommendation points out that it
prefers a more script-oriented way of assigning event listeners: the addEventListener () method available
for every node in the document hierarchy. Through this method, you advise the browser whether to force
an event to bubble up the hierarchy (the default behavior that is also in effect if you use the HTML attribute
type of event handler) or to be captured at a higher level.

Document Object Model Essentials m

Functions invoked by the event listener receive a single parameter consisting of the event object whose prop-
erties contain contextual details about the event (details such as the position of a mouse click, character code
of a keyboard key, or a reference to the target object). For example, if a form includes a button whose job is
to invoke a calculation function, the W3C DOM prefers the following way of assigning the event handler:

document.getElementById("calcButton").addEventListener("click", doCalc, false);

The addEventListener() method takes three parameters. The first parameter is a string of the event to lis-
ten for; the second is a reference to the function to be invoked when that event fires; and the third parameter
is a Boolean value. When you set this Boolean value to true, it turns on event capture whenever this event is
directed to this target. The function then takes its cue from the event object passed as the parameter:

function doCalc(evt) {
// get shortcut reference to input button's form
var form = evt.target.form;
var results = 0;
// other statements to do the calculation //
form.result.value = results;

}

To modify an event listener, you use the removeEventListener () method to get rid of the old listener
and then employ addEventListener() with different parameters to assign the new one.

Preventing an event from performing its default action is also a different procedure in the W3C event model
than in Internet Explorer. In Internet Explorer 4 (as well as Navigator 3 and 4), you can cancel the default
action by allowing the event handler to evaluate to return false. Although this still works in Internet
Explorer 5 and later, Microsoft includes another property of the window. event object, called
returnValue. Setting that property to false anywhere in the function invoked by the event handler also
kills the event before it does its normal job. But the W3C event model uses a method of the event object,
preventDefault(), to keep the event from its normal task. You can invoke this method anywhere in the
function that executes when the event fires.

Detailed information about an event is contained in an event object that must be passed to an event handler
function where details may be read. If you assign event handlers via the W3C DOM addEventListener()
method or an event handler property, the event object is passed automatically as the sole parameter to the
event handler function. Include a parameter variable to catch the incoming parameter:

function swap(evt) {
// statements here to work with W3C DOM event object
}

But if you assign events through a tag attribute, you must explicitly pass the event object in the call to the
function:

Unfortunately, as of Internet Explorer 7 for Windows and Internet Explorer 5 for Macintosh, the W3C
DOM event model has yet to be supported by Microsoft. You can, however, make the Internet Explorer and
W3C event models work together if you assign event handlers by way of object properties or tag attributes,
and throw in a little object detection as described later in this chapter and in more detail in Chapter 25.

189

=148 |8 Document Objects Reference

190

NOIE

Scripting Trends

Although browser scripting had humble beginnings as a way to put some intelligence into form controls,
the capabilities of the JavaScript language and DOM have inspired many a web developer to create what are
essentially applications. Popular implementations of web-based e-mail systems use extensive scripting and
background communication with the server to keep pages updated quickly without having to fetch and re-
render the complete page each time you delete a message from the inbox list. It’s not uncommon for large
projects to involve multiple scripters (along with specialists in CSS, server programming, artists, and writ-
ers). Wrangling all the code can be a chore.

Separating content from scripting

Those who use CSS to style their sites have learned that separating style definitions from the HTML markup
makes a huge improvement in productivity when it comes time to change colors or font specifications
throughout a site. Instead of having to modify hundreds of tag specifications scattered around the
site, all it takes is a simple tweak of a single CSS rule in one . css file to have that change be implemented
immediately across the board.

The notion of using HTML purely for a page’s structure has also impacted scripting. It is rare these days for
a professional scripter to put an event handler attribute inside an HTML tag. That would be considered too
much mixing of content with behavior. In other words, the HTML markup should be able to stand on its
own so that those with nonscriptable browsers (including those with vision or motor disabilities who use
specialized browsers) can still get the fundamental information provided by the page. Any scripting that
impacts the display or behavior of the page is added to the page after the HTML markup has loaded and
rendered. Even assigning events to elements is done by script after the page load.

Script code is more commonly linked into a page from an external . js file. This isn't part of the separation
of content and scripts trend, but a practice that offers many benefits, such as the same code being instantly
usable on multiple pages. Additionally, when projects involve many code chefs, scripters can work on their
code while writers work on the HTML and designers work on their external CSS code.

I You will see lots of examples in this book that use event handler attributes inside tags and
scripts embedded within the page. This approach is primarily for simplicity of demonstrating a
language or DOM feature.

Using the W3C DOM where possible

Basic support for W3C DOM element referencing and content manipulation has been implemented in
mainstream browsers for so long that you can be assured that composing scripts for that model will work
for the bulk of your visitors. That’s not to say you can assume that every visitor is equipped that way, but
the hassles that scripters used to endure to support conflicting object models are behind us for the most
part. The days of writing extensive branching code for IE and Netscape are not-so-fond memories.

You still want to use object detection techniques to guard against the occasional old browser that stops by.
That's where the technique of assigning event handlers by scripts can save a lot of headaches.

Except for some initializations that might occur while the page loads, most script execution in a web page
occurs at the instigation of an event: A user clicks a button, types something in a text box, chooses from a
select element, and so on. You can prevent older browsers from tripping up on W3C DOM syntax by
doing your fundamental object detection right in the event assignment code, as in the following simplified
example:

Document Object Model Essentials m

function setUpEvents() {
if (document.getElementBylId) {
// statements to bind events to elements
}
}
window.onload = setUpEvents;

Now browsers that don’t have even minimum support for the W3C DOM won't generate script errors when
users click or type, because those events won't be assigned for those browsers. Then scripts that survive
your object detection query can also modify the page, as you saw in Listing 13-2 in Chapter 13.

Handling events

You will still find some places where the W3C DOM isn’t enough. This is particularly true in processing
events, where Internet Explorer (at least through version 7) does not support the W3C DOM way of getting
details about an event to the event handler function. The W3C DOM automatically passes the event object
as a parameter to a handler function. In the Internet Explorer model, the event object is a property of the
window object. Therefore, your functions have to equalize the differences where necessary. For example, to
obtain a single variable representing the event object, regardless of browser, you can use a construction
similar to the following:

function calculate(evt) {
evt = (evt) ? evt : window.event;
// more statements to process event

}

Additional branching is necessary to inspect important details of the event. For example, the Internet
Explorer event object property pointing to the object that received the event is called srcElement, whereas
the W3C DOM version is called target. Again, a little bit of equalizing code in the event handler function
can handle the disparity. When your script has a reference to the element receiving the event, you can start
using W3C DOM properties and methods of the element, because Internet Explorer supports those. You
can find more details on event objects in Chapter 25.

Standards Compatibility Modes
(DOCTYPE Switching)

Both Microsoft and Netscape/Mozilla discovered that they had, over time, implemented CSS features in ways
that ultimately differed from the published standards that came later (usually after much wrangling among
working-group members). To compensate for these differences and make a clean break to be compatible
with the standards, the major browser makers decided to let the page author’s choice of <!DOCTYPE>
header element details determine whether the document was designed to follow the old way (sometimes
called quirks mode) or the standards-compatible way. The tactic, known informally as DOCTYPE switching,
is implemented in Internet Explorer 6 and later, Internet Explorer 5 for the Mac, and all Mozilla-based
browsers.

191

a8 |[IN Document Objects Reference

192

Although most of the differences between the two modes are small, there are some significant differences
between the two modes in Internet Explorer 6 and later, particularly when styles or DHTML scripts rely on
elements designed with borders, margins, and padding. Microsoft’s original box model measured the
dimensions of elements in a way that differed from the eventual CSS standard.

To place the affected browsers in CSS standards—compatible mode, you should include a <!DOCTYPE> ele-
ment at the top of every document that specifies any of the following details:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/REC-htm140/Toose.dtd">

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN"
"http://www.w3.0rg/TR/REC-htm140/frameset.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.0rg/TR/REC-htm140/strict.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1l-frameset.dtd">

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1l-strict.dtd">

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtm111/DTD/xhtm111.dtd">

Be aware, however, that older versions of Internet Explorer for Windows, such as Internet Explorer 5 or
Internet Explorer 5.5, are ignorant of the standards-compatible mode and will use the old Microsoft quirks
mode regardless of <!DOCTYPE> setting. But using the standards-compatible mode DOCTYPE is more likely
to force your content and stylesheets to render more similarly across the latest browsers.

Where to Go from Here

These past two chapters provided an overview of the core language and object model issues that anyone
designing pages that use JavaScript must confront. The goal here is to stimulate your own thinking about
how to embrace or discard levels of compatibility with your pages as you balance your desire to generate
cool pages and serve your audience. From here on, the difficult choices are up to you.

To help you choose the objects, properties, methods, and event handlers that best suit your requirements, the
rest of the chapters in Part IlI and all of Part IV provide in-depth references to the DOM and core JavaScript
language features. Observe the compatibility ratings for each language term very carefully to help you deter-
mine which features best suit your audience’s browsers. Most example listings are complete HTML pages that

Document Object Model Essentials m

you can load in various browsers to see how they work. Many others invite you to explore how things work
through The Evaluator Sr. (see Chapter 13). Play around with the files, making modifications to build your
own applications or expanding your working knowledge of JavaScript in the browser environment.

The language and object models have grown in the handful of years they have been in existence. The amount
of language vocabulary has increased astronomically. It takes time to drink it all in and feel comfortable that
you are aware of the powers available to you. Don't worry about memorizing the vocabulary. It’s more impor-
tant to acquaint yourself with the features and come back later when you need the implementation details.

Be patient. Be persistent. The reward will come.

193

he object model specifications implemented in Internet Explorer 4 or later

and W3C/Mozilla-based browsers feature a large set of scriptable objects

that represent what we often call generic HTML elements. Generic ele-
ments can be divided into two groups. One group, such as the b and strike
elements, defines font styles to be applied to enclosed sequences of text. The
need for these elements (and the objects that represent them) is all but gone due
to more page designers using style sheets. The second group of elements assigns
context to content within their start and end tags. Examples of contextual ele-
ments include h1, blockquote, and the ubiquitous p element. Although
browsers sometimes have consistent visual ways of rendering contextual elements
by default (for example, the large bold font of an <h1> tag), the specific render-
ing is not the intended purpose of the tags. No formal standard dictates that text
within an em element must be italicized: The style simply has become the custom
since the very early days of browsers.

All of these generic elements share a large number of scriptable properties, meth-
ods, and event handlers. The sharing extends not only among generic elements,
but also among virtually every renderable element — even if it has additional,
element-specific properties, methods, and/or event handlers that I cover in depth
in other chapters of this reference. Rather than repeat the details of these shared
properties, methods, and event handlers for each object throughout this refer-
ence, [describe them in detail only in this chapter (unless there is a special
behavior, bug, or trick associated with the item in some object described else-
where). In succeeding reference chapters, each object description includes a list
of the object’s properties, methods, and event handlers, but I do not list shared
items over and over (making it hard to find items that are unique to a particular
element). Instead, you see a pointer back to this chapter for the items in common
with generic HTML element objects.

195

INTHIS C

Working with HTML
element objects

Common properties
and methods

Event handlers of all
element objects

Document Objects Reference

elementObject

Generic Objects

Table 15-1 lists all of the objects that I treat in this reference as generic objects. All of these objects share the
properties, methods, and event handlers described in succeeding sections and have no special items that

require additional coverage elsewhere in this book.

TABLE 15-1

Generic HTML Element Objects

Formatting Objects Contextual Objects
b acronym
big address
center cite
i code
nobr dfn
rt del
ruby div
S em
small ins
strike kbd
sub lTisting
sup p
tt plaintext
u pre
wbr samp
span
strong
var
xmp
Properties Methods Event Handlers
accessKey addBehavior() onactivate
alll] addEventListener() onafterupdate
attributes[] appendChild() onbeforecopy
baseURI applyElement() onbeforecut

behaviorUrns([]

attachEvent()

onbeforedeactivate

canHaveChildren

blur()

onbeforeeditfocus

canHaveHTML

clearAttributes()

onbeforepaste

196

Generic HTML Element Objects

elementObject
Properties Methods Event Handlers
childNodes[] click() onbeforeupdate
children cloneNode() onblur
cite compareDocumentPosition() oncellchange
className componentFromPoint () onclick
clientHeight contains() oncontextmenu
clientlLeft createControlRange() oncontrolselect
clientTop detachEvent() oncopy
clientWidth dispatchEvent() oncut
contentEditable doScroll1() ondataavailable
currentStyle dragDrop() ondatasetchanged

dateTime fireEvent() ondatasetcomplete
dataFld focus() ondblclick
dataFormatAs getAdjacentText() ondeactivate
dataSrc getAttribute() ondrag

dir getAttributeNode() ondragend
disabled getAttributeNodeNS() ondragenter
document getAttributeNS() ondragleave
filters[] getBoundingClientRect() ondragover
firstChild getClientRects() ondragstart
height getElementsByTagName() ondrop
hideFocus getElementsByTagNameNS() onerrorupdate
id getExpression() onfilterchange
innerHTML getFeature() onfocus
innerText getUserData() onfocusin
isContentEditable hasAttribute() onfocusout
isDisabled hasAttributeNS() onhelp
isMultiline hasAttributes() onkeydown
isTextEdit hasChildNodes () onkeypress
Tang insertAdjacentElement () onkeyup
Tanguage insertAdjacentHTML() onlayoutcomplete
TastChild insertAdjacentText() onlosecapture
length insertBefore() onmousedown
localName isDefaultNamespace() onmouseenter
namespaceURI isEqualNode() onmouseleave

nextSibling

isSameNode()

onmousemove

continued

197

Document Objects Reference

elementObject

(continued)
Properties Methods Event Handlers
nodeName isSupported() onmouseout
nodeType item() onmouseover
nodeValue lTookupNamespaceURI() onmouseup
offsetHeight TookupPrefix() onmousewheel
offsetlLeft mergeAttributes() onmove
offsetParent normalize() onmoveend
offsetTop releaseCapture() onmovestart
offsetWidth removeAttribute() onpaste
outerHTML removeAttributeNode() onpropertychange
outerText removeAttributeNS() onreadystatechange
ownerDocument removeBehavior() onresize

parentElement

removeChild()

onresizeend

parentNode removekventListener() onresizestart
parentTextEdit removeExpression() onrowenter
prefix removeNode () onrowexit

previousSibling

replaceAdjacentText()

onrowsdelete

readyState

replaceChild()

onrowsinserted

recordNumber

replaceNode()

onscroll

runtimeStyle

scrollIntoView()

onselectstart

scopeName

setActive()

scrollHeight

setAttribute()

scrolllLeft

setAttributeNode()

scrollTop

setAttributeNodeNS()

scrollWidth

setAttributeNS()

sourcelndex

setCapture()

style setExpression()
tabIndex setUserData()
tagName swapNode ()
tagUrn tags()
textContent toString()
title urns()

uniquelD

unselectable

width

198

Generic HTML Element Objects

elementObject.accessKey

Syntax

To access element properties or methods, use this:

(1E4+) [document.all.JobjectID.property | method([parameters])
(IE5+/W3C) document.getElementById(objectID).property | method([parameters])

It’s important to note that unless you have the specific need of supporting IE4, which is highly
unlikely at this point in time, you should rely solely on the latter approach of referencing ele-
ment properties and methods via the getElementById () method.

About these objects

All objects listed in Table 15-1 are document object model (DOM) representations of HTML elements that
influence either the font style or the context of some HTML content. The large set of properties, methods,
and event handlers associated with these objects also applies to virtually every other DOM object that repre-
sents an HTML element. Discussions about object details in this chapter apply to dozens of other objects
described in succeeding chapters of this reference section.

Properties
accessKey

Value: One-character string Read/Write
Compatibility: WinlE4+, MaclE4+, NN7+, Moz+, Safari+

For many elements, you can specify a keyboard character (letter, numeral, or punctuation symbol) that —
when typed as an Alt+key combination (on the Win32 OS platform), a Ctrl+key combination (on the
MacOS), or a Shift+Esc+key combination (on Opera) — brings focus to that element. An element that has
focus is the one that is set to respond to keyboard activity. If the newly focused element is out of view in the
documents current scroll position, the document is scrolled to bring that focused element into view (also
see the scrol1IntoView() method). The character you specify can be an uppercase or lowercase value,
but these values are not case sensitive. If you assign the same letter to more than one element, the user can
cycle through all elements associated with that accessKey value.

Internet Explorer gives some added powers to the accessKey property in some cases. For example, if you
assign an accessKey value to a Tabel element object, the focus is handed to the form element associated
with that label. Also, when elements such as buttons have focus, pressing the spacebar acts the same as
clicking the element with a mouse.

Exercise some judgment in selecting characters for accessKey values. If you assign a letter that is normally
used to access one of the Windows version browser’s built-in menus (for example, Alt+F for the File menu),
that accessKey setting overrides the browser’s normal behavior. To users who rely on keyboard access to
menus, your control over that key combination can be disconcerting.

Example

Listing 15-1 shows an example of how to use the accessKey property to manipulate the keyboard interface
for navigating a web page. When you load the script in Listing 15-1, adjust the height of the browser win-
dow so that you can see nothing below the second dividing rule. Enter any character in the Settings portion
of the page and press Enter. (The Enter key may cause your computer to beep.) Then hold down the Alt
(Windows) or Ctrl (Mac) key while pressing the same keyboard key. The element from below the second
divider should come into view.

199

Document Objects Reference

elementObject.accessKey

T The property assignment event handling technique employed throughout the code in this chap-
" ter and much of the book is a deliberate simplification to make the code more readable. It is
generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent () (IE5+) method. A modern cross-browser event handling technique is
explained in detail in Chapter 25.

LISTING 15-1

Controlling the accessKey Property

<html1>
<head>
{title>accessKey Property</title>
{script type="text/javascript">
function assignKey(type, elem) {
if (window.event.keyCode == 13) {
switch (type) {
case "button":
document.forms["output"].accessl.accessKey = elem.value;
break;
case "text":
document.forms["output"].access2.accessKey = elem.value;
break;
case "table":
document.getElementById("myTable").accessKey = elem.value;
}
return false;
}
}
<{/script>
</head>
<body>
<hl>accessKey Property Lab</hl>
<hr />
Settings:

<form name="input">
Assign an accessKey value to the Button below and press Return: <input
type="text" size="2" maxlength="1"
onkeypress="return assignKey('button', this)" />

Assign an accessKey value to the Text Box below and press Return:
<input type="text" size="2" maxlength="1"
onkeypress="return assignKey('text', this)" />

Assign an accessKey value to the Table below (IE5.5+ only) and press
Return: <input type="text" size="2" maxlength="1"
onkeypress="return assignKey('table', this)" />
</form>

Then press Alt (Windows) or Control (Mac) + the key.

Size the browser window to view nothing lower than this line.
<hr />

200

Generic HTML Element Objects

elementObjectCollection.all

<form name="output" onsubmit="return false">
<input type="button" name="accessl" value="Standard Button" /> <input
type="text" name="access2" />
</form>
<table id="myTable" cellpadding="10" border="2">
<tr>
<th>Quantity</th>
{th>Description</th>
<th>Price</th>
</tr>
<tbody bgcolor="red">
<tr>
<td width="100">4</td>
<td>Primary Widget</td>
<td>$14.96</td>
</tr>
<tr>
<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>
</tr>
</tbody>
</table>
</body>
</html1>

Related Item: scrollIntoView() method

alll]

Value: Array of nested element objects Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

Exclusive to Internet Explorer, the al1 property is a collection (array) of every HTML element and (in IE5+)
XML tag within the scope of the current object. Items in this array appear in source-code order, and the
array is oblivious to element containment among the items. For HTML element containers, the source-code
order is dependent on the position of the start tag for the element; end tags are not counted. But for XML
tags, end tags appear as separate entries in the array.

Every document.al1 collection contains objects for the htm1, head, title, and body element objects even
if the actual HTML source code omits the tags. The object model creates these objects for every document
that is loaded into a window or frame. Although the document.al1 reference may be the most common
usage, the al1 property is available for any container element. For example, document.forms[0].a11
exposes all elements defined within the first form of a page.

You can access any element that has an identifier assigned to its id attribute by that identifier in string form
(as well as by index integer). Rather than use the performance-costly eval () function to convert a string to
an object reference, use the string value of the name as an array index value:

var paragraph = document.all["myP"];

201

202

Document Objects Reference

elementObject.attributes

Internet Explorer enables you to use either square brackets or parentheses for single collection index values.
Thus, the following two examples evaluate identically:

var paragraph = document.all["myP"];
var paragraph = document.all("myP");

In the rare case that two or more elements within the a11 collection have the same 1D, the syntax for the
string index value returns a collection of just those identically named elements. But you can use a second
argument (in parentheses) to signify the integer of the initial collection and thus single out a specific
instance of that named element:

var secondRadio = document.all("group0",1);

As a more readable alternative, you can use the item() method (described later in this chapter) to access
the same kinds of items within a collection:

var secondRadio = document.all.item("group0",1);

Also see the tags () method (later in this chapter) as a way to extract a set of elements from an a11 collec-
tion that matches a specific tag name.

Although a few non-IE browsers support the a1l collection, you should strongly consider using the
document.getElementById() method described in Chapter 18, which is the official W3C and cross-
browser approach for referencing elements. The document.getElementById() method is supported
in [E5+.

Example

Use The Evaluator (see Chapter 13) to experiment with the a11 collection. Enter the following statements
one at a time in the lower text box, and review the results in the text area for each:

document.all
myTable.all
myP.all

If you encounter a numbered element within a collection, you can explore that element to see which tag is
associated with it. For example, if one of the results for the document.a11 collection says
document.all.8=[object], enter the following statement in the topmost text box:

document.all[8].tagName

Related Items: item(), tags(), document.getElementById() methods

attributes[]

Value: Array of attribute object references Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The attributes property consists of an array of attributes specified for an element. In IE5+, the attributes
array contains an entry for every possible property that the browser has defined for its elements —even if
the attribute is not set explicitly in the HTML tag. Also, any attributes that you add later via script facilities
such as the setAttribute() method are not reflected in the attributes array. In other words, the IE5+
attributes array is fixed, using default values for all properties except those that you explicitly set as attrib-
utes in the HTML tag.

Mozilla browsers’ attributes property returns an array that is a named node map (in W3C DOM
terminology) — an object that has its own properties and methods to read and write attribute values. For
example, you can use the getNamedItem(attrName) and item(index) methods on the array returned
from the attributes property to access individual attribute objects via W3C DOM syntax.

Generic HTML Element Objects

elementObject.attributes

IE5+ and Mozilla have different ideas about what an attribute object should be. Table 15-2 shows the vari-
ety of properties of an attribute object as defined by the two object models. The larger set of properties in
Morzilla reveals its dependence on the W3C DOM node inheritance model discussed in Chapter 14.

TABLE 15-2

Attribute Object Properties

Property 1E5+ Moz Description

attributes No Yes Array of nested attribute objects (null)
childNodes No Yes Child node array

firstChild No Yes First child node

lastChild No Yes Last child node

localName No Yes Name within current namespace
name No Yes Attribute name

nameSpaceURI No Yes XML namespace URI

nextSibling No Yes Next sibling node

nodeName Yes Yes Attribute name

nodeType No Yes Node type (2)

nodeValue Yes Yes Value assigned to attribute
ownerDocument No Yes Document object reference
ownerElement No Yes Element node reference
parentNode No Yes Parent node reference

prefix No Yes XML namespace prefix
previousSibling No Yes Previous sibling node

specified Yes Yes Whether attribute is explicitly specified (Boolean)
value No Yes Value assigned to attribute

The most helpful property of an attribute object is the Boolean specified property. In IE, this lets you
know whether the attribute is explicitly specified in the element’s tag. Because Mozilla returns only explic-
itly specified attributes in the attributes array, the value in Mozilla is always true. Most of the time,
however, you'll probably use an element objects getAttribute() and setAttribute() methods to read
and write attribute values.

Example

Use The Evaluator (see Chapter 13) to examine the values of the attributes array for some of the ele-
ments in that document. Enter each of the following expressions in the bottom text box, and see the array
contents in the Results text area for each:

document.body.attributes
document.getElementById("myP").attributes
document.getElementById("myTable").attributes

203

204

Document Objects Reference

elementObject.canHaveChildren

If you have both IE5+ and a W3C DOM-compatible browser, compare the results you get for each of these
expressions. To view the properties of a single attribute in WinlE5+ by accessing the attributes array,
enter the following statement in the bottom text box:

document.getElementById("myP").attributes["class"]
For W3C browsers, IE6+, and MaclE5, use the W3C DOM syntax:
document.getElementById("myP").attributes.getNamedItem("class")

Related Items: getAttribute(), mergeAttributes(), removeAttribute(), setAttribute()
methods

baseURI

Value: Full URI string Read-Only
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

This property reveals the full path to the source from which the element was served. The property is handy
in applications that import XML data, in which case the source of an XML element is likely different from
the HTML page in which it is being processed.

behaviorUrns[]

Value: Array of behavior URN strings Read-Only
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The Internet Explorer behaviorUrns property is designed to provide a list of addresses, in the form of
URNs (Uniform Resource Names), of all behaviors assigned to the current object. If there are no behaviors,
the array has a length of zero. In practice, however, IE5+ always returns an array of empty strings. Perhaps
the potential exposure of URNSs by script was deemed to be a privacy risk.

Related Item: urns () method

canHaveChildren

Value: Boolean Read-Only
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

Useful in some dynamic content situations, the canHaveCh1ildren property reveals whether a particular
element is capable of containing a child (nested) element. Most elements that have start and end tags (par-
ticularly the generic elements covered in this chapter) can contain nested elements. A nested element is
referred to as a child of its parent container.

Example

Listing 15-2 shows an example of how to use the canHaveChildren property to visually identify elements
on a page that can have nested elements. This example uses color to demonstrate the difference between an
element that can have children and one that cannot. The first button sets the color style property of every
visible element on the page to red. Thus, elements (including the normally non-childbearing ones such as
hr and input) are affected by the color change. But if you reset the page and click the largest button, only
those elements that can contain nested elements receive the color change.

Generic HTML Element Objects

elementObject.canHaveChildren

LISTING 15-2

Reading the canHaveChildren Property

<html>
<head>
<title>canHaveChildren Property</title>
<script type="text/javascript">
function colorA11() {
var elems = document.getElementsByTagName("*");
for (var i = 0; 1 < elems.length; i++) {
elems[i].style.color = "red";
}
}

function colorChildBearing() {
var elems = document.getElementsByTagName("*");
for (var i = 0; 1 < elems.length; i++) {
if (elems[i].canHaveChildren) {

elems[i].style.color = "red";
}
}
}
</script>
</head>
<body>
<hl>canHaveChildren Property Lab</hl>
<hr />

<form name="input">
<input type="button" value="Color All Elements"
onclick="colorA11()" />

<input type="button" value="Reset" onclick="history.go(0)" />

<input type="button"
value="Color Only Elements That Can Have Children"
onclick="colorChildBearing()" />
</form>

<hr />
<form name="output">
<input type="checkbox" checked="checked" />Your basic checkbox <input
type="text" name="access2" value="Some textbox text." />
</form>
<table id="myTable" cellpadding="10" border="2">
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>
</tr>
<tbody>
<tr>
<td width="100">4</td>

continued

205

Document Objects Reference
elementObject.childNodes

(R N\ YA (continued)

<td>Primary Widget</td>
<td>$14.96</td>

</tr>

<tr>
<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>

</tr>

</tbody>
</table>
</body>
</html>

Related Items: childNodes, firstChild, TastChild, parentElement, parentNode properties;
appendChild(), hasChildNodes (), removeChild() methods.

canHaveHTML
Value: Boolean Read-Only and Read/Write
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

Not all HTML elements are containers of HTML content. The canHaveHTML property lets scripts find out
whether a particular object can accept HTML content, such as for insertion or replacement by object meth-
ods. The value for a p element, for example, is true. The value for a br element is false. The property is
read-only for all elements except HTML Components, in which case it is read/write.

Example

Use The Evaluator (see Chapter 13) in WinlE5+ to experiment with the canHaveHTML property. Enter the
following statements in the top text box, and observe the results:

document.getElementById("input").canHaveHTML
document.getElementById("myP").canHaveHTML

The first statement returns false because an input element (the top text box, in this case) cannot have
nested HTML. But the myP element is a p element that gladly accepts HTML content.

Related Items: appendChild(), insertAdjacentHTML(), insertBefore() methods

childNodes[]

Value: Array of node objects Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The childNodes property consists of an array of node objects contained by the current object. Note that
child nodes consist of both element objects and text nodes. Therefore, depending on the content of the cur-
rent object, the number of childNodes and children collections may differ.

206

Generic HTML Element Objects
elementObject.childNodes

If you use the childNodes array in a for loop that iterates through a sequence of HTML (or
XML) elements, watch out for the possibility that the browser treats source-code whitespace
(blank lines between elements and even simple carriage returns between elements) as text nodes. This
potential problem affects MaclE5 and Mozilla. If present, these extra text nodes occur primarily surrounding
block elements.

Most looping activity through the childNodes array aims to examine, count, or modify element nodes
within the collection. If that is your script’s goal, test each node returned by the childNodes array, and ver-
ify that the nodeType property is 1 (element) before processing that node; otherwise, skip the node. The
skeletal structure of such a loop follows:
for (var i = 0; i < myElem.childNodes.length; i++) {
if (myElem.childNodes[i].nodeType == 1) {
statements to work on element node i
}
}

The presence of these phantom text nodes also impacts the nodes referenced by the firstChild and
lTastChild properties, described later in this chapter.

Example

Listing 15-3 contains an example of how you might code a function that walks the child nodes of a given
node. The walkChildNodes () function shown in the listing accumulates and returns a hierarchical list of
child nodes from the point of view of the document’s HTML element (the default) or any element whose ID
you pass as a string parameter. This function is embedded in The Evaluator so that you can inspect the
child node hierarchy of that page or (when using evaluator. js for debugging as described in Chapter 45
on the CD-ROM) the node hierarchy within any page you have under construction. Try it out in The
Evaluator by entering the following statements in the top text box:

walkChildNodes()
walkChildNodes(document.getElementById("myP"))

The results of this function show the nesting relationships among all child nodes within the scope of the
initial object. It also shows the act of drilling down to further childNodes collections until all child nodes
are exposed and catalogued. Text nodes are labeled accordingly. The first 15 characters of the actual text are
placed in the results to help you identify the nodes when you compare the results against your HTML
source code.

LISTING 15-3

Collecting Child Nodes

function walkChildNodes(objRef, n) {

var obj;
if (objRef) {
if (typeof objRef == "string") ({
obj = document.getElementById(objRef);
} else {
obj = objRef;

}

continued

207

Document Objects Reference
elementObject.childNodes

LISTING 15-3 [JEelligliEe)]

} else {
obj = (document.body.parentElement) ?
document.body.parentElement : document.body.parentNode;
}
var output = "";
var indent = ;
var i, group, txt;
if (n) {
for (i =0; i < n; i++) {
indent += "+---";

}

} else {
n=20;
output += "Child Nodes of <" + obj.tagName;
output += "d\n=====================\n";

}
group = obj.childNodes;
for (i = 0; i < group.length; i++) {
output += indent;
switch (grouplil.nodeType) ({
case 1:
output += "<" + group[iJ.tagName;
output += (groupl[il.id) ? " ID=" + groupli].id :
output += (group[il.name) ? " NAME=" + group[il.name :
output += ">\n";
break;
case 3:
txt = group[il.nodeValue.substr(0,15);
output += "[Text:\"" + txt.replace(/[\r\nl/g,"<cr>");
if (group[il.nodeValue.length > 15) {

output += "...";

nn,
B

}
output += "\"I\n";
break;
case 8:
output += "[ICOMMENT!I\n";
break;
default:
output += "[Node Type = " + grouplil.nodeType + "J\n";
}
if (group[il.childNodes.length > 0) {
output += walkChildNodes(group[il, n+1);
}
}

return output;

208

Generic HTML Element Objects

elementObject.children

Related Items: nodeName, nodeType, nodeValue, parentNode properties; cloneNode(),
hasChildNodes (), removeNode(), replaceNode(), swapNode () methods

children

Value: Array of element objects Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari 1.2+

The children property consists of an array of element objects contained by the current object. Unlike the
childNodes property, children does not take into account text nodes, but focuses strictly on the HTML
(and XML) element containment hierarchy from the point of view of the current object. Also unlike the
childNodes property, the children property works only in Internet Explorer and Safari 1.2+. Children
exposed to the current object are immediate children only. If you want to get all element objects nested
within the current object (regardless of how deeply nested they are), use the a11 collection instead.

Example

Listing 15-4 shows how you can use the children property to walk the child nodes of a given node. This
function accumulates and returns a hierarchical list of child elements from the point of view of the docu-
ment’s HTML element (the default) or any element whose ID you pass as a string parameter. This function is
embedded in The Evaluator so that you can inspect the parent—child hierarchy of that page or (when using
evaluator.js for debugging as described in Chapter 45 on the CD-ROM) the element hierarchy within
any page you have under construction. Try it out in The Evaluator by entering the following statements in
the top text box:

walkChildren()
walkChildren("myTable")

Notice in this example that the walkChildren() function is called with the name of an element instead of
acall to document.getElementId(). This reveals the flexibility of the walkChildren() function and
how it can operate on either an object or the name of an object (element). The walkChildNodes () func-
tion in Listing 15-3 offers the same flexibility.

The results of the walkChildren() function show the nesting relationships among all parent and child ele-
ments within the scope of the initial object. It also shows the act of drilling down to further children col-
lections until all child elements are exposed and cataloged. The element tags also display their id and/or
name attribute values if any are assigned to the elements in the HTML source code.

LISTING 15-4

Collecting Child Elements

function walkChildren(objRef, n) {

var obj;
if (objRef) {
if (typeof objRef == "string") f{
obj = document.getElementById(objRef);
} else {
obj = objRef;
}
} else {

obj = document.body.parentElement;

continued

209

Document Objects Reference

elementObject.className

(R N\l W (continued)

}
var output = "";
var indent = "";
var i, group;
if (n) {
for (i = 0; i < n; i++) |
indent += "+---";

}
} else {
n=20;
output += "Children of <" + obj.tagName;
output += "d\n=====================\n";

}

group = obj.children;

for (i = 0; i < group.length; i++) {
output += indent + "<" + group[il.tagName;
output += (group[il.id) ? " ID=" + groupl[i].id :
output += (group[il.name) ? " NAME=" + group[il.name :
output += ">\n";
if (group[il.children.length > 0) {

output += walkChildren(groupl[i], n+l);

}

nn o,
B

}
return output;

Related Items: canHaveChildren, firstChild, TastChild, parentElement properties;
appendChild(), removeChild(), replaceChild() methods

cite
Value: URL string Read/Write
Compatibility: WinlE6+, MaclE-, NN6+, Moz+, Safari+

The cite property contains a URL that serves as a reference to the source of an element, as in the author of
a quote. The property is intended to apply to only the blockquote, g, del, and ins element objects, but
IE supports it in a wider range of text content objects. This may or may not be a mistake, so it'’s probably
not a safe bet to use the property outside its intended elements.

className

Value: String Read/Write
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

A class name is an identifier that is assigned to the c1ass attribute of an element. To associate a cascading
style sheets (CSS) rule with several elements in a document, assign the same identifier to the class attri-
butes of those elements, and use that identifier (preceded by a period) as the CSS rule’s selector. An element’s
className property enables the application of different CSS rules to that element under script control.
Listing 15-5 shows an example of such a script.

210

Generic HTML Element Objects

elementObject.className

Example

The style of an element toggles between on and off in Listing 15-5 by virtue of setting the elements className
property alternatively to an existing style sheet class selector name and an empty string. When you set the
className to an empty string, the default behavior of the h1 element governs the display of the first header. A
click of the button forces the style sheet rule to override the default behavior in the first h1 element.

LISTING 15-5

Working with the className Property

<html>
<head>

<title>className Property</title>

{style type="text/css">

.special {font-size:16pt; color:red}

{/style>

{script type="text/javascript">

function toggleSpecialStyle(elemID) {

var elem = (document.all) ? document.all(elemID)

document.getElementById(elemlID);

if (elem.className == "") {
elem.className = "special";
} else {

elem.className =
}
}
</script>
</head>
<body>
<h1>className Property Lab</h1l>
<her />
<form name="input">
<input type="button" value="Toggle Class Name"
onclick="toggleSpecialStyle('headl")" />
</form>

<hl id="headl">ARTICLE I</h1>

<p>Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

<h1>ARTICLE II</h1>

<p>A well regulated militia, being necessary to the security of a free
state, the right of the people to keep and bear arms, shall not be
infringed.</p>

</body>
</html>

211

Document Objects Reference

elementObject.clientHeight

You can also create multiple versions of a style rule with different class selector identifiers and apply them at
will to a given element.

Related Items: rule, stylesheet objects (Chapter 26); id property

clientHeight

clientWidth

Value: Integer Read-Only
Compatibility: WinlE4+, MaclE4+, NN7, Moz1.0.1+, Safari+

These two properties by and large reveal the pixel height and width of the content within an element whose
style sheet rule includes height and width settings. In theory, these measures do not take into account any
margins, borders, or padding that you add to an element by way of style sheets. In practice, however, differ-
ent combinations of borders, margins, and padding influence these values in unexpected ways. One of the
more reliable applications of the c1ientHeight property enables you to discover, for example, where the
text of an overflowing element ends. To read the rendered dimensions of an element, you are better served
across browsers with the offsetHeight and of fsetWidth properties.

For the document . body object, the c1ientHeight and c1ientWidth properties return the inside height
and width of the window or frame (plus or minus a couple of pixels). These take the place of desirable, but
nonexistent, window properties in IE.

Unlike earlier versions, Internet Explorer 5+ expanded the number of objects that employ these properties
to include virtually all objects that represent HTML elements. Values for these properties in Mozilla-based
browsers are zero except for document . body, which measures the browser’s current content area.

Example

Listing 15-6 for IE includes an example of how to size content dynamically on a page based on the client-
area width and height. This example calls upon the clientHeight and c1ientWidth properties of a div
element that contains a paragraph element. Only the width of the div element is specified in its style sheet
rule, which means that the paragraph’s text wraps inside that width and extends as deeply as necessary to
show the entire paragraph. The c1ientHeight property describes that depth. The c1ientHeight prop-
erty then calculates where a logo image should be positioned immediately after div, regardless of the length
of the text. As a bonus, the c1ientWidth property helps the script center the image horizontally with
respect to the paragraph’s text.

LISTING 15-6

Using clientHeight and clientWidth Properties

<html1>
<head>
<title>clientHeight and clientWidth Properties</title>
<script type="text/javascript">
function showlogo() {
var paragraphW = document.getElementById("myDIV").clientWidth;
var paragraphH = document.getElementById("myDIV").clientHeight;
// correct for Windows/Mac discrepancies
var paragraphTop = (document.getElementById("myDIV").clientTop) ?
document.getElementById("myDIV").cTientTop :
document.getElementById("myDIV").offsetTop;

212

Generic HTML Element Objects

elementObject.clientLeft

var logoW = document.getElementById("logo").style.pixelWidth;
// center Togo horizontally against paragraph
document.getElementById("logo").style.pixelleft =
(paragraphW-logoW) / 2;
// position image immediately below end of paragraph
document.getElementById("logo").style.pixelTop =
paragraphTop + paragraphH;
document.getElementById("logo").style.visibility = "visible";
}
</script>
<{/head>
<body>
<button onclick="showlLogo()">Position and Show Logo Art</button>
<div id="logo" style="position:absolute; width:120px; visibility:hidden">

</div>
<div id="myDIV" style="width:200px">
<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco Taboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit involuptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident.</p>
</div>
</body>
</html1>

To assist in the vertical positioning of the logo, the of fsetTop property of the div object provides the
position of the start of the div with respect to its outer container (the body). Unfortunately, MaclE uses the
clientTop property to obtain the desired dimension. That measure (assigned to the paragraphTop
variable), plus the c1ientHeight of the div, provides the top coordinate of the image.

Related Items: of fsetHeight, of fsetWidth properties

clientlLeft
clientTop

Value: Integer Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

The purpose and names of the cl1ientlLeft and c1ientTop properties are confusing at best. Unlike the
clientHeight and c1ientWidth properties, which apply to the content of an element, the c1ientLeft
and c1ientTop properties return essentially no more information than the thickness of a border around an
element — provided that the element is positioned. If you do not specify a border or do not position the ele-
ment, the values are zero (although the document.body object can show a couple of pixels in each direc-
tion without explicit settings). If you are trying to read the left and top coordinate positions of an element,
the of fsetLeft and of fsetTop properties are more valuable in WinlE; as shown in Listing 15-6, how-
ever, the c1ientTop property returns a suitable value in MaclE. Virtually all elements have the
clientlLeft and clientTop properties in IE5+, whereas support in MaclE is less consistent.

Related Items: offsetlLeft, of fsetTop properties

213

Document Objects Reference

elementObject.contentEditable

contentEditable

Value: Boolean Read/Write
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari 1.2+

1E5.5 introduced the concept of editable HTML content on a page. Element tags can include a
contenteditable attribute whose value is echoed via the contentEditable property of the element.
The default value for this property is inherit, which means that the property inherits whatever setting this
property has in the hierarchy of HTML containers outward to the body. If you set the contentEditable
property to true, that element and all nested elements set to inherit the value become editable; conversely,
a setting of false turns off the option to edit the content. Safari automatically provides a visual cue for
editable elements by giving an editable element a glowing blue border.

Example

Listing 15-7 demonstrates how to use the contentEditable property to create a very simple poetry editor.
When you click the button of a freshly loaded page, the toggleEdit () function captures the opposite of the
current editable state via the isContentEditable property of the div that is subject to edit. You switch on
editing for that element in the next statement by assigning the new value to the contentEditable property
of the div. For added impact, turn the text of the div to red to provide additional user feedback about what
is editable on the page. You can also switch the button label to one that indicates the action invoked by the
next click of that button.

LISTING 15-7

Using the contentEditable Property

<htm1>
<head>
{style type="text/css">
.normal {color: black}
.editing {color: red}
</style>
{script type="text/javascript">
function toggleEdit() {
var newState = leditableText.isContentEditable;
editableText.contentEditable = newState;
editableText.className = (newState) ? "editing" : "normal";
editBtn.innerText = (newState) ? "Disable Editing" : "Enable Editing";
1
<{/script>
<title>
<Jtitle>
</head>
<body>
<h1>Poetry Editor</hl>
<hr />
<p>Turn on editing to modify the following text:</p>
<div id="noneditableText">
Roses are red,

Violets are blue.

214

Generic HTML Element Objects

elementObject.dateTime

</div>

<div id="editableText">
Line 3,

Line 4.

</div>

<p><button id="editBtn" onclick="toggleEdit()"
onfocus="this.blur()">Enable Editing</button></p>

<{/body>
</htm1>

Related Item: isContentEditable property

currentStyle

Value: style object Read-Only
Compatibility: WinlE5+, MacIE5+, NN-, Moz-, Safari-

Every element has style attributes applied to it, even if those attributes are the browser’s default settings.
Because an element’s sty1e object reflects only those properties whose corresponding attributes are explic-
itly set via CSS statements, you cannot use the sty1e property of an element object to view default style
settings applied to an element. That’s where the currentStyle property comes in.

This property returns a read-only sty1e object that contains values for every possible sty1e property
applicable to the element. If a sty1e property is explicitly set via CSS statement or script adjustment, the
current reading for that property is also available here. Thus, a script can inquire about any property to
determine whether it should change to meet some scripted design goal. For example, if you surround some
text with an tag, the browser by default turns that text into an italic font style. This setting is not
reflected in the elements style object (fontStyle property) because the italic setting was not set via CSS;
by contrast, the eTement objects currentStyle.fontStyle property reveals the true, current
fontStyle property of the element as italic.

Example

To change a sty1e property setting, access it via the element’s sty1e object. Use The Evaluator (see

Chapter 13) to compare the properties of the currentStyle and sty1le objects of an element. For

example, an unmodified copy of The Evaluator contains an em element whose ID is "myEM". Enter
document.getElementById("myEM").style in the bottom property listing text box and press Enter. Notice
that most of the property values are empty. Now enter document.getElementById("myEM").currentStyle
in the property listing text box and press Enter. Every property has a value associated with it.

Related Items: runtimeStyle, style objects (Chapter 26); window.getComputedStyle() for W3C
DOM browsers (Chapter 16)

dateTime

Value: Date string Read-Only
Compatibility: WinlE6+, MaclE-, NN6+, Moz+, Safari-

The dateTime property contains a date/time value that is used to establish a timestamp for an element.
Similar to the cite property, the dateTime property is intended to apply to a lesser number of element
objects (de1 and ins) than is actually supported in IE. This may or may not be a mistake, so it’s probably
not a safe bet to use the property outside its intended elements.

215

TABLE 15-3

Document Objects Reference
elementObject.dataFld

dataFld
dataFormatAs
dataSrc

Value: String Read/Write
Compatibility: WinlE4+, MaclE5, NN-, Moz-, Safari-

The dataF1d, dataFormatAs, and dataSrc properties (along with more element-specific properties such
as dataPageSize and recordNumber) are part of the Internet Explorer data-binding facilities based on
ActiveX controls. The Win32 versions of IE4 and later have several ActiveX objects built into the browsers
that facilitate direct communication between a web page and a data source. Data sources include text files,
XML data, HTML data, and external databases (MaclE supports text files only). Data binding is a very large
topic, much of which extends more to discussions about Microsoft Data Source Objects (DSOs), ODBC,
and JDBC — subjects well beyond the scope of this book. But data binding is a powerful tool and can be of
use even if you are not a database guru. Therefore, this discussion of the three primary properties —
dataF1d, dataFormatAs, and dataSrc— briefly covers data binding through Microsoft’s Tabular Data
Control DSO. This allows any page to access, sort, display, and filter (but not update) data downloaded into
a web page from an external text file (commonly, comma- or tab-delimited data).

You can load data from an external text file into a document with the help of the Tabular Data Control
(TDQO). You retrieve the data by specifying the TDC object within an <object> tag set and specifying addi-
tional parameters, such as the URL of the text file and field delimiter characters. The object element can
go anywhere within the body of your document. (I tend to put it at the bottom of the code so that all nor-
mal page rendering happens before the control loads.) Retrieving the data simply brings it into the browser
and does not, on its own, render the data on the page.

If you haven't worked with embedded objects in IE, the c1assid attribute value might seem a bit strange. The
most perplexing part to some is the long value of numeric data signifying the Globally Unique Identifier (GUID)
for the object, which is IEs way of uniquely identifying objects. You must enter this value exactly as shown in
the following example for the proper ActiveX TDC to run. The HTML syntax for this object is as follows:

<object id="objName" classid="clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<{param name="DataURL" value="URL">
[additional optional parameters]

<{/object>

Table 15-3 lists the parameters available for the TDC. Only the DataURL parameter is required. Other
parameters—such as FieldDelim, UseHeader, RowDelim, and EscapeChar —may be helpful, depend-
ing on the nature of the data source.

Tabular Data Control Parameters

Parameter Description

CharSet Character set of the data source file. Defaultis Tatinl.

DataURL URL of data source file (relative or absolute).

EscapeChar Character used to escape delimiter characters that are part of the data. Default is empty. A

common value is "\".

216

Generic HTML Element Objects
elementObject.dataFld

Parameter Description

FieldDelim Delimiter character between fields within a record. Default is comma (,). For a Tab
character, use a value of 	.

Language ISO language code of source data. Default is en-us.

TextQualifier Optional character surrounding a field’s data. Default is empty.

RowDelim Delimiter character between records. Default is newline (NL).

UseHeader Set to true if the first row of data in the file contains field names. Default is false.

The value you assign to the object elements id attribute is the identifier that your scripts use to communi-
cate with the data after the page and data completely load. Therefore, you can have as many uniquely
named TDCs loaded in your page as there are data source files you want to access at the same time.

The initial binding of the data to HTML elements usually comes when you assign values to the datasrc
and dataf1d attributes of the elements. The datasrc attribute points to the dso identifier (matching the
id attribute of the object element, preceded by a hash symbol), whereas the dataf1d attribute points to
the name of the field whose data should be extracted. When you use data binding with an interactive ele-
ment such as a table, multiple records are displayed in consecutive rows of the table (more about this in a
moment).

Adjust the dataSrc and dataF1d properties if you want the same HTML element (other than a table) to
change the data that it displays. These properties apply to a subset of HTML elements that can be associated
with external data: a, applet, body, button, div, frame, iframe, img, input (most types), Tabel,
marquee, object, param, select, span, and textarea objects.

In some cases, your data source may store chunks of HTML-formatted text for rendering inside an element.
Unless directed otherwise, the browser renders a data source field as plain text— even if the content con-
tains HTML formatting tags. But if you want the HTML to be observed during rendering, you can set the
dataFormatAs property (or, more likely, the dataformatas attribute of the tag) to HTML. The default
value is text.

Example

Listing 15-8 is a simple document that has two TDC objects associated with it. The external files are different
formats of the U.S. Bill of Rights document. One file is a traditional, tab-delimited data file consisting of only
two records. The first record is a tab-delimited sequence of field names (named "Articlel”, "Article2",
and so on). The second record is a tab-delimited sequence of article content defined in HTML:

<hI>ARTICLE I</h1><p>Congress shall make...</p>
The second file is a raw-text file consisting of the full Bill of Rights with no HTML formatting attached.

When you load Listing 15-8, only the first article of the Bill of Rights appears in a blue-bordered box.
Buttons enable you to navigate to the previous and next articles in the series. Because the data source is a
traditional, tab-delimited file, the nextField () and prevField() functions calculate the name of the next
source field and assign the new value to the dataF1d property. All of the data is already in the browser after
the page loads, so cycling through the records is as fast as the browser can reflow the page to accommodate
the new content.

217

Document Objects Reference
elementObject.dataFld

LISTING 15-8

Binding Data to a Page

<html1>
<head>
<title>Data Binding</title>
{style type="text/css">
#idisplay {width:500px; border:10px ridge blue; padding:20px}
.hiddenControl {display:none}
</style>
{script type="text/javascript">
function nextField() f{
var elem = document.getElementById("display");
var fieldName = elem.dataF1d;
var currFieldNum = parselnt(fieldName.substring(7,
fieldName.length),10);
currFieldNum = (currFieldNum == 10) ? 1 : ++currFieldNum;
elem.dataF1d = "Article" + currFieldNum;
}
function prevField() {
var elem = document.getElementById("display");
var fieldName = elem.dataFl1d;
var currFieldNum = parselnt(fieldName.substring(7,
fieldName.length),10);
currfFieldNum = (currFieldNum == 1) ? 10 : --currFieldNum;
elem.dataFld = "Article" + currFieldNum;
1

function toggleComplete() {

if (document.getElementById("buttonWrapper").className == "") {
document.getElementById("display").dataSrc = "f#rights_raw";
document.getElementById("display").dataF1d "columnl";
document.getElementById("display").dataFormatAs = "text";
document.getElementById("buttonWrapper").className =

"hiddenControl";

} else {
document.getElementById("display").dataSrc = "f#rights_html";
document.getElementByld("display").dataF1d = "Articlel";
document.getElementById("display").dataFormatAs = "HTML";

document.getElementById("buttonWrapper").className = ;
}

}
<{/script>
</head>
<body>
<h1>U.S. Bill of Rights</h1>
<form>
<input type="button" value="Toggle Complete/Individual"
onclick="toggleComplete()" /> <input
type="button" value="Prev" onclick="prevField()" /> <input
type="button" value="Next" onclick="nextField()" />

218

Generic HTML Element Objects
elementObject.dataFld

</form>

<div id="display" datasrc="#rights_html" datafld="Articlel"

dataformatas="HTML">

</div>

<object id="rights_html"

classid="cl1sid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<param name="DataURL" value="Bill of Rights.txt" />
{param name="UseHeader" value="True" />
<{param name="FieldDelim" value="	" />

</object> <object id="rights_raw"

classid="cl1sid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<param name="DataURL" value="Bill of Rights (no format).txt" />
<param name="FieldDelim" value="\" />
<param name="RowDelim" value="\" />

</object>

</body>
</html1>

Another button on the page enables you to switch between the initial piecemeal version of the document
and the unformatted version in its entirety. To load the entire document as a single record, the FieldDelim
and RowDe1im parameters of the second object element eliminate their default values by replacing them
with characters that don't appear in the document at all. And because the external file does not have a field
name in the file, the default value (columnl for the lone column in this document) is the data field. Thus,
in the toggleComplete () function, the dataSrc property is changed to the desired object element ID;
the dataF1d property is set to the correct value for the data source; and the dataFormatAs property is
changed to reflect the different intention of the source content (to be rendered as HTML or as plain text).
When the display shows the entire document, you can hide the two radio buttons by assigning a
className value to the span element that surrounds the buttons. The c1assName value is the identifier of
the class selector in the document’s style sheet. When the toggleComplete() function resets the
className property to empty, the default properties (normal inline display style) take hold.

One further example demonstrates the kind of power available to the TDC under script control. Listing
15-9 displays table data from a tab-delimited file of Academy Awards information. The data file has eight
columns of data, and each column heading is treated as a field name: Year, Best Picture, Best Director, Best
Director Film, Best Actress, Best Actress Film, Best Actor, and Best Actor Film. For the design of the page,
only five fields from each record appear: Year, Film, Director, Actress, and Actor. Notice in the listing that
the HTML for the table and its content is bound to the data source object and the fields within the data.

The dynamic part of this example is apparent in how you can sort and filter the data, after it is loaded into
the browser, without further access to the original source data. The TDC object features Sort and Filter
properties that enable you to act on the data currently loaded in the browser. The simplest kind of sorting
indicates on which field (or fields, via a semicolon-delimited list of field names) the entire data set should
be sorted. Leading the name of the sort field is either a plus (to indicate ascending) or minus (descending)
symbol. After setting the data object’s Sort property, invoke its Reset () method to tell the object to apply
the new property. The data in the bound table is immediately redrawn to reflect any changes.

Similarly, you can tell a data collection to display records that meet specific criteria. In Listing 15-9, two
select lists and a pair of radio buttons provide the interface to the Filter propertys settings. For example,
you can filter the output to display only those records in which the Best Picture was the same picture of the
winning Best Actress’s performance. Simple filter expressions are based on field names:

dataObj.Filter = "Best Picture" = "Best Actress Film";

219

Document Objects Reference
elementObject.dataFld

LISTING 15-9

Sorting Bound Data

<html>
<head>
<title>Data Binding - Sorting</title>
{script type="text/javascript">
function sortByYear(type) {
oscars.Sort = (type == "normal") ? "-Year" : "+Year";
oscars.Reset();
}
function filterInCommon(form) {
var filterExprl =
form.filterl.options[form.filterl.selectedIndex].value;
var filterExpr2 =
form.filter2.options[form.filter2.selectedIndex].value;
var operator = (form.operator[0].checked) ? "=" : "<,
var filterExpr = filterExprl + operator + filterkExpr2;
oscars.Filter = filterkExpr;
oscars.Reset();
}
<{/script>
</head>
<body>
<h1>Academy Awards 1978-2005</h1>
<form>
<p>Sort list by year from
newest to oldest or from oldest to
newest.</p>
<p>Filter Tistings for records whose <select name="filterl"
onchange="filterInCommon(this.form)">
<option value="Best Picture">Best Picture</option>
<option value="Best Director Film">Best Director's Film</option>
<option value="Best Actress Film">Best Actress' Film</option>
<option value="Best Actor Film">Best Actor's Film</option>
</select> <input type="radio" name="operator" checked="checked"
onclick="filterInCommon(this.form)" />is <input type="radio"
name="operator" onclick="filterInCommon(this.form)" />is not
<{select name="filter2" onchange="filterInCommon(this.form)">
<option value="Best Picture">Best Picture</option>
<option value="Best Director FiIm">Best Director's Film</option>
<option value="Best Actress Film">Best Actress' Film</option>
<option value="Best Actor Film">Best Actor's Film</option>
</select></p>
</form>
<table datasrc="#foscars" border="1" align="center">
<thead style="background-color:yellow; text-align:center">
<tr>
<td>Year</td>
<td>FiTm</td>

220

Generic HTML Element Objects
elementObject.disabled

<td>Director</td>
<td>Actress</td>
<td>Actor</td>
</tr>
<{/thead>
<tr>
<td><div id="coll" datafld="Year"></div></td>
<td><div id="col2" datafld="Best Picture"></div></td>
<td><div id="col13" datafld="Best Director"></div></td>
<td><div id="col4" datafld="Best Actress"></div></td>
<td><div id="col5" datafld="Best Actor"></div></td>
</tr>
<{/table>
<object id="oscars" classid="clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<param name="DataURL" value="Academy Awards.txt" />
<param name="UseHeader" value="True" />
<{param name="FieldDelim" value="	" />
</object>
</body>
</html>

Related Items: recordNumber, table.dataPageSize properties

dir
Value: "1tr" | "rt1" Read/Write
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The dir property (based on the dir attribute of virtually every text-oriented HTML element) controls
whether an elements text is rendered left to right (the default) or right to left. By and large, this property
(and HTML attribute) is necessary only when you need to override the default directionality of a language’s
character set as defined by the Unicode standard.

Example

Changing this property value in a standard U.S. version of a browser only makes the right margin the starting
point for each new line of text (in other words, the characters are not rendered in reverse order). You can
experiment with this in The Evaluator by entering the following statements in the expression evaluation field:

document.getElementById("myP").dir = "rt1"

Related Item: Tang property

disabled

Value: Boolean Read/Write
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

Though only form elements have a disab1ed property in IE4 and IE5, this property is associated with
every HTML element in IE5.5+. W3C DOM browsers apply the property only to form control and style
element objects. Disabling an HTML element (like form elements) usually gives the element a dimmed look,
indicating that it is not active. A disabled element does not receive any events. It also cannot receive focus,
either manually or by script. But a user can still select and copy a disabled body text element.

221

222

Document Objects Reference

elementObject filters

If you disable a form control element, the element’s data is not submitted to the server with

! the rest of the form elements. If you need to keep a form control locked down but still submit
it to the server, use the form element’s onsubmit event handler to enable the form control right before the
form is submitted.

Example

Use The Evaluator (see Chapter 13) to experiment with the disabled property on both form elements
(IE4+ and W3C) and regular HTML elements (WinlE5.5+). For IE4+ and W3C browsers, see what happens
when you disable the output text area by entering the following statement in the top text box:

document.forms[0].output.disabled = true

The text area is disabled for user entry, although you can still set the field’s value property via script (which
is how the true returned value got there).

If you have WinlE5.5+, disable the myP element by entering the following statement in the top text box:
document.getElementById("myP").disabled = true
The sample paragraph’s text turns gray.

Related Item: isDisabled property

document

Value: document object Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari 1.2+

In the context of HTML element objects as exposed in 1E4+/Safari 1.2+, the document property is a refer-
ence to the document that contains the object. Though it is unlikely that you will need to use this property,
document may come in handy for complex scripts and script libraries that handle objects in a generic fash-
ion and do not know the reference path to the document containing a particular object. You might need a
reference to the document to inspect it for related objects. The W3C version of this property is
ownerDocument.

Example
The following simplified function accepts a parameter that can be any object in a document hierarchy. The
script finds out the reference of the object’s containing document for further reference to other objects:

function getCompanionFormCount(obj) {
var ownerDoc = obj.document;
return ownerDoc.forms.length;

1

Because the ownerDoc variable contains a valid reference to a document object, the return statement uses
that reference to return a typical property of the document object hierarchy.

Related Item: ownerDocument property

filters[]

Value: Array Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

Generic HTML Element Objects
elementObject firstChild

Filters are 1E-specific style sheet add-ons that offer a greater variety of font rendering (such as drop shadows)
and transitions between hidden and visible elements. Each filter specification is a fi1ter object. The filters
property contains an array of fi1ter objects defined for the current element. You can apply filters to the
following set of elements: bdo, body, button, fieldset, img, input, marquee, rt, ruby, table, td,
textarea, th, and positioned div and span elements. See Chapter 26 for details about style sheet filters.

Related Item: fi1ter object.

firstChild
lastChild

Value: Node object reference Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

W3C DOM-based DOMs are built around an architecture known as a node map. Each object defined by
HTML is a node in the map. A node has relationships with other nodes in the document — relationships
described in family terms of parents, siblings, and children.

A child node is an element that is contained by another element. The container is the parent of such a child.
Just as an HTML element can contain any number of child elements, so can a parent object have zero or
more children. A list of those children (returned as an array) can be read from an object by way of its
childNodes property:

var nodeArray = document.getElementById("elementID").childNodes;

Though you can use this array (and its Tength property) to get a reference to the first or last child node, the
firstChild and TastChild properties offer shortcuts to those positions. These are helpful when you wish
to insert a new child before or after all of the others, and you need a reference point for the IE
insertAdjacentElement () method or other method that adds elements to the document’s node list.

Example

Listing 15-10 contains an example of how to use the firstChild and TastChild properties to access
child nodes. These two properties come in handy in this example, which adds and replaces 11 elements to
an existing o1 element. You can enter any text you want to appear at the beginning or end of the list. Using
the firstChild and TastChild properties simplifies access to the ends of the list. For the functions that
replace child nodes, the example uses the replaceChi1d() method. Alternatively for IE4+, you can mod-
ify the innerText property of the objects returned by the firstChild or TastChild property. This exam-
ple is especially interesting to watch when you add items to the list: The browser automatically renumbers
items to fit the current state of the list.

= See the discussion of the childNodes property earlier in this chapter for details about the
- - = presence of phantom nodes in some browser versions. The problem may influence your use of
the firstChild and TastChild properties.

B As handy as it may be, in a strict W3C approach to JavaScript, you wouldn’t use the

" innerHTML property because it isn’t officially part of the W3C standard. However, it is often
too powerful a convenience property to ignore, as much of the code throughout this book is a testament. The
book does show the W3C node manipulation alternative to innerHTML in some examples. Refer to Chapter
18 for a thorough explanation and examples of the W3C alternative to innerHTML.

223

Document Objects Reference
elementObject firstChild

LISTING 15-10

Using firstChild and lastChild Properties

<html>
<head>
<title>firstChild and lastChild Properties</title>
{script type="text/javascript">
// helper function for prepend() and append()
function makeNewLI(txt) ({
var newltem = document.createElement("1i");
newltem.innerHTML = txt;
return newltem;
}
function prepend(form) {
var newltem = makeNewLI(form.input.value);
var firstLI = document.getElementById("myList").firstChild;
document.getElementById("myList").insertBefore(newltem, firstLI);
}
function append(form) {
var newltem = makeNewLI(form.input.value);
var lastLI = document.getElementById("myList").lastChild;
document.getElementById("myList").appendChild(newltem);
}
function replacefFirst(form) {
var newltem = makeNewLI(form.input.value);
var firstLI = document.getElementById("myList").firstChild;
document.getElementById("myList").replaceChild(newItem, firstLI);
}
function replaceLast(form) {
var newltem = makeNewLI(form.input.value);
var lastLI = document.getElementById("myList").lastChild;
document.getElementById("myList").replaceChild(newltem, TastLI);
}
<{/script>
</head>
<body>
<h1>firstChild and TastChild Property Lab</h1l>
<hr />
<form>
<label>Enter some text to add to or replace in the OL
element:</Tabel>

<input type="text" name="input" size="50" />

<input type="button" value="Insert at Top"
onclick="prepend(this.form)" /> <input type="button"
value="Append to Bottom" onclick="append(this.form)" />

<input type="button" value="Replace First Item"
onclick="replaceFirst(this.form)" /> <input type="button"
value="Replace Last Item" onclick="replacelast(this.form)" />
</form>

224

Generic HTML Element Objects
elementObject.height

<ol id="myList">
<Ti>Initial Item 1</T11>
<1i>Initial Item 2</11>
<1i>Initial Item 3</T11>
<Ti>Initial Item 4</11>

</body>
</html>

Related Items: nextSib1ing, parentElement, parentNode, previousSibling properties;
appendChild(), hasChildNodes(), removeChild(), removeNode(), replaceChild(),
replaceNode () methods

height
width

Value: Integer or percentage string Read/Write and Read-Only
Compatibility: WinlE4+, MaclE4+, NN4+, Moz+, Safari+

The height and width properties described here are not the identically named properties that belong to an
elements style. Rather, these properties reflect the values normally assigned to height and width attributes
of elements such as img, applet, table, and so on. As such, these properties are accessed directly from the
object (for example, document.getElementById("myTable").width in IE4+) rather than through the
style object (for example, document.getElementById("myDIV").style.width). Only elements for
which the HTML 4.x standard provides height and width attributes have the corresponding properties.

Values for these properties are either integer pixel values (numbers or strings) or percentage values (strings
only). If you need to perform some math on an existing percentage value, use the parselInt() function to
extract the numeric value for use with math calculations. If an element’s height and width attributes are
set as percentage values, you can use the of fsetHeight and offsetWidth properties in many modern
browsers to get the rendered pixel dimensions.

Property values are read/write for the image object in most recent browser versions because you can resize
an image object in [E4+ and Mozilla after the page loads. Properties are read/write for some other objects
(such as the tab1e object) —but not necessarily all others that support these properties.

In general, you cannot set the value of these properties to something less than is required to render the ele-
ment. This is particularly true of a table. If you attempt to set the height value to less than the amount of
pixels required to display the table as defined by its style settings, your changes have no effect (even though
the property value retains its artificially low value). For other objects, however, you can set the size to any-
thing you like, and the browser scales the content accordingly (images, for example). If you want to see
only a segment of an element (in other words, to crop the element), use a style sheet to set the element’s
clipping region.

Example

The following example demonstrates how to use the width property by increasing the width of a table by
10 percent:

var tablelW = parselnt(document.getElementById("myTable").width);
document.getElementById("myTable").width = (tableW * 1.1) + "%";

225

226

Document Objects Reference

elementObject.id

Because the initial setting for the width attribute of the table element is set as a percentage value, the
script calculation extracts the number from the percentage width string value. In the second statement, the
old number is increased by 10 percent and turned into a percentage string by appending the percentage
symbol to the value. The resulting string value is assigned to the width property of the table.

Related Items: clientHeight, clientWidth properties; style.height, style.width properties

hideFocus

Value: Boolean Read/Write
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

In IE for Windows, button types of form controls and links display a dotted rectangle around some part of
the element whenever that element has focus. If you set the tabindex attribute or tabIndex property of
any other kinds of elements in IE5+, they, too, display that dotted line when given focus. You can still let an
element receive focus but hide that dotted line by setting the hideFocus property of the element object to
true (default value is false).

Hiding focus does not disable the element. In fact, if the element about to receive focus is scrolled out of
view, the page scrolls to bring the element into view. Form controls that respond to keyboard action (for
example, pressing the spacebar to check or uncheck a checkbox control) also continue to work as normal.
For some designers, the focus rectangle harms the design goals of the page. The hideFocus property gives
them more control over the appearance while maintaining consistency of operation with other pages. There
is no corresponding HTML attribute for a tag, so you can use an onload event handler in the page to set
the hideFocus property of desired objects after the page loads.

Example

Use The Evaluator (see Chapter 13) to experiment with the hideFocus property in WinlE5.5+. Enter the
following statement in the top text box to assign a tabIndex value to the myP element so that by default,
the element receives focus and the dotted rectangle:

document.getElementById("myP").tabIndex = 1
Press the Tab key several times until the paragraph receives focus. Now disable the focus rectangle:
document.getElementById("myP").hideFocus = true

If you now press the Tab key several times, the dotted rectangle does not appear around the paragraph. To
prove that the element still receives focus, scroll the page down to the bottom so that the paragraph is not
visible (you may have to resize the window). Click one of the focusable elements at the bottom of the page
and then press the Tab key slowly until the Address field toolbar has focus. Press the Tab key once. The
page scrolls to bring the paragraph into view, but there is no focus rectangle around the element.

Related Items: tabIndex property; srcollIntoView() method

id

Value: String (See text)
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The 1d property returns the identifier assigned to an elements id attribute in the HTML code. A script can-
not modify the ID of an existing element or assign an ID to an element that lacks one. But if a script creates
a new element object, an identifier may be assigned to it by way of the id property.

Generic HTML Element Objects
elementObject.innerHTML

Example

Rarely do you need to access this property in a script— unless you write an authoring tool that iterates
through all elements of a page to extract the IDs assigned by the author. You can retrieve an object reference
when you know the object’s id property (via the document.getElementById(elemID) method). But if
for some reason your script doesn’t know the ID of, say, the second paragraph of a document, you can
extract that ID as follows:

var elemID = document.getElementsByTagName("p")[1].1d;

Related Item: cTassName property

innerHTML
innerText

Value: String Read/Write
Compatibility: WinlE4+, MacIE4+, NN6+, Moz+, Safari+

One way that Internet Explorer exposes the contents of an element is through the innerHTML and
innerText properties. (NN6+/Moz/Safari offer only the innerHTML property.) All content defined by these
inner properties consists of document data that is contained by an element’s start and end tags but does not
include the tags themselves (see the outerText and outerHTML properties). Setting these inner properties
is a common way to modify a portion of a page’s content after the page loads.

The innerHTML property contains not only the text content for an element as seen on the page, but also
every bit of HTML tagging that is associated with that content. (If there are no tags in the content, the text is
rendered as is.) For example, consider the following bit of HTML source code:

<p id="paragraphl">"How are you?" he asked.</p>

The value of the paragraph object’s innerHTML property (document.getElementById("para-
graphl").innerHTML) is

"How are you?" he asked.

The browser interprets any HTML tags included in a string you assign to an element’s innerHTML property
as tags. This also means that you can introduce entirely new nested elements (or child nodes in the modern
terminology) by assigning a slew of HTML content to an element’s innerHTML property. The document’s
object model adjusts itself to the newly inserted content.

By contrast, the innerText property knows only about the text content of an element container. In the example
you just saw, the value of the paragraph’s innerText property (document.getElementById("paragraphl™)
.innerText) is

"How are you?" he asked.

It’s important to remember that if you assign a string to the innerText property of an element, and that
string contains HTML tags, the tags and their angle brackets appear in the rendered page and are not inter-
preted as live tags.

The W3C DOM Level 3 adds a textContent property that serves as the standard equivalent of
innerText. Browser support for textContent currently consists solely of Moz1.7+.

Do not modify the innerHTML property to adjust the HTML for frameset, htm1, head, or tit1e objects.
You may modify table constructions through either innerHTML or the various table-related methods that
create or delete rows, columns, and cells (see Chapter 38 on the CD-ROM). It is also safe to modify the con-
tents of a cell by setting its innerHTML or innerText property.

227

Document Objects Reference
elementObject.innerHTML

When the HTML you insert includes a <script> tag, be sure to include the defer attribute to the opening
tag. This goes even for scripts that contain function definitions, which you might consider to be deferred
automatically.

The innerHTML property is not supported by the W3C DOM, but it does share widespread support in all
modern browsers. You could argue that a pure W3C DOM node manipulation approach is more structured
than just assigning HTML code to innerHTML, but the ease of making a single property assignment has so
far won out in the practicality of everyday scripting. Whenever possible, the examples in this book use the
W3C approach to alter the HTML code for a node, but there are several instances where innerHTML is sim-
ply too concise an option to resist.

Example

Listing 15-11 contains an example of how to use the innerHTML and innerText properties to alter
dynamically the content within a page. The page generated in the listing contains an h1 element label and a
paragraph of text. The purpose is to demonstrate how the innerHTML and innerText properties differ in
their intent. Two text boxes contain the same combination of text and HTML tags that replaces the inner
content of the paragraph’s label.

If you apply the default content of the first text box to the innerHTML property of the Tabell object, the
italic style is rendered as such for the first word. In addition, the text in parentheses is rendered with the
help of the small style sheet rule assigned by virtue of the surrounding tags. But if you apply that
same content to the innerText property of the Tabel object, the tags are rendered as is.

Use this as a laboratory to experiment with some other content in both text boxes. See what happens when
you insert a
 tag within some text in both text boxes.

LISTING 15-11

Using innerHTML and innerText Properties

<htm1>
<head>
<title>innerHTML and innerText Properties</title>
{style type="text/css">
hl {font-size:18pt; font-weight:bold; font-family:"Comic Sans MS", Arial,
sans-serif}
.small {font-size:12pt; font-weight:400; color:gray}
</style>
{script type="text/javascript">
function setGroupLabelAsText(form) {
var content = form.textInput.value;
if (content) {
document.getElementById("Tabell").innerText = content;
}
}
function setGroupLabelAsHTML(form) {
var content = form.HTMLInput.value;
if (content) {
document.getElementById("Tabell").innerHTML = content;

}

228

Generic HTML Element Objects
elementObject.isContentEditable

</script>
<{/head>
<body>
<form>
<p><input type="text" name="HTMLInput"
value="&1t;I>First&1t;/I> Article &1t;SPAN
CLASS="small'>(of ten)&1t;/span>"
size="50" /> <input type="button" value="Change Heading HTML"
onclick="setGroupLabelAsHTML(this.form)" /></p>
<p><input type="text" name="textInput"
value="&1t;I>First&1t;/I> Article &1t;SPAN
CLASS="small'>(of ten)"
size="50" /> <input type="button" value="Change Heading Text"
onclick="setGroupLabelAsText(this.form)" /></p>
</form>
<h1 id="1labell">
ARTICLE I
</h1>
<p>Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>
</body>
</html1>

Related Items: outerHTML, outerText, textContent properties; replaceNode () method

isContentEditable

Value: Boolean Read-Only
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari 1.2+

The isContentEditable property returns a Boolean value indicating whether a particular element object
is set to be editable (see the discussion of the contentEditable property earlier in this chapter). This
property is helpful because if a parent element’s contentEditable property is set to true, a nested ele-
ments contentEditable property likely is set to its default value inherit. But because its parent is
editable, the isContentEditable property of the nested element returns true.

Example

Use The Evaluator (see Chapter 13) to experiment with both the contentEditable and
isContentEditable properties on the myP and nested myEM elements (reload the page to start with a
known version). Check the current setting for the myEM element by typing the following statement in the
top text box:

myEM.isContentEditable

This value is false because no element upward in the element containment hierarchy is set to be editable
yet. Next, turn on editing for the surrounding myP element:

myP.contentEditable = true

229

230

Document Objects Reference
elementObject.isMultiLine
At this point, the entire myP element is editable because its child element is set, by default, to inherit the
edit state of its parent. Prove it by entering the following statement in the top text box:
myEM.isContentEditable
Although the myEM element is shown to be editable, no change has accrued to its contentEditable property:
myEM.contentEditable
This property value remains the default inherit.
You can see an additional example of these two properties in use in Listing 15-7.

Related Item: contentEditable property

isDisabled

Value: Boolean Read-Only
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

The isDisabled property returns a Boolean value that indicates whether a particular element object is set to
be disabled (see the discussion of the disab1ed property earlier in this chapter). This property is helpful; if a
parent element’s disabled property is set to true, a nested element’s disab1led property likely is set to its
default value of false. But because its parent is disabled, the isDisabled property of the nested element
returns true. In other words, the isDisab1ed property returns the actual disabled status of an element
regardless of its disab1ed property.

Example

Use The Evaluator (see Chapter 13) to experiment with both the disabled and isDisab1ed properties on
the myP and nested my EM elements (reload the page to start with a known version). Check the current set-
ting for the myEM element by typing the following statement in the top text box:

myEM.isDisabled

This value is false because no element upward in the element containment hierarchy is set for disabling
yet. Next, disable the surrounding myP element:

myP.disabled = true

At this point, the entire myP element (including its children) is disabled. Prove it by entering the following
statement in the top text box:

myEM.isDisabled

Although the myEM element is shown as disabled, no change has accrued to its disab1led property:
myEM.disabled

This property value remains the default false.

Related Item: disabled property

isMultilLine

Value: Boolean Read-Only
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

Generic HTML Element Objects
elementObject.lang

The isMultiLine property returns a Boolean value that reveals whether the element object is capable of
occupying or displaying more than one line of text. It is important that this value does not reveal whether
the element actually occupies multiple lines; rather, it indicates the potential of doing so. For example, a text
input element cannot wrap to multiple lines, so its isMultiLine property is false. However, a button
element can display multiple lines of text for its label, so it reports true for the isMultiLline property.

Example

Use The Evaluator (see Chapter 13) to read the isMultiLine property for elements on that page. Try the
following statements in the top text box:

document.body.isMultilLine
document.forms[0].1input.isMultilLine
myP.isMultiline

myEM.isMultiLine

All but the text field form control report that they are capable of occupying multiple lines.

isTextEdit

Value: Boolean Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

The isTextEdit property reveals whether an object can have a WinlE TextRange object created with its
content. (See the TextRange object in Chapter 36 on the CD-ROM.) You can create TextRange objects
from only a limited selection of objects in IE4+ for Windows: body, button, text type input, and
textarea. This property always returns false in MaclE.

Example
Good coding practice dictates that your script check for this property before invoking the
createTextRange () method on any object. A typical implementation is as follows:

if (document.getElementById("myObject").isTextEdit) {
var myRange = document.getElementById("myObject").createTextRange();
[more statements that act on myRange]

}

Related Items: createRange() method; TextRange object (Chapter 36 on the CD-ROM)

lang
Value: ISO language code string Read/Write
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The Tang property governs the written language system used to render an element’ text content when

overriding the default browser’s language system. The default value for this property is an empty string

unless the corresponding 1ang attribute is assigned a value in the element’ tag. Modifying the property
value by script control does not appear to have any effect in the current browser implementations.

Example

Values for the 1ang property consist of strings containing valid ISO language codes. Such codes have, at mini-
mum, a primary language code (for example, "fr" for French) plus an optional region specifier (for example,
"fr-ch" for Swiss French). The code to assign a Swiss German value to an element looks like the following:

document.getElementById("specialSpan").lang = "de-ch";

231

232

Document Objects Reference

elementObjectCollection.length

Tanguage

Value: String Read/Write
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

[E4+5 architecture allows for multiple scripting engines to work with the browser. Two engines are included
with the basic Windows version browser: JScript (compatible with JavaScript) and Visual Basic Scripting Edition
(VBScript). The default scripting engine is JScript. But if you wish to use VBScript or some other scripting lan-
guage in statements that are embedded within event handler attributes of a tag, you can specifically direct the
browser to apply the desired scripting engine to those script statements by way of the Tanguage attribute of the
tag. The Tanguage property provides scripted access to that property. Unless you intend to modify the event
handler HTML code and replace it with a statement in VBScript (or any other non-JScript-compatible language
installed with your browser), you do not need to modify this property (or read it, for that matter).

Valid values include JScript, javascript, vbscript, and vbs. Third-party scripting engines have their
own identifier for use with this value. Because the 1anguage attribute was also used in the <script> tag,
Internet Explorer 5 observes Tanguage="xm1" as well.

Related Item: script element object

TastChild
(See firstChild)

Tength

Value: Integer Read-Only and Read/Write
Compatibility: WinlE3+, MaclE3+, NN2+, Moz+, Safari+

The Tength property returns the number of items in an array or collection of objects. Its most common
application is as a boundary condition in a for loop. Though arrays and collections commonly use integer
values as index values (always starting with zero), the 1ength value is the actual number of items in the
group. Therefore, to iterate through all items of the group, the condition expression should include a less-
than (<) symbol rather than a less-than-or-equal (<=) symbol, as in the following:

for (var i = 0; i < someArray.length; i++) {...}

For decrementing through an array (in other words, starting from the last item in the array and working
toward the first), the initial expression must initialize the counting variable as the length minus one:

for (var i = someArray.length - 1; i >=0; i--) {...}

For most arrays and collections, the Tength property is read-only and governed solely by the number of
items in the group. But in more recent versions of the browsers, you can assign values to some object arrays
(areas, options, and the select object) to create placeholders for data assignments. See the discussions
of the area, select, and option element objects for details. A plain JavaScript array can also have its
Tength property value modified by script to either trim items from the end of the array or reserve space for
additional assignments. See Chapter 31 for more about the Array object.

Example

You can try the following sequence of statements in the top text box of The Evaluator to see how the
Tength property returns values (and sets them for some objects). Note that some statements work in only
some browser versions.

(A11 browsers) document.forms.length
(AT1 browsers) document.forms[0].elements.length

Generic HTML Element Objects
elementObject.nextSibling

(NN3+, TE4+) document.images.length

(NN4+) document.layers.length

(TE4+) document.all.length

(TE5+, W3C) document.getElementById("myTable").childNodes.length

All of these statements are shown primarily for completeness. Unless you have a good reason to support
legacy browsers, the last technique (IE5+, W3C) should be used to access the Tength property.

Related Items: area, select, option, and Array objects

localName
namespaceURI
prefix

Value: String Read-Only
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari+

The three properties TocalName, namespaceURI, and prefix apply to any node in an XML document that
associates a namespace URI with an XML tag. Although NN6 exposes all three properties for all element
(and node) objects, the properties do not return the desired values. However, Mozilla-based browsers,
including NN7+, remedy the situation. To understand better what values these three properties represent,
consider the following XML content:

<x xmIns:bk="http://bigbooks.org/schema'>
<bk:title>To Kill a Mockingbird</bk:title>
<Ix>

The element whose tag is <bk:tit1e> is associated with the Namespace URI defined for the block, and the
element’s namespaceURI property would return the string http:// bigbooks.org/schema. The tag
name consists of a prefix (before the colon) and the local name (after the colon). In the preceding example,
the prefix property for the element defined by the <bk:tit1e> tag would be bk, whereas the TocalName
property would return title. The TocalName property of any node returns the same value as its
nodeName property value, such as #text for a text node.

For more information about XML Namespaces, visit http://www.w3.0rg/TR/REC-xm1-names.

Related Items: scopeName, tagUrn properties

nextSibling

previousSibling

Value: Object reference Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

A sibling node is one that is at the same nested level as another node in the hierarchy of an HTML document.
For example, the following p element has two child nodes (the em and span elements). Those two child
nodes are siblings.

<p>MegaCorp is the source of the hottest gizmos.</p>

Sibling order is determined solely by the source-code order of the nodes. Therefore, in the previous exam-
ple, the em node has no previousSib1ing property. Meanwhile, the span node has no nextSibling
property (meaning that these properties return nul1). These properties provide another way to iterate
through all nodes at the same level.

233

234

Document Objects Reference

elementObject.nodeType

Example
The following function assigns the same class name to all child nodes of an element:

function setAl1ChildClasses(parentElem, className) {
var childElem = parentElem.firstChild;
while (childETem.nextSibling) {
childETem.className = className;
childElem = childElem.nextSibling;

}

This example is certainly not the only way to achieve the same results. Using a for loop to iterate through
the childNodes collection of the parent element is an equally valid approach.

Related Items: firstChild, TastChild, childNodes properties; hasChildNodes(),
insertAdjacentElement () methods

nodeName

Value: String Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

For HTML and XML elements, the name of a node is the same as the tag name. The nodeName property is
provided for the sake of consistency with the node architecture specified by the formal W3C DOM stan-
dard. The value, just like the tagName property, is an all-uppercase string of the tag name (even if the
HTML source code is written with lowercase tags).

Some nodes, such as the text content of an element, do not have a tag. The nodeName property for such a
node is a special value: #text. Another kind of node is an attribute of an element. For an attribute, the
nodeName is the name of the attribute. See Chapter 14 for more about Node object properties.

Example

The following function demonstrates one (not very efficient) way to assign a new class name to every p ele-
ment in an IE5+ document:

function setAlT1PClasses(className) {
for (var i = 0; i < document.all.length; i++) {
if (document.all[i].nodeName == "P") {
document.all[il.className = className;
}

}

A more efficient approach uses the getElementsByTagName () method to retrieve a collection of all p ele-
ments and then iterate through them directly.

Related Item: tagName property

nodeType

Value: Integer Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

TABLE 15-4

Generic HTML Element Objects
elementObject.nodeType

The W3C DOM specification identifies a series of constant values that denote categories of nodes. Every
node has a value that identifies its type, but not all browsers support the nodeType property on all node
types as objects. Table 15-4 lists the nodeType values implemented in recent browsers; all of the values are
considered part of the W3C DOM Level 2 specification.

nodeType Property Values

Value Description WinlE MaclE Moz Safari
1 Element node 5 5 1 1
2 Attribute node 6 5 1 1
3 Text (#text) node 5 5 1 1
4 CDATA section node - - - -
5 Entity reference node - - - -
6 Entity node - - - -
7 Processing instruction node - - - -
8 Comment node 6 5 1 -
9 Document node 5 5 1 1
10 Document type node - - 1 1
11 Document fragment node 6 5 1 1
12 Notation node - - - -

The nodeType value is automatically assigned to a node, whether the node exists in the document’s HTML
source code or is generated on the fly via a script. For example, if you create a new element node through
any of the ways available by script (for example, by assigning a string encased in HTML tags to the
innerHTML property or by explicitly invoking the document.createElement () method), the new ele-
ment assumes a nodeType of 1.

Mozilla-based browsers and Safari go one step further in supporting the W3C DOM specification by imple-
menting a set of Node object property constants for each of the nodeType values. Table 15-5 lists the entire
set as defined in the DOM Level 2 specification. Substituting these constants for nodeType integers can
improve the readability of a script. For example, instead of

if (myElem.nodeType == 1) {...}
it is much easier to see what’s going on with

if (myElem.nodeType == Node.ELEMENT_NODE) {...}

235

TABLE 15-5

Document Objects Reference

elementObject.nodeValue

W3C DOM nodeType Constants

Reference nodeType Value
Node.ELEMENT_NODE 1
Node.ATTRIBUTE_NODE 2
Node.TEXT_NODE 3
Node.CDATA_SECTION_NODE 4
Node.ENTITY_REFERENCE_NODE 5
Node.ENTITY_NODE 6
Node.PROCESSING_INSTRUCTION_NODE 7
Node.COMMENT_NODE 8
Node.DOCUMENT_NODE 9
Node.DOCUMENT_TYPE_NODE 10
Node.DOCUMENT_FRAGMENT_NODE 11
Node.NOTATION_NODE 12

236

Example

You can experiment with viewing nodeType property values in The Evaluator. The p element whose ID is
myP is a good place to start. The p element itself is a nodeType of 1:

document.getElementById("myP").nodeType

This element has three child nodes: a string of text (nodeName #text), an em element (nodeName em), and
the rest of the text of the element content (nodeName #text). If you view the nodeType of either of the text
portions, the value comes back as 3:

document.getElementById("myP").childNodes[0].nodeType

Related Item: nodeName property

nodeValue

Value: Number, string, or null Read/Write
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

For a text node, the nodeValue property consists of the actual text for that node. Such a node cannot con-
tain any further nested elements, so the nodeValue property offers another way of reading and modifying
what Internet Explorer implements as an elements innerText property (but in the W3C DOM, you must
reference the child text node of an element to get or set its node value).

Of the node types implemented in the W3C DOM-capable browsers, only the text and attribute types have
readable values. The nodeValue property of an element type of node returns a nu11 value. For an attribute
node, the nodeValue property consists of the value assigned to that attribute. According to the W3C DOM
standard, attribute values should be reflected as strings. WinlE5, however, returns values of type Number
when the value is all numeric characters. Even if you assign a string version of a number to such a

Generic HTML Element Objects
elementObject.offsetHeight

nodeValue property, it is converted to a Number type internally. Other browsers return nodeValue values
as strings in all cases (and convert numeric assignments to strings).

Example

You can use the nodeValue property to carry out practical tasks. As an example, nodeValue can be used to
increase the width of a textarea object by 10 percent. The nodeValue is converted to an integer before
performing the math and reassignment:

function widenCols(textareaElem) {
var colWidth = parselnt(textareaElem.attributes["cols"].nodeValue, 10);
textareaElem.attributes["cols"].nodeValue = (colWidth * 1.1);

}

As another example, you can replace the text of an element, assuming that the element contains no further
nested elements:

function replaceText(elem, newText) {
if (elem.childNodes.length == 1 && elem.firstChild.nodeType == 3) {
elem.firstChild.nodeValue = newText;
}
}

The function builds in one final verification that the element contains just one child node and that it is a
text type. An alternative version of the assignment statement of the second example uses the innerText
property in IE with identical results:

elem.innerText = newText;
You could also use the textContent property in Moz1.7+ to achieve the same concise result:
elem.textContent = newText;

Related Items: attributes, innerText, nodeType properties

offsetHeight
offsetWidth

Value: Integer Read-Only
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

These properties, which ostensibly report the height and width of any element, have had a checkered his-
tory due to conflicts between interpretations of the CSS box model by Microsoft and the W3C. Both proper-
ties were invented by Microsoft for IE4. Although they are not part of any W3C standard, other modern
browsers, including Mozilla-based browsers and Safari, implement the properties because they're so valu-
able to scripters.

Assuming that you specify style sheet rules for the width or height of an inline (nonpositioned) element, the
offsetHeight and offsetWidth properties act differently depending on whether the page puts the
browser in standards-compatible mode (via the DOCTYPE). More specifically, when IE6+ is set to stan-
dards-compatible mode (by DOCTYPE switching, as described in Chapter 14), the properties measure the
pixel dimensions of the element’s content plus any padding or borders, excluding margins. This is also the
default behavior for Mozilla and Safari, which adhere to the W3C box model. In quirks mode, however, the
default IE6+ behavior is to return a height and width of only the element’s content, with no accounting for
padding, borders, or margins. For versions of IE prior to IE6, this is the only behavior.

237

238

Document Objects Reference
elementObject.offsetLeft

Note that for a normal block-level element whose height and width are not specified, the offsetHeight is
determined by the actual height of the content after all text flows. But the of fsetWidth always extends the
full width of the containing element. Therefore, the of fsetWidth property does not reveal the rendered
width of text content that is narrower than the full parent element width. For example, a p element consist-
ing of only a few words may report an of fsetWidth of many hundreds of pixels because the paragraph’s
block extends the full width of the body element that represents the containing parent of the p element.

To find out the actual width of text within a full-width, block-level element, wrap the text within an inline
element (such as a span), and inspect the of fsetWidth property of the span.

Example

With IE4+, you can substitute the offsetHeight and of fsetWidth properties for c1ientHeight and
clientWidth in Listing 15-6. The reason is that the two elements in question have their widths hard-wired
in style sheets. Thus, the of fsetWidth property follows that lead rather than observing the default width
of the parent (BODY) element.

With IE5+ and W3C browsers, you can use The Evaluator to inspect the of fsetHeight and offsetWidth
property values of various objects on the page. Enter the following statements in the top text box:

document.getElementById("myP").offsetWidth
document.getElementById("myEM").offsetWidth
document.getElementById("myP").offsetHeight
document.getElementById("myTable").offsetWidth

Related Items: clientHeight, cTientWidth properties

offsetLeft
offsetTop

Value: Integer Read-Only
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The offsetLeft and offsetTop properties can suffer from the same version vagaries that afflict
offsetHeight and offsetWidth properties when borders, margins, and padding are associated with an
element and DOCTYPE switching is a factor. However, the offsetLeft and offsetTop properties are valu-
able in providing pixel coordinates of an element within the positioning context of the parent element —
even when the elements are not positioned explicitly.

I The of fsetLeft and offsetTop properties for positioned elements in MaclE do not return
' the same values as the style.left and style.top properties of the same element. See
Listing 40-5 on the CD-ROM for an example of how to correct these discrepancies without having to hard-
wire the precise pixel differences in your code.

The element used as a coordinate context for these properties is whatever element the offsetParent prop-
erty returns. This means that to determine the precise position of any element, you may have to add some
code that iterates through the of fsetParent hierarchy until that property returns nul1.

Although the offsetLeft and of fsetTop properties are not part of the W3C DOM specification, they are
supported across most browsers because they are convenient for some scriptable Dynamic HTML (DHTML)
tasks. Through these two properties, a script can read the pixel coordinates of any block-level or inline ele-
ment. Measurements are made relative to the body element, but this may change in the future. See the dis-
cussion later in this chapter about the offsetParent property.

Generic HTML Element Objects

elementObject.offsetParent

Example

The following IE script statements use all four offset dimensional properties to size and position a div
element so that it completely covers a span element located within a p element. This can be for a fill-in-the-
blank quiz that provides text entry fields elsewhere on the page. As the user gets an answer correct, the
blocking div element is hidden to reveal the correct answer.

ocker.style.pixelleft = document.all.span2.offsetlLeft
ocker.style.pixelTop = document.all.span2.offsetTop
ockImg.height = document.all.span2.offsetHeight
ockImg.width = document.all.span2.offsetWidth

document.all.b
document.all.b
document.all.b
document.all.b

Because the of fsetParent property for the span element is the body element, the positioned div element
can use the same positioning context (it’s the default context, anyway) for setting the pixelLeft and
pixelTop style properties. (Remember that positioning properties belong to an element’s sty1e object.)
The of fsetHeight and offsetWidth properties can read the dimensions of the span element (the exam-
ple has no borders, margins, or padding to worry about) and assign them to the dimensions of the image
contained by the blocker div element.

This example is also a bit hazardous in some implementations. If the text of span2 wraps to a new line, the
new of fsetHeight value has enough pixels to accommodate both lines. But the blockImg and blocker
div elements are block-level elements that render as a simple rectangle. In other words, the blocker ele-
ment doesn't turn into two separate strips to cover the pieces of span? that spread across two lines.

Related Items: clientlLeft, clientTop, of fsetParent properties

offsetParent

Value: Object reference Read-Only
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The of fsetParent property returns a reference to the object that acts as a positioning context for the cur-
rent element. Values for the of fsetLeft and of fsetTop properties are measured relative to the top-left
corner of the offsetParent object.

The returned object is usually, but not always, the next outermost block-level container. For most document
elements, the offsetParent object is the document . body object (with exceptions for some elements in
some browsers).

Table cells, for example, have different of fsetParent elements in different browsers:

Browser td offsetParent
WinlE4 tr
WinlE5+/NN7+/Moz table

MaclE table

NN6 body

Fortunately, the property behaves predictably for positioned elements in most modern browsers. For exam-
ple, a first-level positioned elements of fsetParent element is the body; the offsetParent of a nested
positioned element (for example, one absolute-positioned div inside another) is the next outer container
(in other words, the positioning context of the inner element).

239

LISTING 15-12

Document Objects Reference

elementObject.offsetParent

Example

You can use the offsetParent property to help you locate the position of a nested element on the page.
Listing 15-12 demonstrates how a script can walk up the hierarchy of of fsetParent objects in IE for
Windows to assemble the location of a nested element on a page. The goal of the exercise in Listing 15-12 is
to position an image at the top-left corner of the second table cell. The entire table is centered on the page.

The onload event handler invokes the setImagePosition() function. The function first sets a Boolean flag
that determines whether the calculations should be based on the client or offset sets of properties. WinlE4
and MaclE5 rely on client properties, whereas WinlE5+ works with the offset properties. The discrepancies
even out, however, with the while loop. This loop traverses the offsetParent hierarchy starting with the
offsetParent of the cell out to, but not including, the document . body object. The body object is not
included because that is the positioning context for the image. In IE5, the while loop executes only once
because just the tabTe element exists between the cell and the body; in IE4, the loop executes twice to
account for the tr and table elements up the hierarchy. Finally, the cumulative values of left and top meas-
ures are applied to the positioning properties of the div object’s style, and the image is made visible.

Using the offsetParent Property

<htmi1>

240

<head>
<title>offsetParent Property</title>
{script type="text/javascript">
function setImagePosition(){
var x = 0;
var y = 0;
var offsetPointer = document.getElementById("myCell"); // cElement;
while (offsetPointer) f{
x += offsetPointer.offsetlLeft;
y += offsetPointer.offsetTop;
offsetPointer = offsetPointer.offsetParent;
}
// correct for MacIE body margin factors
if (navigator.userAgent.indexOf("Mac") != -1 &&
typeof document.body.leftMargin != "undefined") {
x += document.body.leftMargin;
y += document.body.topMargin;
}
document.getElementById("myDIV").style.left = x + "px";
document.getElementById("myDIV").style.top = y + "px";
document.getElementById("myDIV").style.visibility = "visible";
1
</script>
</head>
<body onload="setImagePosition()">
<h1>The offsetParent Property</hl>
<her />
<p>After the document loads, the script positions a small image in the
upper left corner of the second table cell.</p>
<table border="1" align="center">

Generic HTML Element Objects
elementObject.outerHTML

<tr>
<td>This is the first cell</td>
<td id="myCell1">This is the second cell.</td>
</tr>
</table>
<img id="myDIV" alt="image" src="end.gif" height="12" width="12"
style="position:absolute; visibility:hidden; height:12px;
width:12px" />
</body>
</html1>

Related Items: of fsetlLeft, offsetTop, offsetHeight, of fsetWidth properties

outerHTML
outerText

Value: String Read/Write
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari 1.3+

One way that Internet Explorer and Safari 1.3+ expose an entire element to scripting is by way of the
outerHTML and outerText properties. The primary distinction between these two properties is that
outerHTML includes the element’s start and end tags, whereas outerText includes only rendered text that
belongs to the element (including text from any nested elements).

The outerHTML property contains not only the text content for an element as seen on the page, but also
every bit of HTML tagging associated with that content. For example, consider the following bit of HTML
source code:

<{p id="paragraphl">"How are you?" he asked.</p>

The value of the p object’s outerHTML property (document.all.paragraphl. outerHTML) is exactly the
same as that of the source code.

The browser interprets any HTML tags in a string that you assign to an element’s outerHTML property. This
means that you can delete (set the property to an empty string) or replace an entire tag with this property.
The document’s object model adjusts itself to whatever adjustments you make to the HTML in this manner.

In contrast, the outerText property knows only about the text content of an element container. In the
preceding example, the value of the paragraph’s outerText property
(document.all.paragraphl.innerText)is

"How are you?" he asked.

If this looks familiar, it’s because in most cases the innerText and outerText properties of an existing
element return the same strings.

Example

Listing 15-13 demonstrates how to use the outerHTML and outerText properties to access and modify
web-page content dynamically. The page generated by Listing 15-13 (WinlE4+/Safari 1.3+ only) contains an
h1 element label and a paragraph of text. The purpose is to demonstrate how the outerHTML and
outerText properties differ in their intent. Two text boxes contain the same combination of text and
HTML tags that replaces the element that creates the paragraph’s label.

241

Document Objects Reference
elementObject.outerHTML

If you apply the default content of the first text box to the outerHTML property of the 1abel1l object, the

h1 element is replaced by a span element whose c1ass attribute acquires a different style sheet rule defined
earlier in the document. Notice that the ID of the new span element is the same as that of the original h1
element. This allows the script attached to the second button to address the object. But this second script
replaces the element with the raw text (including tags). The element is gone, and any attempt to change the
outerHTML or outerText properties of the Tabel1 object causes an error because there is no longer a
Tabell object in the document.

Use this laboratory to experiment with some other content in both text boxes.

LISTING 15-13

Using outerHTML and outerText Properties

<htm1>
<head>

<title>outerHTML and outerText Properties</title>

{style type="text/css">

hl {font-size:18pt; font-weight:bold; font-family:"Comic Sans MS", Arial,
sans-serif}

.heading {font-size:20pt; font-weight:bold; font-family:"Arial Black",
Arial, sans-serif}

</style>

<script type="text/javascript">

function setGrouplabelAsText(form) {
var content = form.textInput.value;
if (content) {

document.getElementById("Tabell").outerText = content;

}

}

function setGrouplabelAsSHTML(form) {
var content = form.HTMLInput.value;
if (content) {

document.getElementById("Tabell").outerHTML

}

content;

}
</script>
</head>
<body>
<form>
<p><input type="text" name="HTMLInput"
value="&1t;SPAN ID='Tabell' CLASS='heading'>Article the
First&1t;/SPAN>"
size="55" /> <input type="button" value="Change Heading HTML"
onclick="setGrouplLabelAsSHTML(this.form)" /></p>
<p><input type="text" name="textInput"
value="&1t;SPAN ID='Tlabell' CLASS='heading'>Article the
First"
size="55" /> <input type="button" value="Change Heading Text"
onclick="setGrouplLabelAsText(this.form)" /></p>
</form>
<hl id="Tabell">ARTICLE I</h1>

242

Generic HTML Element Objects

elementObject.parentElement

<p>Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>
</body>
</html1>

Related Items: innerHTML, innerText properties; replaceNode() method

ownerDocument

Value: Document object reference Read-Only
Compatibility: WinlE6+, MaclE5+, NN6+, Moz+, Safari+

The ownerDocument property belongs to any element or node in the W3C DOM. The property’s value is a ref-
erence to the document node that ultimately contains the element or node. If a script encounters a reference to
an element or node (perhaps it has been passed as a parameter to a function), the object’s ownerDocument
property provides a way to build references to other objects in the same document or to access properties and
methods of the document objects. IE% proprietary version of this property is simply document.

Example
Use The Evaluator (see Chapter 13) to explore the ownerDocument property. Enter the following statement
in the top text box:

document.body.childNodes[5].ownerDocument

The result is a reference to the document object. You can use that to inspect a property of the document, as
shown in the following statement, which you should enter in the top text box:

document.body.childNodes[5].ownerDocument.URL
This returns the document . URL property for the document that owns the child node.

Related Item: document object

parentElement

Value: Element object reference or nul1 Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari 1.2+

The parentElement property returns a reference to the next outermost HTML element from the current
element. This parent—child relationship of elements is often, but not always, the same as a parent—child
node relationship (see the parentNode property later in this chapter). The difference is that the
parentElement property deals only with HTML elements as reflected as document objects, whereas a node
is not necessarily an HTML element (for example, an attribute or text chunk).

There is also a distinction between parentElement and of fsetParent properties. The latter returns an
element that may be many generations removed from a given element but is the immediate parent with
regard to positioning context. For example, a td element’s parentElement property is most likely its
enclosing tr element, but a td elements of fsetParent property is its table element.

A script can walk the element hierarchy outward from an element with the help of the parentElement
property. The top of the parent chain is the htm1 element. Its parentElement property returns null.

243

Document Objects Reference

elementObject.parentNode

Example

You can experiment with the parentElement property in The Evaluator. The document contains a p
element named myP. Type each of the following statements from the left column in the top expression
evaluation text box and press Enter to see the results.

Expression Result
document.getElementById("myP").tagName p
document.getElementById("myP").parentElement [object]
document.getElementById("myP").parentElement.tagName body
document.getETementById("myP").parentElement.parentElement [object]
document.getElementById("myP").parentElement.parentElement.tagName html
document.getElementById("myP").parentElement.parentElement.parentElement null

Related Items: of fsetParent, parentNode properties

parentNode
Value: Node object reference or null Read-Only
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The parentNode property returns a reference to the next outermost node that is reflected as an object
belonging to the document. For a standard element object, the parentNode property is the same as
1E/Safaris parentElement because both objects happen to have a direct parent—child node relationship as
well as a parent—child element relationship.

Other kinds of content, however, can be nodes, including text fragments within an element. A text fragment’s
parentNode property is the next outermost node or element that encompasses that fragment. A text node
object in IE/Safari 1.3+ does not have a parentElement property.

Example

Use The Evaluator to examine the parentNode property values of both an element and a nonelement node.
Begin with the following two statements, and watch the results of each:

document.getElementById("myP").parentNode.tagName
document.getElementById("myP").parentElement.tagName (IE/Safaril.3+ only)

Now examine the properties from the point of view of the first text fragment node of the myP paragraph
element:

document.getElementById("myP").childNodes[0].nodeValue
document.getElementById("myP").childNodes[0].parentNode.tagName
document.getElementById("myP").childNodes[0].parentElement (IE/Safaril.3+ only)

Notice (in IE) that the text node does not have a parentElement property.

Related Items: childNodes, nodeName, nodeType, nodeValue, parentElement properties

244

Generic HTML Element Objects
elementObject.parentTextEdit

parentTextEdit

Value: Element object reference or nul1l Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

Only a handful of objects in IE’s object model are capable of creating text ranges (see the TextRange object
in Chapter 36 on the CD-ROM). To find an object’s next outermost container capable of generating a text
range, use the parentTextEdit property. If an element is in the hierarchy, that element’s object reference is
returned. Otherwise (for example, document.body.parentTextEdit), the value is nul1. MaclE always
returns a value of nu11 because the browser doesn't support the TextRange object.

Example

Listing 15-14 contains an example that demonstrates how to use the parentTextEdit property to create a
text range. The page resulting from Listing 15-14 contains a paragraph of Latin text and three radio buttons
that select the size of a paragraph chunk: one character, one word, or one sentence. If you click anywhere
within the large paragraph, the onc1ick event handler invokes the seTectChunk() function. The function
first examines which of the radio buttons is selected to determine how much of the paragraph to highlight
(select) around the point at which the user clicks.

After the script employs the parentTextEdit property to test whether the clicked element has a valid parent
capable of creating a text range, it calls on the property again to help create the text range. From there,
TextRange object methods shrink the range to a single insertion point, move that point to the spot nearest the
cursor location at click time, expand the selection to encompass the desired chunk, and select that bit of text.

Notice one workaround for the TextRange object’s expand () method anomaly: If you specify a sentence,
IE doesn't treat the beginning of a p element as the starting end of a sentence automatically. A camouflaged
(white text color) period is appended to the end of the previous element to force the TextRange object to
expand only to the beginning of the first sentence of the targeted p element.

LISTING 15-14

Using the parentTextEdit Property

<html>
<head>
<title>parentTextEdit Property</title>
{style type="text/css">
p {cursor:hand}
</style>
<script type="text/javascript">
function selectChunk() {
var chunk, range;
for (var i = 0; 1 < document.forms[0].chunk.length; i++) {
if (document.forms[0].chunk[i].checked) {
chunk = document.forms[0].chunk[i].value;
break;

var x = window.event.clientX;
var y = window.event.clientY;

continued

245

Document Objects Reference

elementObject.readyState

LISTING 15-14 J(ellilgltEe)]

if (window.event.srcElement.parentTextEdit) {
range = window.event.srcElement.parentTextEdit.createTextRange();
range.collapse()
range.moveToPoint(x, y);
range.expand(chunk);
range.select();

}
}
{/script>
</head>
<body bgcolor="white">
<form>
<p>Choose how much of the paragraph is to be selected when you click
anywhere in it:

<input type="radio" name="chunk" value="character"
checked="checked" />Character <input type="radio" name="chunk"
value="word" />Word <input type="radio" name="chunk"
value="sentence" />Sentence .</p>
</form>
<p onclick="selectChunk()">Lorem ipsum dolor sit amet, consectetaur
adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut
enim adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit involuptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
</body>
</htm1>

Related Items: isTextEdit property; TextRange object (Chapter 36 on the CD-ROM)

prefix
(See TocalName)

previousSibling
(See nextSibling)

readyState

Value: String (integer for 0BJECT object) Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

A script can query an element in IE to find out whether it has loaded all ancillary data (for example, exter-
nal image files or other media files) before other statements act on that object or its data. The readyState
property lets you know the loading status of an element.

Table 15-6 lists the possible values and their meanings.

246

TABLE 15-6

Generic HTML Element Objects

elementObject.recordNumber

readyState Property Values

HTML Value OBJECT Value Description

complete 4 Element and data are fully loaded.

interactive 3 Data may not be loaded fully, but user can interact with element.
loaded 2 Data is loaded, but object may be starting up.
loading 1 Data is loading.

0

uninitialized

Object has not started loading data yet.

For most HTML elements, this property always returns complete. Most of the other states are used by ele-
ments such as img, embed, and object, which load external data and even start other processes (such as
ActiveX controls) to work.

One word of caution: Do not expect the readyState property to reveal whether an object exists in the docu-
ment (for example, uninitialized). If the object does not exist, it cannot have a readyState property; the
result is a script error for an undefined object. If you want to run a script only after every element and its data
are fully loaded, trigger the function by way of the on1oad event handler for the body element or the

onreadystatechange event handler for the object (and check that the readyState property is complete).

Example

To witness a readyState property other than complete for standard HTML, you can try examining the
property in a script that immediately follows an tag:

{script type="text/javaScript">
alert(document.getElementById("myImg").readyState);
<{/script>

Putting this fragment into a document that is accessible across a slow network helps. If the image is not in
the browser’s cache, you might get the uninitialized or Toading result. The former means that the img
object exists, but it has not started receiving the image data from the server. If you reload the page, chances
are that the image will load instantaneously from the cache, and the readyState property will report
complete.

Related Items: onreadystatechange event handler

recordNumber
Value: Integer or nul1l Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

Virtually every object has a recordNumber property, but it applies only to elements used in Internet
Explorer data binding to represent repeated data. For example, if you display 30 records from an external
data store in a table, the tr element in the table is represented only once in the HTML. However, the

247

Document Objects Reference

elementObject.recordNumber

browser repeats the table row (and its component cells) to accommodate all 30 rows of data. If you click a
row, you can use the recordNumber property of the tr object to see which record was clicked. A common
application of this facility is in data binding situations that allow for updating records. For example, script a
table so that clicking an uneditable row of data displays that record’s data in editable text boxes elsewhere
on the page. If an object is not bound to a data source, or if it is a nonrepeating object bound to a data
source, the recordNumber property is null.

Example

Listing 15-15 shows how to use the recordNumber property to navigate to a specific record in a sequence
of data. The data source is a small, tab-delimited file consisting of 20 records of Academy Awards data.
Thus, the table that displays a subset of the fields is bound to the data source object. Also bound to the data
source object are three span objects embedded within a paragraph near the top of the page. As the user
clicks a row of data, three fields from that clicked record are placed in the bound span objects.

The script part of this page is a mere single statement. When the user triggers the onc1ick event handler of
the repeated tr object, the function receives as a parameter a reference to the tr object. The data store
object maintains an internal copy of the data in a recordset object. One of the properties of this
recordset object is the AbsolutePosition property, which is the integer value of the current record that
the data object points to (it can point to only one row at a time, and the default row is the first row). The
statement sets the AbsolutePosition property of the recordset object to the recordNumber property
for the row that the user clicks. Because the three span elements are bound to the same data source, they
are immediately updated to reflect the change to the data object’s internal pointer to the current record.
Notice, too, that the third span object is bound to one of the data source fields not shown in the table. You
can reach any field of a record because the data source object holds the entire data source content.

LISTING 15-15

Using the Data Binding recordNumber Property

<htm1>
<head>
<title>Data Binding (recordNumber)</title>
{style type="text/css">
filmTitle {font-style:italic}
</style>
{script type="text/javascript">
// set recordset pointer to the record clicked on in the table.
function setRecNum(row) {
document.oscars.recordset.AbsolutePosition = row.recordNumber;
}
</script>
</head>
<body>
<p>Academy Awards 1978-2005 (Click on a table row to extract data
from one record.)</p>
<p>The award for Best Actor of <span datasrc="ffoscars"
datafld="Year">
 went to
 for his outstanding achievement in the film <span
class="filmTitle"

248

Generic HTML Element Objects

elementObject.runtimeStyle

datasrc="ffoscars" datafld="Best Actor Film">.</p>
{table border="1" datasrc="{ffoscars" align="center">
<thead style="background-color:yellow; text-align:center">
<tr>
<td>Year</td>
<td>Film</td>
<td>Director</td>
<td>Actress</td>
<td>Actor</td>
</tr>
<{/thead>
<tr id="repeatableRow" onclick="setRecNum(this)">
<td><div id="coll" datafld="Year"></div></td>
<td><div class="filmTitle" id="col2" datafld="Best
Picture"></div></td>
<td><div id="col13" datafld="Best Director"></div></td>
<td><div id="col4" datafld="Best Actress"></div></td>
<td><div id="col5" datafld="Best Actor"></div></td>
</tr>
</table>
<object id="oscars" classid="clsid:333C7BC4-460F-11D0-BC0O4-0080C7055A83">
<param name="DataURL" value="Academy Awards.txt" />
<param name="UseHeader" value="True" />
<{param name="FieldDelim" value="	" />
</object>
</body>
</html>

Related Items: dataF1d, dataSrc properties; table, tr objects (Chapter 38 on the CD-ROM)

runtimeStyle

Value: style object Read-Only
Compatibility: WinlE5+, MacIE5+, NN-, Moz-, Safari-

You can determine the browser default settings for style sheet attributes with the help of the runtimeStyle
property. The style object that this property returns contains all style attributes and the default settings at
the time the page loads. This property does not reflect values assigned to elements by style sheets in the
document or by scripts. The default values returned by this property differ from the values returned by the
currentStyle property. The latter includes data about values that are not assigned explicitly by style
sheets yet are influenced by the default behavior of the browser’s rendering engine. In contrast, the
runtimeStyle property shows unassigned style values as empty or zero.

Example

To change a style property setting, access it via the elements sty1e object. Use The Evaluator (see Chapter 13)
to compare the properties of the runtimeStyle and sty1e objects of an element. For example, an unmodi-
fied copy of The Evaluator contains an em element whose ID is "myEM". Enter both

document.getElementById("myEM").style.color
and

document.getElementById("myEM").runtimeStyle.color

249

250

Document Objects Reference
elementObject.scrollHeight
in the top text box in turn. Initially, both values are empty. Now assign a color to the sty1e property via the
top text box:
document.getElementById("myEM").style.color = "red"

If you type the two earlier statements in the top box, you can see that the sty1e object reflects the change,
whereas the runtimeStyle object holds onto its original (empty) value.

Related Items: currentStyle property; style object (Chapter 26)

scopeName
taglrn

Value: String Read-Only
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The scopeName property is associated primarily with XML code that is embedded within a document. When
you include XML, you can specify one or more XML Namespaces that define the owner of a custom tag
name, thus aiming toward preventing conflicts of identical custom tags from different sources in a document.

I See Chapter 27 for more about XML objects.

The XML Namespace is assigned as an attribute of the <htm1> tag that surrounds the entire document:
<html xmlns:fred="http://www.someURL.com'>

After that, the Namespace value precedes all custom tags linked to that Namespace:
{fred:FIRST_Name id="fredFirstName"/>

To find out the Namespace owner of an element, you can read the scopeName property of that element. For
the preceding example, the scopeName returns fred. For regular HTML elements, the returned value is
always HTML. The tagURN property sits alongside scopeName and stores the URI for the namespace.

The scopeName property is available only in Win32 and UNIX flavors of IE5+. The comparable properties
for scopeName and tagURN in the W3C DOM are prefix and namespaceURI.

Example

If you have a sample document that contains XML and a namespace spec, you can use document.write()

or alert () methods to view the value of the scopeName property. The syntax is
document.getElementById("elementID").scopeName

Related Item: tagUrn property

scrolTHeight

scrol1Width

Value: Integer Read-Only
Compatibility: WinlE4+, MaclE4+, NN7+, Moz1.0.1+, Safari+

The scrollHeight and scrol1Width properties contain the pixel measures of an object, regardless of
how much of the object is visible on the page. Therefore, if the browser window displays a vertical scroll
bar, and the body extends below the bottom of the viewable space in the window, the scrol1Height takes

Generic HTML Element Objects

elementObject.scrollLeft

into account the entire height of the body as though you were to scroll downward and see the entire ele-
ment. For most elements that don’t have their own scroll bars, the scrol1Height and scrollWidth
properties have the same values as the c1ientHeight and c1ientWidth properties.

Example

Use The Evaluator (see Chapter 13) to experiment with these two properties of the textarea object, which
displays the output of evaluations and property listings. To begin, enter the following in the bottom one-
line text box to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Now enter the following property expression in
the top one-line text box to see the scrolTHeight property of the output textarea when it holds the
dozens of lines of property listings:

document.getElementById("output").scrollHeight

The result, some number probably in the hundreds, is now displayed in the output textarea. This means
that you can scroll the content of the output element vertically to reveal that number of pixels. Click the
Evaluate button once more. The result, 13 or 14, is a measure of the scrol1Height property of the
textarea that had only the previous result in it. The scrollable height of that content was only 13 or 14
pixels, the height of the font in the textarea. The scrol1Width property of the output textarea is fixed
by the width assigned to the element’s cols attribute (as calculated by the browser to determine how wide
to make the text area on the page).

Related Items: clientHeight , clientWidth properties; window.scrol1() method

scrollLeft
scroll1Top

Value: Integer Read-Only
Compatibility: WinlE4+, MaclE4+, NN7+, Moz1.0.1+, Safari+

If an element is scrollable (in other words, it has its own scroll bars), you can find out how far the element
is scrolled in the horizontal and vertical direction via the scrol1Left and scrol1Top properties. These
values are pixels. For nonscrollable elements, these values are always zero —even if they are contained by
elements that are scrollable. For example, if you scroll a browser window (or frame in a multiframe environ-
ment) vertically, the scro11Top property of the body object is whatever the pixel distance is between the
top of the object (now out of view) and the first visible row of pixels of the element. But the scrol1Top
value of a table that is in the document remains zero.

Netscape browsers prior to version 7 (Mozilla) treat scrolling of a body element from the point of view of
the window. If you want to find out the scrolled offset of the current page in these browsers, use
window.scrol1X and window.scrolly.

Scripts that involve tracking mouse events in IE need to take into account the scrollLeft and scrol1Top

properties of the body to compensate for scrolling of the page. See the Event object in Chapter 25.

Example

Use The Evaluator (see Chapter 13) to experiment with these two properties of the textarea object, which
displays the output of evaluations and property listings. To begin, enter the following in the bottom one-
line text box to list the properties of the body object:

document.body

251

252

Document Objects Reference

elementObject.sourcelndex

This displays a long list of properties for the body object. Use the textarea’s scroll bar to page down a
couple of times. Now enter the following property expression in the top one-line text box to see the
scrol1Top property of the output textarea after you scroll:

document.getElementById("output").scrollTop

The result, some number, is now displayed in the output textarea. This means that the content of the
output element was scrolled vertically. Click the Evaluate button once more. The result, 0, is a measure of
the scrol1Top property of the textarea that had only the previous result in it. There wasn't enough con-
tent in the textarea to scroll, so the content was not scrolled at all. The scrol1Top property, therefore, is
zero. The scrol1Left property of the output is always zero because the textarea element is set to wrap
any text that overflows the width of the element. No horizontal scroll bar appears in this case, and the
scrolllLeft property never changes.

Related Items: clientleft, clientTop properties; window.scrol1() method

sourcelndex

Value: Integer Read-Only
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

The sourceIndex property returns the numeric index (zero-based) of the object within the entire docu-
ment, which is the group of all elements in the document.

Example

Although the operation of this property is straightforward, the sequence of elements exposed by the docu-
ment.all property may not be. To that end, you can use The Evaluator (see Chapter 13) to experiment in
[E4+ with the values that the sourceIndex property returns to see how the index values of the docu-
ment.all collection follow the source code.

To begin, reload The Evaluator. Enter the following statement in the top text box to set a preinitialized
global variable:

a=20

When you evaluate this expression, a zero should appear in the Results box. Next, enter the following state-
ment in the top text box:

document.allla].tagName + " [" + a++ + "]"

There are a lot of plus signs in this statement, so be sure you enter it correctly. As you successively evaluate
this statement (repeatedly click the Evaluate button), the global variable (a) is incremented, enabling you to
walk through the elements in source-code order. The sourceIndex value for each HTML tag appears in
square brackets in the Results box. You generally begin with the following sequence:

html [0]
head [1]
title [2]

You can continue until there are no more elements, at which point an error message appears because the
value of a exceeds the number of elements in the document.al1 array. Compare your findings against the
HTML source code view of The Evaluator.

Related Item: item() method

Generic HTML Element Objects
elementObject.tabIndex

style

Value: style object reference Read/Write
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The style property is the gateway to an element’s style sheet settings. The propertys valueisa style
object whose properties enable you to read and write the style sheet settings for the element. Although
scripts do not usually manipulate the sty1e object as a whole, it is quite common in a DHTML page for
scripts to get or set multiple properties of the styTe object to effect animation, visibility, and all appearance
parameters of the element. Note that style properties returned through this object are only those that are
explicitly set by the element’s sty1e attribute or by script.

You can find significant differences in the breadth of properties of the sty1e object in different versions of
IE and NN. See Chapter 26 for more details on the sty1e object.

Example

Most of the action with the sty1e property has to do with the sty1e object’s properties, so you can use
The Evaluator here simply to explore the lists of sty1e object properties available on as many DHTML-
compatible browsers as you have running. To begin, enter the following statement in the bottom, one-line
text box to inspect the sty1e property for the document.body object:

document.body.style

Now inspect the style property of the table element that is part of the original version of The Evaluator.
Enter the following statement in the bottom text box:

document.getElementById("myTable").style
In both cases, the values assigned to the sty1e object’s properties are quite limited by default.

Related Items: currentStyle, runtimeStyle properties; style object (Chapter 26)

tabIndex

Value: Integer Read/Write
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The tabIndex property controls where in the tabbing sequence the current object receives focus. This
property obviously applies only to elements that can receive focus. IE5+ permits giving focus to more ele-
ments than most other browsers, but for all browsers compatible with this property, the primary elements
for which you may want to control focus (namely, form input elements) are covered.

In general, browsers treat form elements as focusable elements by default. Nonform elements usually don’t
receive focus unless you specifically set their tabIndex properties (or tabindex tag attributes). If you set
the tabIndex property of one form element to 1, that element is first in the tabbing order. Meanwhile, the
rest fall into source-code tabbing order on successive presses of the Tab key. If you set two elements to, say,
1, the tabbing proceeds in source-code order for those two elements and then on to the rest of the elements
in source-code order starting with the top of the page.

In Internet Explorer and Moz1.8+, you can remove an element from tabbing order entirely by setting its
tabIndex property to -1. Users can still click those elements to make changes to form element settings,
but tabbing bypasses the element.

253

Document Objects Reference

elementObject.tabIndex

Example

Listing 15-16 contains a sample script that demonstrates how to control the tab order of a form via the
tabIndex property. This example demonstrates not only the way you can modify the tabbing behavior of a
form on the fly, but also how to force form elements out of the tabbing sequence entirely in IE. In this page,
the top form (named 1ab) contains four elements. Scripts invoked by buttons in the bottom form control
the tabbing sequence. Notice that the tabindex attributes of all bottom form elements are set to -1, which
means that these control buttons are not part of the tabbing sequence in IE and Moz1.8+.

When you load the page, the default tabbing order for the 1ab form control elements (default setting of
zero) takes charge. If you start pressing the Tab key, the precise results at first depend on the browser you
use. In IE, the Address field is first selected; next, the Tab sequence gives focus to the window (or frame, if
this page were in a frameset); finally, the tabbing reaches the 1ab form. Continue pressing the Tab key, and
watch how the browser assigns focus to each of the element types. In NN6+/Moz, however, you must click
anywhere on the content to get the Tab key to start working on form controls.

The sample script inverts the tabbing sequence with the help of a for loop that initializes two variables that
work in opposite directions as the looping progresses. This gives the last element the lowest tabIndex
value. The skip2() function simply sets the tabIndex property of the second text box to -1, removing it
from the tabbing entirely (IE only). Notice, however, that you can click in the field and still enter text.

(See the disabled property earlier in this chapter to see how to prevent field editing.) NN6+/Moz does not
provide a tabIndex property setting that forces the browser to skip a form control. You should disable the
control instead.

LISTING 15-16

Controlling the tabIndex Property

<html>
<head>
<title>tabIndex Property</title>
{script type="text/javascript">
function invert() {
var form = document.lab;
for (var i = 0, j = form.elements.length; i < form.elements.length;
i++, j--) |
form.elements[i].tabIndex = j;

}

function skip2() {

if (navigator.userAgent.indexOf("MSIE") != -1) {
document.lab.text2.tablIndex = -1;
} else {

alert("Not available.");
}
}

function resetTab() {
var form = document.lab;
for (var i = 0; i < form.elements.length; i++) {
form.elements[i].tabIndex = 0;
}

254

Generic HTML Element Objects

elementObject.tagName

}
{/script>
</head>
<body>
<h1>tabIndex Property Lab</hl>
<hr />
<form name="lab">
Text box no. 1: <input type="text" name="textl" />

Text box no. 2: <input type="text" name="text2" />

<input type="button" value="A Button" />

<input type="checkbox" />And a checkbox
</form>
<hr />
<form name="control">
<input type="button" value="Invert Tabbing Order" tabindex="-1"
onclick="invert()" />

<input type="button" value="Skip Text box no. 2 (IE Only)"
tabindex="-1" onclick="skip2()" />

<input type="button" value="Reset to Normal Order" tabindex="-1"
onclick="resetTab()" />
</form>
</body>
</html1>

The final function, resetTab(), sets the tabIndex property value to zero for all 1ab form elements; this
restores the default order.

Related Items: blur (), focus () methods

tagName

Value: String Read-Only
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The tagName property returns a string of the HTML or XML tag name belonging to the object. All tagName
values are returned in all-uppercase characters, even if the source code is written in all-lowercase characters
or a mixture. This consistency makes it easier to perform string comparisons. For example, you can create a
generic function that contains a switch statement to execute actions for some tags and not others. The
skeleton of such a function looks like the following:

function processObj(objRef) {

switch (objRef.tagName) {

case "TR"
[statements to deal with table row object]
break;

case "TD"
[statements to deal with table cell object]
break;

case "COLGROUP":
[statements to deal with column group object]
break;

255

256

Document Objects Reference

elementObject title

default:
[statements to deal with all other object types]

}

Example

You can also see the tagName property in action in the example associated with the sourceIndex property
discussed earlier in the chapter. In that example, the tagName property is read from a sequence of objects in
source-code order.

Related Items: nodeName property; getElementsByTagName () method

taglrn

(See scopeName)

textContent

Value: String Read/Write
Compatibility: WinlE-, MaclE-, NN-, Moz1.7+, Safari-

This property stores the text string of a node, including any combined text nodes within an element. This
means that the content of a node is reflected in the textContent property as a single string of text even if it
has other nested elements, such as em. If you replace the content of a node with a string of text by setting
the textContent property, all previous node content is replaced, including nested elements. You can think
of the textContent property as the W3C DOM equivalent of IEs innerText property.

Related Item: innerText property

title

Value: String Read/Write
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The W3C standard states that you should use the tit1e property (and tit1e attribute) in an advisory role.
Most browsers interpret this role as text assigned to tooltips that pop up momentarily while the cursor rests
atop an element. The advantage of having this property available for writing is that your scripts can modify
an element’s tooltip text in response to other user interaction on the page. A tooltip can provide brief help
about the behavior of icons or links on the page. It can also convey a summary of key facts from the desti-
nation of a link, thus enabling a visitor to see vital information without having to navigate to the other page.

As with setting the status bar, I don’t recommend using tooltips for conveying mission-critical information
to the user. Not all users are patient enough to let the pointer pause for the tooltip to appear. On the other
hand, a user may be more likely to notice a tooltip when it appears rather than a status-bar message (even
though the latter appears instantaneously).

Example

Listing 15-17 provides a glimpse at how you can use the tit1e property to establish tooltips for a page. A
simple paragraph element has its tit1e attribute set to "First Time!", which is what the tooltip displays
if you roll the pointer atop the paragraph and pause after the page loads. But an onmouseover event han-
dler for that element increments a global variable counter in the script, and the tit1e property of the para-
graph object is modified with each mouseover action. The count value is made part of a string assigned to
the title property. Notice that there is not a live connection between the tit1e property and the variable;
instead, the new value explicitly sets the tit1e property.

Generic HTML Element Objects

elementObject.uniquelD

LISTING 15-17

Controlling the title Property

<html>
<head>
<title>title Property</title>
<script type="text/javascript">
// global counting variable
var count = 0;

function setToolTip(elem) {
elem.title = "You have previously rolled atop this paragraph " +
count + " time(s).";

}

function incrementCount(elem) {
count++;
setToolTip(elem);
}
</script>
</head>
<body>
<h1>title Property Lab</hl>
<hr />
<p id="myP" title="First Time!" onmouseover="incrementCount(this)">Rol1l
the mouse over this paragraph a few times.

Then pause atop it to view the tooltip.</p>
</body>
</html>

Related Item: window.status property

uniquelD

Value: String Read-Only
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

You can let the WinlE5+ browser generate an identifier (id property) for a dynamically generated element
on the page with the aid of the uniqueID property. You should use this feature with care, because the ID it
generates at any given time may differ from the ID generated the next time the element is created in the
page. Therefore, you should use the uniqueID property when your scripts require an unknown element to
have an id property, but the algorithms are not expecting any specific identifier.

To guarantee that an element gets only one ID assigned to it while the object exists in memory, assign the
value via the uniqueID property of that same object —not some other object. After you retrieve the
uniquelD property of an object, the property’s value stays the same no matter how often you access the
property again. In general, you assign the value returned by the uniqueID property to the object’s id prop-
erty for other kinds of processing. (For example, the parameter of a getElementById () method requires
the value assigned to the id property of an object.)

257

Document Objects Reference

elementObject.uniquelD

Example

Listing 15-18 demonstrates the recommended syntax for obtaining and applying a browser-generated iden-
tifier for an object. After you enter some text in the text box and click the button, the addRow () function
appends a row to the table. The left column displays the identifier generated via the table row object’s
uniquelD property. IE5+ generates identifiers in the format "ms__idn", where n is an integer starting with
zero for the current browser session. Because the addRow () function assigns uniqueID values to the row
and the cells in each row, the integer for each row is three greater than the previous one. There is no guar-
antee that future generations of the browser will follow this format, so do not rely on the format or
sequence in your scripts.

LISTING 15-18

Using the uniquelD Property

<htm1>
<head>

<title>Inserting an WinIE5+ Table Row</title>

{script type="text/javascript">

function addRow(iteml) {

if (iteml) {

// assign long reference to shorter var name
var theTable = document.getElementById("myTable");
// append new row to the end of the table
var newRow = theTable.insertRow(theTable.rows.length);
// give the row its own ID
newRow.id = newRow.uniquelD;

// declare cell variable
var newCell;

// an inserted row has no cells, so insert the cells
newCell = newRow.insertCell(0);
// give this cell its own id
newCell.id = newCell.uniquelD;
// display the row's id as the cell text
newCell.innerText = newRow.id;
newCell.bgColor = "yellow"
// re-use cell var for second cell insertion
newCell = newRow.insertCell(1);
newCell.id = newCell.uniquelD;
newCell.innerText = iteml;
}
1
<{/script>
</head>
<body>
{table id="myTable" border="1">
<tr>
<th>Row ID</th>
<th>Data</th>
</tr>

258

Generic HTML Element Objects
elementObject.addBehavior()

<tr id="firstDataRow">
<td>firstDataRow</td>
<td>Fred</td>
</tr>
{tr id="secondDataRow">
{td>secondDataRow</td>
<td>Jane</td>
</tr>
<{/table>
<hr />
<form>
Enter text to be added to the table:

<input type="text" name="input" size="25" />

<input type='button' value='Insert Row'
onclick="addRow(this.form.input.value)' />
</form>
</body>
</html>

Related Items: id property; getElementById() method

unselectable

Value: String constant ("on" or "off") Read/Write
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

This property controls the selectability of an element — that is, whether the element’s content can be
selected by the user. You might use this property to prevent a sensitive piece of data from being selected and
copied.

Methods
addBehavior("URL")

Returns: Integer ID
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The addBehavior() method imports an external Internet Explorer behavior and attaches it to the current
object, thereby extending the properties and/or methods of that object. (See Chapter 48 on the CD-ROM
for details on IE behaviors.) The sole parameter of the addBehavior () method is a URL pointer to the
behavior component’s code. This component may be in an external file (with an . htc extension), in which
case the parameter can be a relative or absolute URL. IE also includes a library of built-in (default) behav-
iors, whose URLs are in the following format:

fHdefaultitbehaviorName

Here, behaviorName is one of the default behaviors (see Chapter 48 on the CD-ROM). If the behavior is
imported into the document via the object tag, the addBehavior () method parameter is the ID of that
element in the following format:

ffobjectID

259

Document Objects Reference

elementObject.addBehavior()

When you add a behavior, the loading of the external code occurs asynchronously. This means that even
though the method returns a value instantly, the behavior is not necessarily ready to work. Only when the
behavior is fully loaded can it respond to events or allow access to its properties and methods. Behaviors
loaded from external files observe domain security rules.

Example

Listing 15-19a shows what a behavior file looks like. It is the file used to demonstrate the addBehavior()
method in Listing 15-19b. The behavior component and the HTML page that loads it must come from the
same server and domain; they also must load via the same protocol (for example, http://, https://, and
file:// are mutually exclusive, mismatched protocols).

LISTING 15-19A

The makeHot.htc Behavior Component

<PUBLIC:ATTACH EVENT="onmousedown" ONEVENT="makeHot()" />
<PUBLIC:ATTACH EVENT="onmouseup" ONEVENT="makeNormal()" />
<PUBLIC:PROPERTY NAME="hotColor" />

<PUBLIC:METHOD NAME="setHotColor" />

<SCRIPT LANGUAGE="JScript">

var oldColor;

var hotColor = "red";

function setHotColor(color) f{
hotColor = color;
1

function makeHot() {
if (event.srcElement == element) {
oldColor = style.color;
runtimeStyle.color = hotColor;

}

function makeNormal() {
if (event.srcElement == element) {
runtimeStyle.color = oldColor;
1
}
</SCRIPT>

The object to which the component is attached is a simple paragraph object, shown in Listing 15-19b.
When the page loads, the behavior is not attached, so clicking the paragraph text has no effect.

When you turn on the behavior by invoking the turn0On () function, the addBehavior () method attaches
the code of the makeHot . htc component to the myP object. At this point, the myP object has one more
property, one more method, and two more event handlers that are written to be made public by the compo-
nent’s code. If you want the behavior to apply to more than one paragraph in the document, you have to
invoke the addBehavior() method for each paragraph object.

260

Generic HTML Element Objects
elementObject.addBehavior()

After the behavior file is instructed to start loading, the setInitialColor() function is called to set the
new color property of the paragraph to the user’s choice from the select list. But this can happen only if
the component is fully loaded. Therefore, the function checks the readyState property of myP for com-
pleteness before invoking the component’s function. If IE is still loading the component, the function is
invoked again in 500 milliseconds.

As long as the behavior is loaded, you can change the color used to turn the paragraph hot. The function
first ensures that the component is loaded by checking that the object has the new color property. If it does,
the method of the component is invoked (as a demonstration of how to expose and invoke a component
method). You can also simply set the property value.

LISTING 15-19B

Using addBehavior() and removeBehavior()

<html>
<head>
<title>addBehavior() and removeBehavior() Methods</title>
{script type="text/javascript">
var myPBehaviorlID;

function turnOn() {
myPBehaviorID =
document.getElementById("myP").addBehavior("makeHot.htc");
setInitialColor();
}

function setInitialColor() {
if (document.getElementById("myP").readyState == "complete") {
var select = document.forms[0].colorChoice;
var color = select.options[select.selectedIndex].value;
document.getElementById("myP").setHotColor(color);
} else {
setTimeout("setInitialColor()", 500);
}
}

function turn0ff() {
document.getElementById("myP").removeBehavior(myPBehaviorlID);

}

function setColor(select, color) f{
if (document.getElementById("myP").hotColor) {
document.getElementById("myP").setHotColor(color);

} else {
alert("This feature is not available. Turn on the Behavior
first.");

select.selectedIndex = 0;

continued

261

Document Objects Reference

elementObject.addBehavior()

LISTING 15-19B Qi)

}

function showBehaviorCount() {
var num = document.getElementById("myP").behaviorUrns.length;
var msg = "The myP element has " + num + " behavior(s). ";
if (num > 0) {
msg += "Name(s): \r\n";
for (var i = 0; 1 < num; i++) {
msg += document.getElementById("myP").behaviorUrns[i] + "\r\n";
}
}
alert(msg);
}
</script>
</head>
<body>
<hl>addBehavior() and removeBehavior() Method Lab</hl>
<hr />
<p id="myP">This is a sample paragraph. After turning on the behavior, it
will turn your selected color when you mouse down anywhere in this
paragraph.</p>
<form>
<input type="button" value="Switch On Behavior" onclick="turnOn()" />
Choose a 'hot' color: <select name="colorChoice"
onchange="setColor(this, this.value)">
<option value="red">red</option>
<option value="blue">blue</option>
<option value="cyan">cyan</option>
<{/select>

<input type="button" value="Switch Off Behavior"
onclick="turn0ffO)" />
<p><input type="button" value="Count the URNs"
onclick="showBehaviorCount()" /></p>
</form>
</body>
</htm1>

To turn off the behavior, the removeBehavior () method is invoked. Notice that the removeBehavior()
method is associated with the myP object, and the parameter is the ID of the behavior added earlier. If you
associate multiple behaviors with an object, you can remove one without disturbing the others, because
each has its own unique ID.

Related Items: readyState property; removeBehavior () method; behaviors (Chapter 48 on the
CD-ROM)

262

Generic HTML Element Objects

elementObject.addEventListener()

addEventListener("eventType", TlistenerFunc, useCapture)
removeEventListener("eventType", TistenerFunc, useCapture)

Returns: Nothing
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari+

The W3C DOM’ event mechanism accommodates both event bubbling and trickling (see Chapter 25).
Although the new mechanism supports the long-standing notion of binding an event to an element by way
of HTML attributes (for example, the old onc1ick event handler), it encourages binding events by register-
ing an event listener with an element. (In browsers that support the W3C event model, other ways of bind-
ing events — such as event handler attributes — are internally converted to registered events.)

To tell the DOM that an element should listen for a particular kind of event, use the addEventListener()
method on the element object. The method requires three parameters. The first is a string version of the
event type for which the element should listen. Event type strings do not include the well-used on prefix of
event handlers; instead, the names consist only of the event and are usually in all lowercase (except for
some special systemwide events preceded by DOM). Table 15-7 shows all the events recognized by the
W3C DOM specification (including some new DOM ones that are not yet implemented in browsers).

TABLE 15-7

W3C DOM Event Listener Types

abort error
blur focus
change Toad
click mousedown
DOMActivate mousemove
DOMAttrModified mouseout
DOMCharacterDataModified mouseover
DOMFocusIn mouseup
DOMFocusQOut reset
DOMNodelInserted resize
DOMNodelInsertedIntoDocument scroll
DOMNodeRemoved select
DOMNodeRemovedFromDocument submit
DOMSubtreeModified unload

263

264

Document Objects Reference

elementObject.addEventListener()

Note that the event types specified in the DOM Level 2 are more limited than the wide range of events
defined in IE4+. Also, the W3C temporarily tabled the issue of keyboard events until DOM Level 3.
Fortunately, most W3C-compatible browsers implement keyboard events in a fashion that likely will appear
as part of the W3C DOM Level 3.

The second parameter of the addEventListener() method is a reference to the JavaScript function to be
invoked. This is the same form used to assign a function to an event property of an object (for example,
objReference.onclick = someFunction), and it should not be a quoted string. This approach also
means that you cannot specify parameters in the function call. Therefore, functions that need to reference
forms or form control elements must build their own references (with the help of the event object’s property
that says which object is the event’s target).

By default, the W3C DOM event model has events bubble upward through the element container hierarchy
starting with the target object of the event (for example, the button being clicked). However, if you specify
true for the third parameter of the addEventListener () method, event capture is enabled for this partic-
ular event type whenever the current object is the event target. This means that any other event type tar-
geted at the current object bubbles upward unless it, too, has an event listener associated with the object
and the third parameter is set to true.

Using the addEventListener () method requires that the object to which it is attached already exists.
Therefore, you most likely will use the method inside an initialization function triggered by the onload
event handler for the page. (The document object can use addEventListener() for the load event imme-
diately, because the document object exists early in the loading process.)

A script can also eliminate an event listener that was previously added by script. The removeEventListener()
method takes the same parameters as addEventListener (), which means that you can turn off one

listener without disturbing others. In fact, because you can add two listeners for the same event and listener
function (one set to capture and one not—a rare occurrence indeed), the three parameters of the
removeEventListener() enable you to specify precisely which listener to remove from an object.

Unlike the event capture mechanism of NN4, the W3C DOM event model does not have a global capture
mechanism for an event type regardless of target. And with respect to Internet Explorer, the
addEventListener() method is closely analogous to the IE5+ attachEvent () method. Also, event cap-
ture in IE5+ is enabled via the separate setCapture() method. Both the W3C and IE event models use
their own syntaxes to bind objects to event handling functions, so the actual functions may be capable of
serving both models with browser version branching required only for event binding. See Chapter 25 for
more about event handling with these two event models.

Example

Listing 15-20 provides a compact workbench to explore and experiment with the basic W3C DOM event
model. When the page loads, no event listeners are registered with the browser (except the control buttons,
of course). But you can add an event listener for a ¢11ck event in bubble and/or capture mode to the body
element or the p element that surrounds the span holding the line of text. If you add an event listener and
click the text, you see a readout of the element processing the event and information indicating whether the
event phase is bubbling (3) or capture (1). With all event listeners engaged, notice the sequence of events
being processed. Remove listeners one at a time to see the effect on event processing.

Generic HTML Element Objects
elementObject.addEventListener()

LISTING 15-20

W3C Event Lab

<html>
<head>
<tit1e>W3C Event Model Lab</title>
{style type="text/css">
td {text-align:center}
{/style>
<script type="text/javascript">
// add event listeners
function addBubblelistener(elemID) {
document.getElementBylId(elemID).addEventListener("click", reportEvent,
false);
}
function addCapturelListener(elemID) {
document.getElementByld(elemID).addEventListener("click", reportEvent,
true);
}
// remove event listeners
function removeBubblelistener(elemID) {
document.getElementByld(elemID).removeEventlListener("click",
reportEvent, false);
}
function removeCapturelistener(elemID) {
document.getElementByld(elemID).removeEventListener("click",
reportEvent, true);
}
// display details about any event heard
function reportEvent(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode :
evt.target;

if (elem.id == "mySPAN") {
var msg = "Event processed at " + evt.currentTarget.tagName +
" element (event phase = " + evt.eventPhase + ").\n";

document.controls.output.value += msg;
}
}
// clear the details textarea
function clearTextArea() {
document.controls.output.value = "";
}
</script>
<{/head>
<body id="myBODY">
<h1>W3C Event Model Lab</hl>
<hr />
<p id="myP">This paragraph (a SPAN element nested

continued

265

Document Objects Reference
elementObject.appendChild()

(AR N\ A1) (continued)

inside a P element) can be set to listen for "click" events.</p>
<hr />
<form name="controls" id="controls">
<p>Examine click event characteristics: <input type="button"
value="Clear" onclick="clearTextArea()" />

{textarea name="output" cols="80" rows="6" wrap="virtual">
</textarea></p>
<table cellpadding="5" border="1">
<caption style="font-weight:bold">Control Panel</caption>
<tr style="background-color:#ffff99">
<td rowspan="2">"Bubble"-type click listener:</td>
<td><input type="button" value="Add to BODY" onclick=
"addBubblelListener('myBODY')" /></td>
<td><input type="button" value="Remove from BODY" onclick=
"removeBubblelListener('myBODY')" /></td>

</trd>
<tr style="background-color:#ffff99">
<td><input type="button" value="Add to P" onclick=
"addBubblelListener('myP')" /></td>
<td><input type="button" value="Remove from P" onclick=
"removeBubblelistener('myP')" /></td>
</Erd>
<tr style="background-color:#ff9999">
<td rowspan="2">"Capture"-type click Tlistener:</td>
<td><input type="button" value="Add to BODY" onclick=
"addCapturelListener('myBODY")" /></td>
<td><input type="button" value="Remove from BODY" onclick=
"removeCapturelListener('myBODY"')" /></td>
</tr>
<tr style="background-color:#ff9999">
<td><input type="button" value="Add to P" onclick=
"addCapturelListener('myP')" /></td>
<td><input type="button" value="Remove from P" onclick=
"removeCapturelListener('myP"')" /></td>
</tr>
</table>
</form>
</body>
</htm1>

Related Items: attachEvent (), detachEvent(), dispatchEvent(), fireEvent(),
removeEventListener() methods

appendChild(elementObject)

Returns: Node object reference
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The appendChild() method inserts an element or text node (defined by other code that comes before it)
as the new, last child of the current element. Aside from the more obvious application of adding a new child

266

Generic HTML Element Objects
elementObject.appendChild()

element to the end of a sequence of child nodes, the appendChi1d() method is also practical for building
element objects and their content before appending, replacing, or inserting the element into an existing
document. The document.createElement () method generates a reference to an element of whatever tag
name you assign as that method’s parameter.

The appendChild() method returns a reference to the appended node object. This reference differs from
the object that is passed as the method’s parameter because the returned value represents the object as part
of the document rather than as a freestanding object in memory.

Example

Listing 15-21 contains an example that shows how to use the appendChi1d() method in concert with
removeChild() and replaceChild() to modify child elements in a document. Because many W3C
DOM browsers treat source-code carriage returns as text nodes (and, thus, child nodes of their parent), the
HTML for the affected elements in Listing 15-21 is shown without carriage returns between elements.

The append() function creates a new 11 element and then uses the appendChi1d () method to attach the
text box text as the displayed text for the item. The nested expression, document.createTextNode(form
.input.value), evaluates to a legitimate node that is appended to the new 11 item. All of this occurs
before the new 11 item is added to the document. In the final statement of the function, appendChild()
is invoked from the vantage point of the ul element — thus adding the 11 element as a child node of the
ul element.

Invoking the replaceChild() method in the replace() function uses some of the same code. The main
difference is that the replaceChild() method requires a second parameter: a reference to the child ele-
ment to be replaced. This demonstration replaces the final child node of the ul list, so the function takes
advantage of the TastChi1d property of all elements to get a reference to that final nested child. That refer-
ence becomes the second parameter to replaceChild().

LISTING 15-21

Various Child Methods

<html>
<head>

<title>appendChild(), removeChild(), and replaceChild() Methods</title>

{script type="text/javascript">

function append(form) {

if (form.input.value) {

var newltem = document.createElement("LI");
newltem.appendChild(document.createTextNode(form.input.value));
document.getElementById("myUL").appendChild(newltem);

}

function replace(form) {
if (form.input.value) {
var newltem = document.createElement("LI");
var lastChild = document.getElementById("myUL").TastChild;
newltem.appendChild(document.createTextNode(form.input.value));

continued

267

Document Objects Reference

elementObject.applyElement()

LISTING 15-21 [(ellilgltEe)]

document.getElementById("myUL").replaceChild(newltem, TastChild);
}
1

function restore() {
var oneChild;
var mainObj = document.getElementById("myUL");
while (mainObj.childNodes.length > 2) {
oneChild = main0Obj.TastChild;
main0bj.removeChild(oneChild);
}
}
</script>
</head>
<body>
<h1>Child Methods</h1>
<hr />
Here is a Tlist of items:
<ul id="myUL"><1i>First Item</1i><1i>Second Item</1i>
<form>
Enter some text to add/replace in the list: <input type="text"
name="input" size="30" />

<input type="button" value="Append to List"
onclick="append(this.form)" /> <input type="button"
value="Replace Final Item" onclick="replace(this.form)" /> <input
type="button" value="Restore List" onclick="restore()" />
</form>
</body>

</html1>

268

The final part of the demonstration uses the removeChi1d() method to peel away all children of the ul
element until just the two original items are left standing. Again, the TastChild property comes in handy
as the restore() function keeps removing the last child until only two remain.

Related Items: removeChild(), replaceChild() methods; nodes and children (Chapter 14)

applyElement(elementObjectl, typel)

Returns: Nothing
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The applyElement () method enables you to insert a new element as the parent or child of the current
object. An important feature of this method is that the new object is wrapped around the current object (if
the new element is to become the parent) or the current object’s content (if the new element is to become a
child). When the new element becomes a child, all previous children are nested further by one generation
to become immediate children of the new element. You can imagine how the resulting action of this method
affects the containment hierarchy of the current element, so you must be careful how you use the
applyElement () method

Generic HTML Element Objects
elementObject.applyElement()

One parameter, a reference to the object to be applied, is required. This object may be generated from con-
structions such as document.createElement () or from one of the child or node methods that returns an
object. The second parameter is optional, and it must be one of the following values:

Parameter Value Description
outside New element becomes the parent of the current object.
inside New element becomes the immediate child of the current object.

If you omit the second parameter, the default value (outside) is assumed. Listing 15-22 shows how the
applyElement () method is used both with and without default values.

Example

To help you visualize the impact of the applyElement () method with its different parameter settings,
Listing 15-22 enables you to apply a new element (an em element) to a span element inside a paragraph. At
any time, you can view the HTML of the entire p element to see where the em element is applied, as well as
its impact on the element containment hierarchy for the paragraph.

After you load the page, inspect the HTML for the paragraph before doing anything else. Notice the span
element and its nested font element, both of which surround the one-word content. If you apply the em
element inside the span element (click the middle button), the span elements first (and only) child ele-

ment becomes the em element; the font element is now a child of the new em element.

LISTING 15-22

Using the applyElement() Method

<html>
<head>

<title>applyElement() Method</title>

{script type="text/javascript">

function applyOutside() {
var newltem = document.createElement("EM");
newltem.id = newltem.uniquelD;
document.getElementById("mySpan").applyElement(newltem);

}

function applylInside() {
var newltem = document.createElement("EM");
newltem.id = newltem.uniquelD;
document.getElementById("mySpan").applyElement(newltem, "inside");
}

function showHTML() {
alert(document.getElementById("myP").outerHTML);
}
</script>
<{/head>

continued

269

Document Objects Reference

elementObject.attachEvent()

LISTING 15-22 [(ellifgltEle)]

<body>
<hl>applyElement() Method</hl>
<hr />
<p id="myP">A simple paragraph with a <{font
size="+1">special word in it.</p>
<form>
<input type="button" value="Apply &1t;EM> OQutside"
onclick="applyQutside()" /> <input type="button"
value="Apply &1t;EM> Inside" onclick="applyInside()" /> <input
type="button" value="Show &1t;P> HTML..."
onclick="showHTML()" />

<input type="button" value="Restore Paragraph"”
onclick="location.reload()" />
</form>
</body>
</htm1>

The visible results of applying the em element inside and outside the span element in this case are the same.
But you can see from the HTML results that each element impacts the element hierarchy quite differently.

Related Items: insertBefore(), appendChild(), insertAdjacentElement () methods

attachEvent("eventName", functionRef)
detachEvent("eventName", functionRef)

Returns: Boolean
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The attachEvent () method originated as a means to bind events for IE behaviors (see Chapter 48 on the
CD-ROM). But the method has gained acceptance as an IE alternative to the W3C addEventListener()
event binding method. To illustrate the method’s usage, I want you to first consider the following example
of the typical property assignment approach to binding an event handler:

myObject.onmousedown = setHilite;
The version with attachEvent () is as follows:
myObject.attachEvent("onmousedown", setHilite);

Both parameters are required. The first parameter is a string version (case insensitive) of the event name.
The second is a reference to the function to be invoked when the event fires for this object. A function refer-
ence is an unquoted, case-sensitive identifier for the function without any parentheses (which also means
that you cannot pass parameters in this function call).

There is a subtle benefit to using attachEvent () over the event property binding approach. When you use
attachEvent (), the method returns a Boolean value of true if the event binding succeeds. IE triggers a
script error if the function reference fails, so don’t rely on a returned value of false to catch these kinds of
errors. Also, there is no validation that the object recognizes the event name.

270

Generic HTML Element Objects
elementObject.blur()

If you have used attachEvent () to bind an event handler to an object’s event, you can disconnect that
binding with the detachEvent () method. The parameters are the same as for attachEvent (). The
detachEvent () method cannot unbind events whose associations are established via tag attributes or
event property settings.

The W3C DOM event model provides functionality similar to these IE-only methods:
addEventListener() and removeEventListener().

Example

Use The Evaluator (see Chapter 13) to create an anonymous function that is called in response to an
onmousedown event of the first paragraph on the page. Begin by assigning the anonymous function to
global variable a (already initialized in The Evaluator) in the top text box:

a = new Function("alert('Function created at " + (new Date()) + "')")

The quote marks and parentheses can get jumbled easily, so enter this expression carefully. When you enter
the expression successfully, the Results box shows the function’s text. Now assign this function to the
onmousedown event of the myP element by entering the following statement in the top text box:

document.getElementById("myP").attachEvent("onmousedown", a)

The Results box displays true when successful. If you mouse down on the first paragraph, an alert box dis-
plays the date and time when the anonymous function was created (when the new Date() expression was
evaluated).

Now disconnect the event relationship from the object by entering the following statement in the top text box:
document.getElementById("myP").detachEvent("onmousedown", a)

Related Items: addEventlListener(), detachEvent(), dispatchEvent(), fireEvent(),
removeEventListener() methods; event binding (Chapter 14)

blur()
focus ()

Returns: Nothing
Compatibility: WinlE3+, MaclE3+, NN2+, Moz+, Safari+

The b1ur () method removes focus from an element, whereas the focus () method gives focus to an ele-
ment. Even though the bTur () and focus () methods have been around since the earliest scriptable
browsers, not every focusable object has enjoyed these methods since the beginning. Browsers before IE4
and NNG6 limited these methods primarily to the window object and form control elements.

Windows

For window objects, the b1ur () method (NN3+, IE4+) pushes the referenced window to the back of all
other open windows. If other browser suite windows (such as e-mail or newsreader windows) are open, the
window receiving the b1ur () method is placed behind these windows as well.

The window.bTur () method does not adjust the stacking order of the current window in

: Mozilla-based browsers (thus, the Put Me in Back button in Listing 15-23 doesn’t work in
those browsers). But a script in a window can invoke the focus () method of another window to bring that
other window to the front (provided that a scriptable linkage, such as the window. opener property, exists
between the two windows).

271

272

Document Objects Reference
elementObject.blur()

The minute you create another window for a user in your web-site environment, you must pay attention to
window layer management. With browser windows so easily activated by the slightest mouse click, a user
can lose a smaller window behind a larger one in a snap. Most inexperienced users don't think to check the
Windows taskbar or browser menu bar (if the browser is so equipped) to see whether a smaller window is
still open and then activate it. If that subwindow is important to your site design, you should present a
button or other device in each window that enables users to switch among windows safely. The

window. focus () method brings the referenced window to the front of all the windows.

Rather than supply a separate button on your page to bring a hidden window forward, you should build
your window-opening functions in such a way that if the window is already open, the function automati-
cally brings that window forward (as shown in Listing 15-23). This removes the burden of window
management from your visitors.

The key to success with this method is making sure that your references to the desired windows are correct.
Therefore, be prepared to use the window.opener property to refer to the main window if a subwindow
needs to bring the main window back into focus.

Form control elements

The blur() and focus () methods apply primarily to text-oriented form controls: text input, select, and
textarea elements.

Just as a camera lens blurs when it goes out of focus, a text object blurs when it loses focus — when some-
one clicks or tabs out of the field. Under script control, bTur () deselects whatever may be selected in the
field, and the text insertion pointer leaves the field. The pointer does not proceed to the next field in tab-
bing order, as it does if you perform a blur by tabbing out of the field manually.

For a text object, having focus means that the text insertion pointer is flashing in that text object’s field.
Giving a field focus is like opening it up for human editing.

Setting the focus of a text box or textarea does not by itself enable you to place the cursor at any specified
location in the field. The cursor usually appears at the beginning of the text. To prepare a field for entry to
remove the existing text, use both the focus() and select () methods in series.

There is a caveat about using focus () and select () together to preselect the content of a text box for
immediate editing: Many versions of Internet Explorer fail to achieve the desired results due to an internal
timing problem. You can work around this problem (and remain compatible with other browsers) by initiat-
ing the focus and selection actions through a setTimeout () method. See Chapter 43 on the CD-ROM on
data validation for an example.

A common design requirement is to position the insertion pointer at the end of a text box or textarea so
that a user can begin appending text to existing content immediately. This is possible in IE4+ with the help
of the TextRange object. The following script fragment moves the text insertion pointer to the end of a
textarea element whose ID ismyTextarea:

var range = document.getElementById("myTextarea").createTextRange();
range.move("textedit");
range.select();

You should be very careful in combining blur () or focus () methods with onbTur and onfocus event
handlers — especially if the event handlers display alert boxes. Many combinations of these events and
methods can cause an infinite loop in which it is impossible to dismiss the alert dialog box completely. On
the other hand, there is a useful combination for older browsers that don't offer a disabled property for
text boxes. The following text box event handler can prevent users from entering text in a text box:

onfocus = "this.blur()";

Generic HTML Element Objects
elementObject.blur()

Some operating systems and browsers enable you to give focus to elements such as buttons (including radio
and checkbox buttons) and hypertext links (encompassing both a and area elements). Typically, once such
an element has focus, you can accomplish the equivalent of a mouse click on the element by pressing the
spacebar. This is helpful for accessibility to those who have difficulty using a mouse.

An unfortunate side effect of button focus in Win32 environments is that the focus highlight (a dotted rec-
tangle) remains around the button after a user clicks it and until another object gets focus. You can elimi-
nate this artifact for browsers and objects that implement the onmouseup event handler by including the
following event handler in your buttons:

onmouseup = "this.blur()";

IE5.5+ recognizes the often undesirable effect of that dotted rectangle and lets scripts set the hideFocus
property of an element to true to keep that rectangle hidden while giving the element focus. It is a trade-off
for the user, however, because there is no visual feedback about which element has focus.

Other elements

For other kinds of elements that support the focus () method, you can bring an element into view in lieu
of the scrol1IntoView() method. Link (a) and area elements in Windows versions of IE display the
dotted rectangle around them after a user brings focus to them. To eliminate that artifact, use the same

onmouseup = "this.blur()";

event handler (or IE5.5+ hideFocus property) just described for form controls.

Example

Listing 15-23 contains an example of using the focus () and blur() methods to tinker with changing the
focus of windows. This example creates a two-window environment; from each window, you can bring the
other window to the front. The main window uses the object returned by window. open() to assemble the
reference to the new window. In the subwindow (whose content is created entirely on the fly by JavaScript),
self.opener is summoned to refer to the original window, whereas sel1f.blur() operates on the sub-
window itself. Blurring one window and focusing on another window yields the same result of sending the
window to the back of the pile.

LISTING 15-23

The window.focus() and window.blur() Methods

<html>
<head>
<title>Window Focus() and Blur()</title>
{script type="text/javascript">
// declare global variable name
var newWindow = null;

function makeNewWindow() {
// check if window already exists

if (InewWindow || newWindow.closed) f{
// store new window object in global variable
newWindow = window.open("","","width=250,height=250");

continued

273

Document Objects Reference
elementObject.blur()

(AR N\ EYR]Y (continued)

// pause briefly to let IE3 window finish opening
setTimeout("fillWindow()",100);

} else {
// window already exists, so bring it forward
newWindow. focus();

}

// assemble new content and write to subwindow
function fillWindow() {
var newContent = "<html><head><title>Another Sub
Window<\/title><\/head>";
newContent += "<body bgColor='salmon'>";
newContent += "<h1>A Salmon-Colored Subwindow.<\/h1>";
newContent += "<form><input type='button' value='Bring Main to Front'
onclick="'self.opener.focus()'>";
newContent += "<form><input type='button' value='Put Me in Back'
onclick="self.blur()'>";
newContent += "<\/form><\/body><\/html1>";
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close();
}
{/script>
</head>
<body>
<h1>Window focus() and blur() Methods</hl>
<hr />
<form>
<input type="button" name="newOne" value="Show New Window"
onclick="makeNewWindow()" />
</form>
</body>
</html>

A key ingredient to the success of the makeNewWindow() function in Listing 15-23 is the first conditional
expression. Because newWind is initialized as a nu11 value when the page loads, that is its value the first
time through the function. But after you open the subwindow the first time, newWind is assigned a value
(the subwindow object) that remains intact even if the user closes the window. Thus, the value doesn’t
revert to nul1 by itself. To catch the possibility that the user has closed the window, the conditional expres-
sion also sees whether the window is closed. If it is, a new subwindow is generated, and that new window’s
reference value is reassigned to the newWind variable. On the other hand, if the window reference exists and
the window is not closed, the focus () method brings that subwindow to the front.

You can see the focus () method for a text object in action in Chapter 25% description of the select ()
method for text objects.

Related Items: window.open(), document.formObject.textObject.select() methods

274

Generic HTML Element Objects
elementObject.click()

clearAttributes()

Returns: Nothing
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The clearAttributes() method removes all attributes from an element except the name and 1d values.
Thus, styles and event handlers are removed, as are custom attributes assigned in either the HTML source
code or later by script. You should know that the clearAttributes () method does not alter the length of
the elements attributes collection, because the collection always contains all possible attributes for an
element. (See the attributes property for elements earlier in this chapter.)

This method is handy if you wish to construct an entirely new set of attributes for an element and prefer to
start out with a blank slate. Be aware, however, that unless your scripts immediately assign new attributes to
the element, the appearance of the element reverts to its completely unadorned form until you assign new
attributes. This means that even positioned elements find their way back to their source-code order until
you assign a new positioning style. If you simply want to change the value of one or more attributes of an
element, it is faster to use the setAttribute() method or adjust the corresponding properties.

To accomplish a result in NN6+/Moz that simulates that of IE5+s clearAttributes(), you must iterate
through all attributes of an element and remove those attributes (via the removeAttribute () method)
whose names are other than id and name.

Example

Use The Evaluator (see Chapter 13) to examine the attributes of an element before and after you apply
clearAttributes(). To begin, display the HTML for the table element on the page by entering the fol-
lowing statement in the top text box:

myTable.outerHTML

Notice the attributes associated with the <table> tag. Look at the rendered table to see how attributes such
as border and width affect the display of the table. Now enter the following statement in the top text box
to remove all removable attributes from this element:

myTable.clearAttributes()

First, look at the table. The border is gone, and the table is rendered only as wide as is necessary to display
the content with no cell padding. Finally, view the results of the clearAttributes() method in the
outerHTML of the table again:

myTable.outerHTML

The source-code file has not changed, but the object model in the browser’s memory reflects the changes
you made.

Related Items: attributes property; getAttribute(), setAttribute(), removeAttribute(),
mergeAttributes(), and setAttributeNode () methods

click()

Returns: Nothing
Compatibility: WinlE4+, MaclE4+, NN2+, Moz+, Safari+

The c1ick() method lets a script perform nearly the same action as clicking an element. Before NN4 and
1E4, the c1ick() method invoked on a button did not trigger the onc11ick event handler for the object.
This has significant impact if you expect the onc1ick event handler of a button to function even if a script

275

276

Document Objects Reference

elementObject.cloneNode()

performs the click. For earlier browser versions, you have to invoke the event handler statements directly.
Also, just because a script is clicking a button, not all buttons in all platforms change their appearance in
response. For example, NN4 on the Mac does not change the state of a checkbox clicked remotely.

If you want to script the action of clicking a button, you can safely invoke the resulting event handler func-
tion directly. And if the element is a radio button or checkbox, handle the change of state directly (for
example, set the checked property of a checkbox) rather than expect the browser to take care of it for you.

Example

Use The Evaluator (see Chapter 13) to experiment with the c1ick () method. The page includes various
types of buttons at the bottom. You can click the checkbox, for example, by entering the following state-
ment in the top text box:

document.myForm2.myCheckbox.click()

If you use a recent browser version, you most likely can see the checkbox change states between checked
and unchecked each time you execute the statement.

Related Item: onc1ick event handler

cloneNode(deepBoolean)

Returns: Node object reference
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The cloneNode () method makes an exact copy of the current node object. This copy does not have a par-
ent node or other relationship with any element after the copy exists (of course, the original node remains
in place). The clone also does not become part of the document’s object model (the node tree) unless you
explicitly insert or append the node somewhere on the page. The copy includes all element attributes,
including the id attribute. Because the value returned by the cloneNode () method is a genuine Node
object, you can operate on it with any Node object methods while it is still in the nondocument object state.

The Boolean parameter of the c1oneNode () method controls whether the copy of the node includes all
child nodes (true) or just the node itself (false). For example, if you clone a paragraph element by itself,
the clone consists only of the raw element (equivalent of the tag pair, including attributes in the start tag)
and none of its content. But including child nodes makes sure that all content within that paragraph ele-
ment is part of the copy. This parameter is optional in IE5 (defaulting to false), but it is required in other
W3C-compatible browsers.

Example

Use The Evaluator (see Chapter 13) to clone, rename, and append an element found in The Evaluator’s
source code. Begin by cloning the paragraph element named myP along with all of its content. Enter the
following statement in the top text box:

a = document.getElementById("myP").cloneNode(true)

The variable a now holds the clone of the original node, so you can change its id attribute at this point by
entering the following statement:

a.setAttribute("id", "Dolly")

If you want to see the properties of the cloned node, enter a in the bottom text box. The precise listing of
properties you see depends on the browser you're using; in either case, you should be able to locate the id
property, whose value is now Do11y.

TABLE 15-8

Generic HTML Element Objects

elementObject.componentFromPoint()

As a final step, append this newly named node to the end of the body element by entering the following
statement in the top text box:

document.body.appendChild(a)

You can now scroll down to the bottom of the page and see a duplicate of the content. But because the two
nodes have different id attributes, they cannot confuse scripts that need to address one or the other.

Related Items: Node object (Chapter 14); appendChild(), removeChild(), removeNode(),
replaceChild(), and replaceNode() methods

compareDocumentPosition(nodeRef)

Returns: Integer
Compatibility: WinlE-, MaclE-, NN6+, Moz1.4+, Safari-

This method determines the tree position of one node with respect to another node. More specifically, the
nodeRef object provided as a parameter (Node B) is compared with the object on which the method is
called (Node A). The result is returned from the method as an integer value that can contain one or more of
the comparison masks listed in Table 15-8.

Comparison Return Flags

Integer Value Constant Description

0 Node B and Node A are one and the same.

1 DOCUMENT_POSITION_DISCONNECTED No connection exists between the nodes.

2 DOCUMENT_POSITION_PRECEDING Node B precedes Node A.

4 DOCUMENT_POSITION_FOLLOWING Node B follows Node A.

8 DOCUMENT_POSITION_CONTAINS Node B contains Node A (and therefore
precedes it).

16 DOCUMENT_POSITION_CONTAINED_BY Node B is contained by Node A (and
therefore follows it).

32 DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC The comparison is determined by the

browser.

The integer value returned by the compareDocumentPosition() method is actually a bitmask, which
explains why the values in Table 15-8 are powers of 2. This allows the method to return multiple compari-
son values simply by adding them together. For example, a return value of 20 indicates that Node B is con-
tained by Node A (16) and also that Node B follows Node A (4).

Related Items: contains () method

componentFromPoint(x,y)

Returns: String
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The componentFromPoint () method assists in some event-related tasks. You can use it for a kind of colli-
sion detection (in other words, to determine whether an event occurs inside or outside a particular element).

277

TABLE 15-9

Document Objects Reference

elementObject.componentFromPoint()

If the element has scroll bars, the method can provide additional information about the event, such as which
component of the scroll bar the user activates.

A key aspect of this method is that you invoke it on any element that you want to use as the point of refer-
ence. For example, if you want to find out whether a mouseup event occurs in an element whose ID is
myTable, invoke the method as follows:

var result = document.getElementById("myTable").componentFromPoint(
event.clientX, event.clientY);

Parameters passed to the method are x and y coordinates. These coordinates do not have to come from an
event, but the most likely scenario links this method with an event of some kind. Mouse events (other than
onclick) work best.

The value returned by the method is a string that provides details about where the coordinate point is with
respect to the current element. If the coordinate point is inside the elements rectangle, the returned value is an
empty string. Conversely, if the point is completely outside the element, the returned value is the string
"outside". For scroll-bar pieces, the list of possible returned values is quite lengthy (as shown in Table 15-9).

Returned Values for componentFromPoint()

Returned String

Element Component at Coordinate Point

(empty)

Inside the element content area

outside

Outside the element content area

handleBottom

Resize handle at bottom

handleBottomlLeft

Resize handle at bottom left

handleBottomRight

Resize handle at bottom right

handleleft

Resize handle at left

handleRight

Resize handle at right

handleTop

Resize handle at top

handleToplLeft

Resize handle at top left

handleTopRight

Resize handle at top right

scrollbarDown

Scroll-bar down arrow

scrollbarHThumb

Scroll-bar thumb on horizontal bar

scrollbarleft

Scroll-bar left arrow

scrollbarPageDown

Scroll-bar page-down region

scrollbarPageleft

Scroll-bar page-left region

scrollbarPageRight

Scroll-bar page-right region

scrollbarPagelp

Scroll-bar page-up region

scrollbarRight

Scroll-bar right arrow

scrollbarUp

Scroll-bar up arrow

scrollbarVThumb

Scroll-bar thumb on vertical bar

278

Generic HTML Element Objects

elementObject.componentFromPoint()

You do not have to use this method for most collision or event detection, however. The event object’s
srcElement property returns a reference to whatever object receives the event.

Example

Listing 15-24 demonstrates how the componentFromPoint () method can be used to determine exactly
where a mouse event occurred. As presented, the method is associated with a textarea object that is
specifically sized to display both vertical and horizontal scroll bars. As you click various areas of the
textarea and the rest of the page, the status bar displays information about the location of the event with
the help of the componentFromPoint () method.

The script uses a combination of the event.srcElement property and the componentFromPoint()
method to help you distinguish how you can use each one for different types of event processing. The
srcElement property is used initially as a filter to decide whether the status bar will reveal further process-
ing about the textarea element’s event details.

The onmousedown event handler in the body element triggers all event processing. IE events bubble up the
hierarchy (and no events are canceled in this page), so all mousedown events eventually reach the body ele-
ment. Then the whereInWor1d() function can compare each mousedown event from any element against
the text area’s geography.

LISTING 15-24

Using the componentFromPoint() Method

<html>
<head>

<title>componentFromPoint() Method</title>

{script type="text/javascript">

function whereInWorld(elem) ({
var x = event.clientX;
var y = event.clientY;
var component =

document.getElementById("myTextarea").componentFromPoint(x,y);

if (window.event.srcElement == document.getElementById("myTextarea")){
if (component == "") {
status = "mouseDown event occurred inside the element";
} else {
status = "mouseDown occurred on the element\'s " + component;
}
} else {
status = "mouseDown occurred " + component + " of the element";
}
}
</script>
<{/head>

<body onmousedown="whereInWorld()">
<h1>componentFromPoint() Method</hl>
<hr />
<p>Tracking the mouseDown event relative to the textarea object. View
results in status bar.</p>

continued

279

Document Objects Reference

elementObject.contains()

(AR N\ Y2 (continued)

<form>
{textarea name="myTextarea" wrap="off" cols="12" rows="4">
This is Line
This is Line
This is Line
This is Line
This is Line
This is Line
{/textarea>
</form>
</body>
</html>

o OB W

Related Item: event object

contains(elementObjectReference)

Returns: Boolean
Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

The contains () method reports whether the current object contains another known object within its
HTML containment hierarchy. Note that this is not geographical collision detection of overlapping elements,
but the determination of whether one element is nested somewhere within another.

The scope of the contains () method extends as deeply within the current object’s hierarchy as is neces-
sary to locate the object. In essence, the contains () method examines all of the elements that are part of
an element’s a11 array. Therefore, you can use this method as a shortcut replacement for a for loop that
examines each nested element of a container for the existence of a specific element.

The parameter to the contains () method is a reference to an object. If you have only the element’s ID as a
string to go by, you can use the document.getElementById() method to generate a valid reference to the
nested element.

I An element always contains itself.

Example

Using The Evaluator (Chapter 13), see how the contains () method responds to the object combinations
in each of the following statements as you enter them in the top text box:

document.body.contains(document.all.myP)
document.all.myP.contains(document.all.item("myEM"))
document.all.myEM.contains(document.all.myEM)
document.all.myEM.contains(document.all.myP)

Feel free to test other object combinations within this page.

Related Items: item(), document.getElementById() methods

280

Generic HTML Element Objects
elementObject.dispatchEvent()

createControlRange("param")

Returns: Integer ID
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The createControlRange() method is used to create a control range for a selection of text. Although the
method is implemented for several elements, it is intended solely for the selection object and, therefore,
should be used only on that object.

Related Items: selection object

detachEvent ()
(See attachEvent())

dispatchEvent(eventObject)

Returns: Boolean
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari+

The dispatchEvent () method allows a script to fire an event aimed at any object capable of supporting
that event. This is the W3C event model way of generalizing mechanisms that earlier browsers sometimes
mimic with object methods such as click() and focus ().

The process of generating one of these events is similar to the way a script generates a new node and inserts
that node somewhere into the DOM. For events, however, the object that is created is an Event object,
which is generated via the document.createEvent () method. An event generated in this manner is sim-
ply a specification about an event. Use properties of an event object to supply specifics about the event,
such as its coordinates or mouse button. Then dispatch the event to a target object by invoking that target
objects dispatchEvent () method and passing the newly created Event object as the sole parameter.

Interpreting the meaning of the Boolean value that the dispatchEvent () method returns is not straight-
forward. The browser follows the dispatched event through whatever event propagation is in effect for that
object and event type (either bubbling or capture). If any of the event listener functions triggered by this
dispatched event invokes the preventDefault () method, the dispatchEvent () method returns false
to indicate that the event did not trigger the native action of the object; otherwise, the method returns
true. Notice that this returned value indicates nothing about propagation type or how many event listeners
run as a result of dispatching this event.

Although the dispatchEvent () method was implemented in NN6, the browser does not yet
provide a way to generate new events from scratch. And if you attempt to redirect an existing
event to another object via the dispatchEvent () method, the browser is prone to crashing. In other
words, Mozilla-based browsers are much better candidates for scripts that use dispatchEvent ().

Example

Listing 15-25 demonstrates how to fire events programmatically using the W3C DOM dispatchEvent ()
method. Notice the syntax in the doDispatch() function for creating and initializing a new mouse event,
supported most reliably in Mozilla-based browsers. The behavior is identical to that of Listing 15-26 later in
this chapter, which demonstrates the IE5.5+ equivalent: fireEvent ().

281

Document Objects Reference

elementObject.dispatchEvent()

LISTING 15-25

Using the dispatchEvent() Method

<html>
<head>

<title></title>
{style type="text/css">
#mySPAN {font-style:italic}
</style>
{script type="text/javascript">
// assemble a couple event object properties
function getEventProps(evt) {

var msg = "";

var elem = evt.target;

msg += "event.target.nodeName: " + elem.nodeName + "\n";

msg += "event.target.parentNode: " + elem.parentNode.id + "\n";
msg += "event button: " + evt.button;

return msg;

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick(evt) {
var msg = "Click event processed in BODY\n\n";
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);
}
function pClick(evt) {
var msg = "Click event processed in P\n\n";
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);
}
function spanClick(evt) {
var msg = "Click event processed in SPAN\n\n";
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);
}

// cancel event bubbling if checkbox is checked
function checkCancelBubble(evt) {
if (document.controls.bubbleOn.checked) {
evt.stopPropagation();
1
}

// assign onClick event handlers to three elements

function init() {
document.body.onclick = bodyClick;

282

Generic HTML Element Objects
elementObject.doScroll()

document.getElementById("myP").onclick = pClick;
document.getElementById("mySPAN").onclick = spanClick;
}

// invoke fireEvent() on object whose ID is passed as parameter
function doDispatch(objID, evt) {
// create empty mouse event
var newkvt = document.createkEvent("MouseEvents");
// initialize as click with button ID 3
newEvt.initMouseEvent("click", true, true, window, 0, 0, O,
0, 0, false, false, false, false, 3, null);
// send event to element passed as param
document.getElementById(objID).dispatchEvent(newEvt);
// don't let button clicks bubble
evt.stopPropagation();
}
{/script>
</head>
<body id="myBODY" onload="init()">
<h1>firekvent() Method</hl>
<hr />
<p id="myP">This is a paragraph (with a nested
SPAN) that receives click events.</p>
<hr />
<p>Control Panel</p>
<form name="controls">
<p><input type="checkbox" name="bubblelOn"
onclick="event.stopPropagation()" />Cancel event bubbling.</p>
<p><input type="button" value="Fire Click Event on BODY"
onclick="doDispatch('myBODY', event)" /></p>
<p><input type="button" value="Fire Click Event on myP"
onclick="doDispatch('myP"', event)" /></p>
<p><input type="button" value="Fire Click Event on mySPAN"
onclick="doDispatch('mySPAN', event)" /></p>
</form>
</body>
</html1>

Related Item: fireEvent () method

doScrol1("scrollAction")

Returns: Nothing
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The doScrol1() method is used to control the scrolling of an element by triggering its scroll bars.
Although a subtle distinction, doScro11() doesn't move the scroll bars to a specific position; instead, it
simulates a scroll-bar click. The end result is an onscro11 event being fired, which is what you would
expect from a simulated scroll.

283

284

Document Objects Reference

elementObject fireEvent()

The string parameter to doScrol1() can be one of the following values to indicate what kind of scrolling is
to take place: scrollbarUp, scrollbarDown, scrollbarLeft, scrollbarRight, scrollbarPageUp,
scrollbarPageDown, scrollbarPageleft, scrollbarPageRight, scrollbarHThumb, or
scrollbarVThumb.

dragDrop()

Returns: Boolean
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

The dragDrop () method initiates a mouse drag-and-drop sequence by triggering an ondragstart event.
The return value is a Boolean that indicates when the user releases the mouse button (true).

fireEvent("eventType"[, eventObjectRef])

Returns: Boolean
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

Although some objects have methods that emulate physical events (for example, the c1ick() and focus()
methods), WinlE5.5+ generalizes the mechanism by letting a script direct any valid event to any object. The
fireEvent () method is the vehicle.

One required parameter is the event type, formatted as a string. IE event types are coded just like the prop-
erty names for event handlers (for example, onc1ick, onmouseover, and so on).

A second, optional parameter is a reference to an existing event object. This object can be an event that some
user or system action triggers (meaning that the fireEvent () method is in a function invoked by an event
handler). The existing event can also be an object created by the IE5.5+ document.createEventObject()
method. In either case, the purpose of providing an existing event object is to set the properties of the event
object that the fireEvent () method creates. The event type is defined by the methods first parameter, but if
you have other properties to set (for example, coordinates or a keyboard key code), those properties are picked
up from the existing object. Here is an example of a sequence that creates a new mousedown event, stuffs some
values into its properties, and then fires the event at an element on the page:

var newkvent = document.createEventObject();

newkvent.clientX = 100;

newEvent.clientY = 30;

newEvent.cancelBubble = false;

newEvent.button = 1;
document.getElementById("myElement").fireEvent("onmousedown", newEvent);

Events generated by the fireEvent () method are just like regular IE window. event objects, and they have
several important event object properties that the browser presets. It is important that cancelBubble is set
to falseand returnValue is set to true —just like a regular user- or system-induced event. This means
that if you want to prevent event bubbling and/or prevent the default action of the event’s source element, the
event handler functions must set these event object properties just like normal event handling in IE.

The fireEvent () method returns a Boolean value that the returnValue property of the event deter-
mines. If the returnValue property is set to false during event handling, the fireEvent () method
returns false. Under normal processing, the method returns true.

The W3C DOM (Level 2) event model includes the dispatchEvent () method to accommodate script-
generated events (and Event object methods to create event objects), which is roughly the W3C equivalent
of the firetEvent () method.

Generic HTML Element Objects

elementObject fireEvent()

Example

Listing 15-26 contains script code that shows how to fire events programmatically using the fireEvent ()
method. Three buttons in the example page enable you to direct a click event to each of the three elements
that have event handlers defined for them. The events fired this way are artificial, generated via the
createEventObject () method. For demonstration purposes, the button property of these scripted
events is set to 3. This property value is assigned to the event object that eventually gets directed to an ele-
ment. With event bubbling left on, the events sent via fireEvent () behave just like the physical clicks on
the elements. Similarly, if you disable event bubbling, the first event handler to process the event cancels
bubbling, and no further processing of that event occurs. Notice that event bubbling is canceled within the
event handlers that process the event. To prevent the clicks of the checkbox and action buttons from trig-
gering the body element’s onc11ick event handlers, event bubbling is turned off for the buttons right away.

LISTING 15-26

Using the fireEvent() Method

<html>
<head>
<title></title>
{style type="text/css">
#mySPAN {font-style:italic)
</style>
{script type="text/javascript">
// assemble a couple event object properties
function getEventProps() {

var msg = ;

var elem = event.srcElement;

msg += "event.srcElement.tagName: " + elem.tagName + "\n";
msg += "event.srcElement.id: " + elem.id + "\n";

msg += "event button: " + event.button;

return msg;
}

// onClick event handlers for body, myP, and mySPAN
function bodyClick() {
var msg = "Click event processed in BODY\n\n";
msg += getEventProps();
alert(msg);
checkCancelBubble();
}
function pClick() f
var msg = "Click event processed in P\n\n";
msg += getEventProps();
alert(msg);
checkCancelBubble();
}
function spanClick() {
var msg = "Click event processed in SPAN\n\n";
msg += getEventProps();

continued

285

Document Objects Reference

elementObject fireEvent()

(AR N\ YT (continued)

alert(msg);
checkCancelBubble();

}

// cancel event bubbling if checkbox is checked
function checkCancelBubble() {

event.cancelBubble = document.controls.bubbleOn.checked;
}

// assign onClick event handlers to three elements
function init() {
document.body.onclick = bodyClick;
document.getElementById("myP").onclick = pClick;
document.getElementById("mySPAN").onclick = spanClick;
}

// invoke fireEvent() on object whose ID is passed as parameter
function doFire(objID) {
var newkEvt = document.createkEventObject();
newEvt.button = 3;
document.all(objID).fireEvent("onclick", newEvt);
// don't Tet button clicks bubble
event.cancelBubble = true;
}
</script>
</head>
<body id="myBODY" onload="init()">
<hl1>firekEvent() Method</hl>
<hr />
<p id="myP">This is a paragraph (with a nested
SPAN) that receives click events.</p>
<hr />
<p>Control Panel</p>
<form name="controls">
<p><input type="checkbox" name="bubbleOn"
onclick="event.cancelBubble=true" />Cancel event bubbling.</p>
<p><input type="button" value="Fire Click Event on BODY"
onclick="doFire("'myBODY")" /></p>
<p><input type="button" value="Fire Click Event on myP"
onclick="doFire('myP"')" /></p>
<p><input type="button" value="Fire Click Event on mySPAN"
onclick="doFire('mySPAN")" /></p>
</form>
</body>
</htm1>

Related Item: dispatchEvent () method

286

Generic HTML Element Objects
elementObject.getAdjacentText()

focus ()
(See blur())

getAdjacentText("position™)

Returns: String
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The getAdjacentText () method enables you to extract copies of plain-text components of an element
object (in other words, without any HTML tag information). The sole parameter is one of four case-insensitive
string constant values that indicate from where, in relation to the current object, the text should be extracted.
The values are

Parameter Value Description
beforeBegin Text immediately in front of the element’s tag, back to the preceding tag
afterBegin Text that begins inside the element tag, up to the next tag (whether it be a nested element

or the element’s end tag)

beforeEnd Text immediately in front of the element’s end tag, back to the preceding tag (whether it be
a nested element or the element’s start tag)

afterkEnd Text immediately following the element’s end tag, forward until the next tag

If the current object has no nested elements, both the afterBegin and beforeEnd versions return the
same as the object’s innerText property. When the current object is encased immediately within another
element (for example, a td element inside a tr element), there is no text before the elements beginning or
after the elements end, so these values are returned as empty strings.

The strings returned from this method are roughly equivalent to values of text fragment nodes in the W3C
DOM, but IE5+ treats these data pieces as string data types rather than as text node types. W3C DOM
equivalents for the four versions are

document.getElementById("objName").previousSibling.nodeValue
document.getElementById("objName").firstChild.nodeValue
document.getElementById("objName").lastChild.nodeValue
document.getElementById("objName").nextSibling.nodeValue
Example

Use The Evaluator (see Chapter 13) to examine all four adjacent text possibilities for the myP and nested
myEM elements in that document. Enter each of the following statements in the top text box, and view the
results:

document.getETementById("myP").getAdjacentText("beforeBegin")
document.getElementById("myP").getAdjacentText("afterBegin")

document.getElementById("myP").getAdjacentText("beforeknd")
document.getElementById("myP").getAdjacentText("afterknd")

The first and last statements return empty strings because the myP element has no text fragments surround-
ing it. The afterBegin version returns the text fragment of the myP element up to, but not including, the
EM element nested inside. The beforeEnd string picks up after the end of the nested EM element and
returns all text to the end of myP.

287

288

Document Objects Reference

elementObject.getAdjacentText()

Now see what happens with the nested myEM element:

document.getElementById("myEM").getAdjacentText("beforeBegin")
document.getElementById("myEM").getAdjacentText("afterBegin")
document.getElementById("myEM").getAdjacentText("beforekEnd")
document.getElementById("myEM").getAdjacentText("afterEnd")

Because this element has no nested elements, the afterBegin and beforeEnd strings are identical — the
same value as the innerText property of the element.

Related Items: childNodes, data, firstChild, TastChild, nextSibling, nodeValue, and
previousSibling properties

getAttribute("attributeName"[, caseSensitivity]l)

Returns: (See text)
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The getAttribute() method returns the value assigned to a specific attribute of the current object. You
can use this method as an alternative to retrieving properties of an object, particularly when your script
presents you the attribute name as a string (in contrast to a fully formed reference to an object and its
property). Thus, the following example statements yield the same data:

var mult = document.getElementById("mySelect").multiple;
var mult = document.getETementById("mySelect").getAttribute("multiple");

Returned value types from getAttribute() are either strings (including attribute values assigned as
unquoted numeric values) or Booleans (for example, the multiple property of a select element object).

& The W3C DOM Level 2 standard recommends getAttribute() and setAttribute() for
reading and writing element object attribute values, rather than reading and writing those val-
ues by way of their corresponding properties. Although using these methods is certainly advisable for XML
elements, the same DOM standard sends conflicting signals by defining all kinds of properties for HTML
element objects. Browsers, of course, will support access via properties well into the future, so don’t feel
obligated to change your ways just yet.

All browsers that support the getAttribute() method require one parameter, which is a string of the
attribute name. By default, this parameter is not case sensitive. Note that this has impact on custom attrib-
utes that you might assign to HTML or XML elements in your documents. Attribute names are automati-
cally converted to lowercase when they are turned into properties of the object. Therefore, you must avoid
reusing attribute names, even if you use different case letters in the source-code assignments.

[E includes an optional extension to the method in the form of a second parameter that enables you to be
more specific about the case sensitivity of the first parameter. The default value of the second parameter is
false, which means that the first parameter is not case sensitive. A value of true makes the first parameter
case sensitive. This matters only if you use setAttribute() to add a parameter to an existing object and if
the IE version of that method insists on case sensitivity. The default behavior of setAttribute() respects
the case of the attribute name. See also the discussion of the setAttribute() method later in this chapter
with regard to setAttribute()’s influence on the IE attributes property.

Generic HTML Element Objects
elementObject.getAttributeNode()

Example

Use The Evaluator (see Chapter 13) to experiment with the getAttribute() method for the elements in
the page. You can enter the following sample statements in the top text box to view attribute values:

document.getElementById("myTable").getAttribute("width")
document.getElementById("myTable").getAttribute("border")

Related Items: attributes property; document.createAttribute(), setAttribute() methods

getAttributeNode("attributeName")

Returns: Attribute node object
Compatibility: WinlE6+, MaclE-, NN6+, Moz+, Safari+

In the W3C DOM, an attribute is an object that inherits all the properties of a Node object (see Chapter 14). As
its name implies, an attribute object represents a name—value pair of an attribute that is explicitly defined
inside an element’s tag. The ability to treat attributes as node objects is far more important when working with
XML than HTML, but it is helpful to understand attribute nodes within the context of the W3C DOM object-
oriented view of a document. It is important that attribute nodes specifically are not recognized as nodes of a
document hierarchy. Therefore, an attribute node is not a child node of the element that defines the attribute.

The nodeness of attributes comes into play when addressing the contents of an objects attributes prop-
erty. The W3C attributes property builds on the DOM3 formal structure by returning an object known
(internally) as a named node map. Like an array, the named node map has a Tength property (facilitating
for loop iteration through the map), plus several methods that allow for inserting, removing, reading, or
writing attribute name—value pairs within the node map.

An attribute object inherits all the properties of the Node object. Table 15-10 lists the properties of an attribute
object.

TABLE 15-10

Attribute Object Properties of W3C DOM-Compatible Browsers

attributes
childNodes
firstChild
lastChild

name

nextSibling

nodeName

nodeType

nodeValue

ownerDocument

parentNode

previousSibling

specified

value

289

290

Document Objects Reference
elementObject.getAttributeNS()

All of this is a long way to explain the W3C DOM getAttributeNode () method, which returns a W3C
DOM attribute object. The sole parameter of the method is a case-insensitive string version of the attribute’s
name. Then you can use any of the properties shown in Table 15-10 to get or set attribute values. Of
course, HTML attributes are generally exposed as properties of HTML elements, so it is usually easier to
read or write the object’s properties directly.

Example

Use The Evaluator (see Chapter 13) to explore the getAttributeNode () method. The Results textarea
element provides several attributes to check out. Because the method returns an object, enter the following
statements in the bottom text box so you can view the properties of the attribute node object returned by
the method:

document.getElementById("output").getAttributeNode("cols")
document.getElementById("output").getAttributeNode("rows")
document.getElementById("output").getAttributeNode("wrap")
document.getElementById("output").getAttributeNode("style")

All (except the last) statements display a list of properties for each attribute node object. The last statement,
however, returns nothing because the sty1e attribute is not specified for the element.

Related Items: attributes property; getAttribute(), removeAttributeNode(),
setAttributeNode () methods

getAttributeNodeNS("namespaceURI", "TocalName")

Returns: Attribute node object
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

This method returns a W3C DOM attribute object. The first parameter of the method is a URI string
matching a URI assigned to a label in the document. The second parameter is the local name portion of the
attribute you are getting.

Related Items: attributes, namespaceURI, TocalName properties; getAttributeNode(),
setAttributeNodeNS() methods

getAttributeNS("namespaceURI", "TocalName")

Returns: (See text)
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

This method returns the value assigned to a specific attribute of the current object when that attribute’s
name is defined by way of an XML namespace definition within the document. The first parameter of the
method is a URI string matching a URI assigned to a namespace label in a tag defined earlier in the docu-
ment. The second parameter is the local name portion of the attribute whose value you are getting.

Returned value types from getAttributeNS() are either strings (including attribute values assigned as
unquoted numeric values) or Booleans (for example, the multiple property of a select element object).
In the W3C DOM, Netscape, Safari, and Opera, return values are always strings.

Related Items: attributes, namespaceURI, TocalName properties; getAttribute(),
getAttributeNodeNS(), setAttributeNodeNS() methods

Generic HTML Element Objects
elementObject.getBoundingClientRect()

getBoundingClientRect()

Returns: TextRectangle object
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

IE5+ assigns to every content-holding element a rectangle that describes the space that the element occupies
on the page. This rectangle is called a bounding rectangle, and it is expressed in the WinIE5+ object model as a
TextRectangle object (even when the content is an image or some other kind of object). A TextRectangle
object has four properties (top, 1eft, bottom, and right) that are the pixel coordinates that define the rec-
tangle. The getBoundingClientRect () method returns a TextRectangle object that describes the bound-
ing rectangle of the current object. You can access an individual measure of an object’s bounding rectangle, as
in the following example:

var parTop = document.getElementById("myP").getBoundingClientRect().top;

For elements that consist of text, such as paragraphs, the dimensions of individual TextRectangles for
each line of text in the element influence the dimensions of the bounding rectangle. For example, if a para-
graph contains two lines, and the second line extends only halfway across the width of the first line, the
width of the second line’s TextRectangle object is only as wide as the actual text in the second line. But
because the first line extends close to the right margin, the width of the encompassing bounding rectangle is
governed by that wider, first line TextRectangle. Therefore, an elements bounding rectangle is as wide as
its widest line and as tall as the sum of the height of all TextRectangle objects in the paragraph.

Another method, getClientRects (), enables you to obtain a collection of line-by-line TextRectangle
objects for an element.

Example

Listing 15-27 employs both the getBoundingClientRect () and getClientRects() methods in a
demonstration of how they differ. A set of elements are grouped within a span element named main. The
group consists of two paragraphs and an unordered list.

Two controls enable you to set the position of an underlying highlight rectangle to any line of your choice.
A checkbox enables you to set whether the highlight rectangle should be only as wide as the line or the full
width of the bounding rectangle for the entire span element.

All the code is located in the hi1ite() function. The select and checkbox elements invoke this function.
Early in the function, the getClientRects () method is invoked for the main element to capture a snap-
shot of all TextRectangles for the entire element. This array comes in handy when the script needs to get
the coordinates of a rectangle for a single line, as chosen in the select element.

Whenever the user chooses a number from the select list, and the value is less than the total number of
TextRectangle objectsin c1ientRects, the function begins calculating the size and location of the
underlying yellow highlighter. When the Full Width checkbox is checked, the left and right coordinates are
obtained from the getBoundingClientRect () method because the entire span elements rectangle is the
space you're interested in; otherwise, you pull the Teft and right properties from the chosen rectangle in
the clientRects array.

Next comes the assignment of location and dimension values to the hiliter objects style property. The
top and bottom are always pegged to whatever line is selected, so the c1ientRects array is polled for the
chosen entry’s top and bottom properties. The previously calculated Teft value is assigned to the hiliter
objects pixellLeft property, whereas the width is calculated by subtracting the 1eft from the right coor-
dinates. Notice that the top and 1eft coordinates also take into account any vertical or horizontal scrolling
of the entire body of the document. If you resize the window smaller, line wrapping throws off the original
line count. However, an invocation of hilite() from the onresize event handler applies the currently
chosen line number to whatever content falls in that line after resizing.

291

Document Objects Reference

elementObject.getBoundingClientRect()

LISTING 15-27

Using getBoundingClientRect()

<html1>
<head>
<title>getClientRects() and getBoundClientRect() Methods</title>
{script type="text/javascript">
function hilite() {
var hTop, hlLeft, hRight, hBottom, hWidth;
var select = document.forms[0].choice;
var n = parselnt(select.options[select.selectedIndex].value) - 1;
var clientRects = document.getElementById("main").getClientRects();
var mainElem = document.getElementById("main");
if (n >= 0 & & n < clientRects.length) {
if (document.forms[0].fullWidth.checked) {
hLeft = mainElem.getBoundingClientRect().left;
hRight = mainElem.getBoundingClientRect().right;
} else {
hLeft = clientRects[n].left;
hRight = clientRects[n].right;
}
document.getElementById("hiliter").style.pixelTop =
clientRects[n].top + document.body.scrollTop;
document.getElementById("hiliter").style.pixelBottom =
clientRects[n].bottom;
document.getElementById("hiliter").style.pixelleft =
hLeft + document.body.scrolllLeft;
document.getElementById("hiliter").style.pixelWidth
hRight - hlLeft;
document.getElementById("hiliter").style.visibility = "visible";
} else if (n > 0) {
alert("The content does not have that many lines.");
document.getElementById("hiliter").style.visibility
}

"hidden";

}
</script>
</head>
<body onresize="hilite()">
<hl>getClientRects() and getBoundClientRect() Methods</hl>
<hr />
<form>
Choose a Tine to highlight: <select name="choice" onchange="hilite()">
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
<option value="4">4</option>
<option value="5">5</option>
<option value="6">6</option>
<option value="7">7</option>
<option value="8">8</option>

292

Generic HTML Element Objects
elementObject.getClientRects()

<option value="9">9</option>
<option value="10">10</option>
<option value="11">11</option>
<option value="12">12</option>
<option value="13">13</option>
<option value="14">14</option>
<option value="15">15</option>
</select>

<input name="fullWidth" type="checkbox" onclick="hilite()" /> Full
Width (bounding rectangle)
</form>
<{span id="main">
<p>Lorem ipsum dolor sit amet, consectetaur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation
ullamco:</p>

<1i>Taboris</1i>
<1i>nisi</1i>
<1i>aliquip ex ea commodo</1i>

<p>Duis aute irure dolor in reprehenderit involuptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deseruntmollit anim id est Tlaborum
Et harumd und Tookum Tike Greek to me, dereud facilis est er expedit
distinct.</p>
<div id="hiliter"
style="position:absolute; background-color:yellow; z-index:-1;
visibility:hidden">
</div>
</body>
</htm1>

Because the z-1index style property of the hiliter element is set to -1, the element always appears
beneath the primary content on the page. If the user selects a line number beyond the current number of
lines in the main element, the hiliter element is hidden.

Related Items: getClientRects () method; TextRectangle object (Chapter 36 on the CD-ROM)

getClientRects()

Returns: Array of TextRectangle objects
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The getClientRects () method returns an array of all TextRectangle objects that fall within the current
object the moment the method is invoked. Each TextRectangle object has its own top, Teft, bottom,
and right coordinate properties. You can then, for example, loop through all objects in this array to calcu-
late the pixel width of each line. If you want to find out the aggregate height and/or maximum width of the
entire collection, you can use the getBoundingClientRect () method as a shortcut.

293

294

Document Objects Reference

elementObject.getElementsByTagNameNS()

Example

See Listing 15-27, which demonstrates the differences between getClientRects() and
getBoundingClientRect () and shows how you can use the two together.

Related Items: getBoundingClientRect () method; TextRectangle object (Chapter 36 on the CD-ROM)

getElementsByTagName(" tagName")

Returns: Array of element objects
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The getElementsByTagName () method returns an array of all elements contained by the current object
whose tags match the tag name supplied as the sole parameter to the method. The tag name parameter must
be in the form of a string and is case insensitive. The group of elements returned in the array includes only
those elements that are within the containment scope of the current object. Therefore, if you have two table
objects in a document, and you invoke the getElementsByTagName("td") method on one of them, the
list of returned table cell elements is confined to those cells within the current table object. The current ele-
ment is not included in the returned array.

For MaclE5, WinlE6+, and all other supporting browsers, the method accepts a wildcard character ("*")
for matching descendent elements regardless of tag name. The resulting array of elements is nearly identical
to what IE4+ returns via the document.al1 collection.

Example
Use The Evaluator (see Chapter 13) to experiment with the getElementsByTagName () method. Enter the
following statements one at a time in the top text box, and study the results:

document.body.getElementsByTagName("div")
document.body.getElementsByTagName("div").length
document.getElementById("myTable").getETementsByTagName("td").length

Because the getElementsByTagName () method returns an array of objects, you can use one of those
returned values as a valid element reference:

document.getElementsByTagName("form")[0].getETementsByTagName("input").length
Related Items: getElementByTagNameNS(), getElementById(), tags () methods

getETementsByTagNameNS("namespaceURI", "TocalName")

Returns: Array of element objects
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

This method returns an array of all elements contained by the current object (within an XML document) as
specified in the two parameters. The first parameter of the method is a URI string matching a URI assigned
to a label in the document. The second parameter is the local name portion of the attribute whose value you
are getting.

Returned value types from getAttributeNS() are either strings (including attribute values assigned as
unquoted numeric values) or Booleans (for example, the multiple property of a select element object).

Related Items: attributes, namespaceURI, TocalName properties; getETementsByTagNameNS(),
getElementById(), tags() methods

Generic HTML Element Objects
elementObject.hasAttribute()

getExpression("attributeName")
Returns: String
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The getExpression() method returns the text of the expression that was assigned to an elements attribute
via the setExpression() method. The returned value is not the value of the expression, but the expression
itself. If you want to find out the current value of the expression (assuming that the variables used are within
the scope of your script), you can use the eval () function on the call to getExpression(). This action
converts the string to a JavaScript expression and returns the evaluated result.

One parameter, a string version of the attribute name, is required.

Example
See Listing 15-32 for the setExpression() method. This listing demonstrates the kinds of values returned
by getExpression().

Related Items: document.recalc(), removeExpression(), setExpression() methods

getFeature(" feature", "version")

Returns: Object
Compatibility: WinlE-, MaclE-, NN-, Moz1.7.2+, Safari-

According to the W3C DOM specification, the getFeature () method accepts a scripting feature and
version, and returns an object that implements the APIs for the feature. Examples of possible feature
parameters to this method are Core and Events, which correspond to DOM modules.

As recently as Mozilla 1.8.1 (Firefox 2.0), the getFeature() method returns an object but the object
exposes no API features to the script.

Related Items: implementation.hasFeature() method

getUserData("key")

Returns: Object
Compatibility: WinlE-, MaclE-, NN6-, Moz1.7.2+, Safari-

The getUserData() method enables you to access custom user data that has been associated with a node.
A given node can have multiple objects of user data, in which case each one is identified through a text key.
This key is the parameter that you pass into getUserData() to obtain a user data object. As of Mozilla
1.8.1 (Firefox 2.0), the method is only partially implemented and, therefore, still not useful.

hasAttribute("attributeName")

Returns: Boolean
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari+

The hasAttribute() method returns true if the current object has an attribute whose name matches the
sole parameter; it returns false otherwise.

Related Items: hasAttributeNS(), hasAttributes() methods

295

296

Document Objects Reference
elementObject.hasChildNodes()

hasAttributeNS("namespaceURI", "TlocalName")
Returns: Boolean
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

The hasAttributeNS() method returns true if the current object has an attribute as identified by the two
parameters; it returns false otherwise. The first parameter of the method is a URI string matching a URI
assigned to a label in the document. The second parameter is the local name portion of the attribute whose
value you are getting.

Related Items: attributes, namespaceURI, TocalName properties; hasAttribute(),
hasAttributes() methods

hasAttributes()

Returns: Boolean
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari+

The hasAttributes() method returns true if the current object has any attributes explicitly assigned
within the tag; it returns false otherwise.

Related Items: hasAttribute(), hasAttributeNS() methods

hasChildNodes()
Returns: Boolean

Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The hasChildNodes () method returns true if the current object has child nodes nested within; it returns
false otherwise. A child node is not necessarily the same as a child element, so the following two expres-
sions return true when the current object has at least one child node:

document.getElementById("myObject").hasChildNodes()
document.getElementById("myObject").childNodes.length > 0

You cannot use the second expression interchangeably with the following statement (which uses the IE-only
children property):

document.getElementById("myObject").children.length > 0

You generally use the hasChildNodes () method in a conditional expression to make sure such nodes exist
before performing operations on them:

if (document.getETementById("myObject").hasChildNodes() {
statements that apply to child nodes
1

Example

Use The Evaluator (see Chapter 13) to experiment with the hasChildNodes () method. If you enter the
following statement in the top text box

document.getElementById("myP").hasChildNodes()

the returned value is true. You can find out how many nodes there are by getting the Tength of the
childNodes array:

document.getElementById("myP").childNodes.Tength

Generic HTML Element Objects

elementObject.insertAdjacentElement()
This expression reveals a total of three nodes: the two text nodes and the em element between them. Check
out whether the first text node has any children:
document.getElementById("myP").childNodes[0].hasChildNodes()

The response is false because text fragments do not have any nested nodes. But check out the em element,
which is the second child node of the myP element:

document.getElementById("myP").childNodes[1].hasChildNodes()

The answer is true because the em element has a text fragment node nested within it. Sure enough, the
statement

document.getElementById("myP").childNodes[1].childNodes.length
yields a node count of 1. You can also go directly to the em element in your references:

document.getElementById("myEM").hasChildNodes()
document.getElementById("myEM").childNodes.Tength

If you want to see the properties of the text fragment node inside the em element, enter the following in the
bottom text box:

document.getElementById("myEM").childNodes[0]
You can see that the data and nodeValue properties for the text fragment return the text "al1".

Related Items: childNodes property; appendChild(), removeChild(), replaceChild() methods.

insertAdjacentElement (" Tocation", elementObject)

Returns: Object
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The insertAdjacentElement () method inserts an element object (coming from a variety of sources) into
a specific position relative to the current object. Both parameters are required. The first must be one of four
possible case-insensitive locations for the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag but before any nested content
beforeEnd Before the end tag but after all other nested content
aftertnd After the end tag

These locations are relative to the current object. The element type of the current object (a block-level or
inline element) has great bearing on how the inserted element is rendered. For example, suppose that you
create a b element (using document.createElement()) and assign some inner text to it. You then use
insertAdjacentElement () in an effort to insert this b element before some text in a p element. Because a

p element is a block-level element, the location beforeBegin places the new b element before the start tag of
the p element. This means, however, that the bold text appears in a text line above the start of the p element

297

298

Document Objects Reference
elementObject.insertAdjacentElement()
because a <p> tag begins a new block at the left margin of its container (unless instructed otherwise by style
sheets). The resulting HTML looks like the following:
The new element.<p>The original paragraph element.</p>

To make the new b element a part of the p element—but in front of the existing p element’s content — use
the afterBegin location. The resulting HTML looks like the following:

<p>The new element.The original paragraph element.</p>

To complete the demonstration of the four location types, the following is the result of the beforeEnd location:
<{p>The original paragraph element. The new element.</p>

And this is the result of the afterEnd location:
<p>The original paragraph element.</p>The new element.

The object to be inserted is a reference to an element object. The object reference can come from any expres-
sion that evaluates to an element object or, more likely, from the result of the document.createETlement ()
method. Bear in mind that the object generated by document.createElement () initially has no content, and
all attribute values are set to default values. Moreover, the object is passed to insertAdjacentElement() by
reference, which means that there is only one instance of that object. If you attempt to insert that object in two
places with two statements, the object is moved from the first location to the second. If you need to copy an
existing object so that the original is not moved or otherwise disturbed by this method, use the c1oneNode ()
method to specify the true parameter to capture all nested content of the node.

Example

Use The Evaluator (see Chapter 13) in WinlE5+ to experiment with the insertAdjacentElement ()
method. The goal of the experiment is to insert a new h1l element above the myP element.

All actions require you to enter a sequence of statements in the top text box. Begin by storing a new element
in the global variable a:

a = document.createETement("h1")

Give the new object some text:
a.innerText = "New Header"

Now insert this element before the start of the myP object:
myP.insertAdjacentElement("beforeBegin", a)

Notice that you have not assigned an id property value to the new element. But because the element was
inserted by reference, you can modify the inserted object by changing the object stored in the a variable:

a.style.color = "red"

The inserted element is also part of the document hierarchy, so you can access it through hierarchy refer-
ences such asmyP.previousSibling.

The parent element of the newly inserted element is the body. Thus, you can inspect the current state of the
HTML for the rendered page by entering the following statement in the top text box:

document.body.innerHTML

Generic HTML Element Objects
elementObject.insertAdjacentHTML()

If you scroll down past the first form, you can find the <h1> element that you added along with the style
attribute.

Related Items: document.createElement(), applyElement () methods

insertAdjacentHTML(" Tocation", "HTMLtext")
insertAdjacentText("Tocation", "text")
Returns: Nothing

Compatibility: WinlE4+, MaclE4+, NN-, Moz-, Safari-

These two methods insert HTML or straight text at a location relative to the current element. They are
intended for use after a page loads, rather than inserting content while the page loads (in which case you
can use document.write() wherever you need evaluated content to appear on the page).

The first parameter must be one of four possible case-insensitive locations for the insertion, shown in the
following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag but before any nested content
beforeEnd Before the end tag but after all other nested content
aftertnd After the end tag

These locations yield the same results as described in the insertAdjacentElement () function discussed
earlier in this chapter.

Whether you use insertAdjacentHTML() or insertAdjacentText () depends on the nature of your
content and what you want the browser to do with it. If the content contains HTML tags that you want the
browser to interpret and render as though it were part of the page source code, use the
insertAdjacentHTML() method. All tags become objects in the documents object model. But if you want
only to display some text (including HTML tags in their raw form), use insertAdjacentText (). The ren-
dering engine does not interpret any tags included in the string passed as the second parameter. Instead,
these tags are displayed as characters on the page. This distinction is identical to the one between the
innerHTML and innerText properties.

The difference between insertAdjacentHTML() and insertAdjacentElement () is the nature of the
content that you insert. The former enables you to accumulate the HTML as a string, whereas the latter
requires the creation of an element object. Also, the two methods in this section work with IE4+ (including
Mac versions), whereas insertAdjacentElement () requires the newer object model of WinIE5+.

If the HTML you pass as the second parameter of insertAdjacentHTML() contains <script> tags, you
must set the defer attribute in the opening tag. This prevents script statements from executing as you
insert them.

Example

Use The Evaluator (see Chapter 13) to experiment with these two methods. The example here demonstrates
the result of employing both methods in an attempt to add some HTML to the beginning of the myP element.

299

300

Document Objects Reference

elementObject.insertBefore()

Begin by assigning a string of HTML code to the global variable a:
a = "<b id="myB'>Important News!"

Because this HTML is to go on the same line as the start of the myP paragraph, use the afterBegin param-
eter for the insert method:

myP.insertAdjacentHTML("afterBegin", a)

Notice that there is no space after the exclamation mark of the inserted HTML. But to prove that the
inserted HTML is genuinely part of the document’s object model, now you can insert the text of a space
after the b element whose ID is myB:

myB.insertAdjacentText("afterEnd", " ")

Each time you evaluate the preceding statement (by repeatedly clicking the Evaluate button or pressing
Enter with the cursor in the top text box), another space is added.

You should also see what happens when the string to be inserted with insertAdjacentText () contains
HTML tags. Reload The Evaluator, and enter the following two statements in the top text box, evaluating
each one in turn:

a = "<b id="myB'>Important News!"
myP.insertAdjacentText("afterBegin", a)

The HTML is not interpreted but is displayed as plain text. There is no object named myB after executing
this latest insert method.

Related Items: innerText, innerHTML, outerText, outerHTML properties;
insertAdjacentElement (), replaceAdjacentText () methods

insertBefore(newChildNodeObject, referenceChildNode)

Returns: Node object
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The insertBefore() method is the W3C DOM syntax for inserting a new child node into an existing
element. Node references for both parameters must be valid Node objects (including those that
document.createElement () generates).

The behavior of this method might seem counterintuitive at times. If you include the second parameter (a
reference to an existing child node of the current element — optional in IE), the new child node is inserted
before that existing one. But if you omit the second parameter (or its value is nu11), the new child node is
inserted as the last child of the current element — in which case the method acts the same as the
appendChild() method. The true power of this method is summoned when you specify that second
parameter; from the point of view of a parent element, you can drop a new child into any spot among its
existing children. If an inserted node already exists in the document tree, it will be removed from its previ-
ous position.

Bear in mind that the insertBefore() method works from a parent element. Internet Explorer provides
additional methods, such as insertAdjacentElement (), to operate from the perspective of what will
become a child element.

Example

Listing 15-28 demonstrates how the insertBefore() method can insert child elements (11) inside a parent
(o1) at different locations, depending on the second parameter. A text box enables you to enter your choice

Generic HTML Element Objects

elementObject.insertBefore()

of text and/or HTML for insertion at various locations within the o1 element. If you don'’t specify a position,
the second parameter of insertBefore() is passed as nu11—meaning that the new child node is added to
the end of the existing children. But choose a spot from the select list where you want to insert the new item.
The value of each select list option is an index of one of the first three child nodes of the 01 element.

LISTING 15-28
Using the insertBefore() Method

<html>
<head>
<title>insertBefore() Method</title>
{script type="text/javascript">
function doInsert(form) {
if (form.newText) {
var newChild = document.createElement("LI");
newChild.innerHTML = form.newText.value;
var choice =
form.itemIndex.options[form.itemIndex.selectedIndex].value;
var insertPoint = (isNaN(choice)) ?
null : document.getElementById("myUL").childNodes[choice];
document.getElementById("myUL").insertBefore(newChild,
insertPoint);
}
}
</script>
</head>
<body>
<h1l>insertBefore() Method</hl>
<hr />
<form onsubmit="return false">
<p>Enter text or HTML for a new list item: <input type="text"
name="newText" size="40" value="" /></p>
<p>Before which existing item? <select name="itemIndex">
<option value="nul1">None specified</option>
<option value="0">1</option>
<option value="1">2</option>
<option value="2">3</option>
</select></p>
<input type="button" value="Insert Item"
onclick="doInsert(this.form)" />
</form>
<ol id="myuL">
<1i>0riginally the First Item</1i>
<1i>0riginally the Second Item</1i>
<1i>0riginally the Third Item</1i>
</o1>
</body>
</html1>

Related Items: appendChild(), replaceChild(), removeChild(), insertAdjacentElement () methods

301

302

Document Objects Reference

elementObjectCollection.item()

isDefaultNamespace("namespaceURI")

Returns: Boolean
Compatibility: WinlE-, MaclE-, NN6-, Moz1.7.2+, Safari-

This method checks whether the specified namespace matches the default namespace of the current node.

isEqualNode(nodeRef)
isSameNode(nodeRef)

Returns: Integer ID
Compatibility: WinlE-, MaclE-, NN-, Moz1.7.2+, Safari-

When it comes to nodes, there is a distinct difference between a node being equal to another node and a
node being the same as another node. Equality has a very specific meaning with respect to nodes: Two
nodes are considered equal if they have the same values for the attributes, childNodes, Tocalname,
namespaceURIL, nodeName, nodeType, nodeValue, and prefix properties. Together, these properties
essentially reflect the content of a node. What they don’t reflect is the relative position of a node within a
document, which means that nodes can be equal and reside in different locations in the node tree. Two
nodes are considered the same if . . . well, they are the same identical node. The isEqualNode () method
checks for node equality, whereas isSameNode () checks whether two nodes are the same. Both methods
expect a node reference as their only parameter.

isSupported(" feature™, "version")

Returns: Boolean
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari+

The isSupported() method returns true if the current node supports required portions of the specified
W3C DOM module and version; it returns false otherwise. The first parameter accepts any of the following
case-sensitive DOM module name strings: Core, XML, HTML, Views, StyleSheets, CSS, CSS2, Events,
UIEvents, MouseEvents,MutationEvents, HTMLEvents, Range, and Traversal. The second parameter
accepts a string representation of the major and minor DOM module version, such as "2.0" for DOM Level 2.

Example

Use The Evaluator (see Chapter 13) to experiment with the isSupported() method. If you have multiple
versions of NN6 or later and Moxzilla, try the following (and others) to see how the support for various
modules has evolved:

document.body.isSupported("CSS", "2.0")
document.body.isSupported("CSS2", "2.0")
document.body.isSupported("Traversal", "2.0")

If you have access to Safari, try the same methods there to see the differences in modules supported
compared with Mozilla-based browsers.

item(index | "index" [, subIndex])

Returns: Object
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The item() method works with most objects that are themselves collections of other objects. In W3C
DOM terminology, these kinds of objects are known as named node lists (for objects such as nodes and

Generic HTML Element Objects
elementObject. mergeAttributes()

attributes) or HTML collections (for objects such as elements of a form). You may call the item() method

with a single numeric parameter that is the index value of the desired object within the collection. If you

know the index number of the item, you can use JavaScript array syntax instead. The following two state-
ments return the same object reference:

document.getElementById("myTable").childNodes.item(2)
document.getElementById("myTable").childNodes[2]

The method also supports a string of the ID of an object within the collection. (Integer values are required
for the attributes, rules, and TextRectangle objects, however.) Additionally, if the collection has
more than one object with the same ID (never a good idea except when necessary), a second numeric
parameter enables you to select which identically named group you want (using zero-based index values
within that subgroup). This obviously does not apply to collections, such as attributes and rules, which
have no ID associated with them.

The method returns a reference to the object specified by the parameters.

Example

Use The Evaluator (see Chapter 13) to experiment with the item() method. Type the following statements
in the top text box, and view the results for each.

W3C and IE5:

document.getElementById("myP").childNodes.length
document.getElementById("myP").childNodes.item(0).data
document.getElementById("myP").childNodes.item(1).nodeName

W3C, IE4, and IE5:
document.forms[1].elements.item(0).type

In the two examples, both statements return the same string. The first example is helpful when your script
is working with a string version of an object’s name. If your script already knows the object reference, the
second approach is more efficient and compact.

Related Items: All object element properties that return collections (arrays) of other objects

lTookupNamespaceURI("prefix")
lookupPrefix("namespaceURI™)
Returns: Namespace or prefix string (see description)
Compatibility: WinlE-, MaclE-, NN-, Moz1.7.2+, Safari-

These two methods use one piece of information to look up the other. The TookupNamespaceURI () method
accepts a prefix as its only parameter and returns a URI string for the node if the prefix matches a previously
defined namespace. Operating in the reverse, the TookupPrefix() method accepts a namespace URI string
and returns a prefix string for the node if the namespace parameter matches a previously defined namespace.

mergeAttributes("sourceObject")

Returns: Nothing
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The mergeAttributes () method is a convenient way to propagate attributes in newly created elements
without painstakingly adding attributes one at a time. When you have an object whose attributes can

303

Document Objects Reference

elementObject. mergeAttributes()

function as a prototype for other elements, those attributes (except for the id attribute) can be applied to a
newly created element instantaneously. The default action of this method is not to duplicate the id or name
attributes of the element. However, IE5.5+ introduced an extra Boolean parameter, preservelDs, that
enables you to duplicate these two attributes by setting the parameter to false (true is the default).

Example

Listing 15-29 demonstrates the usage of mergeAttributes() in the process of replicating the same form
input field while assigning a unique ID to each new field. So that you can see the results as you go, I display
the HTML for each input field in the field.

The doMerge () function begins by generating two new elements: a p element and an input element.
Because these newly created elements have no properties associated with them, a unique ID is assigned to
the input element through the uniquelD property. Attributes from the field in the source code (fieldl)
are merged into the new input element. Thus, all attributes except name and id are copied to the new ele-
ment. The input element is inserted into the p element, and the p element is appended to the document’s
form element. Finally, the outerHTML of the new element is displayed in its field. Notice that except for the
name and id attributes, all others are copied. This includes style sheet attributes and event handlers. To
prove that the event handler works in the new elements, you can add a space to any one of them and press
Tab to trigger the onchange event handler that changes the content to all-uppercase characters.

LISTING 15-29

Using the mergeAttributes() Method

<htm1>
<head>

<title>mergeAttributes() Method</title>

<script type="text/javascript">

function doMerge(form) {
var newPElem = document.createElement("p");
var newInputElem = document.createElement("input");
newlnputElem.id = newInputElem.uniquelD;
newlnputElem.mergeAttributes(form.fieldl);
newPETem.appendChild(newInputElem);
form.appendChild(newPElem);
newlnputElem.value = newlnputElem.outerHTML;

}

// called by onChange event handler of fields
function upperMe(field) {
field.value = field.value.toUpperCase();
}
</script>
</head>
<body
onload="document.expandable.fieldl.value =
document.expandable.fieldl.outerHTML">
<hl>mergeAttributes() Method</hl>
<hr />
<form name="expandable" onsubmit="return false">

304

Generic HTML Element Objects
elementObject.normalize()

<p><input type="button" value="Append Field 'Clone""
onclick="doMerge(this.form)" /></p>
<p><input type="text" name="fieldl" id="FIELD1" size="120" value=""
style="font-size:9pt" onchange="upperMe(this)" /></p>
</form>
</body>
</htm1>

Related Items: clearAttributes(), cloneNode(), removeAttributes() methods

normalize()

Returns: Nothing
Compatibility: WinlE6+, MaclE5+, NN7+, Moz+, Safari 1.2+

In the course of appending, inserting, removing, and replacing child nodes of an element, it is conceivable
that two text nodes can end up adjacent to each other. Although this typically has no effect on the rendering
of the content, some XML-centric applications that rely heavily on the document node hierarchy to inter-
pret content properly may not like having two text nodes sitting next to each other. The proper form of a
node hierarchy is for a single text node to be bounded by other node types. The normalize() method
sweeps through the child nodes of the current node object and combines adjacent text nodes into a single
text node. The effect obviously impacts the number of child nodes of an element, but it also cleanses the
nested node hierarchy.

Example

Use The Evaluator (see Chapter 13) to experiment with the normalize () method. The following sequence
adds a text node adjacent to one in the myP element. A subsequent invocation of the normalize() method
removes the division between the adjacent text nodes.

Begin by confirming the number of child nodes of the myP element:
document.getElementById("myP").childNodes.length

Three nodes initially inhabit the element. Next, create a text node, and append it as the last child of the myP
element:

a = document.createTextNode("This means you!")
document.getElementById("myP").appendChild(a)

With the new text now rendered on the page, the number of child nodes increases to four:
document.getElementById("myP").childNodes.length

You can see that the last child node of myP is the text node you just created:
document.getElementById("myP").lastChild.nodeValue

But by invoking normalize() on myP, all adjacent text nodes are accumulated into single nodes:

document.getElementById("myP").normalize()

305

306

Document Objects Reference

elementObject.releaseCapture()

You can see that the myP element is back to three child nodes, and the last child is a combination of the two
previously distinct, but adjacent, text nodes:

document.getElementById("myP").childNodes.length
document.getElementById("myP").lastChild.nodeValue

Related Items: document.createTextNode(), appendChild(), insertBefore(), removeChild(),
replaceChild() methods

releaseCapture()
setCapture(containerBoolean)

Returns: Nothing
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

You can instruct a single object on a page to capture all mouse events (onmousedown, onmouseup,
onmousemove, onmouseout, onmouseover, onclick, and ondb1c1ick) via the WinlE-specific
setCapture() method. A primary scenario for mouse event capture is when some content appears on the
page that you wish to leave as the center of user focus —items such as pull-down menus, context menus, or
simulated modal window areas. When such items appear onscreen, you want the effect of blocking all
mouse events except those that apply to the menu or currently visible pseudowindow. When the region
disappears, mouse events can be released so that individual elements (such as buttons and links elsewhere
on the page) respond to mouse events.

Event capture does not block the events. Instead, the events are redirected to the object set to capture all
mouse events. Events bubble up from that point unless explicitly canceled (see Chapter 25). For example,
consider a document that has a <body> tag containing an onc1ick event handler that governs the entire
document at all times. If you turn on event capture for a div somewhere in the document, the click event
first goes to the div. That div might have an onc11ck event handler that looks to process click events
when they occur in some of its child elements. If the event handler for the div does not also cancel the
bubbling of that click event, the body elements onc1ick event handler eventually receives and processes
the event, even though the div initially captured the event.

Deciding which object should capture events is an important design issue to confront. With event capture
engaged, all mouse events (no matter where they occur) get funneled to the object set to capture the events.
Therefore, if you design an application whose entire interface consists of clicking and dragging positionable
elements, you can set one of those elements (or even the document object) to perform the capturing. For
pop-up regions, however, it is generally more logical and convenient for your coding to assign the capture
mechanism to the primary container of the pop-up content (usually, a positioned div).

The setCapture() method has one optional Boolean parameter. The parameter controls whether mouse
events on child elements within the capturing object are under control of the event capture mechanism. The
default value (true) means that all mouse events targeted at elements within the current object go to the
current object rather than to the original target — the most likely way you will use setCapture() for
things such as pop-up and context menus. But if you specify false as the parameter, mouse events occur-
ring in child elements of the capturing container receive their events directly. From there, regular event bub-
bling upward from the target ensues (see Chapter 25).

You may encounter odd behavior when the region you set up to capture mouse events contains form ele-
ments such as text input fields and select lists. Because these elements require mouse events to gain focus
for interaction, the event capture mechanism inhibits access to these items. To work around this behavior,
you can examine the click events srcElement property to see whether the click was on one of these ele-
ments and script the focus of that element (or instruct the user to press the Tab key until the element gets
focus manually).

Generic HTML Element Objects

elementObject.releaseCapture()

After an object is set to capture events, your other code must define which events actually do something
and decide whether events should bubble up beyond the capturing element. You need to worry about bub-
bling only if your design includes mouse event handlers in elements higher up the element containment
hierarchy. You may not want those event handlers to fire while event capture is on; in this case, you need to
cancel the bubbling of those events in the capturing object.

If your application design requires that the pop-up area be hidden and event handling be returned to nor-
mal (such as after the user makes a pop-up menu selection), use the releaseCapture() method in con-
junction with hiding the container. Because event capture can be engaged for only one element at a time,
you can release capture by invoking the releaseCapture() method from the container or from the
document object.

Event capture is automatically disengaged when the user performs any of the following actions:

B Gives focus to any other window

B Displays any system modal dialog window (for example, alert window)
B Scrolls the page

B Opens a browser context menu (by right-clicking)

B Tabs to give focus to the Address field in the browser window

Therefore, you may want to set the document objects onlosecapture event handler to hide any container
that your script displays in concert with event capture.

Also be aware that even though mouse events may be captured to prevent mouse access to the rest of the
page, keyboard events are not captured. Thus, using the event capture mechanism to simulate modal win-
dows is not foolproof: A user can tab to any form element or link in the page and press the spacebar or
Enter key to activate that element.

Event capture, as defined in the W3C DOM, operates differently from WinlE event capture. In the W3C
DOM, you can instruct the browser to substitute event capture of any kind of event for the normal event
bubbling behavior. For example, you can attach an event listener to the body element in such a way that it
sees all click events aimed at elements contained by the body element before the events reach their target
elements. (See Chapter 14 and Chapter 25 for more on the W3C DOM event model and how to integrate it
into cross-browser applications.)

Example

Listing 15-30 demonstrates the usage of setCapture() and releaseCapture() in a quick-and-dirty con-
text menu for WinlE5+. The job of the context menu is to present a list of numbering styles for the ordered
list of items on the page. Whenever the user brings up the context menu atop the o1 element, the custom
context menu appears. Event capture is turned on in the process to prevent mouse actions elsewhere on the
page from interrupting the context menu choice. Even a click of the link set up as the title of the list is
inhibited while the context menu is visible. A click anywhere outside the context menu hides the menu.
Clicking a choice in the menu changes the 1istStyleType property of the 01 object and hides the menu.
Whenever the context menu is hidden, event capture is turned off so that clicking the page (such as the
link) works as normal.

For this design, onclick, onmouseover, and onmouseout event handlers are assigned to the div
element that contains the context menu. To trigger the display of the context menu, the o1 element has an
oncontextmenu event handler. This handler invokes the showContextMenu() function. In this function,
event capture is assigned to the context menu div object. The div is also positioned at the location of the
click before it is set to be visible. To prevent the system’s regular context menu from also appearing, the
event objects returnValue property is set to false.

307

Document Objects Reference

elementObject.releaseCapture()

Now that all mouse events on the page go through the contextMenu div object, lets examine what hap-
pens with different kinds of events triggered by user action. As the user rolls the mouse, a flood of
mouseover and mouseout events fires. The event handlers assigned to the div manage these events. But
notice that the two event handlers, highlight () and unhighlight (), perform action only when the
srcElement property of the event is one of the menu items in the div. Because the page has no other
onmouseover or onmouseout event handlers defined for elements up the containment hierarchy, you do
not have to cancel event bubbling for these events.

When a user clicks the mouse button, different things happen, depending on whether event capture is
enabled. Without event capture, the c11ick event bubbles up from wherever it occurred to the onclick
event handler in the body element. (An alert dialog box displays to let you know when the event reaches
the body.) But with event capture turned on (the context menu is showing), the hand1eC1ick() event
handler takes over to apply the desired choice whenever the click is atop one of the context menu items.
For all c11ck events handled by this function, the context menu is hidden, and the c11ick event is canceled
from bubbling up any higher (no alert dialog box appears). This takes place whether the user makes a
choice in the context menu or clicks anywhere else on the page. In the latter case, all you need is for the
context menu to go away as the real context menu does. For added insurance, the onTosecapture event
handler hides the context menu when a user performs any of the actions just listed that cancel capture.

LISTING 15-30

Using setCapture() and releaseCapture()

<htm1>
<head>

<titled</title>

{style type="text/css">

ffcontextMenu {position:absolute; background-color:fcfcfcf;
border-style:solid; border-width:1px;
border-color:#EFEFEF #505050 #505050 #EFEFEF;
padding:3px 10px; font-size:8pt; font-family:Arial, Helvetica;
line-height:150%; visibility:hidden}

.menultem {color:black}

.menultemOn {color:white}

ol {list-style-position:inside; font-weight:bold; cursor:nw-resize}

1i {font-weight:normal}

</style>

<script type="text/javascript">

function showContextMenu() {
contextMenu.setCapture();
contextMenu.style.pixelTop = event.clientY + document.body.scroll1Top;
contextMenu.style.pixelleft = event.clientX +

document.body.scrolllLeft;

contextMenu.style.visibility = "visible";
event.returnValue = false;

}

function revert() {

document.releaseCapture();
hideMenu();

308

Generic HTML Element Objects

elementObject.releaseCapture()

function hideMenu() {
contextMenu.style.visibility = "hidden";
}

function handleClick() f
var elem = window.event.srcElement;
if (elem.id.index0Of("menultem") == 0) {
document.getElementById("shapeslList").style.listStyleType =
elem.listtype;
}
revert();
event.cancelBubble = true;
}

function highlight() {
var elem = event.srcElement;
if (elem.className == "menultem") ({
elem.className = "menultemOn";
}
}

function unhighlight() {
var elem = event.srcElement

if (elem.className == "menultemOn") {
elem.className = "menultem";
}
}
</script>
<{/head>

<body onclick="alert('You reached the document object.')">
<ol id="shapeslList" oncontextmenu="showContextMenu()">
<1i style="Tist-style: none"><a href=
"javascript:alert('A%20sample%201ink."')">Three-Dimensional
Shapes</1i>
<11 value="1">Circular Cylinder</1i>
<1i>Cube</1i>
Rectangular Prism</1i>
Regular Right Pyramid</1i>
<1i>Right Circular Cone</1i>
<1i>Sphere</1i>

<div id="contextMenu" onlosecapture="hideMenu()" onclick="handleClick()"
onmouseover="highlight()" onmouseout="unhighlight()">
<{span id="menulteml" class="menultem"
listtype="upper-alpha">A,B,C,...

<span id="menultem2" class="menultem"
listtype="lower-alpha">a,b,c,...

<{span id="menultem3" class="menultem"
listtype="upper-roman">I,II,III,...

<{span id="menultem4" class="menultem"
listtype="lower-roman">i,ii,iii,...

continued

309

Document Objects Reference

elementObject.removeAttributeNode()

(REY N\ {1} (continued)

{span id="menultem5" class="menultem"
listtype="decimal">1,2,3,...
</div>
</body>
</htm1>

Related Items: addEventListener(), dispatchEvent(), fireEvent(), removeEventListener()
methods; onlosecapture event; Event object (Chapter 25)

removeAttribute("attributeName"[, caseSensitivity])

Returns: Boolean (IE), nothing (NN/DOM)
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

If you create an attribute with the setAttribute() method, you can eliminate that attribute from the ele-
ment object via the removeAttribute() method. The required parameter is the name of the attribute.
Internet Explorer permits you to set and remove attributes such that the attribute names are case sensitive.
The default behavior of removeAttribute() in IE (the second parameter is a Boolean value) is false.
Therefore, if you supply a value of true for the case-sensitivity parameter in setAttribute(), you should
set the parameter to true in removeAttribute() to ensure a proper balance between created and
removed attributes.

The W3C DOM (NN/Moz/Safari) version of the removeAttribute() method has a single parameter
(a case-insensitive attribute name) and returns no value. The returned value in IE is true if the removal
succeeds and false if it doesn't succeed (or if the attribute is one that you set in some other manner).

Example

Use The Evaluator (see Chapter 13) to experiment with the removeAttribute() method for the elements
in the page. See the examples for the setAttribute() method later in this chapter, and enter the corre-
sponding removeAttribute() statements in the top text box. Interlace statements using getAttribute()
to verify the presence or absence of each attribute.

Related Items: attributes property; document.createAttribute(), getAttribute(),
setAttribute() methods

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)

Returns: Attribute object
Compatibility: WinlE6+, MaclE-, NN6+, Moz+, Safari+

As discussed in the coverage of the getAttributeNode () method earlier in this chapter, the W3C DOM
treats a name—value attribute pair as an attribute object. An attribute object is a distinct node within a
named node map —a collection of attribute objects belonging to an element. Understanding named node
maps and attribute objects is more useful in an XML environment, where attributes can not only contain
valuable data, but also are not exposed to the DOM as properties you can access via script. Instead of
accessing an object’s properties, you work with the actual attributes.

310

Generic HTML Element Objects
elementObject.removeAttributeNS()

If you want to insert an attribute in the formal W3C methodology, you can use document.
createAttribute() to generate a new attribute object. Subsequent script statements assign values to the
nodeName and nodeValue properties to give the attribute its traditional name—value pair. You can then insert
that new attribute object into the attribute list of an object via the setAttributeNode () method. The sole
parameter is an attribute object, and the return value is a reference to the newly inserted attribute object.

To remove an attribute node from an element using this syntax, employ the removeAttributeNode () method.
Again, the sole parameter is an attribute object. If your script knows only the attribute’s name, you can use
getAttributeNode() to obtain a valid reference to the attribute object. The removeAttributeNode()
method returns a reference to the removed attribute object. That object remains in the browser’s memory, but it
is not part of the document hierarchy. By capturing this removed attribute object in a variable, you have the flex-
ibility to modify and assign it to another object elsewhere in the document.

In practice, you may rarely, if ever, need to address attributes as nodes. Other methods —notably
getAttribute(), removeAttribute(), and setAttribute() —do the job when your scripts have only
the name (as a string) of an attribute belonging to an element.

Example

Use The Evaluator (see Chapter 13) to experiment with the setAttributeNode() and
removeAttributeNode() methods for the p element in the page. The task is to create and add a style
attribute to the p element. Begin by creating a new attribute and storing it temporarily in the global variable a:

a = document.createAttribute("style")
Assign a value to the attribute object:

a.nodeValue = "color:red"

Now insert the new attribute into the p element:
document.getElementById("myP").setAttributeNode(a)

The paragraph changes color in response to the newly added attribute.

Due to the NN6 bug that won't allow the method to return a reference to the newly inserted attribute node,
you can artificially obtain such a reference:

b = document.getElementById("myP").getAttributeNode("style")
Finally, use the reference to the newly added attribute to remove it from the element:
document.getElementById("myP").removeAttribute(b)

Upon the removal of the attribute, the paragraph resumes its initial color. See the example for the
setAttribute() method later in this chapter to discover how you can perform this same kind of
operation with setAttribute().

Related Items: attributes property; document.createAttribute(), getAttribute(),
getAttributeNode(), setAttribute() methods

removeAttributeNS("namespaceURI", "TocalName")

Returns: Nothing
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

This method removes the attribute specified in the two parameters. The first parameter of the method is a
URI string matching a URI assigned to a label in the document. The second parameter is the local name
portion of the attribute whose value you are removing.

311

312

Document Objects Reference

elementObject.removeExpression()

Related Items: attributes, namespaceURI, TocalName properties; removeAttribute(),
getAttributeNS(), setAttributeNS() methods

removeBehavior(ID)
Returns: Boolean
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The removeBehavior() method detaches a behavior from an object. It assumes that the behavior was added
to the object via the addBehavior () method. The return value of the addBehavior () method is a unique
identifier for that particular behavior. This identifier is the required parameter for the removeBehavior()
method. Thus, you can add two behaviors to an object and remove just one of them if you so desire. If the
removal succeeds, the removeBehavior() method returns true; otherwise, it returns false.

Example
See Listing 15-19a and Listing 15-19b earlier in this chapter for examples of how to use addBehavior()
and removeBehavior().

Related Item: addBehavior() method

removeChild(nodeObject)
Returns: Node object reference
Compatibility: WinlE5+, MaclE5+, NN6+, Moz+, Safari+

The removeChild() method erases a child element from the current element. Content associated with the
child element is no longer visible on the page, and the object is no longer part of the document object hierarchy.

As destructive as that sounds, the specifications for the deleted object are not necessarily lost to the ether.

The removeChild() method returns a reference to the removed node. By assigning this value to a variable,
you can hold on to that object specification for insertion later in the session. You are free to use this value as
a parameter to such methods as appendChild(), replaceChild(), swapNode(), and insertBefore().

Remember that removeChild() is invoked from the point of view of a parent element. If you simply want
to remove an element, you can do so more directly (in WinlE5+ only) with the removeNode () method.
The IE removeNode () method also allows a node to remove itself, which isn't possible via the
removeChild() method.

Example
You can see an example of removeChild() as part of Listing 15-21 earlier in this chapter.

Related Items: appendChild(), replaceChild(), removeNode() methods

removeEventListener()
(See addEventListener())

removeExpression("propertyName")

Returns: Boolean
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

If you assign an expression to an object property (including an object’s sty1e object) via the
setExpression() method, you can remove it under script control with the removeExpression()
method. The sole parameter is the name of the property in string form. Property names are case sensitive.

Generic HTML Element Objects

elementObject.removeNode()

The method returns true if the removal succeeds; otherwise, false is returned. Be aware that removing an
expression does not alter the value that is currently assigned to the property. In other words, you can use
setExpression() to set a property’s value and then remove the expression so that no further changes are
made when the document recalculates expressions. If this is your goal, however, you are probably better
served by simply setting the property directly via scripting.

Example

You can experiment with all three expression methods in The Evaluator (Chapter 13). The following
sequence adds an expression to a style sheet property of the myP element on the page and then removes it.

To begin, enter the number 24 in the bottom one-line text box in The Evaluator (but don’t press Enter or
click the List Properties button). This is the value used in the expression to govern the fontSize property
of the myP object. Next, assign an expression to the myP object’s sty1e object by entering the following
statement in the top text box:

myP.style.setExpression("fontSize","document.forms[0].inspector.value","JScript")

Now you can enter different font sizes in the bottom text box and have the values immediately applied to
the fontSize property. (Keyboard events in the text box automatically trigger the recalculation.) The
default unit is px, but you can also append other units (such as pt) to the value in the text box to see how
different measurement units influence the same numeric value.

Before proceeding to the next step, enter a value other than 16 (the default fontSize value). Finally, enter
the following statement in the top text box to disconnect the expression from the property:

myP.style.removeExpression("fontSize")

Notice that although you can no longer adjust the font size from the bottom text box, the most recent value
assigned to it sticks to the element. To prove it, enter the following statement in the top text box to see the
current value:

myP.style.fontSize

Related Items: document.recalc(), getExpression(), setExpression() methods

removeNode(removeChildrenFlag)

Returns: Node object reference
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

You can use the removeNode () method to delete the current node from an element hierarchy in WinlE5+.
The sole parameter is a Boolean value that directs the method to remove only itself (without its child nodes)
or the node and all of its children (value of true). The method returns a reference to the node object
removed. This removed object is no longer accessible to the DOM. But the returned value contains all
properties of the object as it existed before you removed it (including properties such as outerHTML and
explicitly set style sheet rules). Thus, you can use this value as a parameter to insert the node elsewhere in
the document.

Although the W3C DOM does not have a removeNode () method, the cross-browser method whose behavior
most closely resembles removeNode () is the removeChi1d() method. The scope of the removeChild()
method is one level up the object hierarchy from the object you use for the removeNode () method.

313

Document Objects Reference

elementObject.replaceAdjacentText()

Example

Examine Listing 15-21 for the appendChi1d() method to understand the difference between
removeChild() and removeNode (). In the restore() function, you can replace this statement

main0bj.removeChild(oneChild);
in [E5+ with
oneChild.removeNode(true);

The difference is subtle, but it is important to understand. See Listing 15-31 later in this chapter for another
example of the removeNode () method.

Related Items: Node object; appendChild(), cloneChild(), removeChild(), replaceChild(),
replaceNode () methods

replaceAdjacentText(" Tocation", "text")

Returns: String
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The replaceAdjacentText () method enables you to replace one chunk of document text with another in
a specific position relative to the current object. Be aware that this method works only for plain text and not
HTML tags. The returned value is the string of the text that you replace.

Both parameters are required. The first must be one of four possible case-insensitive locations for the inser-
tion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag but before any nested content
beforekEnd Before the end tag but after all other nested content
afterknd After the end tag

314

This method is best used with inline (rather than block) elements when specifying the beforeBegin and
afterknd parameters. For example, if you attempt to use replaceAdjacentText () with beforeBegin
on the second of two consecutive paragraph elements, the replacement text is inserted into the end of the
first paragraph. You can think of the replaceAdjacentText () method in terms of text fragment nodes.
The method replaces the text fragment node (given any one of the four position parameters) with new text.
Replacing the text of a simple element with either the afterBegin or beforeEnd locations is the same as
assigning that text to the object’s innerText property.

Example

Use The Evaluator (see Chapter 13) to experiment with the replaceAdjacentText () method. Enter each
of the following statements in the top text box, and watch the results in the myP element (and its nested
my EM element) below the solid rule:

document.getElementById("myEM").replaceAdjacentText("afterBegin", "twenty")

Generic HTML Element Objects
elementObject.replaceNode()

Notice that the myEM element’s new text picks up the behavior of the element. In the meantime, the replaced
text (a11) is returned by the method and displayed in the Results box:

document.getElementById("myEM").replaceAdjacentText("beforeBegin", "We need ")

All characters of the text fragment, including spaces, are replaced. Therefore, you may need to supply a
trailing space, as shown here, if the fragment you replace has a space:

document.getElementById("myP").replaceAdjacentText("beforeEnd", good people.")

This is another way to replace the text fragment following the myEM element, but it is also relative to the
surrounding myP element. If you now attempt to replace text after the end of the myP block-level element

document.getElementById("myP").replaceAdjacentText("afterEnd", "Hooray!")

the text fragment is inserted after the end of the myP element’s tag set. The fragment is just kind of floating
in the DOM as an unlabeled text node.

Related Items: innerText, outerText properties; getAdjacentText(), insertAdjacentHTML(),
insertAdjacentText () methods

replaceChild(newNodeObject, oldNodeObject)

Returns: Node object reference
Compatibility: WinlE5+, MacIE5+, NN6+, Moz+, Safari+

The replaceChild() method enables you to swap an existing child node object for a new node object.
Parameters for the replaceChild() method are node object references, and they must be in the order of
the new object followed by the object you want to replace. The old object must be an immediate child node
of the parent used to invoke the method, and the new object must also be a legal child element within the
document containment hierarchy.

The method returns a reference to the child object that you replaced with the new object. This reference can
be used as a parameter to any of the node-oriented insertion or replacement methods.

Remember that replaceChild() is invoked from the point of view of a parent element. If you simply want
to change an element, you can do so more directly in WinlE5+ with the swapNode () or replaceNode()
method.

Example
You can see an example of replaceChild() as part of Listing 15-21 (for the appendChi1d property) ear-
lier in this chapter.

Related Items: appendChild(), removeChild(), replaceNode(), swapNode () methods

replaceNode("newNodeObject")

Returns: Node object reference
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The replaceNode () method is related to the replaceChild() method, but you invoke this method on
the actual node you want to replace (instead of the object’s parent). The sole parameter is a reference to a
valid node object, which you can generate via the document.createElement () method or copy from an
existing node. The value returned from the method is a reference to the object that you replace. Thus, you
can preserve a copy of the replaced node by storing the results in a variable for use later.

315

Document Objects Reference

elementObject.replaceNode()

If the node you replace contains other nodes, the replaceNode () method removes all contained nodes of
the original from the document. Therefore, if you want to change a wrapper node but want to maintain the
original children, your script must capture the children and put them back into the new node as shown in
the following example.

Example

Listing 15-31 demonstrates three node-related methods: removeNode (), replaceNode(), and swapNode().
These methods work in WinIE5+ only.

The page rendered from Listing 15-31 begins with a ul type list of four items. Four buttons control various
aspects of the node structure of this list element. The first button invokes the replace () function, which
changes the ul type to o1. To do this, the function must temporarily tuck away all child nodes of the origi-
nal ul element so that they can be added back into the new 01 element. At the same time, the old ul node
is stored in a global variable (01dNode) for restoration in another function.

To replace the ul node with an o1, the replace() function creates a new, empty o1 element and assigns
the myOL ID to it. Next, the children (11 elements) are stored en masse as an array in the variable innards.
The child nodes are then inserted into the empty 01 element, using the insertBefore() method. Notice
that as each child element from the innards array is inserted into the o1 element, the child element is
removed from the innards array. That’s why the loop to insert the child nodes is a whi1e loop that con-
stantly inserts the first item of the innards array to the new element. Finally, the replaceNode () method
puts the new node in the old node’ place, and the old node (just the ul element) is stored in o1dNode.

The restore() function operates in the inverse direction of the replace() function. The same juggling of
nested child nodes is required.

The third button invokes the swap () function, whose script exchanges the first and last nodes. The
swapNode () method, like the others in this discussion, operates from the point of view of the node.
Therefore, the method is attached to one of the swapped nodes, and the other node is specified as a param-
eter. Because of the nature of the o1 element, the number sequence remains fixed, but the text of the 11
node swaps.

To demonstrate the removeNode () method, the fourth function removes the last child node of the list.
Each call to removeNode () passes the true parameter to guarantee that the text nodes nested inside each
11 node are also removed. Experiment with this method by setting the parameter to false (the default).
Notice how the parent—child relationship changes when you remove the 11 node.

LISTING 15-31

Using Node-Related Methods

<html>
<head>
<title>removeNode(), replaceNode(), and swapNode() Methods</title>
{script type="text/javascript">
// store original node between changes
var oldNode;

// replace UL node with OL
function replace() {
if (document.getElementById("myUL")) {
var newNode = document.createElement("0L");
newNode.id = "myOL";

316

Generic HTML Element Objects
elementObject.replaceNode()

var innards = document.getElementById("myUL").children;
while (innards.length > 0) {
newNode.insertBefore(innards[0]);
}
oldNode = document.getElementById("myUL").replaceNode(newNode);

}

// restore OL to UL
function restore() {
if (document.getElementById("myOL") && oldNode) {
var innards = document.getElementById("myOL").children;
while (innards.length > 0) {
oldNode.insertBefore(innards[0]);

}
document.getElementById("myOL").replaceNode(oldNode);

}

// swap first and Tast nodes
function swap() {
if (document.getElementById("myUL")) {
document.getElementById("myUL").firstChild.swapNode(
document.getElementById("myUL").TastChild);
}
if (document.getElementById("myOL")) {
document.getElementById("myOL").firstChild.swapNode(
document.getElementById("myOL").lastChild);

}

// remove last node

function remove() {
if (document.getElementById("myUL")) {

document.getElementById("myUL").lastChild.removeNode(true);
}
if (document.getElementById("myOL")) {
document.getElementById("myOL").lastChild.removeNode(true);

}

}

{/script>

</head>
<body>

<h1>Node Methods</hl>

<her />

Here is a 1ist of items:

<ul id="myuL">
<T1i>First Item</11i>
<1i>Second Item</1i>
<1i>Third Item</11>
<1i>Fourth Item</1i>

continued

317

Document Objects Reference

elementObject.scrollintoView()

LISTING 15-31 [(ellilgltEe)]

<form>
<input type="button" value="Change to OL List"
onclick="replace()" /> <input type="button"
value="Restore LI List" onclick="restore()" /> <input
type="button" value="Swap First/Last" onclick="swap()" />
<input type="button" value="Remove Last" onclick="remove()" />

</form>

</body>

</htm1>

318

You can accomplish the same functionality shown in Listing 15-31 in a cross-browser fashion using the
W3C DOM. In place of the removeNode () and replaceNode () methods, use removeChild() and
replaceChild() methods to shift the point of view (and object references) to the parent of the ul and o1
objects: the document . body. Also, you need to change the document.al1 references to
document.getElementById().

Related Items: removeChild(), removeNode(), replaceChild(), swapNode() methods

scrollIntoView(topAlignFlag)

Returns: Nothing
Compatibility: WinlE4+, MaclE4+, NN7+, Moz+, Safari 2.02

The scrol1IntoView() method scrolls the page (vertically and/or horizontally as needed) such that the
current object is visible within the window or frame that contains it. A single parameter, a Boolean value,
controls the location of the element within the viewable space. A value of true (the default) causes the ele-
ment to be displayed so that its top is aligned with the top of the window or frame (provided that the docu-
ment beneath it is long enough to allow this amount of scrolling). But a value of false causes the bottom
of the element to align with the bottom of the viewable area. In most cases, you want the former so that the
beginning of a page section is at the top of the viewable area. But if you don’t want a user to see content
below a certain element when you jump to the new view, use the false parameter.

For form elements, you must use the typical form element reference (document.formName.elementName
.scrollIntoView()) unless you also specify an ID attribute for the element (document
.getElementById("elementID").scrollIntoView()).

Example

Use The Evaluator (see Chapter 13) to experiment with the scrol1IntoView() method. Resize the
browser window height so that you can see only the top text box and the Results text area. Enter each of the
following statements in the top text box, and see where the myP element comes into view:

myP.scrollIntoView()
myP.scrollIntoView(false)

Expand the height of the browser window until you can see part of the table lower on the page. If you enter
myTable.scrollIntoView(false)

in the top text box, the page scrolls to bring the bottom of the table to the bottom of the window. But if you
use the default parameter (true or empty)

myTable.scrollIntoView()

Generic HTML Element Objects
elementObject.setAttribute()

the page scrolls as far as it can in an effort to align the top of the element as closely as possible to the top of
the window. The page cannot scroll beyond its normal scrolling maximum (although if the element is a posi-
tioned element, you can use dynamic positioning to place it wherever you want — including off the page).
Also, if you shrink the window and try to scroll the top of the table to the top of the window, be aware that
the table element contains a caption element, so the caption is flush with the top of the window.

Related Items: window.scrol1(), window.scrol1By (), window.scrol1To() methods

setActive()

Returns: Nothing
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

The setActive() method lets a script designate an element object as the active element. However,
unlike in the focus () method, the window does not scroll the active element into view. Any onFocus
event handler defined for the element fires when setActive() is invoked without the browser’s giving
the element focus.

Example

Use The Evaluator (see Chapter 13) to compare the setActive() and focus () methods. With the page
scrolled to the top and the window sized so that you cannot see the sample checkbox near the bottom of
the page, enter the following statement in the top text box:

document.forms[1].myCheckbox.setActive()

Scroll down to see that the checkbox has operational focus (press the spacebar to see). Now scroll back to
the top, and enter the following:

document.forms[1].myCheckbox.focus()
This time, the checkbox gets focus, and the page automatically scrolls the object into view.

Related Item: focus () method

setAttribute("attributeName", valuel, caseSensitivityl)

Returns: Nothing
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The setAttribute() method assigns a new value to an existing attribute of the current object or inserts
an entirely new attribute name—value pair among the attributes of the current object. This method repre-
sents an alternative syntax to setting a property of the object directly.

The W3C DOM Level 2 standard recommends getAttribute() and setAttribute() for
reading and writing element object attribute values, rather than reading and writing those val-
ues by way of their corresponding properties. Although using these methods is certainly advisable for XML
elements, the same DOM standard sends conflicting signals by defining all kinds of properties for HTML
element objects. Browsers, of course, will support access via properties well into the future, so don’t feel
obligated to change your ways just yet.

The first two parameters of setAttribute() are required. The first is the name of the attribute. The default
behavior of this method respects the case of the attribute name. Therefore, if you use setAttribute() to
adjust the value of an existing attribute in default mode, the first parameter must match the case of the attrib-
ute as known by the object model for the current document. Remember that all names of all attributes
assigned as inline source-code attributes are automatically converted to lowercase letters.

319

320

Document Objects Reference
elementObject.setAttributeNS()

A value you assign to the attribute is the second parameter. For cross-browser compatibility, the value
should be either a string or Boolean data type.

IE provides an optional third parameter to control the case-sensitivity issue for the attribute name. The
default value (true) has a different impact on your object depending on whether you use setAttribute()
to assign a new attribute or reassign an existing one. In the former case, the third parameter as true means
that the attribute name assigned to the object observes the case of the first parameter. In the latter case, the
third parameter as true means that the attribute isn't reassigned unless the first parameter matches the case
of the attribute currently associated with the object. Instead, a new attribute with a different case sequence
is created.

Attempting to manage the case sensitivity of newly created attributes is fraught with peril, especially if you
try to reuse names but with different case sequences. I strongly recommend using default case-sensitivity
controls for setAttribute() and getAttribute().

See also the W3C DOM facilities for treating attributes as node objects in the discussions of the
getAttributeNode() and removeAttributeNode() methods earlier in this chapter.

Example

Use The Evaluator (see Chapter 13) to experiment with the setAttribute() method for the elements in
the page. Setting attributes can have immediate impact on the layout of the page (just as setting an object’s
properties can). Enter the following sample statements in the top text box to view attribute values.

document.getElementById("myTable").setAttribute("width", "80%")
document.getElementById("myTable").setAttribute("border", "5")

Related Items: attributes property; document.createAttribute(), getAttribute(),
getAttributeNode(), removeAttribute(), removeAttributeNode(), setAttributeNode () methods

setAttributeNode()
(See removeAttributeNode())

setAttributeNodeNS("attributeNode")

Returns: Attribute object
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

This method inserts or replaces an attribute in the current element. The sole parameter is an attribute
object, and the return value is a reference to the newly inserted attribute object. When the method is
invoked, the browser looks for a pairing of local name and namespace URI between the nodes. If there is a
match, the node replaces the matched node; otherwise, the node is inserted.

Related Items: attributes, namespaceURI, TocalName properties; removeAttributeNS(),
getAttributeNS(), and setAttributeNS() methods

setAttributeNS("namespaceURI", "qualifiedName", "value")

Returns: Nothing
Compatibility: WinlE-, MaclE-, NN6+, Moz+, Safari-

This method inserts or replaces an attribute in the current element, as specified in the three parameters. The
first parameter of the method is a URI string matching a URI assigned to a label in the document. The sec-
ond parameter is the local name portion of the attribute whose value you are getting. If a match is found
among these parameters, the value in the third parameter is assigned to the existing attribute; otherwise, the
value is inserted as a new attribute.

Generic HTML Element Objects

elementObject.setExpression()

Related Items: attributes, namespaceURI, TocalName properties; removeAttributeNS(),
getAttributeNS(), and setAttributeNodeNS() methods

setCapture(containerBoolean)
(See releaseCapture())

setExpression("propertyName", "expression",["language"])

Returns: Nothing
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

Use the setExpression() method to assign the result of an executable expression to the value of an ele-
ment object property. This method can assign values to both HTML element objects and style objects that
belong to them.

The setExpression() method is a scripted way of assigning expressions to attributes. But you can also
assign expressions directly to style sheet definitions in the HTML tag of an element using the expres-
sion() syntax, as in the following example:

<p style="width:expression(document.body.style.width * 0.75)">

The setExpression() method requires three parameters. The first parameter is the name of the property
(in string form) to which you assign the expression. Property names are case sensitive. The second parame-
ter is a string form of the expression to be evaluated to supply a value for the property. Expressions can refer
to global variables or properties of other objects in the same document (provided that the property is any-
thing other than an array). An expression may also contain math operators.

Pay close attention to the data type of the evaluated value of the expression. The value must be a valid data
type for the property. For example, the URL of the body background image must be a string. But for
numeric values, you can generally use number and string types interchangeably because the values are con-
verted to the proper type for the property. Even for expressions that evaluate to numbers, encase the expres-
sion inside quotes. It may not be necessary in all cases, but if you get into the habit of using quotes, you’ll
have fewer problems for strings or complex expressions that require them.

You are not limited to using JavaScript as the language for the expression because you can also specify the
scripting language of the expression in the optional third parameter. Acceptable parameter values for the
language are

JScript
JavaScript
VBScript

For all intents and purposes, JScript and JavaScript are the same. Both languages are ECMA-262 compati-
ble. JScript is the default value for the Tanguage parameter.

One reason to use setExpression() for dynamic properties is to let the property always respond to the cur-
rent conditions on the page. For example, if you set a property that is dependent on the current width of the
body, you want a recalculation that is applied to the property if the user resizes the window. The browser auto-
matically responds to many events and updates any dynamic properties. In essence, the browser recalculates
the expressions and applies the new values to the property. Keyboard events in particular trigger this kind of
automatic recalculation for you. But if your scripts perform actions on their own (in other words, not triggered
by events), your scripts need to force the recalculation of the expressions. The document . recalc() method
takes care of this, but you must invoke it to force the recalculation of dynamic properties in these cases.

321

Document Objects Reference

elementObject.setExpression()

Example

Listing 15-32 shows the setExpression(), recalc(), and getExpression() methods at work in a
DHTML-based clock. Figure 15-1 shows the clock. As time clicks by, the bars for hours, minutes, and sec-
onds adjust their widths to reflect the current time. At the same time, the innerHTML of span elements to
the right of each bar display the current numeric value for the bar.

The dynamically calculated values in this example are based on the creation of a new date object over and
over again to get the current time from the client computer clock. It is from the date object (stored in the
variable called now) that the hour, minute, and second values are retrieved. Some other calculations are
involved so that a value for one of these time components is converted to a pixel value for the width of the
bars. The bars are divided into 24 (for the hours) and 60 (for the minutes and seconds) parts, so the scale
for the two types differs. For the 60-increment bars in this application, each increment is set to 5 pixels
(stored in shortWidth); the 24-increment bars are 2.5 times the shortWidth.

As the document loads, the three span elements for the colored bars are given no width, which means that
they assume the default width of zero. But after the page loads, the on1oad event handler invokes the
init() function, which sets the initial values for each bar’s width and the text (innerHTML) of the three
labeled spans. After these initial values are set, the init () function invokes the updateClock() function.

In the updateClock () function, a new date object is created for the current instant. The
document.recalc() method is called, instructing the browser to recalculate the expressions that were set
in the init() function and assign the new values to the properties. To keep the clock ticking, the
setTimeout () method is set to invoke this same updateClock() function in 1 second.

To see what the getExpression() method does, you can click the button on the page. It simply displays
the returned value for one of the attributes that you assign using setExpression().

LISTING 15-32

Dynamic Properties

<html>
<head>

{title>getExpression(), setExpression(), and recalc() Methods</title>
{style type="text/css">
th {text-align:right}
span {vertical-align:bottom}
</style>
{script type="text/javascript">
var now = new Date();
var shortWidth = 5;
var multiple = 2.5;

function init() {
with (document.all) {

hoursBlock.style.setExpression("width","now.getHours() *
shortWidth * multiple","jscript");

hourslLabel.setExpression("innerHTML", "now.getHours()","jscript");

minutesBlock.style.setExpression("width","now.getMinutes() *
shortWidth","jscript");

minuteslLabel.setExpression("innerHTML","now.getMinutes()",

322

Generic HTML Element Objects

elementObject.setExpression()

"jscript");
secondsBlock.style.setExpression("width", "now.getSeconds() *
shortWidth","jscript");
secondslLabel.setExpression("innerHTML", "now.getSeconds()",
"jscript");
}

updateClock();
}

function updateClock() {
now = new Date();
document.recalc();
setTimeout("updateClock()",1000);
}

function showExpr() {
alert("Expression for the \'Hours\' innerHTML property is:\r\n" +
document.getElementById("hourslLabel").getExpression("innerHTML") +
") }
<{/script>
</head>
<body onload="init()">
<hl>getExpression(), setExpression(), recalc() Methods</hl>
<hr />
<p>This clock uses Dynamic Properties to calculate bar width and time
numbers:</p>
<table border="0">
<tr>
<{th>Hours:</th>
<td>
 </td>
</tr>
<tr>
<th>Minutes:</th>
<td>
 </td>
</tr>
<tr>
<th>Seconds:</th>
<td>
 </td>
</tr>
</table>
<hr />
<form>
<input type="button" value="Show 'Hours' number innerHTML Expression"
onclick="showExpr()" />
</form>
<{/body>
</html>

323

Document Objects Reference

elementObject.swapNode()

FIGURE 15-1

A bar-graph clock created with dynamic expressions.

€ getExpression(), setExpression(), and recalc() Methods - Windows Internet Explorer Q
@T; - []2l (%] [uve searcn Pl
W [@ getExpression(), setExprassion(), and recal l | BB & Breer @k

getExpression(), setExpression(), recalc() Methods

This clock uses Dynamic Properties to calculate bar width and time numbers:

Hours: [N s
Minutes: 4

Seconds: [N 15

[Show 'Hours' number innerHTML Expression 1

Done

J My Computer #100% T

Related Items: document.recalc(), removeExpression(), setExpression() methods

setUserData("key", dataObj, dataHandler)

Returns: Object
Compatibility: WinlE-, MaclE-, NN-, Moz1.7.2+, Safari-

The setUserData() method is designed to allow for the addition of user data to a node. This user data
comes in the form of an object and is associated with a node through a string key. By requiring a key for an
object of user data, the setUserData() method allows you to set multiple pieces of data (objects) on a sin-
gle node. The last parameter to the method is an event handler function reference that is called whenever
the data object is cloned, imported, deleted, renamed, or adopted.

Although some support for the setUserData() method was added in Moz1.7.2, the method still isn't sup-
ported to the degree that you can actually use it, as of Moz1.8.1.

swapNode(otherNodeObject)
Returns: Node object reference
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

324

Generic HTML Element Objects
elementObject.toString()

The swapNode () method exchanges the positions of two nodes within an element hierarchy. Contents of
both nodes are preserved in their entirety during the exchange. The single parameter must be a valid node
object (perhaps created with document.createETement () or copied from an existing node). A return
value is a reference to the object whose swapNode () method was invoked.

Example
See Listing 15-31 (the replaceNode () method) for an example of the swapNode () method in action.

Related Items: removeChild(), removeNode(), replaceChild(), replaceNode() methods

tags("tagName")
Returns: Array of element objects
Compatibility: WinlE4+, MacIE4+, NN-, Moz-, Safari-

The tags () method does not belong to every element, but it is a method of every collection of objects (such
asall, forms, and elements). The method is best thought of as a kind of filter for the elements that belong
to the current collection. For example, to get an array of all p elements inside a document, use this expression:

document.all.tags("P")

You must pass a parameter string consisting of the tag name you wish to extract from the collection. The tag
name is case insensitive.

The return value is an array of references to the objects within the current collection whose tags match
the parameter. If there are no matches, the returned array has a length of zero. If you need cross-browser
compatibility, use the getElementsByTagName () method described earlier in this chapter, and pass a
wildcard value of "*".

Example

Use The Evaluator (see Chapter 13) to experiment with the tags () method. Enter the following statements
one at a time in the top text box, and study the results:

document.all.tags("div")
document.all.tags("div").length
myTable.all.tags("td").length

Because the tags () method returns an array of objects, you can use one of those returned values as a valid
element reference:

document.all.tags("form")[1].elements.tags("input").length
Related Item: getElementsByTagName () method

toString("param")

Returns: String
Compatibility: WinlE4+, MaclE4+, NN6+, Moz+, Safari+

The toString() method returns a string representation of the element object, which unfortunately can
mean different things to different browsers. Don’t expect entirely consistent results across browsers, espe-
cially when you consider that IE simply returns a generic "[object]" string.

325

326

Document Objects Reference

elementObject.onactivate

urns("behaviorURN")

Returns: Array of element objects
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The urns () method does not belong to every element, but it is a method of every collection of objects. You
must pass a parameter string consisting of the URN (Uniform Resource Name) of a behavior resource (most
typically .htc) assigned to one or more elements of the collection. The parameter does not include the
extension of the filename. If there is no matching behavior URN for the specified parameter, the urns()
method returns an array of zero length. This method is related to the behaviorUrns property, which con-
tains an array of behavior URNs assigned to a single element object.

Example
In case the urns () method is reconnected in the future, you can add a button and function to Listing

15-19b that reveals whether the makeHot . htc behavior is attached to the myP element. Such a function
looks like this:

function behaviorAttached() {
if (document.all.urns("makeHot")) {
alert("There is at least one element set to \'makeHot\'.");

}

Related Item: behaviorUrns property

Event handlers

onactivate

ondeactivate

Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

The onactivate and ondeactivate event handlers are similar to the onfocus and onblur event han-
dlers, respectively, as well as to the IE5.5+ onfocusin and onfocusout events. Starting with IE5.5+, it is
possible to manage the activation of an element and the focus of an element separately. The onactivate
and ondeactivate events correspond to the activation of an element, whereas onfocusin and
onfocusout deal with focus. In many cases, activation and focus go hand in hand, but not always.

If an element receives activation, the onactivate event fires for that element just before the activation takes
hold; conversely, just before the element loses activation, events fire in the sequence onbeforedeactivate,
ondeactivate, onblur. Only elements that by their nature can accept activation (for example, links and
form input controls) or that have a tabindex attribute set can become the active element (and, therefore, fire
these events).

WinlE5.5+ maintains the original onfocus and onb1ur event handlers. But because the behaviors are so
close to those of the onactivate and ondeactivate events, I don't recommend mixing the old and new
event handler names in your coding style. If you script exclusively for WinlE5.5+, which is rather likely in
this day and age, you can use the newer terminology throughout. And if you truly want to track the focus of
an element, consider using onfocusin and onfocusout instead.

Generic HTML Element Objects

elementObject.onbeforecopy

Example

You can modify Listing 15-34 later in this chapter by substituting onactivate for onfocus and
ondeactivate for onblur,

Use The Evaluator (see Chapter 13) to experiment with the onbeforedeactivate event handler. To begin,
set the myP element so it can accept focus:

myP.tabIndex = 1

If you repeatedly press the Tab key, the myP paragraph will eventually receive focus — indicated by the dot-
ted rectangle around it. To see how you can prevent the element from losing focus, assign an anonymous
function to the onbeforedeactivate event handler, as shown in the following statement:

myP.onbeforedeactivate = new Function("event.returnValue=false")

Now you can press Tab all you like or click other focusable elements all you like, and the myP element will
not lose focus until you reload the page (which clears away the event handler). Please do not do this on
your pages unless you want to infuriate and alienate your site visitors.

Related Items: onblur, onfocus, onfocusin, onfocusout event handlers

onafterupdate
onbeforeupdate
Compatibility: WinlE4+, MaclE5+, NN-, Moz-, Safari-

The onafterupdate and onbeforeupdate event handlers fire on a bound data object in IE whenever the
data in the object is being updated. The onbeforeupdate event is fired just before the update occurs,
whereas onafterupdate is fired after the data has been successfully updated.

onbeforecopy
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safaril.3+

The onbeforecopy event handler fires before the actual copy action takes place whenever the user initiates
a content copy action via the Edit menu (including the Ctrl+C keyboard shortcut) or the right-click context
menu. If the user accesses the Copy command via the Edit or context menu, the onbeforecopy event fires
before either menu displays. In practice, the event may fire twice even though you expect it only once. Just
because the onbeforecopy event fires, it does not guarantee that a user will complete the copy operation
(for example, the context menu may close before the user makes a selection).

Unlike paste-related events, the onbeforecopy event handler does not work with form input elements.
Just about any other HTML element is fair game, however.

Example

You can use the onbeforecopy event handler to preprocess information prior to an actual copy action. In
Listing 15-33, the function invoked by the second paragraph element’s onbeforecopy event handler
selects the entire paragraph so that the user can select any character(s) in the paragraph to copy the entire
paragraph into the clipboard. You can paste the results into the text area to verify the operation. By assign-
ing the paragraph selection to the onbeforecopy event handler, the page notifies the user about what the
copy operation will entail prior to making the menu choice. Had the operation been deferred to the oncopy
event handler, the selection would have been made after the user chose Copy from the menu.

327

Document Objects Reference

elementObject.onbeforecut

LISTING 15-33

The onbeforecopy Event Handler

<htm1>
<head>
<title>onbeforecopy Event Handler</title>
{script type="text/javascript">
function selectWhole() {
var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;
}
</script>
</head>
<body>
<hl>onbeforecopy Event Handler</hl>
<hr /7>
<p>Select one or more characters in the following paragraph. Then execute
a Copy command via Edit or context menu.</p>
<p id="myP" onbeforecopy="selectWhole()">Lorem ipsum dolor sit amet,
consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</p>
<form>
<p>Paste results here:

{textarea name="output" cols="60" rows="5">

</textarea></p>
</form>
</body>
</htm1>

Related Items: onbeforecut, oncopy event handlers

onbeforecut
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari 1.3+

The onbeforecut event handler fires before the actual cut action takes place whenever the user initiates a
content cut via the Edit menu (including the Ctrl+X keyboard shortcut) or the right-click context menu. If
the user accesses the Cut command via the Edit or context menu, the onbeforecut event fires before
either menu displays. In practice, the event may fire twice even though you expect it only once. Just
because the onbeforecut event fires, it does not guarantee that a user will complete the cut operation (for
example, the context menu may close before the user makes a selection). If you add the onbeforecut
event handler to an HTML element, the context menu usually disables the Cut menu item. But assigning a
JavaScript call to this event handler brings the Cut menu item to life.

328

Generic HTML Element Objects

elementObject.onbeforepaste

Example

You can use the onbeforecut event handler to preprocess information prior to an actual cut action. You can
try this by editing a copy of Listing 15-33, changing the onbeforecopy event handler to onbeforecut.
Notice that in its original form, the example does not activate the Cut item in either the context or Edit menu
when you select some text in the second paragraph. But by assigning a function to the onbeforecut event
handler, the menu item is active, and the entire paragraph is selected from the function that is invoked.

Related Items: onbeforecopy, oncut event handlers

onbeforedeactivate
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

(See onactivate event handler)

onbeforeeditfocus
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The onbeforeeditfocus event handler is triggered whenever you edit an element on a page in an envi-
ronment such as Microsoft's DHTML Editing ActiveX control or with the editable page content feature of
IE5.5+. This discussion focuses on the latter scenario because it is entirely within the scope of client-side
JavaScript. The onbeforeeditfocus event fires just before the element receives its focus. (There may be
no onscreen feedback that editing is turned on unless you script it yourself.) The event fires each time a
user clicks the element, even if the element just received edit focus elsewhere in the same element.

Example

Use The Evaluator (see Chapter 13) to explore the onbeforeeditfocus in WinlE5.5+. In the following
sequence, you assign an anonymous function to the onbeforeeditfocus event handler of the myP ele-
ment. The function turns the text color of the element to red when the event handler fires:

myP.onbeforeeditfocus = new Function("myP.style.color="red'")
Now turn on content editing for the myP element:
myP.contentEditable = true

Now if you click inside the myP element on the page to edit its content, the text turns red before you begin
editing. In a page scripted for this kind of user interface, you would include some control that turns off
editing and changes the color to normal.

Related Items: document.designMode, contentEditable, isContentEditable properties

onbeforepaste
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari 1.3+

Like onbeforecopy and onbeforecut, the onbeforepaste event occurs just prior to the display of either
the context or menu-bar Edit menu when the current object is selected (or has a selection within it). The
primary value of this event comes when you use scripts to control the copy-and-paste process of a complex
object. Such an object may have multiple kinds of data associated with it, but your script captures only one
of the data types. Or you may want to put some related data about the copied item (for example, the id
property of the element) into the clipboard. By using the onbeforepaste event handler to set the
event.returnValue property to false, you guarantee that the pasted item is enabled in the context or

329

330

Document Objects Reference

elementObject.onblur

Edit menu (provided that the clipboard is holding some content). A handler invoked by onpaste should
then apply the specific data subset from the clipboard to the currently selected item.

Example

See Listing 15-44 for the onpaste event handler (later in this chapter) to see how the onbeforepaste and
onpaste event handlers work together.

Related Items: oncopy, oncut, onpaste event handlers

onbeforeupdate
(See onafterupdate)

onblur
Compatibility: WinlE3+, MaclE3+, NN2+, Moz+, Safari+

The onblur event fires when an element that has focus is about to lose focus because some other element is
about to receive focus. For example, a text input element fires the onb1ur event when a user tabs from that
element to the next one inside a form. The onblur event of the first element fires before the onfocus event
of the next element.

The availability of the onblur event has expanded with succeeding generations of script-capable browsers.
In the earlier versions, blur and focus were largely confined to text-oriented input elements (including the
select element). These are safe to use with all scriptable browser versions. The window object received the
onblur event handler starting with NN3 and IE4. IE4 also extended the event handler to more form
elements, predominantly on the Windows operating system because that OS has a user interface clue (the
dotted rectangle) when items such as buttons and links receive focus (so that you may act upon them by
pressing the spacebar). For IE5+, the onblur event handler is available to virtually every HTML element.
For most of those elements, however, blur and focus are not possible unless you assign a value to the
tabindex attribute of the element’s tag. For example, if you assign tabindex="1" inside a <p> tag, the
user can bring focus to that paragraph (highlighted with the dotted rectangle in Windows) by clicking the
paragraph or pressing the Tab key until that item receives focus in sequence.

If you plan to use the onb1ur event handler on window or text-oriented input elements, be aware that
there might be some unexpected and undesirable consequences of scripting for the event. For example, in
IE, a window object that has focus loses focus (and triggers the onblur event) if the user brings focus to any
element on the page (or even clicks a blank area on the page). Similarly, the interaction between onblur,
onfocus, and the alert () dialog box can be problematic with text input elements. This is why I generally
recommend using the onchange event handler to trigger form validation routines. If you should employ
both the onbTur and onchange event handler for the same element, the onchange event fires before
onblur. For more details about using this event handler for data validation, see Chapter 43 on the
CD-ROM.

WinIE5.5+ added the ondeactivate event handler, which fires immediately before the onblur event
handler. Both the onbTur and ondeactivate events can be blocked if the onbeforedeactivate
event handler function sets event.returnValue to false.

Example

More often than not, a page author uses the onbTur event handler to exert extreme control over the user,
such as preventing a user from exiting a text box unless that user types something in the box. This is not a
web-friendly practice, and it is one that I discourage because there are intelligent ways to ensure that a field

Generic HTML Element Objects

elementObject.onblur

has something typed into it before a form is submitted (see Chapter 43 on the CD-ROM). Listing 15-34
simply demonstrates the impact of the tabindex attribute in a WinlE5 element with respect to the onblur
and onfocus events. Notice that as you press the Tab key, only the second paragraph issues the events,
even though all three paragraphs have event handlers assigned to them.

LISTING 15-34

onblur and onfocus Event Handlers

<html>
<head>
<title>onblur and onblur Event Handlers</title>
{script type="text/javascript">
function showBlur() {
var id = event.srcElement.id;
alert("Element \"" + id + "\" has blurred.");
}

function showFocus() {
var id = event.srcElement.id;
alert("Element \"" + id + "\" has received focus.");

}

</script>

</head>

<body>
<hl id="H1" tabindex="2">onblur and onblur Event Handlers</hl>
<her />

<p 1d="P1" onblur="showBlur()" onfocus="showFocus()">Lorem ipsum dolor
sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco Taboris nisi ut aliquip ex ea
commodo consequat.</p>

<p 1d="P2" tabindex="1" onblur="showBlur()" onfocus="showFocus()">Bis
nostrud exercitation ullam mmodo consequet. Duis aute involuptate
velit esse cillum dolore eu fugiat nulla pariatur. At vver eos et
accusam dignissum qui blandit est praesent Tuptatum delenit
aigueexcepteur sint occae.</p>

<p id="P3" onblur="showBlur()" onfocus="showFocus()">Unte af phen
neigepheings atoot Prexs eis phat eit sakem eit vory gast te Plok
peish ba useing phen roxas. Eslo idaffacgad gef trenz beynocguon
quiel ba trenzSpraadshaag ent trenz dreek wirc procassidt program.</p>

</body>
</htm1>

Related Items: bT1ur (), focus() methods; ondeactivate, onbeforedeactivate, onfocus,
onactivate event handlers

331

332

Document Objects Reference

elementObject.onclick

oncellchange
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-

The oncellchange event handler is part of the data binding of IE and fires when data changes in the data
provider, which is usually a bound control. When responding to this event, you can analyze the dataF1d
property to find out which field in the recordset has changed.

onclick
Compatibility: WinlE3+, MaclE3+, NN2+, Moz+, Safari+

The onc1ick event fires when a user presses down (with the primary mouse button) and releases the
button with the pointer atop the element (both the down and up strokes must be within the rectangle of
the same element). The event also fires with non-mouse-click equivalents in operating systems such as
Windows. For example, you can use the keyboard to give focus to a clickable object and then press the
spacebar or Enter key to perform the same action as clicking the element. In IE, if the element object
supports the ¢11ck () method, the onc1ick event fires with the invocation of that method (notice that
this does not apply to Navigator or other browsers).

The onclick event is closely related to other mouse events. The other related events are onmousedown,
onmouseup, and ondoubleclick. The onmousedown event fires when the user makes contact with the
mouse switch on the downstroke of a click action. Next comes the onmouseup event (when the contact
breaks). Only then does the onc11ick event fire — provided that the onmousedown and onmouseup events
have fired in the same object. See the discussions on the onmousedown and onmouseup events later in this
chapter for examples of their usage.

Interaction with the ondb1c11ck event is simple: The onc11ick event fires (after the first click), followed by
the ondb1c1ick event (after the second click). See the discussion of the ondb1c11ck event handler later in
this chapter for more about the interaction of these two event handlers.

When used with objects that have intrinsic actions when users click them (namely, links and areas), the
onclick event handler can perform all of the actions — including navigating to the destination normally
assigned to the href attribute of the element. For example, to be compatible with all scriptable browsers,
you can make an image clickable if you surround its tag with an <a> link tag. This lets the onc1ick event
of that tag substitute for the missing onc11ck event handler of earlier tags. If you assign an onc11ick
event handler without special protection, the event handler will execute, and the intrinsic action of the
element will be carried out. Therefore, you need to block the intrinsic action. To accomplish this, the event
handler must evaluate to the statement return false. You can do this in two ways. The first is to append a
return false statement to the script statement assigned to the event handler:

<img...>

As an alternative, you can let the function invoked by the event handler supply the false part of the
return false statement, as shown in the following sequence:

function yourFunction() {
[statements that do something here]
return false;

}

<img...>

Generic HTML Element Objects

elementObject.onclick

Either methodology is acceptable. A third option is to not use the onc1ick event handler at all but assign a
javascript: pseudo-URL to the href attribute (see the Link object in Chapter 19).

The event model in TE4+ provides one more way to prevent the intrinsic action of an object from firing
when a user clicks it. If the onc11ick event handler function sets the returnValue property of the event
object to false, the intrinsic action is canceled. Simply include the following statement in the function
invoked by the event handler:

event.returnValue = false;

The event model of the W3C DOM has a different approach to canceling the default action. In the event
handler function for an event, invoke the event0bj.cancelDefault() method.

A common mistake made by scripting beginners is to use a submit type input button as a button intended
to perform some script action rather than submitting a form. The typical scenario is an input element of
type submit assigned an onc1ick event handler to perform some local action. The submit input button
has an intrinsic behavior, just like links and areas. Although you can block the intrinsic behavior, as just
described, you should use an input element of type button.

If you are experiencing difficulty with an implementation of the onc11ck event handler (such as trying to find
out which mouse button was used for the click), it may be that the operating system or default browser behav-
ior is getting in the way of your scripting. But you can usually get what you need via the onmousedown event
handler. (The onmouseup event may not fire when you use the secondary mouse button to click an object.)
Use the onc1ick event handler whenever possible to capture user clicks, because this event behaves most like
users are accustomed to in their daily computing work. But fall back on onmousedown in an emergency.

Example

The onclick event handler is one of the simplest to grasp and use. Listing 15-35 demonstrates its interac-
tion with the ondb1c11ick event handler and shows you how to prevent a link’s intrinsic action from acti-
vating when combined with c11ck events. As you click and/or double-click the link, the status bar displays
a message associated with each event. Notice that if you double-click, the c¢11ck event fires first, with the
first message immediately replaced by the second. For demonstration purposes, I show both backward-
compatible ways of canceling the link’ intrinsic action. In practice, decide on one style and stick with it.

LISTING 15-35

Using onclick and ondblclick Event Handlers

<html>
<head>

<title>onclick and ondblclick Event Handlers</title>

{script type="text/javascript">

var timeout;

function clearOutput() {
document.getElementById("clickType").innerHTML = "";

}

function showClick() {
document.getElementById("clickType").innerHTML = "single";
clearTimeout(timeout);

continued

333

Document Objects Reference

elementObject.oncontextmenu

LISTING 15-35 [(ellilgltEe)]

timeout = setTimeout("clearQutput()", 3000);
}

function showDb1CTick() {
document.getElementById("clickType").innerHTML = "double";
clearTimeout(timeout);
timeout = setTimeout("clearQutput()", 3000);
}
{/script>
</head>
<body>
<hl>onclick and ondblclick Event Handlers</hl>
<hr />
<a href="#" onclick="showClick();return false"
ondblclick="return showDbI1Click()">A sample Tink.
(Click type:)
</body>

</htm1>

334

Related Items: c1ick() method; oncontextmenu, ondblclick, onmousedown, onmouseup event
handlers

oncontextmenu
Compatibility: WinlE5+, MaclE-, NN7+, Moz+, Safari-

The oncontextmenu event fires when the user clicks an object with the secondary (usually the right)
mouse button. The only click-related events that fire with the secondary button are onmousedown and
oncontextmenu.

To block the intrinsic application menu display of the oncontextmenu event, use any of the three event
cancellation methodologies available in WinIE5+ (as just described in the onc11ick event handler descrip-
tion: two variations of evaluating the event handler to return false; assigning false to the
event.returnValue property). It is not uncommon to wish to block the context menu from appearing so
that users are somewhat inhibited from downloading copies of images or viewing the source code of a
frame. Be aware, however, that if a user turns Active Scripting off in WinlIE5+, the event handler cannot pre-
vent the context menu from appearing.

Another possibility for this event is to trigger the display of a custom context menu constructed with other
DHTML facilities. In this case, you must also disable the intrinsic context menu so that both menus do not
display at the same time.

Example

See Listing 15-30 earlier in this chapter for an example of using the oncontextmenu event handler with a
custom context menu.

Generic HTML Element Objects

elementObject.oncopy
Related Items: releaseCapture(), setCapture() methods

oncontrolselect
Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

The oncontrolselect event fires just before a user makes a selection on an editable element while the
page is in edit mode. Its important to note that it is the element itself that is selected to trigger this event,
not the content within the element.

Related Items: onresizeend, onresizestart event handlers

oncopy
oncut
Compatibility: WinlE5+, MaclE4+, NN-, Moz-, Safaril.3+

The oncopy and oncut events fire immediately after the user or script initiates a copy or cut edit action on
the current object. Each event is preceded by its associated before event, which fires before any Edit or con-
text menu appears (or before the copy or cut action, if initiated by keyboard shortcut).

Use these event handlers to provide edit functionality to elements that don’t normally allow copying or cut-
ting. In such circumstances, you need to enable the Copy or Cut menu items in the context or Edit menu
by setting the event.returnValue for the onbeforecopy or onbeforecut event handlers to false.
Then your oncopy or oncut event handlers must manually stuff a value into the clipboard by way of the
setdata() method of the c1ipboardData object. If you use the setdata() method in your oncopy or
oncut event handler, you must also set the event.returnValue property to false in the handler func-
tion to prevent the default copy or cut action from wiping out your clipboard contents.

Because you are in charge of what data is stored in the clipboard, you are not limited to a direct copy of the
data. For example, you might wish to store the value of the src property of an image object so that the user
can paste it elsewhere on the page.

In the case of the oncut event handler, your script is also responsible for cutting the element or selected
content from the page. To eliminate all of the content of an element, you can set the elements innerHTML
or innerText property to an empty string. For a selection, use the selection.createRange() method
to generate a TextRange object whose contents you can manipulate through the TextRange object’s
methods.

Example

Listing 15-36 shows both the onbeforecut and oncut event handlers in action (as well as onbeforepaste
and onpaste). Notice that the handTeCut () function not only stuffs the selected word into the
clipboardData object, but also erases the selected text from the table cell element from where it came. If
you replace the onbeforecut and oncut event handlers with onbeforecopy and oncopy (and change
handleCut () to not eliminate the inner text of the event source element), the operation works with copy
and paste instead of cut and paste. I demonstrate this later in the chapter in Listing 15-44.

335

LISTING 15-36

Document Objects Reference

elementObject.oncopy

Cutting and Pasting under Script Control

<html1>
<he

</h
<bo

336

ad>
<title>onbeforecut and oncut Event Handlers</title>
{style type="text/css">
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
<script type="text/javascript">
function selectWhole() {
var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;
}

function handleCut() {
var rng = document.selection.createRange();
clipboardData.setData("Text",rng.text);
var elem = event.srcElement;
elem.innerText = "";
event.returnValue = false;
1

function handlePaste() {
var elem = window.event.srcElement;
if (elem.className == "blanks") {
elem.innerHTML = clipboardData.getData("Text");
1
event.returnValue = false;

}

function handleBeforePaste() {
var elem = window.event.srcElement;
if (elem.className == "blanks") {

event.returnValue = false;

}

1

<{/script>

ead>

dy>

<hl>onbeforecut and oncut Event Handlers</hl>

<hr />

<p>Your goal is to cut and paste one noun and one adjective from the
following table into the blanks of the sentence. Select a word from
the table and use the Edit or context menu to cut it from the table.
Select one or more spaces of the blanks in the sentence and choose
Paste to replace the blank with the clipboard contents.</p>

Generic HTML Element Objects
elementObject.ondblclick

<table cellpadding="5" onbeforecut="selectWhole()" oncut="handleCut()">
<tr>
<th>Nouns</th>
<th>Adjectives</th>
</tr>
<tr>
<td>truck</td>
<td>round</td>
</tr>
<tr>
<td>dol1</td>
<td>red</td>
</tr>
<tr>
<td>ball</td>
<td>pretty</td>
</tr>
</table>
<p id="myP" onbeforepaste="handleBeforePaste()" onpaste="handlePaste()">
Pat said, "Oh my, the <span id="blankl"
class="blanks"> is so !"</p>
<button onclick="Tlocation.reload()">Reset</button>
</body>
</htm1>

Related Items: onbeforecopy, onbeforecut, onbeforepaste, and onpaste event handlers

ondataavailable
ondatasetchanged
ondatasetcomplete

Compatibility: WinlE4+, MaclE-, NN-, Moz-, Safari-

These three events are part of the data binding of IE and are fired to help reflect the state of data that is being
transmitted. The ondataavailable event fires when data is transmitted from the data source, whereas the
ondatasetcomplete event indicates that the recordset has completely downloaded from the data source.
The ondatasetchanged event is fired when the recordset of a data source has somehow changed.

ondbTclick
Compatibility: WinlE4+, MaclE4+, NN4+, Moz+, Safari+

The ondb1c1ick event fires after the second click of a double-click sequence. The timing between clicks
depends on the clients mouse control panel settings. The onc11ick event also fires, but only after the first of
the two clicks.

In general, it is rarely a good design to have an element perform one task when the mouse is single-clicked
and a different task if double-clicked. With the event sequence employed in modern browsers, this isn’t prac-
tical anyway (the onc11ck event always fires, even when the user double-clicks). But it is not uncommon to
have the mouse down action perform some helper action. You see this in most icon-based file systems: If you
click a file icon, it is highlighted at mouse down to select the item; you can double-click the item to launch it.
In either case, one event’s action does not impede the other nor confuse the user.

337

Document Objects Reference

elementObject.ondrag

Example
See Listing 15-35 (for the onc11ck event handler) to see the ondb1c1ick event in action.

Related Items: onclick, onmousedown, onmouseup event handlers

ondrag, ondragend, ondragstart
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari 1.3+

The ondrag event fires after the ondragstart event and continues firing repeatedly while the user drags a
selection or object onscreen. Unlike the onmousemove event, which fires only as the cursor moves
onscreen, the ondrag event continues to fire even when the cursor is stationary. In the WinlE5+/Safari 1.3+,

users can drag objects to other browser windows or other applications. The event fires while the dragging
extends beyond the browser window.

Because the event fires regardless of what is underneath the dragged object, you can use it in a game or
training environment in which the user has only a fixed amount of time to complete a dragging operation
(for example, matching similar pairs of objects). If the browser accommodates downloadable cursors, the
ondrag event could cycle the cursor through a series of cursor versions to resemble an animated cursor.

Understanding the sequence of drag-related events during a user drag operation can be helpful if your

scripts need to micromanage the actions (usually not necessary for basic drag-and-drop operations).
Consider the drag-and-drop operation shown in Figure 15-2.

FIGURE 15-2

A typical drag-and-drop operation.

& Dragging Event - Windows Internet Explorer B
@::' e Toe] [#2][3%] [Lwe search e

& & [@ Dragging Event Handlers lil [] - [rage v FTosk v

Dragging Event Handlers

Your goal is to drag one noun and one adjective from the following table into the blanks of the sentence. Select a word from the table and drag it to the desired
blank. When you release the mouse, the word will appear in the blank. You have two seconds to complete each blank.

Nouns Adjectives

rucky round
doll red
ball pretty

Pat said, "Oh my, the isso_ I"

gol

Done

J My Computer EA00%

338

Generic HTML Element Objects

elementObject.ondrag

It helps to imagine that the cells of the table with draggable content are named like spreadsheet cells: truck
is cell A1; round is B1; doll is A2; and so on. During the drag operation, many objects are the targets of a
variety of drag-related events. Table 15-11 lists the event sequence and the event targets.

TABLE 15-11

Events and Their Targets During a Typical Drag-and-Drop Operation

Event Target Discussion
ondragstart cell A1 The very first event that fires during a drag-and-drop operation.
ondrag cell A1 Fires continually on this target throughout the entire operation. Other

events get interspersed, however.

ondragenter cell A1 Even though the cursor hasn’t moved from cell A1 yet, the ondragenter
event fires upon first movement within the source element.

ondragover cell A1 Fires continually on whatever element the cursor rests on at that instant.
If the user simply holds the mouse button down and does not move the
cursor during a drag, the ondrag and ondragover events fire
continually, alternating between the two.

(repetition) cell A1 ondrag and ondragover events fire alternately while the cursor
remains atop cell AT.

ondragenter table The table element, represented by the border and/or cell padding,
receives the ondragenter event when the cursor touches its space.

ondragleave cell A1 Notice that the ondragleave event fires after the ondragenter event
fires on another element.

ondrag cell A1 Still firing away.

ondragover table The source element for this event shifts to the table because that’s what the

cursor is over at this instant. If the cursor doesn’t move from this spot, the
ondrag (cell A1) and ondragover (table) events continue to fire in turn.

ondragenter cell B1 The drag is progressing from the tab1e border space to cell B1.

ondragleave table The table element receives the ondragleave event when the cursor
exits its space.

ondrag cell A1 The ondrag event continues to fire on the cell AT object.

ondragover cell B1 The cursor is atop cell B1 now, so the ondragover event fires for that

object. Fires multiple times (depending on the speed of the computer and
the user’s drag action), alternating with the previous ondrag event.

More of the same as the cursor progresses from cell B1 through the
table border again to cell B2, the table again, cell B3, and the
outermost edge of the tabTle.

ondragenter body Dragging is free of the table and is floating free on the bare body
element.
ondragleave table Yes, you just left the table.
ondrag cell A1 Still alive and receiving this event.
continued

339

Document Objects Reference

elementObject.ondrag

-G BB N (continued)

Event Target Discussion

ondragover body That’s where the cursor is now. Fires multiple times (depending on the
speed of the computer and the user’s drag action), alternating with the
previous ondrag event.

ondragenter blankl The cursor reaches the span element whose ID is b1ank1, where the
empty underline is.

ondragleave body Just left the body for the blank.

ondrag cell A1 Still kicking.

ondragover blankl That's where the cursor is now. Fires multiple times (depending on the

speed of the computer and the user’s drag action), alternating with the
previous ondrag event.

ondrop bTlankl The span element gets the notification of a recent drop.

ondragend cell A1 The original source element gets the final word that dragging is complete.
This event fires even if the drag does not succeed because the drag does
not end on a drop target.

In practice, some of the events shown in Table 15-11 may not fire. Much has to do with how many event han-
dlers you trap that need to execute scripts along the way. The other major factor is the physical speed at which
the user performs the drag-and-drop operation (which interacts with the CPU processing speed). The kinds of
events that are most likely to be skipped are the ondragenter and ondragleave events, and perhaps some
ondragover events if the user flies over an object before its ondragover event has a chance to fire.

Despite this uncertainty about drag-related event reliability, you can count on several important ones to fire
all the time. The ondragstart, ondrop (if over a drop target), and ondragend events— as well some
interstitial ondrag events — will definitely fire in the course of dragging onscreen. All but ondrop direct
their events to the source element, whereas ondrop fires on the target.

Example

Listing 15-37 shows several drag-related event handlers in action. The page resembles the example in
Listing 15-36, but the scripting behind the page is quite different. In this example, the user is encouraged to
select individual words from the Nouns and Adjectives columns and drag them to the blanks of the sen-
tence. To beef up the demonstration, Listing 15-37 shows you how to pass the equivalent of array data from
a drag source to a drag target. At the same time, the user has a fixed amount of time (2 seconds) to com-
plete each drag operation.

The ondragstart and ondrag event handlers are placed in the <body> tag because those events bubble
up from any element that the user tries to drag. The scripts invoked by these event handlers filter the events
so that the desired action is triggered only by the hot elements inside the table. This approach to event han-
dlers prevents you from having to duplicate event handlers for each table cell.

The ondragstart event handler invokes setupDrag (). This function cancels the ondragstart event
except when the target element (the one about to be dragged) is one of the td elements inside the table. To
make this application smarter about what kind of word is dragged to which blank, it passes not only the
word’s text, but also some extra information about the word. This lets another event handler verify that a
noun has been dragged to the first blank, whereas an adjective has been dragged to the second blank. To help
with this effort, class names are assigned to the td elements to distinguish the words from the Nouns column

340

Generic HTML Element Objects

elementObject.ondrag

from the words of the Adjectives column. The setupDrag() function generates an array consisting of the
innerText of the event’s source element plus the element’s class name. But the event.dataTransfer
object cannot store array data types, so the Array. join() method converts the array to a string with a colon
separating the entries. This string, then, is stuffed into the event.dataTransfer object. The object is
instructed to render the cursor display during the drag-and-drop operation so that when the cursor is atop a
drop target, the cursor is the copy style. Finally, the setupDrag() function is the first to execute in the drag
operation, so a timer is set to the current clock time to time the drag operation.

The ondrag event handler (in the body) captures the ondrag events that are generated by whichever table
cell element is the source element for the action. Each time the event fires (which is a lot during the action),
the timeIt () function is invoked to compare the current time against the reference time (global timer) set
when the drag starts. If the time exceeds 2 seconds (2,000 milliseconds), an alert dialog box notifies the
user. To close the alert dialog box, the user must unclick the mouse button to end the drag operation.

To turn the blank span elements into drop targets, their ondragenter, ondragover, and ondrop event
handlers must set event.returnValue to false;also, the event.dataTransfer.dropEffect property
should be set to the desired effect (copy, in this case). These event handlers are placed in the p element that
contains the two span elements, again for simplicity. Notice, however, that the cancelDefault () func-
tions do their work only if the target element is one of the span elements whose ID begins with blank.

As the user releases the mouse button, the ondrop event handler invokes the handleDrop () function. This
function retrieves the string data from event.dataTransfer and restores it to an array data type (using
the String.split() method). A little bit of testing makes sure that the word type (noun or adjective) is
associated with the desired blank. If so, the source element’s text is set to the drop targets innerText prop-
erty; otherwise, an error message is assembled to help the user know what went wrong.

LISTING 15-37

Using Drag-Related Event Handlers

<html>
<head>

<title>Dragging Event Handlers</title>
{style type="text/css">
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
{script type="text/javascript">
var timer;

function setupDrag() {

if (event.srcElement.tagName != "TD") {
// don't allow dragging for any other elements
event.returnValue = false;

} else {
// setup array of data to be passed to drop target
var passedData = [event.srcElement.innerText,

event.srcElement.className];

// store it as a string

continued

341

Document Objects Reference

elementObject.ondrag

LISTING 15-37 [[(EellilliEe)]
event.dataTransfer.setData("Text", passedData.join(":"));

event.dataTransfer.effectAllowed = "copy";
timer = new Date();

}

function timelt() {
if (event.srcElement.tagName == "TD" && timer) {
if ((new Date()) - timer > 2000) {
alert("Sorry, time is up. Try again.");

timer = 0;

}

function handleDrop() {
var elem = event.srcElement;
event.dataTransfer.getData("Text");

var passedData

var errMsg = ;

if (passedData) {
// reconvert passed string to an array

passedData = passedData.split(":");
if (elem.id == "blankl") {
if (passedDatal[l] == "noun") {
event.dataTransfer.dropEffect = "copy";
event.srcElement.innerText = passedDatal0];

} else {
errMsg = "You can't put an adjective into the noun
placeholder.";
}
} else if (elem.id == "blank2") {
if (passedDatal[l] == "adjective") {
= "copy";

event.dataTransfer.dropEffect
event.srcElement.innerText = passedDatal[0];

} else {
errMsg = "You can't put a noun into the adjective

placeholder.";

}

}
if (errMsg) {
alert(errMsg);

}

}

function cancelDefault() {
if (event.srcElement.id.indexOf("blank") == 0) {

event.dataTransfer.dropEffect = "copy";
event.returnValue = false;

342

Generic HTML Element Objects

elementObject.ondragenter

</script>
<{/head>
<body ondragstart="setupDrag()" ondrag="timelt()">
<h1>Dragging Event Handlers</hl>
<her />
<p>Your goal is to drag one noun and one adjective from the following
table into the blanks of the sentence. Select a word from the table
and drag it to the desired blank. When you release the mouse, the word
will appear in the blank. You have two seconds to complete each
blank.</p>
<{table cellpadding="5">
<tr>
<th>Nouns</th>
<th>Adjectives</th>
</tr>
<tr>
<td class="noun">truck</td>
<td class="adjective">round</td>
</tr>
<tr>
<td class="noun">dol1</td>
<td class="adjective">red</td>
</tr>
<tr>
<td class="noun">ball</td>
<td class="adjective">pretty</td>
</tr>
</table>
<p id="myP" ondragenter="cancelDefault()" ondragover="cancelDefault()"
ondrop="handleDrop()">Pat said, "Oh my, the <span id="blankl"
class="blanks"> is so !"</p>
<button onclick="location.reload()">Reset</button>
</body>
</html>

One event handler not shown in Listing 15-37 is ondragend. You can use this event to display the elapsed
time for each successful drag operation. Because the event fires on the drag source element, you can imple-
ment it in the <body> tag and filter events similar to the way the ondragstart or ondrag event handlers
filter events for the td element.

Related Items: event.dataTransfer object; ondragenter, ondragleave, ondragover, ondrop event
handlers

ondragenter

ondragleave

ondragover

Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari 1.3+

These events fire during a drag operation. When the cursor enters the rectangular space of an element on
the page, the ondragenter event fires on that element. Immediately thereafter, the ondragleave event

343

Document Objects Reference

elementObject.ondragenter

fires on the element from which the cursor came. Although this may seem to occur out of sequence from
the physical action, the events always fire in this order. Depending on the speed of the client computer’s
CPU and the speed of the user’s dragging action, one or the other of these events may not fire — especially if
the physical action outstrips the computer’s capability to fire the events in time.

The ondragover event fires continually while a dragged cursor is atop an element. In the course of dragging
from one point on the page to another, the ondragover event target changes with the element beneath the
cursor. If no other drag-related events are firing (the mouse button is still down in the drag operation, but the
cursor is not moving), the ondrag and ondragover events fire continually, alternating between the two.

You should have the ondragover event handler of a drop target element set the event.returnValue
property to false. See the discussion of the ondrag event handler earlier in this chapter for more details
on the sequence of drag-related events.

Example

Listing 15-38 shows the ondragenter and ondragleave event handlers in use. The simple page displays
(via the status bar) the time of entry to one element of the page. When the dragged cursor leaves the ele-
ment, the ondragleave event handler hides the status-bar message. No drop target is defined for this page,
so when you drag the item, the cursor remains the no-drop cursor.

LISTING 15-38

Using ondragenter and ondragleave Event Handlers

<html>
<head>
<title>ondragenter and ondragleave Event Handlers</title>
{script type="text/javascript">
function showEnter() {
status = "Entered at: " + new Date();
event.returnValue = false;
}
function clearMsg() {
status = "";
event.returnValue = false;
1
<{/script>
</head>
<body>
<hl ondragenter="showEnter()" ondragleave="clearMsg()">
ondragenter and ondragleave Event Handlers</hl>
<hr />
<p>Select any character(s) from this paragraph, and slowly drag it around
the page. When the dragging action enters the large header above, the
status bar displays when the onDragEnter event handler fires. When you
leave the header, the message is cleared via the onDragleave event
handler.</p>
</body>
</htm1>

Related Items: ondrag, ondragend, ondragstart, ondrop event handlers

344

Generic HTML Element Objects

elementObject.onfilterchange

ondragstart
(See ondrag)

ondrop
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari 1.3+

The ondrop event fires on the drop target element as soon as the user releases the mouse button at the end
of a drag-and-drop operation. For IE, Microsoft recommends that you denote a drop target by applying the
ondragenter, ondragover, and ondrop event handlers to the target element. In each of those event han-
dlers, you should set the dataTransfer.dropEffect to the transfer effect you wish to portray in the
drag-and-drop operation (signified by a different cursor for each type). These settings should match the
dataTransfer.effectAllowed property that is usually set in the ondragstart event handler. Each

of the three drop-related handlers should also override the default event behavior by setting the
event.returnValue property to false. See the discussion of the ondrag event handler earlier in this
chapter for more details on the sequence of drag-related events.

Example

See Listing 15-37 of the ondrag event handler to see how to apply the ondrop event handler in a typical
drag-and-drop scenario.

Related Items: event.dataTransfer object; ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart event handlers

onerrorupdate
Compatibility: WinlE4+, MacIE5+, NN-, Moz-, Safari-

The onerrorupdate event handler is part of the data binding of IE and fires when an error occurs while
updating the data in the data source object.

onfilterchange
Compatibility: WinlE4+, MaclE-, NN-, Moz-, Safari-

The onfilterchange event fires whenever an objects visual filter switches to a new state or a transition
completes (a transition may be extended over time). Only objects that accommodate filters and transitions
in IE (primarily block elements and form controls) receive the event.

A common usage of the onfilterchange event is to trigger the next transition within a sequence of transi-
tion activities. This may include an infinite loop transition, for which the object receiving the event toggles
between two transition states. If you don't want to get into a loop of that kind, place the different sets of
content in their own positionable elements, and use the onfilterchange event handler in one to trigger
the transition in the other.

Example

Listing 15-39 demonstrates how the onfilterchange event handler can trigger a second transition effect after
another one completes. The onload event handler triggers the first effect. Although the onfilterchange event
handler works with most of the same objects in IE4 as IE5, the filter object transition properties are not reflected
in a convenient form. The syntax shown in Listing 15-39 uses the more modern ActiveX filter control found in
1E5.5+ (described in Chapter 26).

345

Document Objects Reference

elementObject.onfilterchange

LISTING 15-39

Using the onFilterChange Event Handler

<html1>
<head>

<title>onfilterchange Event Handler</title>

{script type="text/javascript">

function init() {
imagel.filters[0].apply();
image2.filters[0].apply();
start();

}

function start() {
imagel.style.visibility = "hidden";
imagel.filters[0].play();

}

function finish() {
// verify that first transition is done (optional)
if (imagel.filters[0].status == 0) {
image2.style.visibility = "visible";
image2.filters[0].play();
}
}
</script>
</head>
<body onload="init()">
<hl>onfilterchange Event Handler</hl>
<hr />
<p>The completion of the first transition ("circle-in") triggers the
second ("circle-out"). <button onclick="Tlocation.reload()">Play It
Again</button></p>
<div id="imagel"
style="visibility:visible; position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle="'CIRCLE",
motion="in')" onfilterchange="finish()">

</div>
<div id="image2"
style="visibility:hidden; position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle="'CIRCLE",
motion="out')">

</div>
</body>
</htm1>

Related Item: filter object

346

Generic HTML Element Objects

elementObject.onfocusin

onfocus
Compatibility: WinlE3+, MacIE3+, NN2+, Moz+, Safari+

The onfocus event fires when an element receives focus, usually following some other object’s losing focus.
(The element losing focus receives the onb1ur event before the current object receives the onfocus event.)
For example, a text input element fires the onfocus event when a user tabs to that element while navigat-
ing through a form via the keyboard. Clicking an element also gives that element focus, as does making the
browser the frontmost application on the client desktop.

The availability of the onfocus event has expanded with succeeding generations of script-capable browsers.
In earlier versions, blur and focus were largely confined to text-oriented input elements such as the select
element. The window object received the onfocus event handler starting with NN3 and IE4. IE4 also
extended the event handler to more form elements, predominantly on the Windows operating system
because that OS has a user interface clue (the dotted rectangle) when items such as buttons and links
receive focus (so that users may act on them by pressing the spacebar). For IE5+, the onfocus event han-
dler is available to virtually every HTML element. For most of those elements, however, you cannot use blur
and focus unless you assign a value to the tabindex attribute of the element’s tag. For example, if you
assign tabindex="1" inside a <p> tag, the user can bring focus to that paragraph (highlighted with the
dotted rectangle in Windows) by clicking the paragraph or pressing the Tab key until that item receives
focus in sequence.

WinlE5.5 adds the onfocusin event handler, which fires immediately before the onfocus event handler.
You can use one or the other, but there is little need to include both event handlers for the same object
unless you wish to block an item temporarily from receiving focus. To prevent an object from receiving
focus in IE5.5+, include an event.returnValue=false statement in the onfocusin event handler for the
same object. In other browsers, you can usually get away with assigning onfocus="this.blur()" asan
event handler for elements such as form controls. However, this is not a foolproof way to prevent a user
from changing a control’s setting. Unfortunately, there are few reliable alternatives short of disabling the
control.

Example
See Listing 15-34 earlier in this chapter for an example of the onfocus and onbTur event handlers.

Related Items: onactivate, onblur, ondeactivate, onfocusin, onfocusout event handlers

onfocusin

onfocusout

Compatibility: WinlE6+, MaclE-, NN-, Moz-, Safari-

The onfocusin and onfocusout events fire to indicate that an element is about to receive focus or has just
lost focus. These events are closely related to onactivate and ondeactivate except that in IE5.5+ activa-
tion and focus can be distinguished from each other. For example, if you set an element as the active ele-

ment through setActive(), the element becomes active, but it does not gain the input focus. However, if
you set the focus of an element with a call to focus (), the element is activated and gains input focus.

Related Items: onactivate, onblur, ondeactivate, onfocus event handlers

347

Document Objects Reference

elementObject.onhelp

onhelp
Compatibility: WinlE4+, MaclE5+, NN-, Moz-, Safari-

The onhelp event handler fires in Windows whenever an element of the document has focus and the user
presses the F1 function key on a Windows PC. As of MaclE5, the event fires only on the window (in other
words, event handler specified in the <body> tag) and does so via the dedicated Help key on a Mac keyboard.
Browser Help menu choices do not activate this event. To prevent the browsers Help window from appearing,
the event handler must evaluate to return false (for [E4+) or set the event.returnValue property to
false (IE5+). Because the event handler can be associated with individual elements of a document in the
Windows version, you can create a context-sensitive help system. However, if the focus is in the Address field
of the browser window, you cannot intercept the event. Instead, the browsers Help window appears.

Example

Listing 15-40 is a rudimentary example of a context-sensitive help system that displays help messages tai-
lored to the kind of text input required by different text boxes. When the user gives focus to either of the
text boxes, a small legend appears to remind the user that help is available by a press of the F1 help key.
MaclE5 provides only generic help.

LISTING 15-40

Creating Context-Sensitive Help

<htm1>
<head>
<title>onhelp Event Handler</title>
{script type="text/javascript">
function showNameHelp() {
alert("Enter your first and last names.");
event.cancelBubble = true;
return false;
}
function showYOBHelp() {
alert("Enter the four-digit year of your birth. For example: 1972");
event.cancelBubble = true;
return false;
}
function showGenericHelp() {
alert("Al1 fields are required.");
event.cancelBubble = true;
return false;
}
function showLegend() {
document.getElementById("Tegend").style.visibility
}
function hidelLegend() {
document.getElementByld("Tegend").style.visibility = "hidden";
}
function init() {
var msg = "";
if (navigator.userAgent.indexOf("Mac") != -1) {
msg = "Press \'help\' key for help.";

"visible";

348

Generic HTML Element Objects

elementObject.onkeydown

} else if (navigator.userAgent.indexOf("Win") = -1) {
msg = "Press F1 for help.";
}
document.getElementById("legend").style.visibility = "hidden";
document.getElementById("legend").innerHTML = msg;
}
</script>
<{/head>
<body onload="init()" onhelp="return showGenericHelp()">
<h1>onhelp Event Handler</hl>
<hr />
<p id="legend" style="visibility:hidden; font-size:10px"> </p>
<form>
Name: <input type="text" name="name" size="30" onfocus="showlegend()"
onblur="hidelegend()" onhelp="return showNameHelp()" />

Year of Birth: <input type="text" name="Y0OB" size="30"
onfocus="showlLegend()" onblur="hidelLegend()"
onhelp="return showY0BHelp()" />
</form>
</body>
</html>

Related Items: window.showHelp(), window.showModalDialog() methods

onkeydown

onkeypress

onkeyup

Compatibility: WinlE4+, MaclE4+, NN4+, Moz+, Safari+

When someone presses and releases a keyboard key, a sequence of three events fires in quick succession.
The onkeydown event fires when the key makes its first contact. This is followed immediately by the
onkeypress event. When contact is broken by the key release, the onkeyup event fires. If you hold a
character key down until it begins autorepeating, the onkeydown and onkeypress events fire with each
repetition of the character.

The sequence of events can be crucial in some keyboard event handling. Consider the scenario that wants
the focus of a series of text boxes to advance automatically after the user enters a fixed number of characters
(for example, date, month, and two-digit year). By the time the onkeyup event fires, the character associ-
ated with the key-press action is already added to the box and you can accurately determine the length of
text in the box, as shown in this simple example:

<html>
<head>
{script type="text/javascript">
function jumpNext(fromFld, toFld) {
if (fromFld.value.length == 2) {
document.forms[0].elements[toF1d].focus();
document.forms[0].elements[toFld].select();

349

350

Document Objects Reference

elementObject.onkeydown

}

</script>

<{/head>

<body>

<formd>

Month: <input name="month" type="text" size="3" value=""
onkeyup="jumpNext(this, day)" maxlength="2" />

Day: <input name ="day" type="text" size="3" value=""
onkeyup ="jumpNext(this, year)" maxlength="2" />

Year: <input name="year" type="text" size="3" value=
onkeyup ="jumpNext(this, month)" maxlength="2" />

</form>

</body>

</htm1>

nn

These three events do not fire for all keys of the typical PC keyboard on all browser versions that support
keyboard events. The only keys that you can rely on supporting the events in all browsers shown in the pre-
ceding compatibility chart are the alphanumeric keys represented by ASCII values, including the spacebar
and Enter (Return on the Mac), but excluding all function keys, arrow keys, and other navigation keys.
Modifier keys, such as Shift, Ctrl (PC), Alt (PC), Command (Mac), and Option (Mac), generate some events
on their own (depending on browser and version). However, functions invoked by other key events can
always inspect the pressed states of these modifier keys.

f The onkeydown event handler works in Mozilla-based browsers only starting with Mozilla 1.4
" (and Netscape 7.1).

Scripting keyboard events almost always entails examining which key is pressed so that some processing or
validation can be performed on that key press. This is where the situation gets very complex if you are writ-
ing for cross-browser implementation. In some cases, even writing just for Internet Explorer gets tricky
because nonalphanumeric keys generate only the onkeydown and onkeyup events.

In fact, to comprehend keyboard events fully, you need to make a distinction between key codes and character
codes. Every PC keyboard key has a key code associated with it. This key code is always the same regardless
of what other keys you press at the same time. Only the alphanumeric keys (letters, numbers, spacebar, and
so on), however, generate character codes. The code represents the typed character produced by that key. The
value might change if you press a modifier key. For example, if you press the A key by itself, it generates a
lowercase a character (character code 97); if you also hold down the Shift key, that same key produces an
uppercase A character (character code 65). The key code for that key (65 for Western-language keyboards)
remains the same no matter what.

That brings us, then, to where these different codes are made available to scripts. In all cases, the code
information is conveyed as one or two properties of the browser’s event object. IEs event object has only
one such property: keyCode. It contains key codes for onkeydown and onkeyup events but character codes
for onkeypress events. The NN6+/Moz event object, on the other hand, contains two separate properties:
charCode and keyCode. You can find more details and examples about these event object properties in
Chapter 25.

The bottom-line script consideration is to use either onkeydown or onkeyup event handlers when you want
to look for nonalphanumeric key events (for example, function keys, arrow and page-navigation keys, and

Generic HTML Element Objects

elementObject.onkeydown

so on). To process characters as they appear in text boxes, use the onkeypress event handler. You can
experiment with these events and codes in Listing 15-41 as well as in examples from Chapter 25.

Common keyboard event tasks

WinlE4+ enables you to modify the character that a user who is editing a text box enters. The onkeypress
event handler can modify the event . keyCode property and allow the event to continue (in other words,
don’t evaluate to return false or set the event.returnValue property to false). The following IE
function (invoked by an onkeypress event handler) makes sure that text entered in a text box is all
uppercase, even if you type it as lowercase:

function assureUpper() {
if (event.keyCode >= 97 && event.keyCode <= 122) {
event.keyCode = event.keyCode - 32;
}
}

Doing this might confuse (or frustrate) users, so think carefully before implementing such a plan.

To prevent a key press from becoming a typed character in a text box, the onkeypress event handler pre-
vents the default action of the event. For example, the following HTML page shows how to inspect a text
box’s entry for numbers only:

<html>
<head>
<title>Keyboard Capture</title>
<script type="text/javascript">
function checkIt(evt) {
var charCode = (evt.charCode) ? evt.charCode : ((
evt.which) ? evt.which : evt.keyCode);
if (charCode > 31 && (charCode < 48 || charCode > 57)) f
alert("Please make sure entries are numbers only.");
return false;
}
return true;
}
</script>
</head>

<body>

<formd>

Enter any positive integer: <input type="text" name="numeric"
onkeypress="return checkIt(event)">

</formd>

</body>

</html>

Whenever a user enters a non-number, the user receives a warning, and the character is not appended to
the text box’s text.

351

352

Document Objects Reference

elementObject.onkeydown

Keyboard events also enable you to script the submission of a form when a user presses the Enter (Return
on the Mac) key within a text box. The ASCII value of the Enter/Return key is 13. Therefore, you can
examine each key press in a text box and submit the form whenever value 13 arrives, as shown in the fol-
lowing function:

function checkForEnter(evt) {
evt = (evt) ? evt : event;
var charCode = (evt.charCode) ? evt.charCode : ((
evt.which) ? evt.which : evt.keyCode);
if (charCode == 13) {
document.forms[0].submit();
return false;
}
return true;
}

By assigning the checkForEnter () function to each box’s onkeypress event handler, you suddenly add
some extra power to a typical HTML form.

You can intercept Ctrl+keyboard combinations (letters only) in HTML pages most effectively in Internet
Explorer, but only if the browser itself does not use the combination. In other words, you cannot redirect
Ctrl+key combinations that the browser uses for its own control. The onkeypress keyCode value for
Ctrl+key combinations ranges from 1 through 26 for letters A through Z (except for those used by the
browser, in which case no keyboard event fires).

Example

Listing 15-41 is a working laboratory that you can use to better understand the way keyboard event codes
and modifier keys work in IE5+ and W3C browsers. The actual code of the listing is less important than
watching the page while you use it. For every key or key combination that you press, the page shows the
keyCode value for the onkeydown, onkeypress, and onkeyup events. If you hold down one or more
modifier keys while performing the key press, the modifier-key name is highlighted for each of the three
events. Note that when run in NN6+/Moz, the keyCode value is not the character code (which doesn’t
show up in this example for NN6+/Moz). Also, you may need to click the NN6+/Moz page for the
document object to recognize the keyboard events.

The best way to watch what goes on during keyboard events is to press and hold a key to see the key codes
for the onkeydown and onkeypress events. Then release the key to see the code for the onkeyup event.
Notice, for instance, that if you press the A key without any modifier key, the onkeydown event key code is
65 (A), but the onkeypress key code in IE (and the charCode property in NN6+/Moz) is 97 (a). If you
then repeat the exercise but hold the Shift key down, all three events generate the 65 (A) key code (and the
Shift modifier labels are highlighted). Releasing the Shift key causes the onkeyup event to show the key
code for the Shift key.

In another experiment, press any of the four arrow keys. No key code is passed for the onkeypress event
because those keys don't generate those events. They do, however, generate onkeydown and onkeyup
events.

Generic HTML Element Objects

elementObject.onkeydown

LISTING 15-41

Keyboard Event Handler Laboratory

<html>
<head>

<title>Keyboard Event Handler Lab</title>

{style type="text/css">

td {text-align:center}

{/style>

<script type="text/javascript">

function init() {
document.onkeydown = showKeyDown;
document.onkeyup = showKeyUp;
document.onkeypress = showKeyPress;

}

function showKeyDown(evt) {
evt = (evt) ? evt : window.event;
document.getElementById("pressKeyCode").innerHTML = 0;
document.getElementById("upKeyCode").innerHTML = 0;
document.getElementById("pressCharCode").innerHTML = 0;
document.getElementById("upCharCode").innerHTML = 0;
restoreModifiers("");
restoreModifiers("Down");
restoreModifiers("Up");
document.getElementById("downKeyCode").innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById("downCharCode").innerHTML = evt.charCode;

}
showModifiers("Down", evt);

}

function showKeyUp(evt) {
evt = (evt) ? evt : window.event;
document.getElementById("upKeyCode").innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById("upCharCode").innerHTML = evt.charCode;

}
showModifiers("Up", evt);
return false;

}

function showKeyPress(evt) {
evt = (evt) ? evt : window.event;
document.getElementById("pressKeyCode").innerHTML = evt.keyCode;
if (evt.charCode) {
document.getElementById("pressCharCode").innerHTML = evt.charCode;
}

continued

353

Document Objects Reference

elementObject.onkeydown

(AR N\ AR (continued)

showModifiers("", evt);
return false;

}

function showModifiers(ext, evt) {
restoreModifiers(ext);
if (evt.shiftKey) {
document.getElementById("shift" + ext).style.backgroundColor =
"#££0000";
}
if (evt.ctrlKey) {
document.getElementById("ctrl" + ext).style.backgroundColor =
"F00FF00";
}
if (evt.altKey) {
document.getElementById("alt" + ext).style.backgroundColor =
"0000Ff";

}

function restoreModifiers(ext) {
document.getElementById("shift" + ext).style.backgroundColor =
"HEFFEFE"
document.getElementById("ctrl" + ext).style.backgroundColor =
CEEFFFE";
document.getElementById("alt" + ext).style.backgroundColor =
"EFFFFE";
}
</script>
</head>
<body onload="init()">
<h1>Keyboard Event Handler Lab</hl>
<hr />
<form>
{table border="2" cellpadding="2">
<tr>
<th></th>
<th>onKeyDown</th>
<th>onKeyPress</th>
<th>onKeyUp</th>
</tr>
<tr>
<th>Key Codes</th>
<td id="downKeyCode">0</td>
<td id="pressKeyCode">0</td>
<td id="upKeyCode">0</td>
</tr>
<tr>
<th>Char Codes (IE5/Mac; NN6)</th>
<td id="downCharCode">0</td>

354

Generic HTML Element Objects

elementObject.onlosecapture

<td id="pressCharCode">0</td>
<td id="upCharCode">0</td>

</tr>

<tr>
<th rowspan="3">Modifier Keys</th>
<td>Shift</td>
<td>Shift</td>
<td>Shift</td>

</tr>

<tr>
<td>Ctri</td>
<td>Ctri</td>
<td>Ctri</td>

</tr>

<tr>
<td>ATt</td>
<td>Alt</td>
<td>A1t</td>

</tr>

</table>
</form>
</body>
</htm1>

Spend some time with this lab, and try all kinds of keys and key combinations until you understand the
way the events and key codes work.

Related Item: String.fromCharCode () method

onlayoutcomplete

Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

The onTayoutcomplete event handler fires when a print or print-preview layout operation completes on
the current layout rectangle (LayoutRect object). This event is primarily used as the basis for overflowing
content from one page to another during printing. In response to the onlayoutcomplete event, the
contentOverflow property can be inspected to determine whether page content has indeed overflowed
the current layout rectangle.

onlosecapture
Compatibility: WinlE5+, MaclE-, NN-, Moz-, Safari-
The onTosecapture event handler fires whenever an object that has event capture turned on no longer has
that capture. Event capture is automatically disengaged when the user performs any of the following
actions:

B Gives focus to any other window

B Displays any system modal dialog box (for example, alert window)

m Scrolls the page

355

Document Objects Reference

elementObject.onmousedown

B Opens a browser context menu (right-clicking)

B Tabs to give focus to the Address field in the browser window

A function associated with the onTosecapture event handler should perform any cleanup of the environ-
ment due to an object’s no longer capturing mouse events.

Example

See Listing 15-30 earlier in this chapter for an example of how to use onTosecapture with an event-
capturing scenario for displaying a context menu. The onlosecapture event handler hides the context
menu when the user performs any action that causes the menu to lose mouse capture.

Related Items: releaseCapture(), setCapture() methods

onmousedown
onmouseup
Compatibility: WinlE4+, MaclE4+, NN4+, Moz+, Safari+

The onmousedown event handler fires when the user presses any button on a mouse. The onmouseup event
handler fires when the user releases the mouse button, provided that the object receiving the event also received
an onmousedown event. When a user performs a typical click of the mouse button atop an object, mouse events
occur in the following sequence: onmousedown, onmouseup, and onc1ick. But if the user presses the mouse
atop an object and then slides the cursor away from the object, only the onmousedown event fires.

These events enable authors and designers to add more applicationlike behavior to images that act as action
or icon buttons. If you notice the way most buttons work, the appearance of the button changes while you
press the mouse button and reverts to its original style when you release the mouse button (or you drag the
cursor out of the button). These events enable you to emulate that behavior.

The event object created with every mouse button action has a property that reveals which mouse button
the user pressed. NN4% event model called that property the which property. IE4+ and NN6+/Moz call it
the button property (but with different values for the buttons). It is most reliable to test for the mouse but-
ton number on either the onmousedown or onmouseup event rather than on onc1ick. The onclick event
object does not always contain the button information.

Example

To demonstrate a likely scenario of changing button images in response to rolling atop an image, pressing down
on it, releasing the mouse button, and rolling away from the image, Listing 15-42 presents a pair of small navi-
gation buttons (left- and right-arrow buttons). Images are preloaded into the browser cache as the page loads so
that response to the user is instantaneous the first time the user calls upon new versions of the images.

LISTING 15-42

Using onmousedown and onmouseup Event Handlers

<html>
<head>
<title>onmousedown and onmouseup Event Handlers</title>
{script type="text/javascript">
var RightNormImg = new Image(16,16);
var RightUpImg = new Image(16,16);

356

Generic HTML Element Objects

elementObject.onmouseenter

var RightDownImg = new Image(16,16);
var LeftNormImg = new Image(16,16);
var LeftUpImg = new Image(16,16);

var LeftDownImg = new Image(16,16);

RightNormImg.src = "RightNorm.gif";
RightUpImg.src = "RightUp.gif";
RightDownImg.src = "RightDown.gif";
LeftNormImg.src = "LeftNorm.gif";
LeftUpImg.src = "LeftUp.gif";
LeftDownImg.src = "LeftDown.gif";

function setImage(imgName, type) {
var imgFile = eval(imgName + type + "Img.src");
document.images[imgName].src = imgFile;
return false;
}
<{/script>
<{/head>
<body>
<hl1>onmousedown and onmouseup Event Handlers</hl>
<hr />
<p>Rol1 atop and click on the buttons to see how the link event handlers
swap images:</p>
<center>
<img alt="image"
name="Left" src="LeftNorm.gif" height="16" width="16"
border="0" onmouseover="return setImage('Left',"'Up')"
onmousedown="return setImage('Left', 'Down')"
onmouseup="return setImage('Left','Up')"
onmouseout="return setlImage('Left"', 'Norm')" /> <img
alt="image" name="Right" src="RightNorm.gif" height="16" width="16"
border="0" onmouseover="return setlImage('Right','Up")"
onmousedown="return setImage('Right', 'Down')"
onmouseup="return setImage('Right",'Up')"
onmouseout="return setImage('Right','Norm')" />
<{/center>
<{/body>
</html>

Related Item: onc1ick event handler

onmouseenter

onmouseleave

Compatibility: WinlE5.5+, MaclE-, NN-, Moz-, Safari-

WinlE5.5 introduced the onmouseenter and onmouseleave event handlers. Both event handlers operate

just like the onmouseover and onmouseout event handlers, respectively. Microsoft simply offers an alterna-
tive terminology. The old and new events continue to fire in IE5.5+. The old ones fire just before the new

357

Document Objects Reference

elementObject.onmouseout

ones for each act of moving the cursor atop, and exiting from atop, the object. If you are scripting exclu-
sively for IE5.5+, you should use the new terminology; otherwise, stay with the older versions.

Example

You can modify Listing 15-43 with the IE5.5 syntax by substituting onmouseenter for onmouseover and
onmouseleave for onmouseout. The effect is the same.

Related Items: onmouseover, onmouseout event handlers

onmousemove
Compatibility: WinlE4+, MaclE4+, NN4+, Moz+, Safari+

The onmousemove event handler fires whenever the cursor is atop the current object and the mouse is
moved, even by a single pixel. You do not have to press the mouse button for the event to fire, although the
event is most commonly used in element dragging — especially in NN/Mozilla, where no ondrag event
handler is available.

Even though the granularity of this event can be at the pixel level, you should not use the number of event
firings as a measurement device. Depending on the speed of cursor motion and the performance of the
client computer, the event may not fire at every pixel location.

In [E4+ and W3C DOM-compatible browsers, you can assign the onmousemove event handler to any ele-
ment (although you can drag only with positioned elements). When designing a page that encourages users
to drag multiple items on a page, it is most common to assign the onmousemove event handler to the
document object and let all such events bubble up to the document for processing.

Example

See Chapter 40 and Chapter 56 on the CD-ROM for examples of using mouse events to control element
dragging on a page.