

JavaScript® Bible
Sixth Edition

Danny Goodman
with Michael Morrison

With a foreword by Brendan Eich, JavaScript’s creator

01_069165 ffirs.qxp 3/1/07 3:38 PM Page iii

A major new edition of the definitive
guide to JavaScript!
Make your Web pages stand out above the noise with
JavaScript and the expert instruction in this much-
anticipated update to the bestselling JavaScript Bible.
With renowned JavaScript expert Danny Goodman
at your side, you’ll get a thorough grounding in
JavaScript basics, see how it fits with current Web
browsers, and find all the soup-to-nuts detail you’ll
need, whether you’re a veteran programmer or just
starting out. This is the JavaScript book Web developers
turn to again and again.

Shelving Category:

COMPUTERS/Internet/
Web Site Design

Reader Level:
Beginning to Advanced

$49.99 USA
$59.99 Canada
£31.99 UK

ISBN 978-0-470-06916-5

www.wiley.com/compbooks

• Master JavaScript fundamentals and write your first practical script

• Develop code for both single- and cross-platform audiences and
evolving standards

• Get the essentials of document object models and HTML element objects

• Write scripts that dynamically modify Web pages in response to
user actions

• Learn the power of new Ajax technologies to create efficient Web
page user interfaces

• Apply the latest JavaScript exception handling and custom object techniques

• Create interactivity with sites like Google Maps™

Praise for Danny Goodman’s JavaScript®Bible
“JavaScript® Bible is the definitive resource in JavaScript programming. I am never more than three feet
from my copy.”

—Steve Reich, CEO, PageCoders

“This book is a must-have for any web developer or programmer.”

—Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to develop advanced
Web sites. Mr. Goodman did an excellent job of organizing this book and writing it so that even a begin-
ning programmer can understand it.”

—Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”

—Dwayne King, Chief Technology Officer, White Horse

“JavaScript® Bible is well worth the money spent!”

—Yen C.Y. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any internet developer.”

—Uri Fremder, Senior Consultant, TopTier Software

“I love this book! I use it all the time, and it always delivers. It’s the only JavaScript book I use!”

—Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”

—Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I’d ever teach programming before reading your book [JavaScript® Bible]. It’s so simple to
use—the Programming Fundamentals section brought it all back! Thank you for such a wonderful book,
and for breaking through my programming block!”

—Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“Danny Goodman is very good at leading the reader into the subject. JavaScript® Bible has everything we
could possibly need.”

—Philip Gurdon

“An excellent book that builds solidly from whatever level the reader is at. A book that is both witty and
educational.”

—Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”

—Mike Warner, Founder, Oak Place Productions

“JavaScript® Bible is by far the best JavaScript resource I’ve ever seen (and I’ve seen quite a few).”

—Robert J. Mirro, Independent Consultant, RJM Consulting

01_069165 ffirs.qxp 3/1/07 3:38 PM Page i

01_069165 ffirs.qxp 3/1/07 3:38 PM Page ii

JavaScript® Bible
Sixth Edition

Danny Goodman
with Michael Morrison

With a foreword by Brendan Eich, JavaScript’s creator

01_069165 ffirs.qxp 3/1/07 3:38 PM Page iii

JavaScript® Bible, Sixth Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Danny Goodman

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-06916-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Goodman, Danny.
JavaScript bible / Danny Goodman with Michael Morrison ; with a foreword by Brendan Eich. — 6th ed.

p. cm.
Includes index.
ISBN-13: 978-0-470-06916-5 (paper/cd-rom)
ISBN-10: 0-470-06916-3 (paper/cd-rom)
1. JavaScript (Computer program language) I. Morrison, Michael, 1970– II. Title.
QA76.73.J39G65 2007
005.13'3—dc22 2006101137

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission. JavaScript is a
registered trademark of Sun Microsystems Inc. in the United States and other countries. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_069165 ffirs.qxp 3/1/07 3:38 PM Page iv

www.wiley.com

About the Authors
Danny Goodman is the author of numerous critically acclaimed and best-selling books, including The
Complete HyperCard Handbook, Danny Goodman’s AppleScript Handbook, Dynamic HTML: The Definitive
Reference, and JavaScript & DHTML Cookbook. He is a renowned authority and expert teacher of computer
scripting languages. His writing style and pedagogy continue to earn praise from readers and teachers
around the world. To help keep his finger on the pulse of real-world programming challenges, Goodman
frequently lends his touch as consulting programmer and designer to leading-edge World Wide Web and
intranet sites from his home base in the San Francisco area.

Michael Morrison is a writer, developer, toy inventor, and author of a variety of books covering topics such
as Java, C++, Web scripting, XML, game development, and mobile devices. Some of Michael’s notable writ-
ing projects include Faster Smarter HTML and XML, Teach Yourself HTML & CSS in 24 Hours, and Beginning
Game Programming. Michael is also the founder of Stalefish Labs (www.stalefishlabs.com), an enter-
tainment company specializing in unusual games, toys, and interactive products.

01_069165 ffirs.qxp 3/1/07 3:38 PM Page v

Credits
Acquisitions Editor
Kit Kemper

Senior Development Editor
Kevin Kent

Copy Editor
Travis Henderson

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Lynsey Osborn

Graphics and Production Specialists
Brooke Graczyk
Joyce Haughey
Jennifer Mayberry
Alicia B. South

Quality Control Technicians
David Faust
John Greenough

Media Development Project Supervisor
Laura Atkinson

Media Development Specialist
Kate Jenkins

Proofreading
David Faust
Kathy Simpson
Sossity Smith

Indexing
Valerie Haynes Perry

Anniversary Logo Design
Richard Pacifico

01_069165 ffirs.qxp 3/1/07 3:38 PM Page vi

This sixth edition is the second time I’ve been fortunate enough to have Michael Morrison—a first-
rate author and scripter in his own right—help bring the content of the book up to date. When
you add the hundreds of pages on the CD-ROM to the 1,200+ pages of the printed book, the job

of revising JavaScript Bible is monumental in scale. I therefore appreciate the personal sacrifices Michael
made while he kept the motor running during extensive revision cycles. Many thanks to the hard-
working folks at Wiley Publishing, Kit Kemper and Kevin Kent. Above all, I want to thank the many
readers of the earlier editions of this book for investing in this ongoing effort. I wish I had the space here
to acknowledge by name so many who have sent e-mail notes and suggestions: Your input has been
most welcome and greatly appreciated.

vii

01_069165 ffirs.qxp 3/1/07 3:38 PM Page vii

01_069165 ffirs.qxp 3/1/07 3:38 PM Page viii

About the Authors ..v
Acknowledgments ..vii
Foreword ..xvii
Preface..xix

Part I: Getting Started with JavaScript 1

Chapter 1: JavaScript’s Role in the World Wide Web and Beyond 3
Competing for Web Traffic ..4
Other Web Technologies ..4
JavaScript: A Language for All ..6
JavaScript: The Right Tool for the Right Job ..8

Chapter 2: Authoring Challenges Amid the Browser Wars 9
Leapfrog ..9
Duck and Cover ..10
Compatibility Issues Today..11
Developing a Scripting Strategy ..14

Chapter 3: Your First JavaScript Script . 17
The Software Tools ..17
Setting Up Your Authoring Environment ..18
What Your First Script Will Do..21
Entering Your First Script ..21
Examining the Script ..23
Have Some Fun ..25

Part II: JavaScript Tutorial 27

Chapter 4: Browser and Document Objects 29
Scripts Run the Show ..29
When to Use JavaScript ..30
The Document Object Model ..31
When a Document Loads ..33
Object References..36
Node Terminology ..38
What Defines an Object? ..39
Exercises ..43

ix

02_069165 ftoc.qxp 3/1/07 4:02 PM Page ix

Chapter 5: Scripts and HTML Documents 45
Where Scripts Go in Documents ..45
JavaScript Statements ..49
When Script Statements Execute ..49
Viewing Script Errors ..52
Scripting versus Programming ..54
Exercises ..55

Chapter 6: Programming Fundamentals, Part I. 57
What Language Is This? ..57
Working with Information ..57
Variables..58
Expressions and Evaluation ..60
Data Type Conversions ..62
Operators ..64
Exercises ..65

Chapter 7: Programming Fundamentals, Part II 67
Decisions and Loops..67
Control Structures ..68
About Repeat Loops ..69
Functions ..70
About Curly Braces ..74
Arrays..74
Exercises ..78

Chapter 8: Window and Document Objects 81
Top-Level Objects..81
The window Object ..82
Window Properties and Methods ..85
The location Object ..87
The navigator Object ..88
The document Object..88
Exercises ..93

Chapter 9: Forms and Form Elements. 95
The form Object..95
Form Controls as Objects ..97
Passing Form Data and Elements to Functions ..104
Submitting and Prevalidating Forms..106
Exercises ..108

Chapter 10: Strings, Math, and Dates . 109
Core Language Objects..109
String Objects..110
The Math Object ..113
The Date Object ..114
Date Calculations ..115
Exercises ..117

x

Contents

02_069165 ftoc.qxp 3/1/07 4:02 PM Page x

Chapter 11: Scripting Frames and Multiple Windows 119
Frames: Parents and Children ..119
References Among Family Members ..121
Frame-Scripting Tips ..123
About iframe Elements ..124
Controlling Multiple Frames: Navigation Bars ..124
References for Multiple Windows..126
Exercises ..128

Chapter 12: Images and Dynamic HTML 129
The Image Object ..129
Rollovers Without Scripts..135
The javascript: Pseudo-URL ..137
Popular Dynamic HTML Techniques ..138
Exercises ..140

Part III: Document Objects Reference 141

Chapter 13: JavaScript Essentials . 143
JavaScript Versions ..143
Core Language Standard: ECMAScript ..144
Embedding Scripts in HTML Documents ..145
Browser Version Detection ..149
Designing for Compatibility ..154
Language Essentials for Experienced Programmers..158
Onward to Object Models ..161

Chapter 14: Document Object Model Essentials 163
The Object Model Hierarchy ..163
How Document Objects Are Born ..166
Object Properties ..166
Object Methods ..167
Object Event Handlers ..168
Object Model Smorgasbord ..169
Basic Object Model..169
Basic Object Model Plus Images ..170
Navigator 4–Only Extensions ..170
Internet Explorer 4+ Extensions ..171
Internet Explorer 5+ Extensions ..174
The W3C DOM ..175
Scripting Trends ..190
Standards Compatibility Modes (DOCTYPE Switching) ..191
Where to Go from Here ..192

Chapter 15: Generic HTML Element Objects. 195
Generic Objects ..196

xi

Contents

02_069165 ftoc.qxp 3/1/07 4:02 PM Page xi

Chapter 16: Window and Frame Objects 369
Window Terminology..369
Frames ..370
window Object..376
frame Element Object..471
frameset Element Object ..478
iframe Element Object ..484
popup Object ..490

Chapter 17: Location and History Objects 495
location Object..496
history Object ..513

Chapter 18: The Document and Body Objects 519
document Object ..520
body Element Object ..587
TreeWalker Object ..595

Chapter 19: Link and Anchor Objects. 599
Anchor, Link, and a Element Objects ..600

Chapter 20: Image, Area, Map, and Canvas Objects 607
Image and img Element Objects ..607
area Element Object ..626
map Element Object..630
canvas Element Object ..634

Chapter 21: The Form and Related Objects. 645
The Form in the Object Hierarchy ..645
form Object ..646
fieldset and legend Element Objects ..663
label Element Object ..665
Scripting and Web Forms 2.0..666

Chapter 21: Button Objects . 669
The button Element Object, and the Button, Submit, and Reset Input Objects..........................669
checkbox Input Object..675
radio Input Object ..682
image Input Object ..688

Chapter 23: Text-Related Form Objects . 691
Text Input Object ..691
password Input Object ..706
hidden Input Object..707
textarea Element Object ..708

Chapter 24: Select, Option, and FileUpload Objects 713
select Element Object ..713
option Element Object ..732
optgroup Element Object ..734
file Input Element Object ..736

xii

Contents

02_069165 ftoc.qxp 3/1/07 4:02 PM Page xii

Chapter 25: Event Objects . 739
Why “Events”? ..740
Event Propagation ..741
Referencing the event object..753
Binding Events ..754
event Object Compatibility..758
Dueling Event Models ..760
Event Types ..763
IE4+ event Object..766
NN6+/Moz/Safari event Object..787

Chapter 26: Style Sheet and Style Objects 811
Making Sense of the Object Names ..812
Imported Stylesheets ..813
Reading Style Properties ..813
style Element Object ..814
styleSheet Object ..816
cssRule and rule Objects ..825
currentStyle, runtimeStyle, and style Objects ..828
filter Object ..854

Chapter 27: Ajax and XML . 867
Elements and Nodes..868
xml Element Object ..869
XMLHttpRequest Object ..871

Part IV: JavaScript Core Language Reference 881

Chapter 28: The String Object . 883
String and Number Data Types..883
String Object ..886
String Utility Functions ..908
URL String Encoding and Decoding ..912

Chapter 29: The Math, Number, and Boolean Objects. 913
Numbers in JavaScript ..913
Math Object ..919
Number Object ..922
Boolean Object ..926

Chapter 30: The Date Object . 927
Time Zones and GMT..927
The Date Object ..929
Validating Date Entries in Forms ..941

xiii

Contents

02_069165 ftoc.qxp 3/1/07 4:02 PM Page xiii

Chapter 31: The Array Object . 945
Structured Data ..945
Creating an Empty Array ..946
Populating an Array ..947
JavaScript Array Creation Enhancements ..947
Deleting Array Entries ..948
Parallel Arrays ..948
Multidimensional Arrays ..951
Simulating a Hash Table ..952
Array Object Properties ..953
Array Object Methods ..955

Chapter 32: Control Structures and Exception Handling 969
If and If. . .Else Decisions ..969
Conditional Expressions..974
Repeat (for) Loops ..975
The while Loop ..979
The do-while Loop..980
Looping through Properties (for-in) ..981
The with Statement ..982
Labeled Statements..983
The switch Statement ..985
Exception Handling ..988
Using try-catch-finally Constructions ..990
Throwing Exceptions ..993
Error Object ..997

Chapter 33: JavaScript Operators . 1001
Operator Categories ..1001
Comparison Operators ..1002
Equality of Disparate Data Types ..1003
Connubial Operators ..1005
Assignment Operators ..1008
Boolean Operators ..1009
Bitwise Operators ..1013
Object Operators ..1014
Miscellaneous Operators ..1018
Operator Precedence ..1020

Chapter 34: Functions and Custom Objects. 1023
Function Object ..1023
Function Application Notes ..1032
Creating Your Own Objects with Object-Oriented JavaScript ..1039
Object-Oriented Concepts ..1052
Object Object ..1055

Chapter 35: Global Functions and Statements 1061
Functions ..1062
Statements ..1070

xiv

Contents

02_069165 ftoc.qxp 3/1/07 4:02 PM Page xiv

Part V: Appendixes 1077

Appendix A: JavaScript and Browser Objects Quick Reference 1079

Appendix B: JavaScript Reserved Words 1087

Appendix C: Answers to Tutorial Exercises 1089
Chapter 4 Answers ..1089
Chapter 5 Answers ..1090
Chapter 6 Answers ..1092
Chapter 7 Answers ..1092
Chapter 8 Answers ..1097
Chapter 9 Answers ..1098
Chapter 10 Answers ..1101
Chapter 11 Answers ..1103
Chapter 12 Answers ..1103

Appendix D: JavaScript and DOM Internet Resources 1105
Support and Updates for This Book ..1105
Newsgroups ..1106
FAQs ..1106
Online Documentation..1107
World Wide Web ..1107

Appendix E: What’s on the CD-ROM . 1109
System Requirements ..1109
Disc Contents..1110
Troubleshooting ..1111
Customer Care ..1111

Index . 1113

Part VI: Bonus Chapters On the CD-ROM

Chapter 36: Body Text Objects

Chapter 37: HTML Directive Objects

Chapter 38: Table and List Objects

Chapter 39: The Navigator and Other Environment Objects

Chapter 40: Positioned Objects

Chapter 41: Embedded Objects

Chapter 42: The Regular Expression and RegExp Objects

xv

Contents

02_069165 ftoc.qxp 3/1/07 4:02 PM Page xv

Chapter 43: Data-Entry Validation

Chapter 44: Scripting Java Applets and Plug-Ins

Chapter 45: Debugging Scripts

Chapter 46: Security and Netscape Signed Scripts

Chapter 47: Cross-Browser Dynamic HTML Issues

Chapter 48: Internet Explorer Behaviors

Chapter 49: Application: Tables and Calendars

Chapter 50: Application: A Lookup Table

Chapter 51: Application: A Poor Man’s Order Form

Chapter 52: Application: Outline-Style Table of Contents

Chapter 53: Application: Calculations and Graphics

Chapter 54: Application: Intelligent “Updated” Flags

Chapter 55: Application: Decision Helper

Chapter 56: Application: Cross-Browser DHTML Map Puzzle

Chapter 57: Application: Transforming XML Data

Chapter 58: Application: Creating Custom Google Maps

xvi

Contents

02_069165 ftoc.qxp 3/1/07 4:02 PM Page xvi

As JavaScript’s creator, I would like to say a few words about where JavaScript has been, where it is
going, and how the book you’re holding will help you to make the most of the language.

JavaScript was born out of a desire to let HTML authors write scripts directly in their documents. This
may seem obvious now, but in the spring of 1995 it was novel and more than a little at odds with both
the conventional wisdom (that HTML should describe static document structure only) and the Next Big
Thing (Java applets, which were hyped as the one true way to enliven and extend web pages). Once I
got past these contentions, JavaScript quickly shaped up along the following lines:

n “Java-lite” syntax. Although the “natural language” syntax of HyperTalk was fresh in my
mind after a friend lent me The Complete HyperCard Handbook by some fellow named
Goodman, the Next Big Thing weighed heavier, especially in light of another goal: scripting
Java applets. If the scripting language resembled Java, then those programmers who made the
jump from JavaScript to Java would welcome similarities in syntax. But insisting on Java’s class
and type declarations, or on a semicolon after each statement when a line ending would do,
were out of the question—scripting for most people is about writing short snippets of code,
quickly and without fuss.

n Events for HTML elements. Buttons should have onClick event handlers. Documents load
and unload from windows, so windows should have onLoad and onUnload handlers. Users
and scripts submit forms: thus the onSubmit handler. Although not initially as flexible as
HyperCard’s messages (whose handlers inspired the onEvent naming convention), JavaScript
events let HTML authors take control of user interaction from remote servers and respond
quickly to user gestures and browser actions. With the adoption of the W3C DOM Level 2
event handling recommendations, JavaScript in modern browsers has fully flexible control
over events.

n Objects without classes. The Self programming language proved the notion of prototype-
based inheritance. For JavaScript, I wanted a single prototype per object (for simplicity and
efficiency), based by default on the function called using the new operator (for consonance
with Java). To avoid distinguishing constructors from methods from functions, all functions
receive the object naming them as the property that was called in the parameter. Although
prototypes didn’t appear until Navigator 3, they were prefigured in Version 2 by quoted text
being treated as an object (the Strong object prototype, to which users could attach methods).

n Generated HTML. Embedding JavaScript in HTML gave rise to a thought: Let the script speak
HTML, as if the emitted text and markup were loaded in place of the script itself. The possibil-
ities went beyond automating current or last-modified dates, to computing whole trees of
tables where all the repeated structure was rolled up in a scripted loop, while the varying con-
tents to be tabulated came in minimal fashion from JavaScript objects forming a catalog or
mini-database.

xvii

This foreword originally appeared as the foreword to JavaScript Bible, Fourth Edition.

03_069165 fbetw.qxp 3/1/07 3:39 PM Page xvii

At first, I thought JavaScript would most often find use in validating input to HTML forms. But before long,
I was surprised to see how many web designers devised compelling applications by way of script-generated
HTML and JavaScript objects. It became clear from user demonstration and feedback that web designers
sought to build significant applications quickly and effectively with just a few images, HTML, and
JavaScript. Eventually they demanded that the browser support what is now known as Dynamic HTML
(one fun link: http://www.javascript-games.org/).

As legions of web authors embraced the authoring power of JavaScript, they, in turn, demonstrated the cru-
cial advantages of a scripting environment over old-school application development. Not only were the
HTML and JavaScript languages comparatively easy to use, but development did not require the program-
ming expertise needed to light all pixels and handle all events as in a big, traditional application.

The primacy of JavaScript on the Web today vindicates our early belief in the value of a scripting language
for HTML authors. By keeping the “pixel-lighting” bar low, HTML with images has made web designers out
of millions of people. By keeping the event-handling bar low, JavaScript has helped many thousands of
those designers become programmers. Perhaps the ultimate example of web development’s convergence
with application development is the Mozilla browser, wherein all of the user-interface and even some cus-
tom widgets and modular components are implemented entirely using JavaScript, Cascading Style Sheets
(CSS), custom XML-based markup languages, and images.

JavaScript is also a general language, useful apart from HTML and XML. It has been embedded in servers,
authoring tools, browser plug-ins, and other kinds of browsers (for such things as 3D graphical worlds). Its
international standard, ECMA-262 (ISO 16262), has advanced to a Third Edition. But compared to languages
such as Perl and even Java, it is still relatively young. Work toward a Fourth Edition of the language, support-
ing optional types, classes, and versioning facilities progresses within the ECMA technical committee (see the
JS2 proposal to the ECMA technical committee documented at http://www.mozilla.org/js/
language/js20/).

It is clear to me that JavaScript would not have survived without a creative, loyal, and patient community of
developers; I owe them each a huge debt of thanks. Those developers who took up the beta releases of
Navigator 2, and disseminated vital workarounds and feature requests by e-mail and net-news, are the lan-
guage’s godparents. Developer support and feedback continue to make JavaScript the eclectic, rambunctious
success it is.

The book in your hands compiles thousands of those developer miles with the insight of an expert guide
and teacher. Danny didn’t know at the time how much inspiration I found in his HyperCard book, but it
was on my desk throughout the development of JavaScript in 1995. His energy, compassion, and clear prose
helped me keep the goal of creating “a language for all” in mind. It is enormously gratifying to write the
foreword of this book, which has earned so many satisfied reader miles.

I highly recommend Danny Goodman’s JavaScript Bible to anyone who wants to learn JavaScript, and espe-
cially to those HTML authors who’ve so far written only a few scripts or programs—you’re in for a lifetime
of fun on the scripting road with a trusty guide at your side.

Brendan Eich
The Mozilla Organization (http://www.mozilla.org)

xviii

Foreword

03_069165 fbetw.qxp 3/1/07 3:39 PM Page xviii

For over 25 years, I have written the books I wished had already been written to help me learn or
use a new technology. Whenever possible, I like to get in at the very beginning of a new authoring
or programming environment, feel the growing pains, and share with readers the solutions to my

struggles. This sixth edition of JavaScript Bible represents knowledge and experience accumulated over
ten years of daily work in JavaScript and a constant monitoring of newsgroups for questions, problems,
and challenges facing scripters at all levels. My goal is to help you avoid the same frustration and head
scratching I and others have experienced through multiple generations of scriptable browsers.

Although the earliest editions of this book focused on the then predominant Netscape Navigator
browser, the browser market share landscape has changed through the years. For many years, Microsoft
took a strong lead with its Internet Explorer, but more recently, other browsers that support industry
standards are finding homes on users’ computers. The situation still leaves an age-old dilemma for con-
tent developers: designing scripted content that functions equally well in both standards-compliant and
proprietary environments. The job of a book claiming to be a bible is not only to present both the stan-
dard and proprietary details when they diverge, but also to show you how to write scripts that blend the
two so that they work on the wide array of browsers visiting your sites or web applications. Empowering
you to design and write good scripts is my passion, regardless of browser. It’s true that my bias is toward
industry standards, but not to the exclusion of proprietary features that may be necessary to get your
content and scripting ideas flowing equally well on today’s and tomorrow’s browsers.

Organization and Features of This Edition
Like the previous two editions of JavaScript Bible, this sixth edition contains far more information than can
be printed and bound into a single volume. The complete contents can be found in the electronic version
of this book (in PDF form) on the CD-ROM that accompanies the book. This new edition is structured in
such a way as to supply the most commonly needed information in its entirety in the printed portion of
the book. Content that you use to learn the fundamentals of JavaScript and reference frequently are at
your fingertips in the printed version, whereas chapters with more advanced content are in the searchable
electronic version on the CD-ROM. Here are some details about the book’s structure.

Part I
Part I of the book begins with a chapter that shows how JavaScript compares with Java and discusses its
role within the rest of the World Wide Web. The web browser and scripting world have undergone sig-
nificant changes since JavaScript first arrived on the scene. That’s why Chapter 2 is devoted to address-
ing challenges facing scripters who must develop applications for both single- and cross-platform
browser audiences amid rapidly changing standards efforts. Chapter 3 provides the first foray into
JavaScript, where you get to write your first practical script.

xix

04_069165 fpref.qxp 3/1/07 3:39 PM Page xix

Part II
All of Part II is handed over to a tutorial for newcomers to JavaScript. Nine lessons provide you with a grad-
ual path through browser internals, basic programming skills, and genuine browser scripting with an
emphasis on industry standards as supported by most of the scriptable browsers in use today. Exercises fol-
low at the end of each lesson to help reinforce what you just learned and challenge you to use your new
knowledge (you’ll find answers to the exercises in Appendix C). The goal of the tutorial is to equip you with
sufficient experience to start scripting simple pages right away while making it easier for you to understand
the in-depth discussions and examples in the rest of the book.

Part III
Part III, the largest section of the book, provides in-depth coverage of the document object models as
implemented in today’s browsers, including the object used for modern Ajax applications. In all reference
chapters, a compatibility chart indicates the browser version that supports each object and object feature.
One chapter in particular, Chapter 15, contains reference material that is shared by most of the remaining
chapters of Part III. To help you refer back to Chapter 15 from other chapters, a dark tab along the outside
edge of the page shows you at a glance where the chapter is located. Additional navigation aids include
guide words near the top of most pages to indicate which object and object feature is covered on the page.

Part IV
Reference information for the core JavaScript language fills Part IV. As with reference chapters of Part III, the
JavaScript chapters display browser compatibility charts for every JavaScript language term. Guide words
near the top of pages help you find a particular term quickly.

Part V
Several appendices at the end of the book provide helpful reference information. These resources include a
JavaScript and Browser Objects Quick Reference in Appendix A, a list of JavaScript reserved words in
Appendix B, answers to Part II’s tutorial exercises in Appendix C, and Internet resources in Appendix D. In
Appendix E, you also find information on using the CD-ROM that comes with this book, which includes
numerous bonus chapters and examples.

CD-ROM
The CD-ROM is a gold mine of information. It begins with a PDF version of the entire contents of this sixth
edition of JavaScript Bible. This version includes bonus chapters covering:

n Dynamic HTML, data validation, plug-ins, and security

n Techniques for developing and debugging professional web-based applications

n Ten full-fledged JavaScript real-world applications

Another treasure trove on the CD-ROM is the Listings folder, where you’ll find over 300 ready-to-run
HTML documents that serve as examples of most of the document object model and JavaScript vocabulary
words in Parts III and IV. All of the bonus chapter example listings are also included. You can run these
examples with your JavaScript-enabled browser, but be sure to use the index.html page in the Listings
folder as a gateway to running the listings. I could have provided you with humorous little sample code
fragments out of context, but I think that seeing full-fledged HTML documents (simple though they may
be) for employing these concepts is important. I intentionally omitted the script listings from the tutorial

xx

Preface

04_069165 fpref.qxp 3/1/07 3:39 PM Page xx

part (Part II) of this book to encourage you to type the scripts. I believe you learn a lot, even by aping list-
ings from the book, as you get used to the rhythms of typing scripts in documents.

Be sure to check out the Chapter 13 listing file called evaluator.html. Many segments of Parts III and
IV invite you to try out an object model or language feature with the help of an interactive workbench,
called The Evaluator—a JavaScript Bible exclusive! You see instant results and quickly learn how the feature
works.

The Quick Reference from Appendix A is in PDF format on the CD-ROM for you to print out and assemble
as a handy reference, if desired. Adobe Reader is also included on the CD-ROM, in case you don’t already
have it, so that you can read both of these PDF files.

Prerequisites to Learning JavaScript
Although this book doesn’t demand that you have a great deal of programming experience behind you, the
more Web pages you’ve created with HTML, the easier you will find it to understand how JavaScript inter-
acts with the familiar elements you normally place in your pages. Occasionally, you will need to modify
HTML tags to take advantage of scripting. If you are familiar with those tags already, the JavaScript enhance-
ments will be simple to digest.

Fortunately, you won’t need to know about server scripting or passing information from a form to a server.
The focus here is on client-side scripting, which operates independently of the server after the JavaScript-
enhanced HTML page is fully loaded into the browser.

The basic vocabulary of the current HTML standard should be part of your working knowledge. You should
also be familiar with some of the latest document markup standards, such as XHTML and Cascading Style
Sheets (CSS). You don’t need to be an expert, by any means. Web searches for these terms will uncover
numerous tutorials on the subjects.

If you’ve never programmed before
Don’t be put off by the size of this book. JavaScript may not be the easiest language in the world to learn,
but believe me, it’s a far cry from having to learn a full programming language, such as Java or C. Unlike
developing a full-fledged monolithic application (such as the productivity programs you buy in the stores),
JavaScript enables you to experiment by writing small snippets of program code to accomplish big things.
The JavaScript interpreter built into every scriptable browser does a great deal of the technical work for you.

Programming, at its most basic level, consists of nothing more than writing a series of instructions for the
computer to follow. We humans follow instructions all the time, even if we don’t realize it. Traveling to a
friend’s house is a sequence of small instructions: Go three blocks that way; turn left here; turn right there.
Amid these instructions are some decisions that we have to make: If the stoplight is red, then stop; if the
light is green, then go; if the light is yellow, then floor it. Occasionally, we must repeat some operations sev-
eral times (kind of like having to go around the block until a parking space opens up). A computer program
not only contains the main sequence of steps, but it also anticipates what decisions or repetitions may be
needed to accomplish the program’s goal (such as how to handle the various states of a stoplight or what to
do if someone just stole the parking spot you were aiming for).

The initial hurdle of learning to program is becoming comfortable with the way a programming language
wants its words and numbers organized in these instructions. Such rules are called syntax, the same as in a
living language. Because computers generally are dumb electronic hulks, they aren’t very forgiving if you

xxi

Preface

04_069165 fpref.qxp 3/1/07 3:39 PM Page xxi

don’t communicate with them in the specific language they understand. When speaking to another human,
you can flub a sentence’s syntax and still have a good chance of the other person’s understanding you fully.
Not so with computer programming languages. If the syntax isn’t perfect (or at least within the language’s
range of knowledge that it can correct), the computer has the brazenness to tell you that you have made a
syntax error.

The best thing you can do is to just chalk up the syntax errors you receive as learning experiences. Even
experienced programmers make them. Every syntax error you get—and every resolution of that error made
by rewriting the wayward statement—adds to your knowledge of the language.

If you’ve done a little programming before
Programming experience in a procedural language, such as BASIC, may almost be a hindrance rather than a
help to learning JavaScript. Although you may have an appreciation for precision in syntax, the overall con-
cept of how a program fits into the world is probably radically different from JavaScript. Part of this has to
do with the typical tasks a script performs (carrying out a very specific task in response to user action
within a web page), but a large part also has to do with the nature of object-oriented programming.

In a typical procedural program, the programmer is responsible for everything that appears on the screen
and everything that happens under the hood. When the program first runs, a great deal of code is dedicated
to setting up the visual environment. Perhaps the screen contains several text entry fields or clickable but-
tons. To determine which button a user clicks, the program examines the coordinates of the click and com-
pares those coordinates against a list of all button coordinates on the screen. Program execution then
branches out to perform the instructions reserved for clicking in that space.

Object-oriented programming is almost the inverse of that process. A button is considered an object—
something tangible. An object has properties, such as its label, size, alignment, and so on. An object may
also contain a script. At the same time, the system software and browser, working together, can send a mes-
sage to an object—depending on what the user does—to trigger the script. For example, if a user clicks in a
text entry field, the system/browser tells the field that somebody has clicked there (that is, has set the focus
to that field), giving the field the task of deciding what to do about it. That’s where the script comes in. The
script is connected to the field, and it contains the instructions that the field carries out after the user acti-
vates it. Another set of instructions may control what happens when the user types an entry and tabs or
clicks out of the field, thereby changing the content of the field.

Some of the scripts you write may seem to be procedural in construction: They contain a simple list of
instructions that are carried out in order. But when dealing with data from form elements, these instructions
work with the object-based nature of JavaScript. The form is an object; each radio button or text box is an
object as well. The script then acts on the properties of those objects to get some work done.

Making the transition from procedural to object-oriented programming may be the most difficult challenge
for you. When I was first introduced to object-oriented programming a number of years ago, I didn’t get it
at first. But when the concept clicked—a long, pensive walk helped—so many light bulbs went on inside
my head that I thought I might glow in the dark. From then on, object orientation seemed to be the only
sensible way to program.

If you’ve programmed in C before
By borrowing syntax from Java (which, in turn, is derived from C and C++), JavaScript shares many syntacti-
cal characteristics with C. Programmers familiar with C will feel right at home. Operator symbols, conditional
structures, and repeat loops follow very much in the C tradition. You will be less concerned about data types
in JavaScript than you are in C. In JavaScript, a variable is not restricted to any particular data type.

xxii

Preface

04_069165 fpref.qxp 3/1/07 3:39 PM Page xxii

With so much of the JavaScript syntax familiar to you, you will be able to concentrate on document object
model concepts, which may be entirely new to you. You will still need a good grounding in HTML to put
your expertise to work in JavaScript.

If you’ve programmed in Java before
Despite the similarity in their names, the two languages share only surface aspects: loop and conditional
constructions, C-like dot object references, curly braces for grouping statements, several keywords, and a
few other attributes. Variable declarations, however, are quite different, because JavaScript is a loosely typed
language. A variable can contain an integer value in one statement and a string in the next (although I’m not
saying that this is good style). What Java refers to as methods, JavaScript calls methods (when associated
with a predefined object) or functions (for scripter-defined actions). JavaScript methods and functions may
return values of any type without having to state the data type ahead of time.

Perhaps the most important aspects of Java to suppress when writing JavaScript are the object-oriented
notions of classes, inheritance, instantiation, and message passing. These aspects are simply non-issues
when scripting. At the same time, however, the designers of JavaScript knew that you’d have some hard-to-
break habits. For example, although JavaScript does not require a semicolon at the end of each statement
line, if you type one in your JavaScript source code, the JavaScript interpreter won’t balk.

If you’ve written scripts (or macros) before
Experience with writing scripts in other authoring tools or macros in productivity programs is helpful for
grasping a number of JavaScript concepts. Perhaps the most important concept is the idea of combining a
handful of statements to perform a specific task on some data. For example, you can write a macro in
Microsoft Excel that performs a data transformation on daily figures that come in from a corporate financial
report on another computer. The macro is built into the Macro menu, and you run it by choosing that
menu item whenever a new set of figures arrives.

Some modern programming environments, such as Visual Basic, resemble scripting environments in some
ways. They present the programmer with an interface builder, which does most of the work of displaying
screen objects with which the user will interact. A big part of the programmer’s job is to write little bits of
code that are executed when a user interacts with those objects. A great deal of the scripting you will do
with JavaScript matches that pattern exactly. In fact, those environments resemble the scriptable browser
environment in another way: They provide a finite set of predefined objects that have fixed sets of proper-
ties and behaviors. This predictability makes learning the entire environment and planning an application
easier to accomplish.

Formatting and Naming Conventions
The script listings and words in this book are presented in a monospaced font to set them apart from the
rest of the text. Because of restrictions in page width, lines of script listings may, from time to time, break
unnaturally. In such cases, the remainder of the script appears in the following line, flush with the left mar-
gin of the listing, just as they would appear in a text editor with word wrapping turned on. If these line
breaks cause you problems when you type a script listing into a document yourself, I encourage you to
access the corresponding listing on the CD-ROM to see how it should look when you type it.

As soon as you reach Part III of this book, you won’t likely go for more than a page before reading about an
object model or language feature that requires a specific minimum version of one browser or another. To

xxiii

Preface

04_069165 fpref.qxp 3/1/07 3:39 PM Page xxiii

make it easier to spot in the text when a particular browser and browser version is required, most browser
references consist of an abbreviation and a version number. For example, WinIE5 means Internet Explorer 5
for Windows; NN4 means Netscape Navigator 4 for any operating system; Moz stands for the modern
Mozilla browser (from which Firefox, Netscape 6 or later, and Camino are derived); and Safari is Apple’s
own browser for Mac OS X. If a feature is introduced with a particular version of browser and is supported
in subsequent versions, a plus symbol (+) follows the number. For example, a feature marked WinIE5.5+
indicates that Internet Explorer 5.5 for Windows is required at a minimum, but the feature is also available
in WinIE7 and probably future WinIE versions. If a feature was implemented in the first release of a modern
browser, a plus symbol immediately follows the browser family name, such as Moz+ for all Mozilla-based
browsers. Occasionally, a feature or some highlighted behavior applies to only one browser. For example, a
feature marked NN4 means that it works only in Netscape Navigator 4.x. A minus sign (for example,
WinIE-) means that the browser does not support the item being discussed.

The format of HTML and code listings in this edition follow XHTML coding conventions, which dictate all-
lowercase tag and attribute names, as well as self-closing tags that do not act as containers (such as the
XHTML
 tag in place of the HTML
 tag).

CROSS-REFCROSS-REFCAUTION CAUTION
TIPTIPNOTENOTE

xxiv

Preface

Note, Tip, Caution, and Cross-Reference icons occasionally appear
in the book to flag important points or suggest where to find more
information.

04_069165 fpref.qxp 3/1/07 3:39 PM Page xxiv

Getting Started
with JavaScript

IN THIS PART
Chapter 1
JavaScript’s Role in the World
Wide Web and Beyond

Chapter 2
Authoring Challenges Amid
the Browser Wars

Chapter 3
Your First JavaScript Script

05_069165 pt01.qxp 3/1/07 3:39 PM Page 1

05_069165 pt01.qxp 3/1/07 3:39 PM Page 2

Many of the technologies that make the World Wide Web possible have
far exceeded their original goals. Envisioned at the outset as a medium
for publishing static text and image content across a network, the Web

is forever being probed, pushed, and pulled by content authors. By taking for
granted so much of the “dirty work” of conveying the bits between server and
client computers, content developers and programmers dream of exploiting that
connection to generate new user experiences and practical applications. It’s not
uncommon for a developer community to take ownership of a technology and
mold it to do new and exciting things. But with so many Web technologies —
especially browser programming with JavaScript — being within reach of every-
day folks, we have witnessed an unprecedented explosion in turning the World
Wide Web from a bland publishing medium into a highly interactive, operating
system–agnostic authoring platform.

The JavaScript language, working in tandem with related browser features, is a
Web-enhancing technology. When employed on the client computer, the lan-
guage can help turn a static page of content into an engaging, interactive, and
intelligent experience. Applications can be as subtle as welcoming a site’s visitor
with the greeting “Good morning!” when it is morning in the client computer’s
time zone — even though it is dinnertime where the server is located. Or applica-
tions can be much more obvious, such as delivering the content of a slide show
in a one-page download while JavaScript controls the sequence of hiding, show-
ing, and “flying slide” transitions while navigating through the presentation.

Of course, JavaScript is not the only technology that can give life to drab Web
content. Therefore, it is important to understand where JavaScript fits within the
array of standards, tools, and other technologies at your disposal. The alternative
technologies described in this chapter are HTML, Cascading Style Sheets (CSS),
server programs, and plug-ins. In most cases, JavaScript can work side by side
with these other technologies, even though the hype around some make them
sound like one-stop shopping places for all your interactive needs. That’s rarely
the case. Finally, you learn about the origins of JavaScript and what role it plays
in today’s advanced Web browsers.

3

IN THIS CHAPTER
How JavaScript blends with
other Web-authoring
technologies

The history of JavaScript

What kinds of jobs you should
and should not entrust to
JavaScript

JavaScript’s Role in the
World Wide Web and Beyond

06_069165 ch01.qxp 3/1/07 3:40 PM Page 3

Competing for Web Traffic
Web-page publishers revel in logging as many visits to their sites as possible. Regardless of the questionable
accuracy of Web page hit counts, a site consistently logging 10,000 dubious hits per week is clearly far more
popular than one with 1,000 dubious hits per week. Even if the precise number is unknown, relative popu-
larity is a valuable measure. Another useful number is how many links from outside pages lead to a site. A
popular site will have many other sites pointing to it — a key to earning high visibility in Web searches.

Encouraging people to visit a site frequently is the Holy Grail of Web publishing. Competition for viewers is
enormous. Not only is the Web like a 50 million–channel television, but also, the Web competes for view-
ers’ attention with all kinds of computer-generated information. That includes anything that appears
onscreen as interactive multimedia.

Users of entertainment programs; multimedia encyclopedias; and other colorful, engaging, and mouse-finger-
numbing actions are accustomed to high-quality presentations. Frequently, these programs sport first-rate
graphics, animation, live-action video, and synchronized sound. By contrast, the lowest-common-denominator
Web page has little in the way of razzle-dazzle. Even with the help of Dynamic HTML and stylesheets, the lay-
out of pictures and text is highly constrained compared with the kinds of desktop publishing documents you
see all the time. Regardless of the quality of its content, an unscripted, vanilla HTML document is flat. At best,
interaction is limited to whatever navigation the author offers in the way of hypertext links or forms whose
filled-in content magically disappears into the Web site’s server.

Other Web Technologies
With so many ways to spice up Web sites and pages, you can count on competitors for your site’s visitors to
do their darnedest to make their sites more engaging than yours. Unless you are the sole purveyor of infor-
mation that is in high demand, you continually must devise ways to keep your visitors coming back and
entice new ones. If you design for an intranet, your competition is the drive for improved productivity by
colleagues who use the internal Web sites for getting their jobs done.

These are all excellent reasons why you should care about using one or more Web technologies to raise your
pages above the noise. Let’s look at the major technologies you should know about.

Hypertext Markup Language (HTML and XHTML)
As an outgrowth of SGML (Standard Generalized Markup Language), HTML is generally viewed as nothing
more than a document formatting, or tagging, language. The tags (inside <> delimiter characters) instruct a
viewer program (the browser or, more generically, the client) how to display chunks of text or images.

Relegating HTML to the category of a tagging language does disservice not only to the effort that goes into
fashioning a first-rate Web page, but also to the way users interact with the pages. To my way of thinking,
any collection of commands and other syntax that directs the way users interact with digital information is
programming. With HTML, a Web-page author controls the user experience with the content just as the
engineers who program Microsoft Excel craft the way users interact with spreadsheet content and functions.

Version 4.0 and later of the published HTML standards endeavor to define the purpose of HTML as assign-
ing context to content, leaving the appearance to a separate standard for stylesheets. In other words, it’s not
HTML’s role to signify that some text is italic but, rather, to signify why it is italic. For example, you would
tag a chunk of text that conveys emphasis (via the tag) regardless of how the stylesheet or browser sets
the appearance of that emphasized text.

4

Getting Started with JavaScriptPart I

06_069165 ch01.qxp 3/1/07 3:40 PM Page 4

XHTML is a more recent adaptation of HTML that adheres to stylistic conventions established by the XML
(eXtensible Markup Language) standard. No new tags come with XHTML, but it reinforces the notion of
tagging to denote a document’s structure and content.

Cascading Style Sheets (CSS)
Specifying the look and feel of a Web page via stylesheets is a major trend taking over the modern Web. The
basic idea is that given a document’s structure spelled out by its HTML or XHTML, a stylesheet defines the
layout, colors, fonts, and other visual characteristics to present the content. Applying a different set of CSS
definitions to the same document can make it look entirely different, even though the words and images are
the same.

Mastery of the fine points of CSS takes time and experimentation, but the results are worth the effort. The
days of using HTML tables and transparent “spacer” images to generate elaborate multicolumn layouts are
very much on the wane. Every Web developer should have a solid grounding in CSS.

Server programming
Web sites that rely on database access or change their content very frequently incorporate programming on
the server that generates the HTML output for browsers and/or processes forms that site visitors fill out on
the page. Even submissions from a simple login or search form ultimately trigger some server process that
sends the results to your browser. Server programming takes on many guises, the names of which you may
recognize from your surfing through Web development sites. PHP, ASP, .Net, JSP, and Coldfusion are among
the most popular. Associated programming languages include Perl, Python, Java, C++, C#, Visual Basic, and
even server-side JavaScript in some environments.

Whatever language you use, the job definitely requires the Web-page author to be in control of the server,
including whatever back-end programs (such as databases) are needed to supply results or massage the
information coming from the user. Even with the new, server-based Web site design tools available, server
scripting often is a task that a content-oriented HTML author will need to hand off to a more experienced
programmer.

As powerful and useful as server scripting can be, it does a poor job of facilitating interactivity in a Web
page. Without the help of browser scripting, each change to a page must be processed on the server, caus-
ing delays for the visitor and an extra burden on the server for simple tasks. This wastes desktop processing
horsepower, especially if the process running on the server doesn’t need to access big databases or other
external computers.

Working together, however, server programming and browser scripting can make beautiful applications
together. The pair come into play with what has become known as Ajax — Asynchronous JavaScript and
XML. The “asynchronous” part runs in the browser, requesting XML data from, or posting data to, the
server entirely in the background. XML data returned by the server can then be examined by JavaScript in
the browser to update portions of the Web page. That’s how many popular Web-based email user interfaces
work, as well as the draggable satellite-photo closeups of Google Maps (http://maps.google.com).

Of helpers and plug-ins
In the early days of the World Wide Web, a browser needed to present only a few kinds of data before a
user’s eyes. The power to render text (tagged with HTML) and images (in popular formats such as GIF and
JPEG) was built into browsers intended for desktop operating systems. Not wanting to be limited by those
data types, developers worked hard to extend browsers so that data in other formats could be rendered on

5

JavaScript’s Role in the World Wide Web and Beyond 1

06_069165 ch01.qxp 3/1/07 3:40 PM Page 5

the client computer. It was unlikely, however, that a browser would ever be built that could download and
render, say, any of several sound-file formats.

One way to solve the problem was to allow the browser, upon recognizing an incoming file of a particular
type, to launch a separate application on the client machine to render the content. As long as this helper
application was installed on the client computer (and the association with the helper program was set in the
browser’s preferences), the browser would launch the program and send the incoming file to that program.
Thus, you might have one helper application for a MIDI sound file and another for an animation file.

Beginning with Netscape Navigator 2 in early 1996, software plug-ins for browsers enabled developers to
extend the capabilities of the browser without having to modify the browser. Unlike a helper application, a
plug-in can enable external content to blend into the document seamlessly.

The most common plug-ins are those that facilitate the playback of audio and video from the server. Audio
may include music tracks that play in the background while visiting a page or live (streaming) audio, simi-
lar to a radio station. Video and animation can operate in a space on the page when played through a plug-
in that knows how to process such data.

Today’s browsers tend to ship with plug-ins that decode the most common sound-file types. Developers of
plug-ins for Internet Explorer for the Windows operating system commonly implement plug-ins as ActiveX
controls — a distinction that is important to the underpinnings of the operating system but not to the user.

Plug-ins and helpers are valuable for more than just audio and video playback. A popular helper application
is Adobe Acrobat Reader, which displays Acrobat files that are formatted just as though they were being
printed. But for interactivity, developers today frequently rely on Macromedia Corporation’s Flash plug-in.
Created using the Macromedia Flash authoring environment, a Flash document can have active clickable
areas and draggable elements. Some authors even simulate artistic video games and animated stories in
Flash. A browser equipped with the Flash plug-in displays the content in a rectangular area embedded
within the browser page.

One potential downside for authoring interactive content in Flash or similar environments is that if the user
does not have the correct plug-in version installed, it can take some time to download the plug-in (if the
user even wants to bother). Moreover, once the plug-in is installed, highly graphic and interactive content
can take longer to download to the client (especially on a dial-up connection) than some users are willing to
wait. This is one of those situations in which you must balance your creative palette with the user’s desire
for your interactive content.

Another client-side technology — the Java applet — was popular for a while in the late 1990s but has fallen
out of favor for a variety of reasons (some technical, some corporate–political). But this has not diminished
the use of Java as a language for server and even cellular telephone programming, extending well beyond
the scope of the language’s founding company, Sun Microsystems.

JavaScript: A Language for All
Sun’s Java language is derived from C and C++, but it is a distinct language. Its main audience is the experi-
enced programmer. That leaves out many Web-page authors. I was dismayed by this situation when I first
read about Java’s preliminary specifications in 1995. I would have preferred a language that casual program-
mers and scripters who were comfortable with authoring tools, such as Apple’s once-formidable HyperCard
and Microsoft’s Visual Basic, could adopt quickly. As these accessible development platforms have shown,
nonprofessional authors can dream up many creative applications, often for very specific tasks that no pro-
fessional programmer would have the inclination to work on. Personal needs often drive development in
the classroom, office, den, or garage. But Java was not going to be that kind of inclusive language.

6

Getting Started with JavaScriptPart I

06_069165 ch01.qxp 3/1/07 3:40 PM Page 6

My spirits lifted several months later, in November 1995, when I heard of a scripting language project brew-
ing at Netscape Communications, Inc. Born under the name LiveScript, this language was developed in par-
allel with a new version of Netscape’s Web server software. The language was to serve two purposes with the
same syntax. One purpose was as a scripting language that Web server administrators could use to manage
the server and connect its pages to other services, such as back-end databases and search engines for users
looking up information. Extending the “Live” brand name further, Netscape assigned the name LiveWire to
the database connectivity usage of LiveScript on the server.

On the client side — in HTML documents — authors could employ scripts written in this new language to
enhance Web pages in a number of ways. For example, an author could use LiveScript to make sure that the
user had filled in a required text field with an e-mail address or credit card number. Instead of forcing the
server or database to do the data validation (requiring data exchanges between the client browser and the
server), the user’s computer handles all the calculation work — putting some of that otherwise-wasted com-
puting horsepower to work. In essence, LiveScript could provide HTML-level interaction for the user.

LiveScript becomes JavaScript
In early December 1995, just prior to the formal release of Navigator 2, Netscape and Sun Microsystems
jointly announced that the scripting language thereafter would be known as JavaScript. Though Netscape
had several good marketing reasons for adopting this name, the changeover may have contributed more
confusion to both the Java and HTML scripting worlds than anyone expected.

Before the announcement, the language was already related to Java in some ways. Many of the basic syntax
elements of the scripting language were reminiscent of the Java style. For client-side scripting, the language
was intended for very different purposes than Java — essentially to function as a programming language
integrated into HTML documents rather than as a language for writing applets that occupy a fixed rectangu-
lar area on the page (and that are oblivious to anything else on the page). Instead of Java’s full-blown pro-
gramming language vocabulary (and conceptually more difficult to learn object-oriented approach),
JavaScript had a small vocabulary and a more easily digestible programming model.

The true difficulty, it turned out, was making the distinction between Java and JavaScript clear to the world.
Many computer journalists made major blunders when they said or implied that JavaScript provided a sim-
pler way of building Java applets. To this day, some new programmers believe JavaScript is synonymous
with the Java language: They post Java queries to JavaScript-specific Internet newsgroups and mailing lists.

The fact remains that client-side Java and JavaScript are more different than they are similar. The two lan-
guages employ entirely different interpreter engines to execute their lines of code.

Enter Microsoft and others
Although the JavaScript language originated at Netscape, Microsoft acknowledged the potential power and
popularity of the language by implementing it (under the JScript name) in Internet Explorer 3. Even if
Microsoft might prefer that the world use the VBScript (Visual Basic Script) language that it provides in the
Windows versions of IE, the fact that JavaScript is available on more browsers and operating systems makes
it the client-side scripter’s choice for anyone who must design for a broad range of users.

With scripting firmly entrenched in the mainstream browsers from Microsoft and Netscape, newer browser
makers automatically provided support for JavaScript. Therefore, you can count on fundamental scripting
services in browsers such as Opera or the Apple Safari browser (the latter built upon an Open Source
browser called KHTML). Not that all browsers work the same way in every detail — a significant challenge
for client-side scripting that is addressed throughout this book.

7

JavaScript’s Role in the World Wide Web and Beyond 1

06_069165 ch01.qxp 3/1/07 3:40 PM Page 7

JavaScript: The Right Tool for the Right Job
Knowing how to match an authoring tool to a solution-building task is an important part of being a well-
rounded Web site author. A Web designer who ignores JavaScript is akin to a plumber who bruises his
knuckles by using pliers instead of the wrench from the bottom of the toolbox.

By the same token, JavaScript won’t fulfill every dream. The more you understand about JavaScript’s inten-
tions and limitations, the more likely you will be to turn to it immediately when it is the proper tool. In par-
ticular, look to JavaScript for the following kinds of solutions:

n Getting your Web page to respond or react directly to user interaction with form elements (input
fields, text areas, buttons, radio buttons, checkboxes, selection lists) and hypertext links

n Distributing small collections of databaselike information and providing a friendly interface to
that data

n Controlling multiple-frame navigation, plug-ins, or Java applets based on user choices in the
HTML document

n Preprocessing data on the client before submission to a server

n Changing content and styles in modern browsers dynamically and instantly in response to user
interaction

At the same time, it is equally important to understand what JavaScript is not capable of doing. Scripters
waste many hours looking for ways of carrying out tasks for which JavaScript was not designed. Most of the
limitations are designed to protect visitors from invasions of privacy or unauthorized access to their desktop
computers. Therefore, unless a visitor uses a modern browser and explicitly gives you permission to access
protected parts of his or her computer, JavaScript cannot surreptitiously perform any of the following
actions:

n Setting or retrieving the browser’s preferences settings, main window appearance features, action
buttons, and printing

n Launching an application on the client computer

n Reading or writing files or directories on the client or server computer

n Capturing live data streams from the server for retransmission

n Sending secret e-mails from Web site visitors to you

Web site authors are constantly seeking tools that will make their sites engaging (if not cool) with the least
amount of effort. This is particularly true when the task is in the hands of people more comfortable with
writing, graphic design, and page layout than with hard-core programming. Not every Webmaster has
legions of experienced programmers on hand to whip up some special, custom enhancement for the site.
Neither does every Web author have control over the Web server that physically houses the collection of
HTML and graphics files. JavaScript brings programming power within reach of anyone familiar with
HTML, even when the server is a black box at the other end of a telephone line.

8

Getting Started with JavaScriptPart I

06_069165 ch01.qxp 3/1/07 3:40 PM Page 8

If you are starting to learn JavaScript at this point in the history of scriptable
browsers, you have both a distinct advantage and disadvantage. The advan-
tage is that you have the wonderful capabilities of mature browser offerings

from Microsoft, The Mozilla Foundation (under brand names such as Firefox,
Netscape, and Camino), Apple, and others at your bidding. The disadvantage is
that you have not experienced the painful history of authoring for older browser
versions that were buggy and at times incompatible with one another due to a
lack of standards. You have yet to learn the anguish of carefully devising a
scripted application for the browser version you use, only to have site visitors
sending you voluminous e-mail messages about how the page triggers all kinds
of script errors when run on a different browser brand, generation, or operating
system platform.

Welcome to the real world of scripting Web pages with JavaScript. Several
dynamics are at work to help make an author’s life difficult if the audience for the
application uses more than a single type of browser. This chapter introduces you
to these challenges before you type your first word of JavaScript code. My fear is
that the subjects I raise may dissuade you from progressing further into
JavaScript and its powers. But as a developer myself — and as someone who has
been using JavaScript since the earliest days of its public prerelease availability —
I dare not sugar-coat the issues facing scripters today. Instead, I want to make
sure you have an appreciation of what lies ahead to assist you in learning the lan-
guage. I believe if you understand the big picture of the browser-scripting world
as it stands in the year 2007, you will find it easier to target JavaScript usage in
your Web application development and be successful at it.

Leapfrog
Browser compatibility has been an issue for authors since the earliest days of the
Web gold rush — long before JavaScript. Despite the fact that browser developers
and other interested parties voiced their opinions during formative stages of stan-

9

IN THIS CHAPTER
How leapfrogging browser
developments help and hurt
Web developers

Separating the core JavaScript
language from document objects

The importance of developing a
cross-browser strategy

Authoring Challenges
Amid the Browser Wars

07_069165 ch02.qxp 3/1/07 4:03 PM Page 9

dards development, HTML authors could not produce a document that appeared the same pixel by pixel on
all client machines. It may have been one thing to establish a set of standard tags for defining heading levels
and line breaks, but it was rare for the actual rendering of content inside those tags to look identical on dif-
ferent brands of browsers on different operating systems.

Then, as the competitive world heated up — and Web browser development transformed itself from a vol-
unteer undertaking into profit-seeking businesses — creative people defined new features and new tags that
helped authors develop more flexible and interesting-looking pages. As happens a lot in any computer-
related industry, the pace of commercial development easily surpassed the studied progress of standards. A
browser maker would build a new HTML feature into a browser and only then propose that feature to the
relevant standards body. Web authors were using these features (sometimes for prerelease browser versions)
before the proposals were published for review.

When the deployment of content depends almost entirely on an interpretive engine on the client computer
receiving the data — the HTML engine in a browser, for example — authors face an immediate problem.
Unlike a stand-alone computer program that can extend and even invent functionality and have it run on
everyone’s computer (at least for a given operating system), Web content providers must rely on the func-
tionality built into the browser. This led to questions such as “If not all browsers coming to my site support
a particular HTML feature, then should I apply newfangled HTML features for visitors only at the bleeding
edge?” and “If I do deploy the new features, what do I do for those with older browsers?”

Authors who developed pages in the earliest days of the Web wrestled with these questions for many HTML
features that we today take for granted. Tables and frames come to mind. Eventually, the standards caught
up with the proposed HTML extensions — but not without a lot of author woe along the way.

Despite the current dominance of the Microsoft Internet Explorer browser on the dominant Windows operat-
ing system, the number of browsers that people use is not shrinking. Several recent browsers, including the
modern Netscape and Firefox browsers, are based on an Open Source browser called Mozilla. The Macintosh
operating system now includes its own Apple-branded browser, Safari (released in 2003). And the independ-
ent Opera browser also has a home on some users’ computers. All of these non-Microsoft browser makers
obviously believe that they bring improvements to the world to justify their development — building better
mousetraps, you might say.

Duck and Cover
Today’s browser wars are fought on different battlegrounds than in the early days of the Web. The breadth
and depth of established Web standards have substantially fattened the browser applications — and the
books developers read to exploit those standards for their content. On one hand, most developers clamor
for deeper standards support in new browser versions. On the other hand, everyday users care little about
standards. All they want is to have an enjoyable time finding the information they seek on the Web. Most
users are slow to upgrade their browsers, holding out until their favorite sites start breaking in their ancient
browsers.

Industry standards don’t necessarily make the Web developer’s job any easier. For one thing, the standards
are unevenly implemented across the latest browsers. Some browsers go further in their support than oth-
ers. Then there are occasional differences in interpretation of vague standards details. And sometimes the
standards don’t provide any guidance in areas that are vital to content developers. At times we are left to the
whims of browser makers who fill the gaps with proprietary features in the hope that those features will
become de facto standards.

10

Getting Started with JavaScriptPart I

07_069165 ch02.qxp 3/1/07 4:03 PM Page 10

As happens in war, civilian casualties mount when the big guns start shooting. The browser battle lines
shifted dramatically in only a few years. The huge market-share territory once under Netscape’s command
came under Microsoft’s sway. More recently, however, concerns about privacy and security on the Windows
platform have driven many users to seek less vulnerable browsers. Mozilla Firefox has so far been the
biggest beneficiary in the search for alternatives. Although a fair amount of authoring common ground
exists between the latest versions of today’s browsers, uneven implementation of the newest features causes
the biggest problems for authors wishing to deploy on all browsers. Trying to define the common denomi-
nator may be the toughest part of the authoring job.

Compatibility Issues Today
Allow me to describe the current status of the compatibility situation among the top three browser families:
Microsoft Internet Explorer, browsers based on Mozilla, and Apple Safari. The discussion in the next few
sections intentionally does not get into specific scripting technology very deeply; some of you may know
very little about programming at this point. In many chapters throughout Parts III and IV, I offer scripting
suggestions to accommodate a variety of browsers.

Separating language from objects
Although early JavaScript authors initially treated client-side scripting as one environment that permitted
the programming of page elements, the scene has changed as the browsers have matured. Today, a clear dis-
tinction exists between specifications for the core JavaScript language and for the elements you script in a
document (for example, buttons and fields in a form).

On one level, this separation is a good thing. It means that one specification exists for basic programming
concepts and syntax, which could become the programming language in any number of other environ-
ments. You can think of the core language as basic wiring. When you know how electric wires work, you
can connect them to all kinds of electrical devices. Similarly, JavaScript today is used to wire together ele-
ments in an HTML document. Tomorrow, operating systems could use the core language to enable users to
wire together desktop applications that need to exchange information automatically.

At the ends of today’s JavaScript wires inside browsers are the elements on the page. In programming jar-
gon, these items are known as document objects. By keeping the specifications for document objects separate
from the wires that connect them, you can use other kinds of wires (other languages) to connect them. It’s
like designing telephones that can work with any kind of wire, including a type of wire that hasn’t been
invented yet. Today, the devices can work with copper wire or fiber-optic cable. You get a good picture of
this separation in Internet Explorer, whose set of document objects can be scripted with JavaScript or
VBScript. They’re the same objects — just different wiring.

The separation of core language from document objects enables each concept to have its own standards
effort and development pace. But even with recommended standards for each factor, each browser maker is
free to extend the standards. Furthermore, authors may have to expend more effort to devise one version of
a page or script that plays on multiple browsers unless the script adheres to a common denominator (or
uses some other branching techniques to let each browser run its own way).

11

Authoring Challenges Amid the Browser Wars 2

07_069165 ch02.qxp 3/1/07 4:03 PM Page 11

Core language standard
Keeping track of JavaScript language versions requires a brief history lesson. The first version of JavaScript
(in Netscape Navigator 2) was version 1, although that numbering was not part of the language usage.
JavaScript was JavaScript. Version numbering became an issue when Navigator 3 was released. The version
of JavaScript associated with that Navigator version was JavaScript 1.1. The first appearance of the
Navigator 4 generation increased the language version one more notch with JavaScript 1.2.

Microsoft’s scripting effort contributes confusion for scripting newcomers. The first version of Internet
Explorer to include scripting was Internet Explorer 3. The timing of Internet Explorer 3 was roughly coinci-
dental to Navigator 3. But as scripters soon discovered, Microsoft’s scripting effort was one generation
behind. Microsoft did not license the JavaScript name. As a result, the company called its language JScript.
Even so, the HTML tag attribute that lets you name the language of the script inside the tags could be either
JScript or JavaScript for Internet Explorer. Internet Explorer 3 could understand a JavaScript script written
for Navigator 2.

During this period of dominance by Navigator 3 and Internet Explorer 3, scripting newcomers were often
confused because they expected the scripting languages to be the same. Unfortunately for the scripters, there
were language features in JavaScript 1.1 that were not available in the older JavaScript version in Internet
Explorer 3. Microsoft improved JavaScript in IE3 with an upgrade to the .dll file that gives IE its JavaScript
syntax. However, it was hard to know which .dll is installed in any given visitor’s IE3. The situation
smoothed out for Internet Explorer 4. Its core language was essentially up to the level of JavaScript 1.2, as in
early releases of Navigator 4. Microsoft still officially called the language JScript. Almost all language features
that were new in Navigator 4 were understood when you loaded the scripts into Internet Explorer 4.

While all of this jockeying for JavaScript versions was happening, Netscape, Microsoft, and other concerned
parties met to establish a core language standard. The standards body is a Switzerland-based organization
originally called the European Computer Manufacturer’s Association and now known simply as ECMA
(commonly pronounced “ECK-ma”). In mid-1997, the first formal language specification was agreed on and
published (ECMA-262). Due to licensing issues with the JavaScript name, the body created a new name for
the language: ECMAScript.

With only minor and esoteric differences, this first version of ECMAScript was essentially the same as
JavaScript 1.1, used in Navigator 3. Both Navigator 4 and Internet Explorer 4 officially supported the
ECMAScript standard. Moreover, as happens so often when commerce meets standards bodies, both
browsers went beyond the ECMAScript standard. Fortunately, the common denominator of this extended
core language is broad, lessening authoring headaches on this front.

JavaScript version 1.3 was implemented in Netscape Navigator 4.06 through 4.7x. This language version is
also the one supported in IE 5, 5.5, and 6. A few new language features are incorporated in JavaScript 1.5,
as implemented in Mozilla-based browsers (including Navigator 6 and later). A few more core language fea-
tures were added to JavaScript 1.6, first implemented in Mozilla 1.8 (Firefox 1.5).

In practice, so many browsers in use today support all but a few leading-edge features of the Mozilla
browsers that JavaScript version numbers are mostly irrelevant. Other compatibility issues with older
browsers will likely get in your way before core language problems do. The time has come to forget about
elaborate workarounds for the inadequacies of the oldest browsers.

Document object model
If prevalent browsers have been close to one another in core JavaScript language compatibility, nothing could
be further from the truth when it comes to the document objects. Internet Explorer 3 based its document
object model (DOM) on that of Netscape Navigator 2, the same browser level it used as a model for the core

12

Getting Started with JavaScriptPart I

07_069165 ch02.qxp 3/1/07 4:03 PM Page 12

language. When Netscape added a couple of new objects to the model in Navigator 3, the addition caused
further headaches for neophyte scripters who expected those objects to appear in Internet Explorer 3.
Probably the most commonly missed object in Internet Explorer 3 was the image object, which lets scripts
swap the image when a user rolls the cursor atop a graphic — mouse rollovers, they’re commonly called.

In the Level 4 browsers, however, Internet Explorer’s DOM jumped way ahead of the object model that
Netscape implemented in Navigator 4. The two most revolutionary aspects of IE4 were the ability to script
virtually every element in an HTML document and the instant reflow of a page when the content changed.
This opened the way for HTML content to be genuinely dynamic without requiring the browser to fetch a
rearranged page from the server. NN4 implemented only a small portion of this dynamism without expos-
ing all elements to scripts or reflowing the page. It introduced a proprietary layering concept that was aban-
doned at the end of the Navigator 4.x lifetime. Inline content could not change in NN4 as it could in IE4.
Suffice it to say that IE4 was an enviable implementation.

At the same time, a DOM standard was being negotiated under the auspices of the World Wide Web
Consortium (W3C). The hope among scripters was that after a standard was in place, it would be easier to
develop dynamic content for all browsers that supported the standard. The resulting standard — the
W3C DOM — formalized the notion of being able to script every element on the page, as in IE4. But it also
invented an entirely new object syntax that no browser had used. The race was on for browsers to support
the W3C DOM standards.

An arm of the Netscape company called Mozilla.org was formed to create an all-new browser dedicated to
supporting industry standards. The engine for the Mozilla browser became the basis for the all-new
Navigator 6. It incorporated all of the W3C DOM Level 1 and a good chunk of Level 2. Mozilla 1.01
became the basis for the Netscape 7 browser, whereas Netscape 7.1 was built on the Mozilla 1.4 generation.
In the summer of 2003, Netscape’s parent company, AOL Time Warner, decided to end further Netscape-
branded browser development. The work on the underlying Mozilla browser, however, continues under an
independent organization called The Mozilla Foundation. Mozilla-based browsers and others using the
same engine (such as Firefox and Camino) continue to be upgraded and released to the public. The Mozilla
engine offers arguably the most in-depth support for the W3C DOM standards.

Even though Microsoft participated in W3C DOM standards development, IE5 and 5.5 implemented only
some of the W3C DOM standard — in some cases, just enough to allow simple cross-browser scripting that
adheres to the standard. Microsoft further filled out W3C DOM support in IE6 but chose to omit several
important parts. Despite the long time gap between releases of IE6 and IE7, the latter includes no additional
W3C DOM support — much to the chagrin of Web developers.

The Apple Safari browser has raced forward in its comparatively short life to offer substantial W3C DOM
support. This is especially true of version 2, which was first released as part of Mac OS X version 10.4.

With this seemingly tortuous history of DOM development and browser support leading to the present day,
you may wonder how anyone can approach DOM scripting with hope of success. Yet you’d be amazed by
how much you can accomplish with today’s browsers. You’ll certainly encounter compatibility issues along
the way, but this book will guide you through the most common problems and equip you to tackle others.

Cascading Style Sheets
Navigator 4 and Internet Explorer 4 were the first browsers to claim compatibility with a W3C recommen-
dation called Cascading Style Sheets Level 1 (CSS1). This specification provided designers an organized way to
customize the look and feel of a document (and thus minimized the HTML in each tag). As implementa-
tions go, NN4 had a lot of rough edges, especially when trying to mix stylesheets and tables. But IE4 was no

13

Authoring Challenges Amid the Browser Wars 2

07_069165 ch02.qxp 3/1/07 4:03 PM Page 13

angel, either, especially when comparing the results of stylesheet assignments as rendered in the Windows
and Macintosh versions of the browser (developed by two separate teams).

CSS Level 2 adds more style functionality to the standard, and IE6, Mozilla-based browsers, and Safari sup-
port a good deal of Level 2 (albeit unevenly) with the latest versions, such as Mozilla 1.8+ and Safari 2+
beginning support for CSS Level 3 features. Rendering of styled content is more harmonious among
browsers, largely thanks to guidelines about how styles should render. Complex layouts, however, still need
careful tweaking from time to time because of different interpretations of the standard.

JavaScript plays a role in stylesheets in IE4+, Mozilla, and Safari because those browsers’ object models per-
mit dynamic modification to styles associated with any content on the page. Stylesheet information is part
of the object model and therefore is accessible and modifiable from JavaScript.

Dynamic HTML and positioning
Perhaps the biggest improvements to the inner workings of the Level 4 browsers from both Netscape and
Microsoft revolved around a concept called Dynamic HTML (DHTML). The ultimate goal of DHTML was to
enable scripts in documents to control the content, content position, and content appearance in response to
user actions. To that end, the W3C organization developed another standard for the precise positioning of
HTML elements on a page as an extension of the CSS standards effort. The CSS-Positioning recommenda-
tion was later blended into the CSS standard, and both are now part of CSS Level 2. With positioning, you
can define an exact location on the page where an element should appear, whether the item should be visi-
ble, and what stacking order it should take among all the items that might overlap it.

IE4+ adheres to the positioning-standard syntax and makes positionable items subject to script control.
Navigator 4 followed the standard from a conceptual point of view, but it implemented an alternative
methodology involving an entirely new, and eventually unsanctioned, tag for layers. Such positionable items
were scriptable in Navigator 4 as well, although a lot of the script syntax differed from that used in Internet
Explorer 4. Fortunately for DHTML authors, Mozilla, through its adherence to the CSS standard, is more
syntactically in line with DHTML style properties employed in IE4+.

Of more interest these days is the ability to modify the inline content of a Web page without reloading the
entire page. Fundamental standards from the W3C DOM Level 1 are supported by a wide range of
browsers, including IE5+, Mozilla, Safari, and Opera. You can accomplish quite a lot using the same basic
syntax across all of these browsers. Some challenges remain, however, as you’ll see throughout this book.

Developing a Scripting Strategy
Browsers representing the latest generation contain a hodgepodge of standards and proprietary extensions.
Even if you try to script to a common denominator among today’s browsers, your code probably won’t take
into account the earlier versions of both the JavaScript core language and the browser DOMs.

The true challenge for authors is determining the audience for which scripted pages are intended. Each new
browser generation not only brings with it new and exciting features you are probably eager to employ in
your pages, but also adds to the fragmentation of the audience visiting a publicly accessible page. With each
new browser upgrade, fewer existing users are willing to download megabytes of browser merely to have
the latest and greatest browser version. For many pioneers — and certainly for most nontechie users —
there is a shrinking imperative to upgrade browsers unless the new browser comes via a new computer or
operating system upgrade.

14

Getting Started with JavaScriptPart I

07_069165 ch02.qxp 3/1/07 4:03 PM Page 14

At this stage in the history of scriptable browsers, I take the stand that we should assume that a typical Web
surfer arrives with a browser equipped with support for at least simple W3C DOM and DHTML capabili-
ties. That certainly won’t be the case 100 percent of the time, so it is also your obligation to apply scripting
in an additive, or value-added, manner. By this I mean that your pages should convey their primary infor-
mation to nonscriptable browsers designed for users with vision or motor-skill impairments as well as less-
feature-rich browsers built into cellular telephones. But the scripting efforts you make can give visitors with
recent scriptable browsers a more enjoyable experience — better interactivity, faster performance, and a
more engaging presentation. You will not only be contributing to the state of the art, but also carrying on
the original vision of scripting in the browser.

15

Authoring Challenges Amid the Browser Wars 2

07_069165 ch02.qxp 3/1/07 4:03 PM Page 15

07_069165 ch02.qxp 3/1/07 4:03 PM Page 16

In this chapter, you set up a productive scriptwriting and previewing environ-
ment on your computer; then you write a simple script whose results you
can see in your JavaScript-compatible browser.

Because of differences in the way various personal computing operating systems
behave, I present details of environments for two popular variants: Windows
(95 through XP) and Mac OS X. For the most part, your JavaScript authoring
experience is the same regardless of the operating system platform you use —
including Linux or Unix. Although there may be slight differences in font designs
depending on your browser and operating system, the information remains the
same. Most illustrations of browser output in this book are made from the
Windows XP version of Internet Explorer 6. If you run another browser or ver-
sion, don’t fret if every pixel doesn’t match the illustrations in this book.

The Software Tools
The best way to learn JavaScript is to type the HTML and scripting code into
documents in a text editor. Your choice of editor is up to you, although I provide
you some guidelines for choosing a text editor in the next section.

Choosing a text editor
For the purposes of learning JavaScript in this book, avoid WYSIWYG (What You
See Is What You Get) web-page authoring tools, such as FrontPage and
Dreamweaver, for now. These tools certainly will come in handy afterward when
you can productively use those facilities for molding the bulk of your content
and layout. But the examples in this book focus more on script content (which
you must type anyway), so there isn’t much HTML that you have to type. Files
for all complete web-page listings in this book (except for the tutorial chapters)
also appear on the companion CD-ROM.

17

IN THIS CHAPTER
How to choose basic JavaScript
authoring tools

How to set up your authoring
environment

How to enter a simple script
to a web page

Your First JavaScript
Script

08_069165 ch03.qxp 3/1/07 3:40 PM Page 17

An important factor to consider in your choice of editor is how easy it is to save standard text files with an
.html filename extension. In the case of Windows, any program that not only saves the file as text by
default but also enables you to set the extension to .htm or .html prevents a great deal of problems. If you
use Microsoft Word, for example, the program tries to save files as binary Word files — something that no
web browser can load. To save the file initially as a .txt or .html extension file requires mucking around
in the Save As dialog box. This requirement is truly a nuisance.

Nothing’s wrong with using bare-essentials text editors. In Windows, that includes the WordPad program or
a more fully featured product such as the shareware editor called TextPad. For Mac OS X, the bundled
TextEdit application is also fine. Favorites among Mac HTML authors and scripters include BBEdit (Bare
Bones Software) and SubEthaEdit (www.codingmonkeys.de/subethaedit).

Choosing a browser
The other component that is required for learning JavaScript is the browser. You don’t have to be connected
to the Internet to test your scripts in the browser. You can perform all testing offline. This means you can
learn JavaScript and create cool, scripted web pages with a laptop computer — even on a boat in the middle
of an ocean.

The browser brand and version you use are up to you. Because the tutorial chapters in this book teach the
W3C DOM syntax, you should be using a recent browser. Any of the following will get you through the
tutorial: Internet Explorer 5 or later (Windows or Macintosh); any Mozilla-based browser (including
Firefox, Netscape 7 or later, and Camino); Apple Safari; and Opera 7 or later.

Many example listings in Parts III and IV of this book demonstrate language or document object
model (DOM) features that work on only specific browsers and versions. Check the compatibil-

ity listing for that language or DOM feature to make sure you use the right browser to load the page.

Setting Up Your Authoring Environment
To make the job of testing your scripts easier, you want to have your text editor and browser running simul-
taneously. You need to be able to switch quickly between editor and browser as you experiment and repair
any errors that may creep into your code. The typical workflow entails the following steps:

1. Enter HTML and script code into the source document in the text editor.

2. Save the latest version to disk.

3. Switch to the browser.

4. Do one of the following:

If this is a new document, open the file through the browser’s Open menu.

If the document is already loaded, reload the file into the browser.

Steps 2 through 4 are the key ones you will follow frequently. I call this three-step sequence the save-
switch-reload sequence. You will perform this sequence so often as you script that the physical act quickly
will become second nature to you. How you arrange your application windows and effect the save-switch-
reload sequence varies according to your operating system.

NOTENOTE

18

Getting Started with JavaScriptPart I

08_069165 ch03.qxp 3/1/07 3:40 PM Page 18

Windows
You don’t have to have either the editor or browser window maximized (at full screen) to take advantage of
them. In fact, you may find them easier to work with if you adjust the size and location of each window so
both windows are as large as possible while still enabling you to click a sliver of the other’s window. Or
you can leave the taskbar visible so you can click the desired program’s button to switch to its window
(see Figure 3-1). A monitor that displays more than 800 × 600 pixels certainly helps in offering more screen
real estate for the windows and the taskbar.

FIGURE 3-1

Editor and browser-window arrangement in Windows XP.

In practice, however, the Windows Alt+Tab task-switching keyboard shortcut makes the job of the save-
switch-reload steps outlined earlier a snap. If you run Windows and also use a Windows-compatible text
editor (which more than likely has a Ctrl+S file-saving keyboard shortcut), you can effect the save-switch-
reload sequence from the keyboard your the left hand: Ctrl+S (save the source file), Alt+Tab (switch to the
browser), and Ctrl+R (reload the saved source file).

As long as you keep switching between the browser and text editor via Alt+Tab task switching, either pro-
gram is always just an Alt+Tab away.

Mac OS X
In Mac OS X you can change between your text editor and browser applications via the Dock or, more con-
veniently, by pressing Ô+Tab. As long as you stay in those two applications, the other program is only one
Ô+Tab away (see Figure 3-2).

19

Your First JavaScript Script 3

08_069165 ch03.qxp 3/1/07 3:40 PM Page 19

FIGURE 3-2

Editor and browser-window arrangement on the Macintosh screen.

With this setup, the save-switch-reload sequence is a simple affair:

1. Press Ô+S (save the source file).

2. Press Ô+Tab (switch to the browser).

3. Press Ô+R (reload the saved source file).

To return to editing the source file, press Ô+Tab again.

Reloading issues
For the most part, a simple page reload is enough to let you test a revised version of a script right away. But
sometimes the browser’s cache (with its default settings) can preserve parts of the previous page’s attributes
when you reload, even though you have changed the source code. To perform a more thorough reload, hold
down the Shift key while clicking the browser’s Reload/Refresh button. Alternatively, you can turn off the
browser’s cache in the preferences area, but that setting may negatively affect the overall performance of the
browser during your regular web surfing.

20

Getting Started with JavaScriptPart I

08_069165 ch03.qxp 3/1/07 3:40 PM Page 20

What Your First Script Will Do
For the sake of simplicity, the kind of script you look at in the next section is the kind that runs automati-
cally immediately after the browser loads the HTML page. Although all scripting and browsing work here is
done offline, the behavior of the page is identical if you place the source file on a server and someone
accesses it through the web.

Figure 3-3 shows the page as it appears in the browser after you’re finished. (The exact wording differs
slightly if you run your browser on an operating system platform other than Windows XP or if you use a
browser other than Internet Explorer.) The part of the page that is defined in regular HTML contains noth-
ing more than an <h1> header with a horizontal rule under it. If someone does not use a JavaScript-
equipped browser, he or she sees only the header and horizontal rule (unless that person has a truly
outmoded browser, in which case some of the script words appear in the page).

FIGURE 3-3

The finished page of your first JavaScript script.

Below the rule, the script displays plain body text that combines static text with information about the
browser you use to load the document. The script, which fires as a result of the page completing its loading
process, inserts some HTML into an initially empty placeholder element. In particular, the script displays
the same kind of information that your browser reports to a web server each time it requests a page. The
script also takes advantage of cascading style sheets (CSS) to format the browser-specific information in a
red color on the page.

Entering Your First Script
It’s time to start creating your first JavaScript script. Launch your text editor and browser. If your browser
offers to dial your Internet service provider (ISP) or begins dialing automatically, cancel or quit the dialing
operation. If the browser’s Stop button is active, click it to halt any network searching it may try to do. You
may receive a dialog-box message or page indicating that the URL for your browser’s home page (usually the

21

Your First JavaScript Script 3

08_069165 ch03.qxp 3/1/07 3:40 PM Page 21

home page of the browser’s publisher — unless you’ve changed the settings) is unavailable. That’s fine. You
want the browser open, but you don’t need to be connected to your ISP. If you’re automatically connected to
the Internet through a local area network in your office or school or cable modem or DSL, that’s also fine.
However, you don’t need the network connection for now. Next, follow these steps to enter and preview
your first JavaScript script:

1. Activate your text editor and create a new, blank document.

2. Type the script in the window exactly as shown in Listing 3-1.

Follow the example slowly and carefully, paying special attention to:

a. The uppercase and lowercase letters

b. The placement of single (‘) and double (“) quote symbols

c. The usage of parentheses, angle brackets (< and >), and curly braces ({ and })

LISTING 3-1

Source Code for script1.html

<html>
<head>
<title>My First Script</title>
<style type=”text/css”>
.highlight {color: red}
</style>
<script type=”text/javascript”>
function showBrowserType() {

document.getElementById(“readout”).innerHTML =
“Your browser says it is: “ +
“” +
navigator.userAgent + “.<hr />”;

}
window.onload = showBrowserType;
</script>
</head>

<body>
<h1>Let’s Script...</h1>
<hr>
<h1>Let’s Script...</h1>
<hr />
<div id=”readout”></div>
</body>
</html>

3. Save the document with the name script1.html.

4. Switch to your browser.

5. Choose Open (or Open File on some browsers) from the File menu, and select script1.html.

(On some browsers, you have to click a Browse button to reach the File dialog box.)

22

Getting Started with JavaScriptPart I

08_069165 ch03.qxp 3/1/07 3:40 PM Page 22

If you typed all lines as directed, the document in the browser window should look like the one in Figure 3-3
(with minor differences for your computer’s operating system and browser version). If the browser indicates
that a mistake exists somewhere as the document loads, don’t do anything about it for now. (Click the OK
button if you see a script error dialog box.)

Let’s first examine the details of the entire document so that you understand some of the finer points of
what the script is doing.

Examining the Script
You do not need to memorize any of the commands or syntax discussed in this section. Instead, relax and
watch how the lines of the script become what you see in the browser.

The HTML document
Ignore the <script> tag for a moment, and look at the rest of the HTML in the document. It’s all very
standard HTML (actually, the HTML complies with the newer XHTML standard), with one CSS rule in the
head portion.

Perhaps the only oddity in the markup is the <div> tag. It has an id attribute assigned to it, giving the
HTML element a name (readout) that a script can use to give it instructions. But there is no initial content
between the <div> and </div> tags. This element serves strictly as a placeholder. In other words, if
scripting is turned off in the browser, the user sees nothing in the document where this element is located.
That’s a good thing, because for public web sites, scripting should add value to the page rather than be
mission critical.

The <script> tag
Any time you include JavaScript verbiage in an HTML document, you must enclose those lines inside a
<script>...</script> tag pair. These tags alert the browser program to begin interpreting all the text
between these tags as a script, rather than HTML to render. Because other scripting languages (such as
Microsoft VBScript) can take advantage of these script tags, you must specify the kind of language in which
the enclosed code is written. Therefore, when the browser receives the signal that your script is of the type
text/javascript, it employs its built-in JavaScript interpreter to handle the code. You can find parallels
to this setup in real life: If you have a French interpreter at your side, you need to know that the person
with whom you’re conversing also knows French. If you encounter someone from Russia, the French inter-
preter can’t help you. Similarly, if your browser has only a JavaScript interpreter inside, it can’t understand
code written in VBScript.

Now is a good time to instill an aspect of JavaScript that will be important to you throughout all your
scripting ventures: JavaScript is case sensitive. Therefore, you must enter any item in your script that uses a
JavaScript word with the correct uppercase and lowercase letters. Your HTML tags (including the <script>
tag) can be in the case of your choice, but everything in JavaScript is case sensitive. When a line of
JavaScript doesn’t work, look for the wrong case first. Always compare your typed code against the listings
printed in this book and against the various vocabulary entries discussed throughout it.

XHTML style, if you intend to follow its conventions, requires all lowercase tags and attribute
names. This is the style observed throughout this book.NOTENOTE

23

Your First JavaScript Script 3

08_069165 ch03.qxp 3/1/07 3:40 PM Page 23

The trigger that runs the script
The script in this page needs to have the div element in place before it can run so that the script can point
to that element and insert some HTML into that space. Therefore, the script needs a trigger — something to
get it going when the time is right. That time, it turns out, is after the entire HTML document has loaded.

As you learn in Chapter 8, the browser fires what is known as an event immediately upon completion of
loading the page and whatever content it may contain. For example, an image in the page is downloaded
separately from the HTML page, but the page’s onload event fires only after the HTML text and image(s)
have arrived in the browser.

To get the script to run after the page has loaded, the script includes one statement that instructs the
browser to run a specific routine whenever the page receives that event. For this page, the script will run
some JavaScript code grouped together in a routine named showBrowserType.

Inserting some text
Now we’ll look briefly at the rest of the JavaScript code lines inside the <script>...</script> tag pair.
All JavaScript routines are defined as functions. Therefore, the first line of the routine simply alerts the
browser that all the stuff between the curly braces ({}) belongs to the function named showBrowserType.

Despite the four indented lines shown in Listing 3-1, the code is actually just one statement divided into
lines for the convenience of printing in this book. Dividing a long statement into lines has to follow some
rules, which you will learn in Chapter 6. Therefore, when you enter the script, divide the lines precisely as
shown in Listing 3-1.

The basic operation of this routine is to plug some new HTML content inside the div element in the docu-
ment’s body. To do that, we need three key ingredients:

1. A way to refer to the div element

2. A way to insert some new text inside the element

3. The new HTML text that is to go inside the element

In plain language, the routine in the script forces the HTML inside the element (whose ID is “readout”) to
become whatever new stuff arrives from the right side of the equal (=) sign. To refer to the readout div,
the script uses the industry standard way to refer to any HTML element that has an ID attribute:

document.getElementById()

To specify which element in the document you mean, include the element’s ID (in quotes) inside the paren-
theses:

document.getElementById(“readout”)

That points to the element. Now go one step further to point to the property of the element of interest to
you: the innerHTML property here. Anything you assign to this property replaces whatever is inside the ele-
ment’s tag pair. Because the readout div element is empty when the page initially loads, you’re simply
replacing an empty space with whatever is to the right of the equal sign.

Now let’s look at the stuff to the right of the equal sign.

The plus (+) signs in the series of lines after the equal sign are the JavaScript way of stringing together
batches of text — like stringing beads on a necklace. By placing the combined sequence of text (which
includes an HTML tag) to the right of the reference to the element and its innerHTML property, the
text is said to be assigned to the innerHTML property of the readout element.

24

Getting Started with JavaScriptPart I

08_069165 ch03.qxp 3/1/07 3:40 PM Page 24

Note that neither JavaScript nor the + symbol knows anything about words and spaces. Therefore, the script
is responsible for making sure that proper spaces are included in the strings of characters. Notice, for exam-
ple, that an extra space exists after the word is: in the first line of script after the equal sign.

Getting browser information
To fetch the information about the browser version and name to be displayed in the page, you call upon
JavaScript to extract the desired property from a special object called the navigator object. This object fea-
tures several properties that reveal specifics about the web browser that runs the script. One such property,
userAgent, is a copy of the way the browser identifies itself to a server each time it requests a web page.
Although you did it earlier in the chapter with the innerHTML property, it’s a little clearer here to see how
you obtain a copy of a property by appending the property name to the object name (navigator, in this
case) and separating the two names with a period. If you’re searching for some English to assign mentally to
this scheme as you read it, start from the right side, and call the right item a property of the left side: the
userAgent property of the navigator object. The reference to the property in the script tells the
JavaScript interpreter to insert the value of that property into the spot where the call is made. For your first
attempt at the script, JavaScript substitutes the internal information about the browser as part of the text
string that gets inserted into the div element.

Finally, notice the semicolon character at the end of the long JavaScript statement in the showBrowserType()
function. Trailing semicolons — which you can think of as periods at the end of sentences — are purely
optional in JavaScript. There is no penalty for leaving them out. If you intend to investigate other program-
ming languages, such as Java or C++, for example, you’ll find those semicolons are required. Program listings
in this book use semicolons.

If you have another browser installed on your computer, load the page into that browser, too. Compare the
way that each browser identifies itself.

Have Some Fun
If you encounter an error in your first attempt at loading this document into your browser, go back to the
text editor, and check the lines of the script section against Listing 3-1, looking carefully at each line in light
of the explanations. There may be a single character out of place, a lowercase letter where an uppercase one
belongs, or a quote or parenthesis missing. Make necessary repairs, switch to your browser, and click Reload.

To see how dynamic the script in script1.html is, go back into the text editor, and replace the word
browser with client software. Save, switch, and reload to see how the script changes the text in the document.
Feel free to substitute other text for the quoted text part of the statement to the right of the equal sign.
Always be sure to save, switch, and reload to see the results of your handiwork.

25

Your First JavaScript Script 3

08_069165 ch03.qxp 3/1/07 3:40 PM Page 25

08_069165 ch03.qxp 3/1/07 3:40 PM Page 26

JavaScript Tutorial

IN THIS PART
Chapter 4
Browser and Document Objects

Chapter 5
Scripts and HTML Documents

Chapter 6
Programming Fundamentals, Part I

Chapter 7
Programming Fundamentals, Part II

Chapter 8
Window and Document Objects

Chapter 9
Forms and Form Elements

Chapter 10
Strings, Math, and Dates

Chapter 11
Scripting Frames and Multiple
Windows

Chapter 12
Images and Dynamic HTML

09_069165 pt02.qxp 3/1/07 3:40 PM Page 27

09_069165 pt02.qxp 3/1/07 3:40 PM Page 28

This chapter marks the first of nine tutorial chapters tailored to web
authors who have at least basic grounding in HTML concepts. In particu-
lar, you should already be familiar with common HTML tags and their

attributes, as well as the fundamentals of Cascading Style Sheets (CSS). In this
chapter, you see several practical applications of JavaScript and begin to see how
a JavaScript-enabled browser turns familiar HTML elements into objects that
your scripts control. This tutorial teaches concepts and terminology that apply to
modern browsers, with special focus on standards compatibility to equip you to
work with today’s and tomorrow’s browsers. You should study this tutorial in
conjunction with any of the following browsers: Internet Explorer 5 or later
(Windows or Macintosh), any Mozilla-based browser (Firefox, Netscape 7 or
later, or Camino), Apple Safari, or Opera 7 or later.

Scripts Run the Show
If you have authored web pages with HTML, you are familiar with how HTML
tags influence the way content is rendered on a page when viewed in the
browser. As the page loads, the browser recognizes angle-bracketed tags as for-
matting instructions. Instructions are read from the top of the document down-
ward, and elements defined in the HTML document appear onscreen in the same
order in which they appear in the document’s source code. As an author, you do
a little work one time and up front — adding the tags to text content — and the
browser does a lot more work every time a visitor loads the page into a browser.

Assume for a moment that one of the elements on the page is a text input field
inside a form. The user is supposed to enter some text in the text field and then
click the Submit button to send that information back to the web server. If that
information must be an Internet e-mail address, how do you ensure the user
includes the @ symbol in the address?

29

IN THIS CHAPTER
What client-side scripts do

What happens when a
document loads

How the browser creates objects

How scripts refer to objects

What distinguishes one object
from another

Browser and Document
Objects

10_069165 ch04.qxp 3/1/07 3:41 PM Page 29

One way is to have a Common Gateway Interface (CGI) program on the server inspect the submitted form
data after the user clicks the Submit button and the form information is transferred to the server. If the user
omits or forgets the @ symbol, the CGI program sends the page back to the browser — but this time with
an instruction to include the symbol in the address. Nothing is wrong with this exchange, but it means a
significant delay for the user to find out that the address does not contain the crucial symbol. Moreover, the
web server has to expend some of its resources to perform the validation and communicate back to the visi-
tor. If the web site is a busy one, the server may try to perform hundreds of these validations at any given
moment, probably slowing the response time to the user even more.

Now imagine that the document containing that text input field has some intelligence built into it that
makes sure the text-field entry contains the @ symbol before ever submitting one bit (literally!) of data to
the server. That kind of intelligence would have to be embedded in the document in some fashion —
downloaded with the page’s content so it can stand ready to jump into action when called upon. The
browser must know how to run that embedded program. Some user action must start the program, perhaps
when the user clicks the Submit button. If the program runs inside the browser and detects the lack of the
@ symbol, an alert message should appear to bring the problem to the user’s attention. The same program
also should be capable of deciding whether the actual submission can proceed or whether it should wait
until a valid e-mail address is entered in the field.

This kind of presubmission data entry validation is but one of the practical ways JavaScript adds intelligence
to an HTML document. Looking at this example, you might recognize that a script must know how to look
into what is typed in a text field; a script must also know how to let a submission continue or how to abort
the submission. A browser capable of running JavaScript programs conveniently treats elements such as the
text field as objects. A JavaScript script controls the action and behavior of objects — most of which you see
onscreen in the browser window.

When to Use JavaScript
With so many web-oriented development tools and languages at your disposal, you should focus your
client-side JavaScript efforts on tasks for which they are best suited. When faced with a web application
task, I look to client-side JavaScript for help with the following requirements:

n Data entry validation. If form fields need to be filled out for processing on the server, I let client-
side scripts prequalify the data entered by the user.

n Serverless CGIs. I use this term to describe processes that, were it not for JavaScript, would be
programmed as CGIs on the server, yielding slow performance because of the interactivity required
between the program and user. This includes tasks such as small data collection lookup, modifica-
tion of images, and generation of HTML in other frames and windows based on user input.

n Dynamic HTML interactivity. It’s one thing to use DHTML’s capabilities to position elements pre-
cisely on the page; you don’t need scripting for that. But if you intend to make the content dance
on the page, scripting makes that happen.

n CGI prototyping. Sometimes you want a CGI program to be at the root of your application
because it reduces the potential incompatibilities among browser brands and versions. It may be
easier to create a prototype of the CGI in client-side JavaScript. Use this opportunity to polish the
user interface before implementing the application as a CGI.

n Offloading a busy server. If you have a highly trafficked web site, it may be beneficial to convert
frequently used CGI processes to client-side JavaScript scripts. After a page is downloaded, the
server is free to serve other visitors. Not only does this lighten server load, but users also experi-
ence quicker response to the application embedded in the page.

30

JavaScript TutorialPart II

10_069165 ch04.qxp 3/1/07 3:41 PM Page 30

n Adding life to otherwise-dead pages. HTML by itself is pretty flat. Adding a blinking chunk of
text doesn’t help much; animated GIF images more often distract from, rather than contribute to,
the user experience at your site. But if you can dream up ways to add some interactive zip to your
page, it may engage the user and encourage a recommendation to friends or repeat visits.

n Creating web pages that “think.” If you let your imagination soar, you may develop new, intrigu-
ing ways to make your pages appear “smart.” For example, in the application Intelligent “Updated”
Flags (Chapter 54 on the CD-ROM), you see how (without a server CGI or database) an HTML
page can “remember” when a visitor last came to the page. Then any items that have been updated
since the last visit — regardless of the number of updates you’ve done to the page — are flagged for
that visitor. That’s the kind of subtle, thinking web page that best displays JavaScript’s powers.

By the same token, web pages and applications intended for public access should not rely exclusively on
JavaScript. Make sure that your primary data is accessible to visitors who have JavaScript turned off or who
use browsers that don’t interpret JavaScript. Let your scripting enhance the experience for the majority of
visitors who have JavaScript-enabled browsers.

The Document Object Model
Before you can truly start scripting, you should have a good feel for the kinds of objects you will be script-
ing. A scriptable browser does a lot of the work of creating software objects that generally represent the visi-
ble objects you see in an HTML page in the browser window. Obvious objects include form controls (text
boxes and buttons) and images. However, there may be other objects that aren’t so obvious by looking at a
page but that make perfect sense when you consider the HTML tags used to generate a page’s content —
paragraph objects or frames of a frameset, for example.

To help scripts control these objects — and to help authors see some method to the madness of potentially
dozens of objects on a page — the browser makers define a document object model (DOM). A model is like a
prototype or plan for the organization of objects on a page.

Evolution of browser DOMs has caused much confusion and consternation among scripters due to a lack of
compatibility across succeeding generations and brands of browsers. Fortunately, the DOM world is stabiliz-
ing around a formal specification published by the World Wide Web Consortium (W3C). Today’s modern
browsers continue to support some of the “old ways” of the earliest DOM because so much existing script
code on the Web relies on these traditions continuing to work (you’ll see some of these in Chapter 9). But
with the vast majority of browsers in use today supporting the basic W3C DOM syntax and terminology,
scripters should aim toward standards compatibility whenever possible.

HTML structure and the DOM
An important trend in HTML markup is applying markup solely to define the structure of a document and
the context of each piece of content in the document. The days of using HTML tags solely to influence the
appearance of a chunk of text are drawing to a close. It is no longer acceptable to enclose a line of text in,
say, an <h1> tag because you want the line to appear in the text size and weight that browsers automatically
apply to text tagged in that way. An <h1> element has a special context within a document’s structure: a
first-level heading. In today’s HTML world, if you wish to display a stand-alone line of text with a particular
style, the text would likely be in a simple paragraph (<p>) tag; the precise look of that paragraph would be
under the control of a Cascading Style Sheet (CSS) rule. Current practice even frowns upon the application
of and <i> tags to assign boldface and italic styles to a span of text. Instead, surround the text with a
contextual tag (such as the element to signify emphasis), and define the CSS style you wish applied to
any emphasized text in the document.

31

Browser and Document Objects 4

10_069165 ch04.qxp 3/1/07 3:41 PM Page 31

The result of applying strict structural design to your HTML tagging is a document that has a well-defined
hierarchy of elements based on their nesting within one another. For example, an empty HTML document
has the following minimum elements:

<html>
<head></head>
<body></body>

</html>

The html element contains two nested elements: head and body. The hierarchy of elements can be charted
like a corporate organizational chart, as shown in Figure 4-1. For the sake of upcoming terminology les-
sons, however, it is more convenient to visualize the chart in Figure 4-1 as a family tree — except that
unlike most real family trees, each point that spawns children is a single parent. In the empty HTML docu-
ment, the html element is the parent of two child elements: head and body. The html element is, in turn, a
child of the document.

FIGURE 4-1

Element hierarchy of an empty HTML document.

The DOM in a browser window
As its name implies, the formal DOM focuses primarily on the HTML document and the content nested
inside it. From a practical standpoint, however, scripters often need to control the environment that con-
tains the document: the window. The window object is the top of the hierarchy that browser scripts work
with. The basic structure of the object model in modern browsers (given an empty HTML document) is
shown in Figure 4-2.

FIGURE 4-2

Basic object model for all modern browsers.

window

document

navigator screen history location

document

html

head body

32

JavaScript TutorialPart II

10_069165 ch04.qxp 3/1/07 3:41 PM Page 32

It’s not important to memorize the model. But to give you a sense of the relationships among these top-level
objects, the following describes their respective roles:

n window object. At the very top of the hierarchy is the window. This object represents the content
area of the browser window where HTML documents appear. In a multiple-frame environment,
each frame is also a window (but don’t concern yourself with this just yet). Because all document
action takes place inside the window, the window is the outermost element of the object hierar-
chy. Its physical borders contain the document.

n navigator object. This is the closest your scripts come to accessing the browser program,
primarily to read the brand and version of browser that holds the current document. This object
is read-only, protecting the browser from inappropriate manipulation by rogue scripts.

n screen object. This is another read-only object that lets scripts learn about the physical environ-
ment in which the browser is running. For example, this object reveals the number of pixels high
and wide available in the monitor.

n history object. Although the browser maintains internal details about the browser’s recent his-
tory (such as the list available under the Back button), scripts have no access to the details. At
most, this object assists a script in simulating a click of the Back or Forward button.

n location object. This object is the primary avenue to loading a different page into the current
window or frame. URL information about the window is available under very controlled circum-
stances so that scripts cannot track access to other web sites.

n document object. Each HTML document that gets loaded into a window becomes a document
object. The document object contains the content that you are likely to script. Except for the
html, head, and body element objects that are found in every HTML document, the precise
makeup and structure of the element object hierarchy of the document depend on the content
you put into the document.

When a Document Loads
Programming languages, such as JavaScript, are convenient intermediaries between your mental image of
how a program works and the true inner workings of the computer. Inside the machine, every word of a
program code listing influences the storage and movement of bits (the legendary 1s and 0s of the com-
puter’s binary universe) from one RAM storage slot to another. Languages and object models are inside the
computer (or, in the case of JavaScript and the DOM, inside the browser’s area of the computer) to make it
easier for programmers to visualize how a program works and what its results will be. The relationship
reminds me a lot of knowing how to drive an automobile from point A to point B without knowing exactly
how an internal-combustion engine, steering linkages, and all that other internal “stuff” works. By control-
ling high-level objects such as the ignition key, gearshift, gas pedal, brake, and steering wheel, I can get the
results I need.

Of course, programming is not exactly like driving a car with an automatic transmission. Even scripting
requires the equivalent of opening the hood and perhaps knowing how to check the transmission fluid or
change the oil. Therefore, now it’s time to open the hood and watch what happens to a document’s object
model as a page loads into the browser.

33

Browser and Document Objects 4

10_069165 ch04.qxp 3/1/07 3:41 PM Page 33

A simple document
Figure 4-3 shows the HTML and corresponding object model for a document that I’ll be adding to in a
moment. The figure shows only the document object portion; the window object and its other top-level
objects (including the document object) are always there, even for an empty document. When this page
loads, the browser maintains in its memory a map of the objects generated by the HTML tags in the docu-
ment. At this point, only three objects exist inside the document object: one for the outermost html ele-
ment and one each for its two nested elements.

FIGURE 4-3

Object map of an empty document.

Add a paragraph element
Now I modify the HTML file to include an empty paragraph element and reload the document. Figure 4-4
shows what happens to both the HTML (changes in boldface) and the object map as constructed by the
browser. Even though no content appears in the paragraph, the <p> tags are enough to tell the browser to
create that p element object. Also note that the p element object is contained by the body element object in
the hierarchy of objects in the current map. In other words, the p element object is a child of the body ele-
ment object. The object hierarchy matches the HTML tag containment hierarchy.

FIGURE 4-4

Adding an empty paragraph element.

document

html

head body

p

<html>
 <head></head>
 <body>
 <p></p>
 </body>
</html>

document

html

head body

<html>
 <head></head>
 <body></body>
</html>

34

JavaScript TutorialPart II

10_069165 ch04.qxp 3/1/07 3:41 PM Page 34

Add paragraph text
I modify and reload the HTML file again, this time inserting the text of the paragraph between the element’s
start and end tags, as shown in Figure 4-5. A run of text extending between tags is a special kind of object
in the DOM called a text node. A text node always has an element acting as its container. Applying the offi-
cial genealogy metaphor to this structure, the text node is a child of its parent p element. We now have a
branch of the document object tree that runs several generations: document->html->body->p->text node.

FIGURE 4-5

Adding a text node to the p element object.

Make a new element
The last modification I make to the file is to wrap a portion of the paragraph text in an tag to signify
emphasis for the enclosed text. This insertion has a large effect on the hierarchy of the p element object, as
shown in Figure 4-6. The p element goes from having a single (text node) child to having three children:
two text nodes with an element between them. In the W3C DOM, a text node cannot have any children
and therefore cannot contain an element object. The bit of the text node now inside the em element is no
longer a child of the p element, but a child of the em element. That text node is now a grandchild of the p
element object.

Now that you see how objects are created in memory in response to HTML tags, the next step is to figure
out how scripts can communicate with these objects. After all, scripting is mostly about controlling these
objects.

document

html

head body

p

“This is the one and only paragraph.”

<html>
 <head></head>
 <body>
 <p>This is the one and
 only paragraph.</p>
 </body>
</html>

35

Browser and Document Objects 4

10_069165 ch04.qxp 3/1/07 3:41 PM Page 35

FIGURE 4-6

Inserting an element into a text node.

Object References
After a document is loaded into the browser, all of its objects are safely stored in memory in the containment
hierarchy structure specified by the browser’s DOM. For a script to control one of those objects, there must
be a way to communicate with an object and find out something about it (such as “Hey, Mr. Text Field, what
did the user type?”). To let your scripts talk to an object, you need a way to refer to that object. That is pre-
cisely what an object reference in a script does for the browser.

Object naming
The biggest aid in creating script references to objects is assigning a name to every scriptable object in your
HTML. In the W3C DOM (and current HTML specification), the way to assign a name to an element is by
way of the id attribute. This attribute is optional, but if you plan to use scripts to access an element in the
page, it is most convenient to assign a name to that element’s id attribute directly in the HTML code. Here
are some examples of id attributes added to typical tags:

<p id=”firstParagraph” >

<div class=”draggable” id=”puzzlePiece”>

document

html

head body

p

“one and only”

<html>
 <head></head>
 <body>
 <p>This is the one and
 only paragraph.</p>
 </body>
</html>

em “paragraph.”“This is the”

36

JavaScript TutorialPart II

10_069165 ch04.qxp 3/1/07 3:41 PM Page 36

The only rules about object IDs (also called identifiers) are that they:

n May not contain spaces

n Should not contain punctuation except for the underscore character

n Must be inside quotes when assigned to the id attribute

n Must not start with a numeric character

n May not occur more than once in the same document

Think of assigning IDs as the same way as sticking name tags on everyone attending a conference meeting.
To find a particular conference attendee whose name you know, you could wait at the entrance and scan
each name tag until you find the name you’re looking for, or you could bump around the attendees at
random in the hope that you’ll find a known name. But it would be more efficient if you had a way to target
an attendee by name immediately — such as broadcasting the name on the public address system to the
whole crowd.

Referencing a particular object
The W3C DOM provides that kind of instant access to any named element in the document. If you haven’t
programmed before, the syntax for this access command may be intimidating in its length — a hazard when
a standard such as the W3C DOM is designed by programmers. Like it or not, we’re stuck with this syntax.
Here is the syntax you will use frequently in your browser scripting:

window.document.getElementById(“elementID”)

You substitute the ID of the element you wish to reference for elementID. For example, if you want to
reference the paragraph element whose ID is firstParagraph, the reference would be

window.document.getElementById(“firstParagraph”)

Be careful! JavaScript is case sensitive. Be sure that you use uppercase for the three uppercase letters in the
command and a lowercase d at the end, and that you capitalize the ID accurately as well.

The getElementById() command belongs to the document object, meaning that the entire document’s
collection of elements is subject to this instantaneous search for a matching ID. The dot — a traditional
period character — is the JavaScript way of indicating that the item to the left of the dot (the document
object here) has the item to the right of the dot (getElementById() here) as a resource to call upon when-
ever needed. Each type of object has a list of such resources, as you’ll see in a moment (and as summarized
in Appendix A).

37

Browser and Document Objects 4

id versus name Attributes

Prior to the HTML 4.0 specification’s introduction of the id attribute, scripts could access a handful of ele-
ments that also supported the name attribute. Elements supporting the name attribute are predominantly

related to forms, images, and frames. You will see how name attributes work in forms in Chapter 9. In fact,
most browsers still require the name attribute for forms and form controls (text fields, buttons, and select lists)
for their data to be submitted to a server. It is permissible to assign the same identifier to both the id and name
attributes of an element.

10_069165 ch04.qxp 3/1/07 3:41 PM Page 37

Node Terminology
W3C DOM terminology uses metaphors to assist programmers in visualizing the containment hierarchy of a
document and its content. One concept you should grasp early in your learning is that of a node; the other
concept is the family relationship among objects in a document.

About nodes
Although the English dictionary contains numerous definitions of node, the one that comes closest to its
application in the W3C DOM implies a knob or bump on a tree branch. Such nodules on a branch usually
lead to one of two things: a leaf or another branch. A leaf is a dead end in that no further branches emanate
from the leaf; the branch kind of node leads to a new branch that can itself have further nodes, whether
they be leaves or more branches. When you define the structure of an HTML document, you also define a
node structure (also called a node tree) whose placement of branches and leaves depends entirely on your
HTML elements and text content.

In the W3C DOM, the fundamental building block is a simple, generic node. But inside an HTML docu-
ment, we work with special kinds of nodes that are tailored to HTML documents. The two types of nodes
that scripts touch most often are element nodes and text nodes. These node types correspond exactly to
HTML elements and the text that goes between an element’s start and end tags. You’ve been working with
element and text nodes in your HTML authoring, and you didn’t even know it.

Look again at the simple document you assembled earlier, along with its containment hierarchy diagram in
Figure 4-7. All of the boxes representing HTML elements (html, head, body, p, and em) are element nodes;
the three boxes containing actual text that appears in the rendered document are text nodes. You saw in the
transition from one long text node (Figure 4-5) to the insertion of the em element (Figure 4-6) that the long
text node divided into three pieces. Two text node pieces stayed in the same position in the hierarchy rela-
tive to the containing p element. The new em element bullied its way into the tree between the two text
nodes and shifted the third text node one level away from the p element.

FIGURE 4-7

A simple HTML document node tree.

document

html

head body

p

“one and only”

<html>
 <head></head>
 <body>
 <p>This is the one and
 only paragraph.</p>
 </body>
</html>

em “paragraph.”“This is the”

38

JavaScript TutorialPart II

10_069165 ch04.qxp 3/1/07 3:41 PM Page 38

Parents and children
Looking more closely at the p element and its content in Figure 4-7, you can see that element has three child
nodes. The first and last are of the text node type, whereas the middle one is an element node. When an
element contains multiple child nodes, the sequence of child nodes is entirely dependent upon the HTML
source code order. Thus, the first child node of the p element is the text node containing the text “This is
the ”. In the case of the em element, a single child text node is the sole descendant of the element.

Element node children are not always text nodes; neither do branches always end in text nodes. In Figure 4-7,
the html element has two child nodes, both of which are element nodes; the body element has one child
node, the p element. Even though the head element node appears to be at the end of a branch, it is still an
element node because it is capable of containing other nodes (such as a title element). A tag in the HTML
indicates an element node, whether or not it has any child nodes. Bt contrast, a text node can never contain
another node; it’s one of those dead-end leaf type of nodes.

Notice that a child node is always contained by one element node. That container is the parent node of its
child or children. For example, from the point of view of the em element node, it has both one child (a text
node) and one parent (the p element node). A fair amount of W3C DOM terminology (which you’ll meet in
Chapter 14) concerns itself with assisting scripts to start at any point in a document hierarchy and obtain a
reference to a related node if necessary. For instance, if a Dynamic HTML script wants to modify the text
inside the em element of Figure 4-7, it typically would do so by starting with a reference to the em element
via the document.getElementById() command (assuming that the em element has an ID assigned to it)
and then modifying the element’s child node.

In case you’re wondering, the document object at the top of the node tree is itself a node. Its place in the
tree is special and is called simply the document node. Each loaded HTML document contains a single docu-
ment node, and that node becomes the scripter’s gateway to the rest of the document’s nodes. It’s no acci-
dent that the syntax for referencing an element node — document.getElementById()— begins with a
reference to the document object.

What Defines an Object?
When an HTML tag defines an object in the source code, the browser creates a slot for that object in memory
as the page loads. But an object is far more complex internally than, say, a mere number stored in memory.
The purpose of an object is to represent some thing. In the browser and its DOM, the most common objects
are those that correspond to elements, such as a text input form field, a table element, or the entire rendered
body of the document. Outside the pared-down world of the DOM, an object can also represent abstract
entities, such as a calendar program’s appointment entry or a layer of graphical shapes in a drawing program.
It is common for your browser scripts to work with both DOM objects and abstract objects of your own
design.

Every type of DOM object is unique in some way, even if two or more objects look identical to you in the
browser. Three very important facets of an object define what it is, what it looks like, how it behaves, and
how scripts control it. Those three facets are properties, methods, and events (also known as handlers).
They play such key roles in your future DOM scripting efforts that the Object Quick Reference in Appendix
A summarizes the properties, methods, and events for each object in the object models implemented in var-
ious browser generations.

39

Browser and Document Objects 4

10_069165 ch04.qxp 3/1/07 3:41 PM Page 39

Properties
Any physical object you hold in your hand has a collection of characteristics that defines it. A coin, for
example, has shape, diameter, thickness, color, weight, embossed images on each side — and any number
of other attributes that distinguish it from, say, a feather. Each of those features is called a property. Each
property has a value of some kind attached to it (even if the value is empty or null). For example, the shape
property of a coin might be circle— in this case, a text value. By contrast, the denomination property is
most likely a numeric value.

You may not have known it, but if you’ve written HTML for use in a scriptable browser, you have set object
properties without writing one iota of JavaScript. Tag attributes are the most common way to set an HTML
element object’s initial properties. For example, the following HTML tag defines an input element object
that assigns four property values:

<input type=”button” id=”clicker” name=”clicker” value=”Hit Me...”>

In JavaScript parlance, then, the type property holds the word button; the id and name properties hold the
same word, clicker; and the value property is the text that appears on the button label, Hit Me. . . . In truth,
a button input element has more properties than just these, but you don’t have to set every property for
every object. Most properties have default values that are automatically assigned if nothing special is set in
the HTML or later from a script.

The contents of some properties can change after a document has loaded and the user interacts with the
page. Consider the following text input tag:

<input type=”text” id=”entry” name=”entry” value=”User Name?”>

The id and name properties of this object are the same word: entry. When the page loads, the text of the
value attribute setting is placed in the text field — the automatic behavior of an HTML text field when the
value attribute is specified. But if a user enters some other text into the text field, the value property
changes — not in the HTML, but in the memory copy of the object model that the browser maintains.
Therefore, if a script queries the text field about the content of the value property, the browser yields the
current setting of the property — which isn’t necessarily the one specified by the HTML.

To gain access to an object’s property, you use the same kind of dot-notation addressing scheme you saw
earlier for objects. A property is a resource belonging to its object, so the reference to it consists of the refer-
ence to the object plus one more extension naming the property. Therefore, for the button and text object
tags just shown, references to various properties are

document.getElementById(“clicker”).name
document.getElementById(“clicker”).value
document.getElementById(“entry”).value

You may wonder what happened to the window part of the reference. It turns out that there can be only one
document contained in a window, so references to objects inside the document can omit the window por-
tion and start the reference with document. You cannot omit the document object from the reference,
however.

Methods
If a property is like a descriptive adjective for an object, a method is a verb. A method is all about action
related to the object. A method either does something to the object or with the object that affects other parts
of a script or document. Methods are commands of a sort whose behaviors are tied to a particular object.

40

JavaScript TutorialPart II

10_069165 ch04.qxp 3/1/07 3:41 PM Page 40

An object can have any number of methods associated with it (including none at all). To set a method into
motion (usually called invoking a method), a JavaScript statement must include a reference to it, via its object
with a pair of parentheses after the method name, as in the following examples:

document.getElementById(“orderForm”).submit()
document.getElementById(“entry”).focus()

The first is a scripted way of sending a form (named orderForm) to a server. The second gives focus to a
text field named entry.

Sometimes a method requires that you send additional information with it so that it can do its job. Each
chunk of information passed with the method is called a parameter or argument (you can use the terms
interchangeably). The document.getElementById() method is one that requires a parameter; the identi-
fier of the element object to be addressed for further action. This method’s parameter must be in a format
consisting of straight text, signified by the quotes around the identifier.

Some methods require more than one parameter. If so, the multiple parameters are separated by commas.
For example, modern browsers support a window object method that moves the window to a particular
coordinate point onscreen. A coordinate point is defined by two numbers that indicate the number of pixels
from the left and top edges of the screen where the top-left corner of the window should be. To move the
browser window to a spot 50 pixels from the left and 100 pixels from the top, the method is

window.moveTo(50,100)

As you learn more about the details of JavaScript and the document objects you can script, pay close atten-
tion to the range of methods defined for each object. They reveal a lot about what an object is capable of
doing under script control.

41

Browser and Document Objects 4

Internet Explorer References

Before the W3C DOM came into existence, Microsoft had created its own way of referencing element
objects by way of their id attributes. You will find many instances of this syntax in existing code that has

been written only for Internet Explorer 4 or later. The syntax uses a construction called document.all.
Although there are a few different ways to use this construction, the most commonly applied way is to con-
tinue the dot notation to include the ID of the element. For example, if a paragraph element’s ID is
myParagraph, the IE-only reference syntax is

document.all.myParagraph

You can also omit the lead-in parts of the reference and simply refer to the ID of the element:

myParagraph

Be aware, however, that none of these approaches is supported in the W3C DOM standard. Both the IE-
specific and W3C DOM reference syntax styles are implemented in IE5 or later. Going forward, you should
migrate existing code to the W3C DOM style to be compatible with more browsers.

10_069165 ch04.qxp 3/1/07 3:41 PM Page 41

Events
One last characteristic of a DOM object is the event. Events are actions that take place in a document, usu-
ally as the result of user activity. Common examples of user actions that trigger events include clicking a
button or typing a character in a text field. Some events, such as the act of loading a document into the
browser window or experiencing a network error while an image loads, are not so obvious.

Almost every DOM object in a document receives events of one kind or another — summarized for your
convenience in the Object Quick Reference of Appendix A. Your job as scripter is to write the code that tells
an element object to perform an action whenever the element receives a particular type of event. The action
is simply executing some additional JavaScript code.

The simplest way to begin learning about events is to add an event-related attribute to the element’s HTML
tag. The attribute’s name consists of the type of event (for example, click) preceded by the preposition on —
as in “on receiving the click event . . .”. The attribute’s value (to the right of the equal sign, just like any
HTML attribute) consists of the JavaScript instructions to follow whenever the event reaches the element.
Listing 4-1 shows a very simple document that displays a single button with one event handler defined for it.

LISTING 4-1

A Simple Button with an Event Handler

<html>
<body>
<form>
<input type=”button” value=”Click Me” onclick=”window.alert (‘Ouch!’)”>
</form>
</body>
</html>

The form definition contains what for the most part looks like a standard input element. But notice the last
attribute, onclick=”window.alert(‘Ouch!’)”. Button input objects, as you see in their complete
descriptions in Chapter 22, react to mouse clicks. When a user clicks the button, the browser sends a
click event to the button. In this button’s definition, the attribute says that whenever the button receives
that event, it should invoke one of the window object’s methods, alert(). The alert() method displays a
simple alert dialog box whose content is whatever text is passed as a parameter to the method. Like most
arguments to HTML attributes, the attribute setting to the right of the equal sign goes inside quotes. If addi-
tional quotes are necessary, as in the case of the text to be passed along with the event handler, those inner
quotes can be single quotes. In actuality, JavaScript doesn’t distinguish between single or double quotes but
does require that each pair be of the same type. Therefore, you can write the attribute this way:

onclick=’alert(“Ouch!”)’

You will learn about other ways to connect scripting instructions to events in Chapter 14 and Chapter 25.

42

JavaScript TutorialPart II

10_069165 ch04.qxp 3/1/07 3:41 PM Page 42

Exercises
1. Which of the following applications are well suited to client-side JavaScript? Why or why not?

a. Product catalog page that lets visitors view the product in five different colors

b. A counter that displays the total number of visitors to the current page

c. Chat room

d. Graphical Fahrenheit-to-Celsius temperature calculator

e. All of the above

f. None of the above

2. Which of the following object names are valid in JavaScript? For each one that is invalid, explain
why.

a. lastName

b. company_name

c. 1stLineAddress

d. zip code

e. today’s_date

3. Using the diagram from Figure 4-7 for reference, draw a diagram of the object model containment
hierarchy that the browser would create in its memory for the following HTML. Write the script
reference to the second paragraph element using W3C DOM syntax.

<html>
<head>
<title>Search Form</title>
</head>
<body>
<p id=”logoPar”><img src=”images/logo.jpg” height=”90” width=”300”
alt=”Logo” /></p>
<p id=”formPar”>
<form name=”searchForm” action=”cgi-bin/search.pl” method=”POST”>
Search for: <input type=”text” name=”searchText” />
<input type=”submit” value=”Search” />
</form>
</p>
</body>
</html>

4. Describe at least two characteristics that a text node and an element node have in common;
describe at least two characteristics that distinguish a text node from an element node.

5. Write the HTML tag for a button input element named Hi, whose visible label reads Howdy and
whose action upon being clicked displays an alert dialog box that says Hello to you, too!

43

Browser and Document Objects 4

10_069165 ch04.qxp 3/1/07 3:41 PM Page 43

10_069165 ch04.qxp 3/1/07 3:41 PM Page 44

In this chapter’s tutorial, you begin to see how scripts are embedded within
HTML documents and what comprises a script statement. You also see how
script statements can run when the document loads or in response to user

action. Finally, you find out where script error information may be hiding.

Where Scripts Go in Documents
Chapter 4 did not thoroughly cover what scripts look like or how you add them
to an HTML document. That’s where this lesson picks up the story.

The <script> tag
To assist the browser in recognizing lines of code in an HTML document as
belonging to a script, you surround lines of script code with a
<script>...</script> tag set. This is common usage in HTML, where start
and end tags encapsulate content controlled by that tag, whether the tag set is for
a form or a paragraph.

Depending on the browser, the <script> tag has a variety of attributes you can
set that govern the script. One attribute, type, advises the browser to treat the
code within the tag as JavaScript. Some other browsers accept additional lan-
guages (such as Microsoft’s VBScript in Windows versions of Internet Explorer).
The following setting is one that all modern scriptable browsers accept:

<script type=”text/javascript”>

Be sure to include the ending tag for the script. Lines of JavaScript code go
between the two tags:

<script type=”text/javascript”>
one or more lines of JavaScript code here

</script>

If you forget the closing script tag, the script may not run properly, and the
HTML elsewhere in the page may look strange.

45

IN THIS CHAPTER
Where to place scripts in
HTML documents

What a JavaScript statement is

What makes a script run

Viewing script errors

Scripts and HTML
Documents

11_069165 ch05.qxp 3/1/07 3:41 PM Page 45

Although you don’t work with it in this tutorial, another attribute works with more recent browsers to
blend the contents of an external script file into the current document. An src attribute (similar to the src
attribute of an tag) points to the file containing the script code. Such files must end with a .js exten-
sion. The tag set looks like the following:

<script type=”text/javascript” src=”myscript.js”></script>

All script lines are in the external file, so no script lines are included between the start and end script tags in
the document. The end tag is still required.

Tag positions
Where do these tags go within a document? The answer is, anywhere they’re needed in the document. Most
of the time, it makes sense to include the tags nested within the <head>...</head> tag set; other times, it
is essential that you drop the script into a very specific location in the <body>...</body> section.

In the following four listings, I demonstrate — with the help of a skeletal HTML document — some of the
possibilities of <script> tag placement. Later in this lesson, you see why scripts may need to go in differ-
ent places within a page depending on the scripting requirements.

Listing 5-1 shows the outline of what may be the most common position of a <script> tag set in a docu-
ment: in the <head> tag section. Typically, the Head is a place for tags that influence noncontent settings for
the page — so-called HTML directive elements, such as <meta> tags and the document title. It turns out that
this is also a convenient place to plant scripts that are called on in response to user action.

LISTING 5-1

Scripts in the Head

<html>
<head>
<title>A Document</title>
<script type=”text/javascript”>

//script statement(s) here
...

</script>

46

JavaScript TutorialPart II

The Old language Attribute

Another <script> tag attribute, language, used to be the way to specify the scripting language for the
enclosed code. That attribute allowed scripters to specify the language version. For example, if the scripts

included code that required JavaScript syntax available only in version 4 browsers (which implemented
JavaScript version 1.2), the <script> tag used to be written as follows:

<script language=”JavaScript1.2”>...</script>

The language attribute was never part of the HTML 4.0 specification and is now falling out of favor. If W3C
validation is one of your development concerns, the attribute does not validate in strict versions of HTML
4.01 or XHTML 1.0. Older browsers that do not know the type attribute automatically default to JavaScript
anyway. Use only the type attribute.

11_069165 ch05.qxp 3/1/07 3:41 PM Page 46

</head>
<body>
</body>
</html>

On the other hand, if you need a script to run as the page loads so that the script generates content in the
page, the script goes in the <body> portion of the document, as shown in Listing 5-2.

LISTING 5-2

A Script in the Body

<html>
<head>
<title>A Document</title>
</head>
<body>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</body>
</html>

It’s also good to know that you can place an unlimited number of <script> tag sets in a document. For
example, Listing 5-3 shows a script in both the Head and Body portions of a document. Perhaps this
document needs the Body script to create some dynamic content as the page loads, but the document also
contains a button that needs a script to run later. That script is stored in the Head portion.

LISTING 5-3

Scripts in the Head and Body

<html>
<head>
<title>A Document</title>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</head>
<body>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
</body>
</html>

47

Scripts and HTML Documents 5

11_069165 ch05.qxp 3/1/07 3:41 PM Page 47

You are not limited to one <script> tag set in either the Head or Body. You can include as many <script>
tag sets in a document as are needed to complete your application. In Listing 5-4, for example, two <script>
tag sets are located in the Head portion. One set is used to load an external .js library; the other includes
code specifically tailored to the current page.

LISTING 5-4

Two Scripts in the Body

<html>
<head>
<title>A Document</title>
</head>
<script type=”text/javascript” src=”js/jslibrary.js”></script>
<script type=”text/javascript”>

//script statement(s) here
...

</script>
<body>
</body>
</html>

Handling non-JavaScript browsers
Only browsers that include JavaScript know to interpret the lines of code between the <script>...</script>
tag pair as script statements and not HTML text for display in the browser. This means that a pre-JavaScript
browser or a simplified browser in a cell phone not only ignores the tags, but also treats the JavaScript code as
page content. The results can be disastrous to a page.

You can reduce the risk of non-JavaScript browsers displaying the script lines by playing a trick. The trick is
to enclose the script lines between HTML comment symbols, as shown in Listing 5-5. Most nonscriptable
browsers ignore the content between the <!-- and --> comment tags, whereas scriptable browsers ignore
those comment symbols when they appear inside a <script> tag set.

LISTING 5-5

Hiding Scripts from Most Old Browsers

<script type=”text/javascript”>
<!--

//script statement(s) here
...

// -->
</script>

48

JavaScript TutorialPart II

11_069165 ch05.qxp 3/1/07 3:41 PM Page 48

The odd construction right before the ending script tag needs a brief explanation. The two forward slashes
are a JavaScript comment symbol. This symbol is necessary because JavaScript otherwise tries to interpret
the components of the ending HTML symbol (-->). Therefore, the forward slashes tell JavaScript to skip
the line entirely; a nonscriptable browser simply treats those slash characters as part of the entire HTML
comment to be ignored.

Despite the fact that this technique is often called hiding scripts, it does not disguise the scripts entirely. All
client-side JavaScript scripts are part of the HTML document and download to the browser just like all
other HTML. Furthermore, you can view them as part of the document’s source code. Do not be fooled into
thinking that you can hide your scripts entirely from prying eyes.

JavaScript Statements
Virtually every line of code that sits between a <script>... </script> tag pair is a JavaScript statement.
To be compatible with habits of experienced programmers, JavaScript accepts a semicolon at the end of
every statement (the computer equivalent of a period at the end of a sentence). Fortunately for newcomers,
this semicolon is optional: The carriage return at the end of a statement suffices for JavaScript to know that
the statement has ended. It is possible that in the future, the semicolon will be required, so it’s a good idea
to get into the semicolon habit now.

A statement must be in the script for a purpose. Therefore, every statement does something relevant to the
script. The kinds of things that statements do are

n Define or initialize a variable

n Assign a value to a property or variable

n Change the value of a property or variable

n Invoke an object’s method

n Invoke a function routine

n Make a decision

If you don’t yet know what all of these things mean, don’t worry; you will by the end of this tutorial. The
point I want to stress is that each statement contributes to the scripts you write. The only statement that
doesn’t perform any explicit action is the comment. A pair of forward slashes (no space between them) is the
most common way to include a comment in a script. You add comments to a script for your benefit. They
usually explain in plain language what a statement or group of statements does. The purpose of including
comments is to remind you six months from now how your script works.

When Script Statements Execute
Now that you know where scripts go in a document, it’s time to look at when they run. Depending on what
you need a script to do, you have four choices for determining when a script runs:

n While a document loads

n Immediately after a document loads

n In response to user action

n When called upon by other script statements

The determining factor is how the script statements are positioned in a document.

49

Scripts and HTML Documents 5

11_069165 ch05.qxp 3/1/07 3:41 PM Page 49

While a document loads: immediate execution
Listing 5-6 is a variation of your first script from Chapter 3. In this version, the script writes the browser
information to the page while the page loads. The document.write() method is the primary way to cause
dynamic content — the values of the two navigator object properties in this case — to be rendered in the
page during loading. I call the kinds of statements that run as the page loads immediate statements.

LISTING 5-6

HTML Page with Immediate Script Statements

<html>
<head>
<title>My First Script--II</title>
<style type=”text/css”>
.highlight {font-weight: bold}
</style>
</head>

<body>
<h1>Let’s Script...</h1>
<hr>
<script type=”text/javascript”>
<!-- hide from old browsers
document.write(“This browser is version “ + navigator.appVersion);
document.write(“ of ” + navigator.appName + “.”);
// end script hiding -->
</script>
</body>
</html>

Deferred scripts
The other three ways that script statements run are grouped together as what I call deferred scripts. To
demonstrate these deferred script situations, I must introduce you briefly to a concept covered in more
depth in Chapter 7: the function. A function defines a block of script statements summoned to run some
time after those statements load into the browser. Functions are clearly visible inside a <script> tag
because each function definition begins with the word function followed by the function name (and
parentheses). After a function is loaded into the browser (commonly in the Head portion so that it loads
early), it stands ready to run whenever called upon.

Run after loading
One of the times a function is called upon to run is immediately after a page loads. The window object has
an event handler property called onload. Unlike most event handlers, which are triggered in response to
user action (for example, clicking a button), the window’s onload event handler fires the instant that all of
the page’s components (including images, Java applets, and embedded multimedia) are loaded into the
browser.

50

JavaScript TutorialPart II

11_069165 ch05.qxp 3/1/07 3:41 PM Page 50

There are two cross-browser ways to connect the onload event handler to a function: via an HTML event
attribute or an object event property. For the HTML attribute approach, the <body> element stands in to
represent the window. Therefore, you can include the onload event attribute in the <body> tag, as shown
in Listing 5-7. Recall from Chapter 4 (Listing 4-1) that an event handler can run a script statement directly.
But if the event handler must run several script statements, it is usually more convenient to put those state-
ments in a function definition and then have the event handler invoke that function. That’s what happens in
Listing 5-7: When the page completes loading, the onload event handler triggers the done() function.
That function (simplified for this example) displays an alert dialog box.

LISTING 5-7

Running a Script from the onload Event Handler

<html>
<head>
<title>An onload script</title>
<script type=”text/javascript”>
<!--
function done() {

alert(“The page has finished loading.”);
}
// -->
</script>
</head>
<body onload=”done()”>
Here is some body text.
</body>
</html>

Don’t worry about the curly braces or other oddities in Listing 5-7 that may cause you concern at this point.
Focus instead on the structure of the document and the flow. The entire page loads without running any
script statements, although the page loads the done() function in memory so that it is ready to run at a
moment’s notice. After the document loads, the browser fires the onload event handler, which causes the
done() function to run. Then the user sees the alert dialog box.

Although the HTML event attribute approach dates back to the earliest JavaScript browsers, the trend these
days is to separate HTML markup from specifics of style and behavior (scripts). To the scripter’s rescue
come the equivalent event handler properties of objects. To get the onload attribute out of the <body> tag,
you can instead assign the desired JavaScript function to the object’s event as a property, as in:

window.onload = done;

Such statements typically go near the end of scripts in the Head portion of the document. Note, too, that in
this version, the right side of the statement is merely the function’s name, with no quotes or parentheses.
Because it is easier to learn about event handlers when they’re specified as HTML attributes, most examples
in this tutorial continue with that approach. I needed to show you the property version, however, because
you will see lots of real-life code using that format.

51

Scripts and HTML Documents 5

11_069165 ch05.qxp 3/1/07 3:41 PM Page 51

Run by user
Getting a script to execute in response to a user action is very similar to the preceding example for running
a deferred script right after the document loads. Commonly, a script function is defined in the Head por-
tion, and an event handler in, say, a form element calls upon that function to run. Listing 5-8 includes a
script that runs when a user clicks a button.

LISTING 5-8

Running a Script from User Action

<html>
<head>
<title>An onclick script</title>
<script type=”text/javascript”>
<!--
function alertUser() {

alert(“Ouch!”);
}
// -->
</script>
</head>
<body>
Here is some body text.
<form>

<input type=”text” name=”entry”>
<input type=”button” name=”oneButton” value=”Press Me!” onclick=”alertUser()”>

</form>
</body>
</html>

Not every object must have an event handler defined for it, as shown in Listing 5-8 — only the ones for
which scripting is needed. No script statements execute in Listing 5-8 until the user clicks the button. The
alertUser() function is defined as the page loads, and it waits to run as long as the page remains loaded
in the browser. If it is never called upon to run, there’s no harm done.

Called by another function
The last scenario for when script statements run also involves functions. In this case, a function is called
upon to run by another script statement. Before you see how that works, it helps to read the next lesson
(Chapter 6). Therefore, I will hold off on this example until later in the tutorial.

Viewing Script Errors
In the early days of JavaScript in browsers, script errors displayed themselves in very obvious dialog boxes.
These boxes were certainly helpful for scripters who wanted to debug their scripts. However, if a bug got
through to a page served up to a nontechnical user, the error alert dialog boxes were not only disruptive,
but also scary. To prevent such dialog boxes from disturbing unsuspecting users, the browser makers tried
to diminish the visual impact of errors in the browser window. Unfortunately for scripters, it is often easy to

52

JavaScript TutorialPart II

11_069165 ch05.qxp 3/1/07 3:41 PM Page 52

overlook the fact that your script contains an error because the error is not so obvious. Recent browser ver-
sions have different ways of letting scripters see the errors.

In IE5+, you can set its preferences so that scripts do not generate error dialog boxes (choose Tools ➪
Internet Options ➪ Advanced ➪ Browsing, and find the checkbox entry that says Display a notification
about every script error). Even with error dialog boxes turned off, error indications are displayed subtly at
the left edge of the browser window’s status bar. An alert icon and message (“Error on page”) appear in the
status bar. If you double-click the icon, the error dialog box appears (see Figure 5-1). Be sure to expand the
dialog box by clicking the Show Details button. Unless you turn on script-error dialog boxes and keep them
coming, you have to train yourself to monitor the status bar when a page loads and after each script runs.

FIGURE 5-1

The expanded IE error dialog box.

For Mozilla-based browsers, choose Tools ➪ Web Development ➪ JavaScript (or Error) Console. The
JavaScript console window opens to reveal the error message details (see Figure 5-2). You can keep this
window open all the time if you like. Unless you clear the window, subsequent error messages are
appended to the bottom of the window.

FIGURE 5-2

The Mozilla 1.4 JavaScript console window.

53

Scripts and HTML Documents 5

11_069165 ch05.qxp 3/1/07 3:41 PM Page 53

Safari records script errors, but it’s not obvious how to read them. You first must enable Safari’s Debug menu
by typing the following command in the Terminal application:

defaults write com.apple.Safari IncludeDebugMenu 1

Then, each time you launch Safari, choose Debug ➪ Show JavaScript Console.

Understanding error messages and doing something about them is a very large subject, reserved for
advanced discussion in Chapter 45 on the CD-ROM. During this tutorial, however, you can use the error
messages to see whether you perhaps mistyped a script from a listing in the book.

Scripting versus Programming
You may get the impression that scripting is easier than programming. Scripting simply sounds easier or
more friendly than programming. In many respects, this is true. One of my favorite analogies is the differ-
ence between a hobbyist who builds model airplanes from scratch and a hobbyist who builds model air-
planes from commercial kits. The “from scratch” hobbyist carefully cuts and shapes each piece of wood and
metal according to very detailed plans before the model starts to take shape. The commercial kit builder
starts with many prefabricated parts and assembles them into the finished product. When both builders are
finished, you may not be able to tell which airplane was built from scratch and which one came out of a
box of components. In the end, both builders used many of the same techniques to complete the assembly,
and each can take pride in the result.

Thanks to implementations of the document object model (DOM), the browser gives scripters many prefab-
ricated components with which to work. Without the browser, you’d have to be a pretty good programmer
to develop from scratch your own application that served up content and offered user interaction. In the
end, both authors have working applications that look equally professional.

Beyond the DOM, however, real programming nibbles its way into the scripting world. That’s because
scripts (and programs) work with more than just objects. When I said earlier in this lesson that each state-
ment of a JavaScript script does something, that something involves data of some kind. Data is the informa-
tion associated with objects or other pieces of information that a script pushes around from place to place
with each statement.

Data takes many forms. In JavaScript, the common incarnations of data are numbers, text (called strings),
objects (both from the object model and others you can create with scripts), and true and false (called
Boolean values).

Each programming or scripting language determines numerous structures and limits for each kind of data.
Fortunately for newcomers to JavaScript, the universe of knowledge necessary for working with data is
smaller than in a language such as Java or C++. At the same time, what you learn about data in JavaScript is
immediately applicable to future learning you may undertake in any other programming language; don’t
believe for an instant that your efforts in learning scripting will be wasted.

Because deep down, scripting is programming, you need to have a basic knowledge of fundamental pro-
gramming concepts to consider yourself a good JavaScript scripter. In the next two lessons, I set aside most
discussion about the DOM and focus on the programming principles that will serve you well in JavaScript
and future programming endeavors.

54

JavaScript TutorialPart II

11_069165 ch05.qxp 3/1/07 3:41 PM Page 54

Exercises
1. Write the complete script tag set for a script whose lone statement is

document.write(“Hello, world.”);

2. Build an HTML document, and include the answer to the previous question such that the page
executes the script as it loads. Open the document in your browser to test the results.

3. Add a comment to the script in the previous answer that explains what the script does.

4. Create an HTML document that displays an alert dialog box immediately after the page loads and
displays a different alert dialog box when the user clicks a form button.

5. Carefully study the document in Listing 5-9. Without entering and loading the document, predict

a. What the page looks like

b. How users interact with the page

c. What the script does

Then type the listing into a text editor as shown. (Observe all capitalization and punctuation.) Do
not type a carriage return after the = sign in the upperMe function statement; let the line
word-wrap as it does in the following listing. It’s OK to use a carriage return between attribute
name/value pairs, as shown in the first <input> tag. Save the document as an HTML file, and
load the file into your browser to see how well you did.

LISTING 5-9

How Does This Page Work?

<html>
<head>
<title>Text Object Value</title>
<script type=”text/javascript”>
<!--
function upperMe() {

document.getElementById(“output”).value =
document.getElementById(“input”).value.toUpperCase();
}
// -->
</script>
</head>

<body>
Enter lowercase letters for conversion to uppercase:

<form name=”converter”>

<input type=”text” name=”input” id=”input”
value=”sample” onchange=”upperMe()” />

<input type=”text” name=”output” id=”output” value=”” />
</form>
</body>
</html>

55

Scripts and HTML Documents 5

11_069165 ch05.qxp 3/1/07 3:41 PM Page 55

11_069165 ch05.qxp 3/1/07 3:41 PM Page 56

The tutorial breaks away from HTML and documents for a while as you
begin to learn programming fundamentals that apply to practically every
scripting and programming language you will encounter. Here, you start

learning about variables, expressions, data types, and operators — things that
might sound scary if you haven’t programmed before. Don’t worry. With a little
practice, you will become quite comfortable with these terms and concepts.

What Language Is This?
The language you’re studying is called JavaScript. But the language has some
other names that you may have heard. JScript is Microsoft’s name for the lan-
guage. By leaving out the ava, the company doesn’t have to license the Java name
from its trademark owner: Sun Microsystems.

A standards body called ECMA (pronounced “ECK-ma”) now governs the specifi-
cations for the language (no matter what you call it). The document that provides
all of the details about the language is known as ECMA-262 (it’s the 262nd stan-
dard published by ECMA). Both JavaScript and JScript are ECMA-262 compati-
ble. Some earlier browser versions exhibit very slight deviations from ECMA-262
(which came later than the earliest browsers). The most serious discrepancies are
noted in the core language reference in Part IV of this book.

Working with Information
With rare exceptions, every JavaScript statement you write does something with a
hunk of information — data. Data may be text information displayed onscreen by a
JavaScript statement or the on/off setting of a radio button in a form. Each single
piece of information in programming is also called a value. Outside of program-
ming, the term value usually connotes a number of some kind; in the programming

57

IN THIS CHAPTER
What variables are and how to
use them

Why you must learn how to
evaluate expressions

How to convert data from one
type to another

How to use basic operators

Programming Fundamentals,
Part I

12_069165 ch06.qxp 3/1/07 3:41 PM Page 57

world, however, the term is not as restrictive. A string of letters is a value. A number is a value. The setting of a
checkbox (whether it is checked or not) is a value.

In JavaScript, a value can be one of several types. Table 6-1 lists JavaScript’s formal data types, with exam-
ples of the values you will see displayed from time to time.

TABLE 6-1

JavaScript Value (Data) Types

Type Example Description

String “Howdy” A series of characters inside quote marks

Number 4.5 Any number not inside quote marks

Boolean true A logical true or false

Null null Devoid of any content but a value just the same

Object A software thing that is defined by its properties and
methods (arrays are also objects)

Function A function definition

A language that contains these few data types simplifies programming tasks, especially those involving what
other languages consider to be incompatible types of numbers (integers versus real or floating-point values).
In some definitions of syntax and parts of objects later in this book, I make specific reference to the type of
value accepted in placeholders. When a string is required, any text inside a set of quotes suffices.

You will encounter situations, however, in which the value type may get in the way of a smooth script step.
For example, if a user enters a number into a form’s text input field, the browser stores that number as a
string value type. If the script is to perform some arithmetic on that number, you must convert the string to a
number before you can apply the value to any math operations. You see examples of this later in this lesson.

Variables
Cooking up a dish according to a recipe in the kitchen has one advantage over cooking up some data in a
program. In the kitchen, you follow recipe steps and work with real things: carrots, milk, or a salmon filet.
A computer, on the other hand, follows a list of instructions to work with data. Even if the data represents
something that looks real, such as the text entered into a form’s input field, once after value gets into the
program, you can no longer reach out and touch it.

In truth, the data that a program works with is merely a collection of bits (on and off states) in your com-
puter’s memory. More specifically, data in a JavaScript-enhanced web page occupies parts of the computer’s
memory set aside for exclusive use by the browser software. In the olden days, programmers had to know
the numeric address in memory (RAM) where a value was stored to retrieve a copy of it for, say, some addi-
tion. Although the innards of a program have that level of complexity, programming languages such as
JavaScript shield you from it.

58

JavaScript TutorialPart II

12_069165 ch06.qxp 3/1/07 3:41 PM Page 58

The most convenient way to work with data in a script is first to assign the data to a variable. It’s usually eas-
ier to think of a variable as a basket that holds information. How long the variable holds the information
depends on a number of factors. But the instant a web page clears the window (or frame), any variables it
knows about are discarded.

Creating a variable
You have a couple of ways to create a variable in JavaScript, but one covers you properly in all cases. Use
the var keyword, followed by the name you want to give that variable. Therefore, to declare a new variable
called myAge, the JavaScript statement is

var myAge;

That statement lets the browser know that you can use that variable later to hold information or to modify
any of the data in that variable.

To assign a value to a variable, use one of the assignment operators. The most common one by far is the equal
sign. If I want to assign a value to the myAge variable at the same time I declare it (a combined process
known as initializing the variable), I use that operator in the same statement as the var keyword:

var myAge = 45;

On the other hand, if I declare a variable in one statement and later want to assign a value to it, the
sequence of statements is

var myAge;
myAge = 45;

Use the var keyword only for declaration or initialization — once for the life of any variable name in a
document.

A JavaScript variable can hold any value type. Unlike many other languages, you don’t have to tell
JavaScript during variable declaration what type of value the variable will hold. In fact, the value type of a
variable can change during the execution of a program. (This flexibility drives experienced programmers
crazy because they’re accustomed to assigning both a data type and a value to a variable.)

Variable names
Choose the names you assign to variables with care. You’ll often find scripts that use vague variable names,
such as single letters. Other than a few specific times where using letters is a common practice (for example,
using i as a counting variable in repeat loops in Chapter 7), I recommend using names that truly describe a
variable’s contents. This practice can help you follow the state of your data through a long series of state-
ments or jumps, especially for complex scripts.

A number of restrictions help instill good practice in assigning names. First, you cannot use any reserved
keyword as a variable name. That includes all keywords currently used by the language and all others held
in reserve for future versions of JavaScript. The designers of JavaScript, however, cannot foresee every key-
word that the language may need in the future. By using the kind of single words that currently appear in
the list of reserved keywords (see Appendix B), you always run a risk of a future conflict.

To complicate matters, a variable name cannot contain space characters. Therefore, one-word variable
names are fine. Should your description really benefit from more than one word, you can use one of two
conventions to join multiple words as one. One convention is to place an underscore character between the

59

Programming Fundamentals, Part I 6

12_069165 ch06.qxp 3/1/07 3:41 PM Page 59

words; the other is to start the combination word with a lowercase letter and capitalize the first letter of
each subsequent word within the name — I refer to this as the interCap format. Both of the following
examples are valid variable names:

my_age
myAge

My preference is for the second version. I find it easier to type as I write JavaScript code and easier to read
later. In fact, because of the potential conflict with future one-word keywords, using multiword combina-
tions for variable names is a good idea. Multiword combinations are less likely to appear in the list of
reserved words.

Variable names have a couple of other important restrictions. Avoid all punctuation symbols except for the
underscore character. Also, the first character of a variable name cannot be a numeral. If these restrictions
sound familiar, it’s because they’re identical to those for HTML element identifiers described in Chapter 4.

Expressions and Evaluation
Another concept closely related to the value and variable is expression evaluation — perhaps the most impor-
tant concept in learning how to program a computer.

We use expressions in our everyday language. Remember the theme song of “The Beverly Hillbillies”?:

Then one day he was shootin’ at some food

And up through the ground came a-bubblin’ crude

Oil, that is. Black gold. Texas tea.

At the end of the song, you find four quite different references (crude, oil, black gold, and Texas tea). They
all mean oil. They’re all expressions for oil. Say any one of them, and other people know what you mean. In
our minds, we evaluate those expressions to mean one thing: oil.

In programming, a variable always evaluates to its contents, or value. For example, after assigning a value to
a variable, such as

var myAge = 45;

any time the variable is used in a statement, its value (45) is automatically applied to whatever operation
that statement calls. Therefore, if you’re 15 years my junior, I can assign a value to a variable representing
your age based on the evaluated value of myAge:

var yourAge = myAge – 15;

The variable, yourAge, evaluates to 30 the next time the script uses it. If the myAge value changes later in
the script, the change has no link to the yourAge variable because myAge evaluated to 45 when it was used
to assign a value to yourAge.

Expressions in scripts
You probably didn’t recognize it at the time, but you have seen how expression evaluation came in handy in
several scripts in previous chapters. Let’s look at one in particular — from Listing 5-6 — where a script
writes dynamic text to the page as the page loads. Recall the second document.write() statement:

document.write(“ of “ + navigator.appName + “.”);

60

JavaScript TutorialPart II

12_069165 ch06.qxp 3/1/07 3:41 PM Page 60

The document.write() method (remember, JavaScript uses the term method to mean command) requires a
parameter in the parentheses: the text string to be displayed on the web page. The parameter here consists
of one expression that joins three distinct strings:

“ of “
navigator.appName
“.”

61

Programming Fundamentals, Part I 6

Testing JavaScript Evaluation

You can begin experimenting with the way JavaScript evaluates expressions with the help of The Evaluator
Jr. (shown in the following figure), an HTML page you can find on the companion CD-ROM. (I introduce

the Senior version in Chapter 13.) Enter any JavaScript expression into the top text box, and either press
Enter/Return or click the Evaluate button.

The Evaluator Jr. for testing expression evaluation.

The Evaluator Jr. has 26 variables (lowercase a through z) predefined for you. Therefore, you can assign values
to variables, test comparison operators, and even do math here. Using the age variable examples from earlier
in this chapter, type each of the following statements in the upper text box, and observe how each expression
evaluates in the Results field. Be sure to observe case sensitivity in your entries. The trailing semicolons are
optional in The Evaluator.

a = 45;
a;
b = a – 15;
b;
a – b;
a > b;

To start over, click the Reload/Refresh button.

12_069165 ch06.qxp 3/1/07 3:41 PM Page 61

The plus symbol is one of JavaScript’s ways of joining strings. Before JavaScript can display this line, it must
perform some quick evaluations. The first evaluation is the value of the navigator.appName property.
This property evaluates to a string of the name of your browser. With that expression safely evaluated to a
string, JavaScript can finish the job of joining the three strings in the final evaluation. The evaluated string
expression is what ultimately appears on the web page.

Expressions and variables
As one more demonstration of the flexibility that expression evaluation offers, this section shows you a
slightly different route to the document.write() statement. Rather than join those strings as the direct
parameter to the document.write() method, I can gather the strings in a variable and then apply the
variable to the document.write() method. Here’s how that sequence looks, as I simultaneously declare a
new variable and assign it a value:

var textToWrite = “ of “ + navigator.appName + “.”;
document.write(textToWrite);

This method works because the variable, textToWrite, evaluates to the combined string. The
document.write() method accepts that string value and does its display job. As you read a script or try to
work through a bug, pay special attention to how each expression (variable, statement, object property)
evaluates. I guarantee that as you learn JavaScript (or any language), you will end up scratching your head
from time to time because you haven’t stopped to examine how expressions evaluate when a particular kind
of value is required in a script.

Data Type Conversions
I mentioned earlier that the type of data in an expression can trip up some script operations if the expected
components of the operation are not of the right type. JavaScript tries its best to perform internal conver-
sions to head off such problems, but JavaScript cannot read your mind. If your intentions differ from the
way JavaScript treats the values, you won’t get the results you expect.

A case in point is adding numbers that may be in the form of text strings. In a simple arithmetic statement
that adds two numbers, you get the expected result:

3 + 3 // result = 6

But if one of those numbers is a string, JavaScript leans toward converting the other value to a string — thus
turning the plus sign’s action from arithmetic addition to joining strings. Therefore, in the statement

3 + “3” // result = “33”

the stringness of the second value prevails over the entire operation. The first value is automatically converted
to a string, and the result joins the two strings. Try this yourself in The Evaluator Jr.

If I take this progression one step further, look what happens when another number is added to the statement:

3 + 3 + “3” // result = “63”

This might seem totally illogical, but there is logic behind this result. The expression is evaluated from left
to right. The first plus operation works on two numbers, yielding a value of 6. But as the 6 is about to be
added to the 3, JavaScript lets the stringness of the 3 rule. The 6 is converted to a string, and two string val-
ues are joined to yield 63.

62

JavaScript TutorialPart II

12_069165 ch06.qxp 3/1/07 3:41 PM Page 62

Most of your concern about data types will focus on performing math operations like the ones here.
However, some object methods also require one or more parameters of particular data types. Although
JavaScript provides numerous ways to convert data from one type to another, it is appropriate at this
stage of the tutorial to introduce you to the two most common data conversions: string to number and
number to string.

Converting strings to numbers
As you saw in the preceding section, if a numeric value is stored as a string — as it is when entered into a
form text field — your scripts may have difficulty applying that value to a math operation. The JavaScript
language provides two built-in functions to convert string representations of numbers to true numbers:
parseInt() and parseFloat().

There is a difference between integers and floating-point numbers in JavaScript. Integers are always whole
numbers, with no decimal point or numbers to the right of a decimal. Floating-point numbers, on the other
hand, have fractional values to the right of the decimal. By and large, JavaScript math operations don’t dif-
ferentiate between integers and floating-point numbers: A number is a number. The only time you need to
be cognizant of the difference is when a method parameter requires an integer because it can’t handle frac-
tional values. For example, parameters to the scroll() method of a window require integer values of the
number of pixels vertically and horizontally you want to scroll the window. That’s because you can’t scroll a
window a fraction of a pixel onscreen.

To use either of these conversion functions, insert the string value you wish to convert as a parameter to the
function. For example, look at the results of two different string values when passed through the
parseInt() function:

parseInt(“42”) // result = 42
parseInt(“42.33”) // result = 42

Even though the second expression passes the string version of a floating-point number to the function, the
value returned by the function is an integer. No rounding of the value occurs here (although other math
functions can help with that if necessary). The decimal and everything to its right are simply stripped off.

The parseFloat() function returns an integer if it can; otherwise, it returns a floating-point number, as
follows:

parseFloat(“42”) // result = 42
parseFloat(“42.33”) // result = 42.33

Because these two conversion functions evaluate to their results, you simply insert the entire function
wherever you need a string value converted to a number. Therefore, modifying an earlier example in which
one of three values was a string, the complete expression can evaluate to the desired result:

3 + 3 + parseInt(“3”) // result = 9

Converting numbers to strings
You’ll have less need for converting a number to its string equivalent than the other way around. As you saw
in the previous section, JavaScript gravitates toward strings when faced with an expression containing
mixed data types. Even so, it is good practice to perform data type conversions explicitly in your code to
prevent any potential ambiguity. The simplest way to convert a number to a string is to take advantage of

63

Programming Fundamentals, Part I 6

12_069165 ch06.qxp 3/1/07 3:41 PM Page 63

JavaScript’s string tendencies in addition operations. By adding an empty string to a number, you convert
the number to its string equivalent:

(“” + 2500) // result = “2500”
(“” + 2500).length // result = 4

In the second example, you can see the power of expression evaluation at work. The parentheses force the
conversion of the number to a string. A string is a JavaScript object that has properties associated with it.
One of those properties is the length property, which evaluates to the number of characters in the string.
Therefore, the length of the string “2500” is 4. Note that the length value is a number, not a string.

Operators
You will use lots of operators in expressions. Earlier, you used the equal sign (=) as an assignment operator
to assign a value to a variable. In the preceding examples with strings, you used the plus symbol (+) to join
two strings. An operator generally performs some kind of calculation (operation) or comparison with two
values (the value on each side of an operator is called an operand) to reach a third value. In this lesson, I
briefly describe two categories of operators: arithmetic and comparison. Chapter 33 covers many more
operators, but after you understand the basics here, the others are easier to grasp.

Arithmetic operators
It may seem odd to talk about text strings in the context of arithmetic operators, but you have already seen
the special case of the plus (+) operator when one or more of the operands is a string. The plus operator
instructs JavaScript to concatenate (pronounced “kon-KAT-en-eight”), or join, two strings together precisely
where you place the operator. The string concatenation operator doesn’t know about words and spaces, so
the programmer must make sure that any two strings to be joined have the proper word spacing as part of
the strings, even if that means adding a space:

firstName = “John”;
lastName = “Doe”;
fullName = firstName + “ “ + lastName;

JavaScript uses the same plus operator for arithmetic addition. When both operands are numbers, JavaScript
knows to treat the expression as an arithmetic addition rather than a string concatenation. The standard math
operators for addition, subtraction, multiplication, and division (+, -, *, /) are built into JavaScript.

Comparison operators
Another category of operator helps you compare values in scripts — whether two values are the same, for
example. These kinds of comparisons return a value of the Boolean type: true or false. Table 6-2 lists the
comparison operators. The operator that tests whether two items are equal consists of a pair of equal signs
to distinguish it from the single-equal-sign assignment operator.

64

JavaScript TutorialPart II

12_069165 ch06.qxp 3/1/07 3:41 PM Page 64

TABLE 6-2

JavaScript Comparison Operators

Symbol Description

== Equals

!= Does not equal

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

Comparison operators come into greatest play in the construction of scripts that make decisions as they
run. A cook does this in the kitchen all the time: If the sauce is too watery, add a bit of flour. You see com-
parison operators in action in Chapter 7.

Exercises
1. Which of the following are valid variable declarations or initializations? Explain why each one is

or is not valid. If an item is invalid, how do you fix it so that it is?

a. my_name = “Cindy”;

b. var how many = 25;

c. var zipCode = document.getElementById(“zip”).value

d. var 1address = document.(“address1”).value;

2. Assume that the following statements operate rapidly in sequence, where each statement relies on
the result of the one before it. For each of the statements in the sequence, write down how the
someVal expression evaluates after the statement executes in JavaScript.

var someVal = 2;
someVal = someVal + 2;
someVal = someVal * 10;
someVal = someVal + “20”;
someVal = “Robert”;

3. Name the two JavaScript functions that convert strings to numbers. How do you give the function
a string value to convert to a number?

4. Type and load the HTML page and script shown in Listing 6-1. Enter a three-digit number in the
top two fields, and click the Add button. Examine the code, and explain what is wrong with the
script. How do you fix the script so that the proper sum is displayed in the output field?

65

Programming Fundamentals, Part I 6

12_069165 ch06.qxp 3/1/07 3:41 PM Page 65

LISTING 6-1

What’s Wrong with This Page?

<html>
<head>
<title>Sum Maker</title>
<script type=”text/javascript”>
<!--
function addIt() {

var value1 = document.getElementById(“inputA”).value;
var value2 = document.getElementById(“inputB”).value;
document.getElementById(“output”).value = value1 + value2;

}
// -->
</script>
</head>

<body>
<form name=”adder”>
<input type=”text” name=”inputA” id=”inputA” value=”0” size=”4” />

<input type=”text” name=”inputB” id=”inputB” value=”0” size=”4” />
<input type=”button” value=”Add” onclick=”addIt()”>
<p>____________</p>
<input type=”text” name=”output” id=”output” size=”6” />
</form>
</body>
</html>

5. What does the term concatenate mean in the context of JavaScript programming?

66

JavaScript TutorialPart II

12_069165 ch06.qxp 3/1/07 3:41 PM Page 66

Your tour of programming fundamentals continues in this chapter with
subjects that have more intriguing possibilities. For example, I show you
how programs make decisions and why a program must sometimes repeat

statements over and over. Before you’re finished here, you also will learn how
to use one of the most powerful information holders in the JavaScript language:
the array.

Decisions and Loops
Every waking hour of every day, you make decisions of some kind; most of the
time, you probably don’t even realize it. Don’t think so? Well, look at the number
of decisions you make at the grocery store, from the moment you enter the store
to the moment you clear the checkout aisle.

No sooner do you enter the store than you are faced with a decision. Based on
the number and size of items you intend to buy, do you pick up a hand-carried
basket or attempt to extricate a shopping cart from the metallic conga line near
the front of the store? That key decision may have impact later, when you see a
special offer on an item that is too heavy to put in the handbasket.

Next, you head for the food aisles. Before entering an aisle, you compare the
range of goods stocked in that aisle with items on your shopping list. If an item
you need is likely to be found in this aisle, you turn into the aisle and start
looking for the item; otherwise, you skip the aisle and move to the head of the
next aisle.

Later, you reach the produce section in search of a juicy tomato. Standing in front
of the bin of tomatoes, you begin inspecting them one by one — picking one up,
feeling its firmness, checking the color, looking for blemishes or signs of pests.
You discard one, pick up another, and continue this process until one matches
the criteria you set in your mind for an acceptable morsel. Your last stop in the
store is the checkout aisle. “Paper or plastic?” the clerk asks. One more decision

67

IN THIS CHAPTER
How control structures
make decisions

How to define functions

Where to initialize variables
efficiently

What those darned curly
braces are all about

The basics of data arrays

Programming Fundamentals,
Part II

13_069165 ch07.qxp 3/1/07 3:42 PM Page 67

to make. What you choose affects how you get the groceries from the car to the kitchen, as well as your
recycling habits.

In your trip to the store, you go through the same kinds of decisions and repetitions that your JavaScript
programs encounter. If you understand these frameworks in real life, you can look into the JavaScript
equivalents and the syntax required to make them work.

Control Structures
In the vernacular of programming, the kinds of statements that make decisions and loop around to repeat
themselves are called control structures. A control structure directs the execution flow through a sequence of
script statements based on simple decisions and other factors.

An important part of a control structure is the condition. Just as you may travel different routes to work
depending on certain conditions (for example, nice weather, nighttime, attending a soccer game), so, too,
does a program sometimes have to branch to an execution route if a certain condition exists. Each condition
is an expression that evaluates to true or false— one of those Boolean data types mentioned in Chapter
6. The kinds of expressions commonly used for conditions are expressions that include a comparison oper-
ator. You do the same in real life: If it is true that the outdoor temperature is less than freezing, you put on a
coat before going outside. In programming, however, the comparisons are strictly comparisons of values.

JavaScript provides several kinds of control structures for different programming situations. Three of the
most common control structures you’ll use are if constructions, if...else constructions, and for loops.

Chapter 32 covers in great detail other common control structures you should know. For this tutorial, how-
ever, you need to learn about the three common ones just mentioned.

if constructions
The simplest program decision is to follow a special branch or path of the program if a certain condition is
true. Formal syntax for this construction follows. Items in italics get replaced in a real script with expres-
sions and statements that fit the situation.

if (condition) {
statement[s] if true

}

Don’t worry about the curly braces yet. Instead, get a feel for the basic structure. The keyword, if, is a
must. In the parentheses goes an expression that evaluates to a Boolean value. This is the condition being
tested as the program runs past this point. If the condition evaluates to true, one or more statements inside
the curly braces execute before continuing with the next statement after the closing brace. If the condition
evaluates to false, the statements inside the curly braces are ignored, and processing continues with the
next statement after the closing brace.

The following example assumes that a variable, myAge, has had its value set earlier in the script (exactly
how is not important for this example). The condition expression compares the value myAge against a
numeric value of 18:

if (myAge < 18) {
alert(“Sorry, you cannot vote.”);

}

68

JavaScript TutorialPart II

13_069165 ch07.qxp 3/1/07 3:42 PM Page 68

In this example, the data type of the value inside myAge must be a number so that the proper comparison
(via the <, or less than, comparison operator) does the right thing. For all instances of myAge less than 18,
the nested statement inside the curly braces runs and displays the alert to the user. After the user closes the
alert dialog box, the script continues with whatever statement follows the entire if construction.

if . . . else constructions
Not all program decisions are as simple as the one shown for the if construction. Rather than specifying
one detour for a given condition, you might want the program to follow either of two branches depending
on that condition. It is a fine but important distinction. In the plain if construction, no special processing
is performed when the condition evaluates to false. But if processing must follow one of two special paths,
you need the if...else construction. The formal syntax definition for an if...else construction is as
follows:

if (condition) {
statement[s] if true

} else {
statement[s] if false

}

Everything you know about the condition for an if construction applies here. The only difference is the
else keyword, which provides an alternative path for execution to follow if the condition evaluates to
false.

As an example, the following if...else construction determines how many days are in February for a
given year. To simplify the demo, the condition simply tests whether the year divides equally by 4. (True
testing for this value includes special treatment of end-of-century dates, but I’m ignoring that for now.) The
% operator symbol is called the modulus operator (covered in more detail in Chapter 33). The result of an
operation with this operator yields the remainder of division of the two values. If the remainder is zero, the
first value divides evenly by the second.

var febDays;
var theYear = 2004;
if (theYear % 4 == 0) {

febDays = 29;
} else {

febDays = 28;
}

The important point to see from this example is that by the end of the if...else construction, the
febDays variable is set to either 28 or 29. No other value is possible. For years evenly divisible by 4, the
first nested statement runs. For all other cases, the second statement runs. Then processing picks up with
the next statement after the if...else construction.

About Repeat Loops
Repeat loops in real life generally mean the repetition of a series of steps until some condition is met, thus
enabling you to break out of that loop. Such was the case earlier in this chapter, when you looked through a
bushel of tomatoes for the one that came closest to your ideal tomato. The same can be said for driving
around the block in a crowded neighborhood until a parking space opens up.

69

Programming Fundamentals, Part II 7

13_069165 ch07.qxp 3/1/07 3:42 PM Page 69

A repeat loop lets a script cycle through a sequence of statements until some condition is met. For example,
a JavaScript data validation routine might inspect every character that you enter in a form text field to make
sure that each one is a number. Or if you have a collection of data stored in a list, the loop can check
whether an entered value is in that list. When that condition is met, the script can break out of the loop and
continue with the next statement after the loop construction.

The most common repeat loop construction used in JavaScript is called the for loop. It gets its name from
the keyword that begins the construction. A for loop is a powerful device because you can set it up to keep
track of the number of times the loop repeats itself. The formal syntax of the for loop is as follows:

for ([initial expression]; [condition]; [update expression]) {
statement[s] inside loop

}

The square brackets mean that the item is optional. However, until you get to know the for loop better, I
recommend designing your loops to use all three items inside the parentheses. The initial expression portion
usually sets the starting value of a counter variable. The condition — the same kind of condition you saw for
if constructions — defines the condition that forces the loop to stop going around and around. Finally, the
update expression is a statement that executes each time all the statements nested inside the construction
complete running.

A common implementation initializes a counting variable, i; increments the value of i by 1 each time through
the loop; and repeats the loop until the value of i exceeds some maximum value, as in the following:

for (var i = startValue; i <= maxValue; i++) {
statement[s] inside loop

}

Placeholders startValue and maxValue represent any numeric values, including explicit numbers or vari-
ables holding numbers. In the update expression is an operator you have not seen yet. The ++ operator
adds 1 to the value of i each time the update expression runs at the end of the loop. If startValue is 1,
the value of i is 1 the first time through the loop, 2 the second time through, and so on. Therefore, if
maxValue is 10, the loop repeats itself 10 times (in other words, as long as i is less than or equal to 10).
Generally speaking, the statements inside the loop use the value of the counting variable in their execution.
Later in this lesson, I show how the variable can play a key role in the statements inside a loop. At the same
time, you will see how to break out of a loop prematurely and why you may need to do this in a script.

Functions
In Chapter 5, you saw a preview of the JavaScript function. A function is a definition of a set of deferred
actions. Functions are invoked by event handlers or by statements elsewhere in the script. Whenever possi-
ble, good functions are designed for reuse in other documents. They can become building blocks you use
over and over again.

If you have programmed before, you can see parallels between JavaScript functions and other languages’
subroutines. But unlike some languages that distinguish between procedures (which carry out actions) and
functions (which carry out actions and return values), only one classification of routine exists for JavaScript.
A function is capable of returning a value to the statement that invoked it, but this is not a requirement.
However, when a function does return a value, the calling statement treats the function call like any

70

JavaScript TutorialPart II

13_069165 ch07.qxp 3/1/07 3:42 PM Page 70

expression — plugging in the returned value right where the function call is made. I will show some
examples in a moment.

Formal syntax for a function is as follows:

function functionName ([parameter1]...[,parameterN]) {
statement[s]

}

Names you assign to functions have the same restrictions as names you assign to HTML elements and vari-
ables. You should devise a name that succinctly describes what the function does. I tend to use multiword
names with the interCap (internally capitalized) format that start with a verb because functions are action
items, even if they do nothing more than get or set a value.

Another practice to keep in mind as you start to create functions is to keep the focus of each function as
narrow as possible. It is possible to generate functions that are literally hundreds of lines long. Such func-
tions are usually difficult to maintain and debug. Chances are that you can divide the long function into
smaller, more tightly focused segments.

Function parameters
In Chapter 5, you saw how an event handler invokes a function by calling the function by name. A typical
call to a function, including one that comes from another JavaScript statement, works the same way: A set
of parentheses follows the function name.

You also can define functions so they receive parameter values from the calling statement. Listing 7-1 shows
a simple document that has a button whose onclick event handler calls a function while passing text data
to the function. The text string in the event handler call is in a nested string — a set of single quotes inside
the double quotes required for the entire event handler attribute.

LISTING 7-1

Calling a Function from an Event Handler

<html>
<head>
<script type=”text/javascript”>
function showMsg(msg) {

alert(“The button sent: “ + msg);
}
</script>
</head>
<body>
<form>

<input type=”button” value=”Click Me”
onclick=”showMsg(‘The button has been clicked!’)”>

</form>
</body>
</html>

71

Programming Fundamentals, Part II 7

13_069165 ch07.qxp 3/1/07 3:42 PM Page 71

Parameters (also known as arguments) provide a mechanism for handing off a value from one statement to
another by way of a function call. If no parameters occur in the function definition, both the function defi-
nition and the call to the function have only empty sets of parentheses (as shown in Chapter 5, Listing 5-8).

When a function receives parameters, it assigns the incoming values to the variable names specified in the
function definition’s parentheses. Consider the following script segment:

function sayHiToFirst(a, b, c) {
alert(“Say hello, “ + a);

}
sayHiToFirst(“Gracie”, “George”, “Harry”);
sayHiToFirst(“Larry”, “Moe”, “Curly”);

After the function is defined in the script, the next statement calls that very function, passing three strings as
parameters. The function definition automatically assigns the strings to variables a, b, and c. Therefore, before
the alert() statement inside the function ever runs, a evaluates to “Gracie”, b evaluates to “George”, and
c evaluates to “Harry”. In the alert() statement, only the a value is used, and the alert reads

Say hello, Gracie

When the user closes the first alert, the next call to the function occurs. This time through, different values
are passed to the function and assigned to a, b, and c. The alert dialog box reads

Say hello, Larry

Unlike other variables that you define in your script, function parameters do not use the var keyword to
initialize them. They are automatically initialized whenever the function is called.

Variable scope
Speaking of variables, it’s time to distinguish between variables that are defined outside and those that are
defined inside functions. Variables defined outside functions are called global variables; those defined inside
functions with the var keyword are called local variables.

A global variable has a slightly different connotation in JavaScript than it has in most other languages. For a
JavaScript script, the globe of a global variable is the current document loaded in a browser window or
frame. Therefore, when you initialize a variable as a global variable, it means that all script statements in the
page (including those inside functions) have direct access to that variable’s value via the variable’s name.
Statements can retrieve and modify global variables from anywhere in the page. In programming terminol-
ogy, this kind of variable is said to have global scope because every statement on the page can see it.

It is important to remember that the instant a page unloads itself, all global variables defined in that page
disappear from memory forever. If you need a value to persist from one page to another, you must use other
techniques to store that value (for example, as a global variable in a framesetting document, as described in
Chapter 16, or in a cookie, as described in Chapter 18). Although the var keyword is usually optional for
initializing global variables, I strongly recommend that you use it for all variable initializations to guard
against future changes to the JavaScript language.

In contrast to the global variable, a local variable is defined inside a function. You already saw how parame-
ter variables are defined inside functions (without var keyword initializations). But you can also define
other variables with the var keyword (absolutely required for local variables; otherwise, they become recog-
nized as global variables). The scope of a local variable is only within the statements of the function. No
other functions or statements outside functions have access to a local variable.

72

JavaScript TutorialPart II

13_069165 ch07.qxp 3/1/07 3:42 PM Page 72

Local scope allows for the reuse of variable names within a document. For most variables, I strongly discour-
age this practice because it leads to confusion and bugs that are difficult to track down. At the same time, it
is convenient to reuse certain kinds of variable names, such as for loop counters. These are safe because
they are always reinitialized with a starting value whenever a for loop starts. You cannot, however, nest one
for loop inside another without specifying a different loop-counting variable in the nested loop.

To demonstrate the structure and behavior of global and local variables — and show you why you shouldn’t
reuse most variable names inside a document — Listing 7-2 defines two global and two local variables. I
intentionally use bad form by initializing a local variable that has the same name as a global variable.

LISTING 7-2

Global and Local Variable Scope Demonstration

<html>
<head>
<script type=”text/javascript”>
var aBoy = “Charlie Brown”; // global
var hisDog = “Snoopy”; // global
function demo() {

// using improper design to demonstrate a point
var hisDog = “Gromit”; // local version of hisDog
var output = hisDog + “ does not belong to “ + aBoy + “.
”;
document.write(output);

}
</script>
</head>
<body>
<script type=”text/javascript”>
demo(); // runs as document loads
document.write(hisDog + “ belongs to “ + aBoy + “.”);
</script>
</body>
</html>

When the page loads, the script in the Head portion initializes the two global variables (aBoy and hisDog)
and defines the demo() function in memory. In the Body, another script begins by invoking the function.
Inside the function, a local variable is initialized with the same name as one of the global variables: hisDog.
In JavaScript, such a local initialization overrides the global variable for all statements inside the function.
(But note that if the var keyword is left off the local initialization, the statement reassigns the value of the
global version to “Gromit”.)

Another local variable, output, is merely a repository for accumulating the text that is to be written to the
screen. The accumulation begins by evaluating the local version of the hisDog variable. Then it concate-
nates some hard-wired text (note the extra spaces at the edges of the string segment). Next comes the evalu-
ated value of the aBoy global variable; any global not overridden by a local is available for use inside the
function. The expression is accumulating HTML to be written to the page, so it ends with a period and a

 tag. The final statement of the function writes the content to the page.

73

Programming Fundamentals, Part II 7

13_069165 ch07.qxp 3/1/07 3:42 PM Page 73

When the function completes its task, the next statement in the Body script writes another string to the
page. Because this script statement is executing in global space (that is, not inside any function), it accesses
only global variables — including those defined in another <script> tag set in the document. By the time
the complete page finishes loading, it contains the following text lines:

Gromit does not belong to Charlie Brown.
Snoopy belongs to Charlie Brown.

About Curly Braces
Despite the fact that you probably rarely — if ever — use curly braces ({ }) in your writing, there is no mys-
tery to their usage in JavaScript (and many other languages). Curly braces enclose blocks of statements that
belong together. Although they do assist humans who are reading scripts in knowing what’s going on, curly
braces also help the browser know which statements belong together. You always must use curly braces in
matched pairs.

You use curly braces most commonly in function definitions and control structures. In the function defini-
tion in Listing 7-2, curly braces enclose four statements that make up the function definition (including the
comment line). The closing brace lets the browser know that whatever statement comes next is a statement
outside the function definition.

Physical placement of curly braces is not critical. (Neither is the indentation style you see in the code I pro-
vide.) The following function definitions are treated identically by scriptable browsers:

function sayHiToFirst(a, b, c) {
alert(“Say hello, “ + a);

}

function sayHiToFirst(a, b, c)
{

alert(“Say hello, “ + a);
}

function sayHiToFirst(a, b, c) {alert(“Say hello, “ + a);}

Throughout this book, I use the style shown in the first example because I find that it makes lengthy and
complex scripts easier to read — especially scripts that have many levels of nested control structures.

Arrays
The JavaScript array is one of the most useful data constructions you have available to you. You can visual-
ize the structure of a basic array as though it were a single-column spreadsheet. Each row of the column
holds a distinct piece of data, and each row is numbered. Numbers assigned to rows are in strict numerical
sequence, starting with zero as the first row. (Programmers tend to start counting with zero.) This row num-
ber is called an index. To access an item in an array, you need to know the name of the array and the index
for the row. Because index values start with zero, the total number of items of the array (as determined by
the array’s length property) is always one more than the highest index value of the array. More advanced
array concepts enable you to create the equivalent of an array with multiple columns (described in Chapter
31). For this tutorial, I stay with the single-column basic array.

74

JavaScript TutorialPart II

13_069165 ch07.qxp 3/1/07 3:42 PM Page 74

Data elements inside JavaScript arrays can be any data type, including objects. And unlike a lot of other
programming languages, JavaScript allows different rows of the same array to contain different data types.

Creating an array
An array is stored in a variable, so when you create an array, you assign the new array object to the variable.
(Yes, arrays are objects, but they belong to the core JavaScript language rather than to the document object
model [DOM].) A special keyword — new— preceding a call to the JavaScript function that generates arrays
creates space in memory for the array. An optional parameter to the Array() function enables you to spec-
ify at the time of creation how many elements (rows) of data eventually will occupy the array. JavaScript is
very forgiving about this because you can change the size of an array at any time. Therefore, if you omit a
parameter when generating a new array, your script incurs no penalty.

To demonstrate the array creation process, I create an array that holds the names of the 50 states plus the
District of Columbia (a total of 51). The first task is to create that array and assign it to a variable of any
name that helps me remember what this collection of data is about:

var USStates = new Array(51);

At this point, the USStates array is sitting in memory like a 51-row table with no data in it. To fill the
rows, I must assign data to each row. Addressing each row of an array requires a special way of indicating
the index value of the row: square brackets after the name of the array. The first row of the USStates array
is addressed as:

USStates[0]

To assign the string name of the first state of the alphabet to that row, I use a simple assignment operator:

USStates[0] = “Alabama”;

To fill in the rest of the rows, I include a statement for each row:

USStates[1] = “Alaska”;
USStates[2] = “Arizona”;
USStates[3] = “Arkansas”;
...
USStates[50] = “Wyoming”;

Therefore, if you want to include a table of information in a document from which a script can look up
information without accessing the server, you include the data in the document in the form of an array cre-
ation sequence. When the statements run as the document loads, by the time the document finishes loading
into the browser, the data collection array is built and ready to go. Despite what appears to be the potential
for a lot of statements in a document for such a data collection, the amount of data that must download for
typical array collections is small enough not to affect page loading severely — even for dial-up users. In
Chapter 31, you also see some syntax shortcuts for creating arrays that reduce source code character counts.

Accessing array data
The array index is the key to accessing an array element. The name of the array and an index in square
brackets evaluates to the content of that array location. For example, after the USStates array is built, a
script can display an alert with Alaska’s name in it with the following statement:

alert(“The largest state is “ + USStates[1] + “.”);

75

Programming Fundamentals, Part II 7

13_069165 ch07.qxp 3/1/07 3:42 PM Page 75

Just as you can retrieve data from an indexed array element, you can change the element by reassigning a
new value to any indexed element in the array.

Parallel arrays
Now I show you why the numeric index methodology works well in JavaScript. To help with the demon-
stration, I generate another array that is parallel with the USStates array. This new array is also 51 ele-
ments long, and it contains the year in which the state in the corresponding row of USStates entered the
Union. That array construction looks like the following:

var stateEntered = new Array(51);
stateEntered [0] = 1819;
stateEntered [1] = 1959;
stateEntered [2] = 1912;
stateEntered [3] = 1836;
...
stateEntered [50] = 1890;

In the browser’s memory, then, are two data tables that you can visualize as looking like the model in Figure
7-1. I can build more arrays that are parallel to these for items such as the postal abbreviation and capital
city. The important point is that the zeroth element in each of these tables applies to Alabama, the first state
in the USStates array.

FIGURE 7-1

Visualization of two related parallel data tables.

If a web page included these data tables and a way for a user to look up the entry date for a given state, the
page would need a way to look through all the USStates entries to find the index value of the one that
matches the user’s entry. Then that index value could be applied to the stateEntered array to find the
matching year.

For this demo, the page includes a text entry field in which the user types the name of the state to look up.
In a real application, this methodology is fraught with peril unless the script performs some error checking
in case the user makes a mistake. But for now, I assume that the user always types a valid state name.
(Don’t ever make this assumption in your web site’s pages.) An event handler from either the text field or a

"Alabama"

"Alaska"

"Arizona"

"Arkansas"

"Wyoming"

1819

1959

1912

1836

1890

[0]

[1]

[2]

[3]

[50]

stateEnteredUSStates

....
....

....

76

JavaScript TutorialPart II

13_069165 ch07.qxp 3/1/07 3:42 PM Page 76

clickable button calls a function that looks up the state name, fetches the corresponding entry year, and dis-
plays an alert message with the information. The function is as follows:

function getStateDate() {
var selectedState = document.getElementById(“entry”).value;
for (var i = 0; i < USStates.length; i++) {

if (USStates[i] == selectedState) {
break;

}
}
alert(selectedState + “ entered the Union in “ + stateEntered[i] + “.”);

}

In the first statement of the function, I grab the value of the text box and assign the value to a variable,
selectedState. This is mostly for convenience, because I can use the shorter variable name later in the
script. In fact, the usage of that value is inside a for loop, so the script is marginally more efficient because
the browser doesn’t have to evaluate that long reference to the text field each time through the loop.

The key to this function is in the for loop. Here is where I combine the natural behavior of incrementing a
loop counter with the index values assigned to the two arrays. Specifications for the loop indicate that the
counter variable, i, is initialized with a value of zero. The loop is directed to continue as long as the value of
i is less than the length of the USStates array. Remember that the length of an array is always one more
than the index value of the last item. Therefore, the last time the loop runs is when i is 50, which is both
less than the length of 51 and equal to the index value of the last element. Each time after the loop runs, the
counter increments by 1 (i++).

Nested inside the for loop is an if construction. The condition tests the value of an element of the array
against the value typed by the user. Each time through the loop, the condition tests a different row of the
array, starting with row zero. In other words, this if construction can be performed dozens of times before
a match is found, but each time, the value of i is 1 larger than in the previous try.

The equality comparison operator (==) is fairly strict when it comes to comparing string values. Such com-
parisons respect the case of each letter. In our example, the user must type the state name exactly as it is
stored in the USStates array for the match to be found. In Chapter 10, you learn about some helper meth-
ods that eliminate case and sensitivity in string comparisons.

When a match is found, the statement nested inside the if construction runs. The break statement is
designed to help control structures bail out if the program needs it. For this application, it is imperative that
the for loop stop running when a match for the state name is found. When the for loop breaks, the value
of the i counter is fixed at the row of the USStates array containing the entered state. I need that index
value to find the corresponding entry in the other array. Even though the counting variable, i, is initialized
in the for loop, it is still alive and in the scope of the function for all statements after the initialization.
That’s why I can use it to extract the value of the row of the stateEntered array in the final statement that
displays the results in an alert message.

This application of a for loop and array indexes is a common one in JavaScript. Study the code carefully,
and be sure you understand how it works. This way of cycling through arrays plays a role not only in the
kinds of arrays you create in your code, but also in the arrays that browsers generate for the DOM.

77

Programming Fundamentals, Part II 7

13_069165 ch07.qxp 3/1/07 3:42 PM Page 77

Document objects in arrays
If you look at the document object portions of the Quick Reference in Appendix A, you can see that the
properties of some objects are listed with square brackets after them. These are indeed the same kind of
square brackets you just saw for array indexes. That’s because when a document loads, the browser creates
arrays of like objects in the document. For example, if your page includes two <form> tag sets, two forms
appear in the document. The browser maintains an array of form objects for that document. References to
those forms are

document.forms[0]
document.forms[1]

Index values for objects are assigned according to the loading order of the objects. In the case of form
objects, the order is dictated by the order of the <form> tags in the document. This indexed array syntax is
another way to reference forms in an object reference. You can still use a form’s identifier if you prefer —
and I heartily recommend using object names wherever possible, because even if you change the physical
order of the objects in your HTML, references that use names still work without modification. But if your
page contains only one form, you can use the reference types interchangeably, as in the following examples
of equivalent references to the length property of a form’s elements array (the elements array contains
all the form controls in the form):

document.getElementById(“entryForm”).elements.length
document.forms[0].elements.length

In examples throughout this book, you can see that I often use the array type of reference to simple forms in
simple documents. But in my production pages, I almost always use named references.

Exercises
1. With your newly acquired knowledge of functions, event handlers, and control structures, use the

script fragments from this chapter to complete the page that has the lookup table for all the states
and the years they entered into the union. If you do not have a reference book for the dates, use
different year numbers, starting with 1800 for each entry. In the page, create a text entry field for
the state and a button that triggers the lookup in the arrays.

2. Examine the following function definition. Can you spot any problems with the definition? If so,
how can you fix the problems?

function format(ohmage) {
var result;
if ohmage >= 1e6 {

ohmage = ohmage / 1e6;
result = ohmage + “ Mohms”;

} else {
if (ohmage >= 1e3)

ohmage = ohmage / 1e3;
result = ohmage + “ Kohms”;

else
result = ohmage + “ ohms”;

}
alert(result);

78

JavaScript TutorialPart II

13_069165 ch07.qxp 3/1/07 3:42 PM Page 78

3. Devise your own syntax for the scenario of looking for a ripe tomato at the grocery store, and
write a for loop using that object and property syntax.

4. Modify Listing 7-2 so that it does not reuse the hisDog variable inside the function.

5. Given the following table of data about several planets of our solar system, create a web page that
enables users to enter a planet name and, at the click of a button, have the distance and diameter
appear either in an alert box or (as extra credit) in separate fields of the page.

Planet Distance from the Sun Diameter

Mercury 36 million miles 3,100 miles

Venus 67 million miles 7,700 miles

Earth 93 million miles 7,920 miles

Mars 141 million miles 4,200 miles

79

Programming Fundamentals, Part II 7

13_069165 ch07.qxp 3/1/07 3:42 PM Page 79

13_069165 ch07.qxp 3/1/07 3:42 PM Page 80

Now that you have exposure to programming fundamentals, it is easier to
demonstrate how to script objects in documents. Starting with this
lesson, the tutorial turns back to the document object model (DOM),

diving more deeply into objects you will place in many of your documents.

Top-Level Objects
As a refresher, study the hierarchy of top-level objects in Figure 8-1. This chapter
focuses on objects of this level that you’ll frequently encounter in your scripting:
window, location, navigator, and document. The goal is not only to equip
you with the basics so you can script simple tasks, but also to prepare you for in-
depth examinations of each object and its properties, methods, and event han-
dlers in Part III of this book. I introduce only the basic properties, methods, and
events for objects in this tutorial; you can find far more in Part III. Examples in
that part of the book assume that you know the programming fundamentals cov-
ered here in Part II.

81

IN THIS CHAPTER
What the window object does

How to access key window
object properties and methods

How to trigger script actions
after a document loads

The purposes of the location and
navigator objects

How the document
object is created

How to access key document
object properties and methods

Window and Document
Objects

14_069165 ch08.qxp 3/1/07 3:42 PM Page 81

FIGURE 8-1

The top-level browser object model for all scriptable browsers.

The window Object
At the top of the object hierarchy is the window object. This object gains that exalted spot in the object food
chain because it is the master container for all content you view in the web browser. As long as a browser
window is open — even if no document is loaded in the window — the window object is defined in the cur-
rent model in memory.

In addition to the content part of the window where documents go, a window’s sphere of influence includes
the dimensions of the window and all the stuff that surrounds the content area. The area where scrollbars,
toolbars, the status bar, and (non-Macintosh) menu bar live is known as a window’s chrome. Not every
browser has full scripted control over the chrome of the main browser window, but you can easily script the
creation of additional windows sized the way you want and that have only the chrome elements you wish to
display in the subwindow.

Although the discussion of frames comes in Chapter 11, I can safely say now that each frame is also consid-
ered a window object. If you think about it, that makes sense, because each frame can hold a different docu-
ment. When a script runs in one of those documents, it regards the frame that holds the document as the
window object in its view of the object hierarchy.

As you learn in this chapter, the window object is a convenient place for the DOM to attach methods that
display modal dialog boxes and adjust the text that displays in the status bar at the bottom of the browser
window. A window object method enables you to create a separate window that appears onscreen. When
you look at all of the properties, methods, and events defined for the window object (see Chapter 16), it
should be clear why they are attached to window objects: Visualize their scope and the scope of a browser
window.

Accessing window properties and methods
You can word script references to properties and methods of the window object in several ways, depending
more on whim and style than on specific syntactical requirements. The most logical and common way to
compose such references includes the window object in the reference:

window.propertyName
window.methodName([parameters])

window

document

navigator screen history location

82

JavaScript TutorialPart II

14_069165 ch08.qxp 3/1/07 3:42 PM Page 82

A window object also has a synonym when the script doing the referencing points to the window that
houses the document. The synonym is self. Then the reference syntax becomes

self.propertyName
self.methodName([parameters])

You can use these initial reference object names interchangeably, but I tend to reserve the use of self for
more complex scripts that involve multiple frames and windows. The self moniker more clearly denotes the
current window holding the script’s document. It makes the script more readable — by me and by others.

Back in Chapter 4, I indicated that because the window object is always there when a script runs, you could
omit it from references to any objects inside that window. Therefore, the following syntax models assume
properties and methods of the current window:

propertyName
methodName([parameters])

In fact, as you will see in a few moments, some methods may be more understandable if you omit the
window object reference. The methods run just fine either way.

Creating a window
A script does not create the main browser window. A user does that by virtue of launching the browser or
by opening a URL or file from the browser’s menus (if the window is not already open). But a script can
generate any number of subwindows when the main window is open (and that window contains a docu-
ment whose script needs to open subwindows).

The method that generates a new window is window.open(). This method contains up to three parameters
that define window characteristics, such as the URL of the document to load, its name for target attribute
reference purposes in HTML tags, and physical appearance (size and chrome contingent). I don’t go into the
details of the parameters here (they’re covered in great depth in Chapter 16), but I do want to expose you to
an important concept involved with the window.open() method.

Consider the following statement, which opens a new window to a specific size and with an HTML docu-
ment from the same server directory that holds the current page:

var subWindow = window.open(“define.html”,”def”,”height=200,width=300”);

The important thing to note about this statement is that it is an assignment statement. Something gets
assigned to that variable subWindow. What is it? It turns out that when the window.open() method runs,
it not only opens that new window according to specifications set as parameters, but also evaluates to a ref-
erence to that new window. In programming parlance, the method is said to return a value — in this case, a
genuine object reference. The value returned by the method is assigned to the variable.

Now your script can use that variable as a valid reference to the second window. If you need to access one
of its properties or methods, you must use that reference as part of the complete reference. For example, to
close the subwindow from a script in the main window, use this reference to the close() method for that
subwindow:

subWindow.close();

If you issue window.close(), self.close(), or just close() in the main window’s script, the method
closes the main window (after confirming with the user) and not the subwindow. To address another win-
dow, then, you must include a reference to that window as part of the complete reference. This has an

83

Window and Document Objects 8

14_069165 ch08.qxp 3/1/07 3:42 PM Page 83

impact on your code because you probably want the variable holding the reference to the subwindow to be
valid as long as the main document is loaded into the browser. For that to happen, the variable has to be
initialized as a global variable, rather than inside a function (although you can set its value inside a func-
tion). That way, one function can open the window while another function closes it.

Listing 8-1 is a page that has a button for opening a blank, new window and a button for closing that win-
dow from the main window. To view this demonstration, shrink your main browser window to less than full
screen. Then, when the new window is generated, reposition the windows so you can see the smaller, new
window when the main window is in front. (If you lose a window behind another, use the browser’s
Window menu to choose the hidden window.) The key point of Listing 8-1 is that the newWindow variable
is defined as a global variable so that both the makeNewWindow() and closeNewWindow() functions have
access to it. When a variable is declared with no value assignment, its initial value is null. A null value is
interpreted to be the same as false in a condition, whereas the presence of any nonzero value is the same
as true in a condition. Therefore, in the closeNewWindow() function, the condition tests whether the
window has been created before issuing the subwindow’s close() method. Then, to clean up, the function
sets the newWindow variable to null so that another click of the Close button doesn’t try to close a nonex-
istent window.

LISTING 8-1

References to Window Objects

<html>
<head>
<title>Window Opener and Closer</title>
<script type=”text/javascript”>
var newWindow;
function makeNewWindow() {

newWindow = window.open(“”,””,”height=300,width=300”);
}
function closeNewWindow() {

if (newWindow) {
newWindow.close();
newWindow = null;

}
}
</script>
</head>

<body>
<form>
<input type=”button” value=”Create New Window” onclick=”makeNewWindow()”>
<input type=”button” value=”Close New Window” onclick=”closeNewWindow()”>
</form>
</body>
</html>

84

JavaScript TutorialPart II

14_069165 ch08.qxp 3/1/07 3:42 PM Page 84

Window Properties and Methods
The three methods for the window object described in this section have an immediate impact on user inter-
action by displaying dialog boxes of various types. They work with all scriptable browsers. You can find
extensive code examples in Part III for each property and method. You can also experiment with the one-
statement script examples by entering them in the top text box of The Evaluator Jr. (from Chapter 6).

One of the first questions that new scripters ask is how to customize the title bars, sizes, and button labels
of these dialog boxes. Each browser maker dictates how these dialogs are labeled. Because tricksters have
tried to use these dialog boxes for nefarious purposes over the years, browser makers now go to great
lengths to let users know that the dialog boxes emanate from web page scripts. Scripters cannot alter the
user interfaces of these dialog boxes.

window.alert() method
I have used the alert() method many times so far in this tutorial. This window method generates a dialog
box that displays whatever text you pass as a parameter (see Figure 8-2). A single OK button (whose label
you cannot change) enables the user to dismiss the alert.

FIGURE 8-2

A JavaScript alert dialog box (Firefox 1.5/Windows).

All three dialog-box methods are good cases for using a window object’s methods without the reference to
the window. Even though the alert() method technically is a window object method, no special relation-
ship exists between the dialog box and the window that generates it. In production scripts, I usually use the
shortcut reference:

alert(“This is a JavaScript alert dialog.”);

window.confirm() method
The second style of dialog box presents two buttons (Cancel and OK in most versions on most platforms)
and is called a confirm dialog box (see Figure 8-3). More important, this is one of those methods that
returns a value: true if the user clicks OK or false if the user clicks Cancel. You can use this dialog box
and its returned value as a way to have a user make a decision about how a script progresses.

85

Window and Document Objects 8

14_069165 ch08.qxp 3/1/07 3:42 PM Page 85

FIGURE 8-3

A JavaScript confirm dialog box (IE7/WinXP style).

Because the method always returns a Boolean value, you can use the evaluated value of the entire method as
a condition statement in an if or if...else construction. For example, in the following code fragment,
the user is asked about starting the application over. Doing so causes the default page of the site to load into
the browser.

if (confirm(“Are you sure you want to start over?”)) {
location.href = “index.html”;

}

window.prompt() method
The final dialog box of the window object, the prompt dialog box (see Figure 8-4), displays a message that
you set and provides a text field for the user to enter a response. Two buttons, Cancel and OK, enable the
user to dismiss the dialog box with two opposite expectations: canceling the entire operation or accepting
the input typed in the dialog box.

FIGURE 8-4

A JavaScript prompt dialog box (Safari 2 style).

The window.prompt() method has two parameters. The first is the message that acts as a prompt to the
user. You can suggest a default answer in the text field by including a string as the second parameter. If you
don’t want any default answer to appear, include an empty string (two double quotes without any space
between them).

This method returns one value when the user clicks either button. A click of the Cancel button returns a
value of null, regardless of what the user types in the field. A click of the OK button returns a string value
of the typed entry. Your scripts can use this information in conditions for if and if...else constructions.
A value of null is treated as false in a condition. It turns out that an empty string is also treated as false.

86

JavaScript TutorialPart II

14_069165 ch08.qxp 3/1/07 3:42 PM Page 86

Therefore, a condition can easily test for the presence of real characters typed in the field to simplify a
condition test, as shown in the following fragment:

var answer = prompt(“What is your name?”,””);
if (answer) {

alert(“Hello, “ + answer + “!”);
}

The only time the alert() method is called is when the user enters something in the prompt dialog box
and clicks the OK button.

load event
The window object reacts to several system and user events, but the one you will probably use most often is
the event that fires as soon as everything in a page finishes loading. This event waits for images, Java applets,
and data files for plug-ins to download fully to the browser. It can be dangerous to script access to elements
of a document object while the page loads because if the object has not loaded yet (perhaps due to a slow
network connection or server), a script error results. The advantage of using the load event to invoke func-
tions is that you are assured that all document objects are in the browser’s DOM. Window event handlers
may be placed inside the <body> tag. Even though you will come to associate the <body> tag’s attributes
with the document object’s properties, it is the window object’s event handlers that go inside the tag.

The location Object
Sometimes an object in the hierarchy represents something that doesn’t seem to have the kind of physical
presence that a window or a button does. That’s the case with the location object. This object represents
the URL loaded into the window. This differs from the document object (discussed later in this lesson)
because the document is the real content; the location is simply the URL.

Unless you are truly web savvy, you may not realize that a URL consists of many components that define the
address and method of data transfer for a file. Pieces of a URL include the protocol (such as http:) and the
hostname (such as www.example.com). You can access all these items as properties of the location
object. For the most part, though, your scripts will be interested in only one property: the href property,
which defines the complete URL.

Setting the location.href property is the primary way your scripts navigate to other pages:

location.href = “http://www.dannyg.com”;

You can generally navigate to a page in your own web site by specifying a relative URL (that is, relative to
the currently loaded page) rather than the complete URL with protocol and host information. For pages
outside the domain of the current page, you need to specify the complete URL.

If the page to be loaded is in another window or frame, the window reference must be part of the statement.
For example, if your script opens a new window and assigns its reference to a variable named newWindow,
the statement that loads a page into the subwindow is

newWindow.location.href = “http://www.dannyg.com”;

87

Window and Document Objects 8

14_069165 ch08.qxp 3/1/07 3:42 PM Page 87

The navigator Object
Despite a name reminiscent of the Netscape Navigator-branded browser, the navigator object is imple-
mented in all scriptable browsers. All browsers also implement a handful of properties that reveal the same
kind of information that browsers send to servers with each page request. Thus, the navigator.userAgent
property returns a string with numerous details about the browser and operating system. For example, a
script running in Internet Explorer 7 in Windows XP receives the following value for the
navigator.userAgent property:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

The same script running in Firefox 1.5 on a Macintosh reveals the following userAgent details:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.8.0.7) Gecko/20060909
Firefox/1.5.0.7

You have already used the navigator.appVersion property: in your first script of Chapter 3. See Chapter 39
on the CD-ROM for more details about this object and the meaning of the values returned by its properties. It
once was used extensively to branch script execution according to various browser versions. Chapter 14
describes more modern ways to accomplish browser-version detection.

The document Object
The document object holds the real content of the page. Properties and methods of the document object
generally affect the look and content of the document that occupies the window. As you saw in your first
script in Chapter 3, all W3C DOM-compatible browsers allow script access to the text contents of a page
when the document has loaded. You also saw in Listing 5-6 that the document.write() method lets a
script create content dynamically as the page loads on any browser. Many document object properties are
arrays of other objects in the document, which provide additional ways to reference these objects (over and
above the document.getElementById() method).

Accessing a document object’s properties and methods is straightforward, as shown in the following syntax
examples:

[window.]document.propertyName
[window.]document.methodName([parameters])

The window reference is optional when the script is accessing the document object that contains the script.
If you want a preview of the long list of document object properties of IE or a Mozilla-based browser, enter
document in the bottom text box of The Evaluator Jr. and press Enter/Return. The object’s properties, cur-
rent values, and value types appear in the Results box (as well as methods in Mozilla). Following are some
of the most commonly used properties and methods of the document object.

document.forms[] property
It is convenient that the document object contains a property — document.forms— whose value is an
array of all form element objects in the document. As you recall from the discussion of arrays in Chapter 7,
an index number inside an array’s square brackets points to one of the elements in the array. To find out
how many form objects are in the current document, use

document.forms.length

88

JavaScript TutorialPart II

14_069165 ch08.qxp 3/1/07 3:42 PM Page 88

To access the first form in a document, for example, the reference is

document.forms[0]

As a further convenience, all scriptable browsers let you reference a form more directly by its name (that is,
the identifier assigned to the name attribute of the <form> tag) in one of two ways. The first way is via array
syntax, applying the form’s name as a string index value of the array:

document.forms[“formName”]

You will see in future chapters that scripts sometimes have only the string name of the form to work with.
To derive a valid reference to the form object indicated by that name, use this string index form with the
array.

The second, even shorter way to reference a form object by name is to append the name as a property of
the document object, as in:

document.formName

Either methodology reaches the same object. You will see many instances of the shortcut approach in form-
related example scripts throughout this book (including in Chapter 9 when working with form controls).
Although this syntax dates back to the earliest scriptable browsers, it is still valid in the most modern versions.

document.images[] property
Just as a document keeps track of forms in an array property, the document object maintain a collection
(array) of images inserted into the document by way of tags. Images referenced through the
document.images array may be reached either by numeric or string index of the img element’s name.
Just as with forms, the name attribute value is the identifier you use for a string index.

The presence of the document.images property indicates that the browser supports image swapping.
Therefore, you can use the existence of the property as a controller to make sure the browser supports
images as objects before attempting to perform any script action on an image. To do so, surround state-
ments that deal with images with an if construction that verifies the property’s existence, as follows:

if (document.images) {
// statements dealing with img objects

}

Older browsers skip the nested statements, preventing them from displaying error messages to their users.

document.write() method
The document.write() method operates in both immediate scripts to create content in a page as it loads
and in deferred scripts that create new content in the same window or a different window. The method
requires one string parameter, which is the HTML content to write to the window or frame. Such string
parameters can be variables or any other expressions that evaluate to a string. Very often, the written con-
tent includes HTML tags.

Bear in mind that after a page loads, the browser’s output stream automatically closes. After that, any
document.write() method issued to the current page opens a new stream that immediately erases the
current page (along with any variables or other values in the original document). Therefore, if you wish
to replace the current page with script-generated HTML, you need to accumulate that HTML in a variable
and perform the writing with just one document.write() method. You don’t have to clear a document
explicitly and open a new data stream; one document.write() call does it all.

89

Window and Document Objects 8

14_069165 ch08.qxp 3/1/07 3:42 PM Page 89

One last piece of housekeeping advice about the document.write() method involves its companion
method, document.close(). Your script must close the output stream when it finishes writing its content
to the window (either the same window or another). After the last document.write() method in a
deferred script, be sure to include a document.close() method. Failure to do this may cause images and
forms not to appear. Also, any document.write() method invoked later will only append to the page,
rather than clear the existing content to write anew.

To demonstrate the document.write() method, I show two versions of the same application. One writes
to the same document that contains the script; the other writes to a separate window. Type in each docu-
ment in a new text editor document, save it with an .html file extension, and open it in your browser.

Listing 8-2 creates a button that assembles new HTML content for a document, including HTML tags for a
new document title and color attribute for the <body> tag. An operator in the listing that may be unfamiliar
to you is +=. It appends a string on its right side to whatever string is stored in the variable on its left side.
This operator is a convenient way to accumulate a long string across several separate statements. With the
content gathered in the newContent variable, one document.write() statement blasts the entire new con-
tent to the same document, obliterating all vestiges of the content of Listing 8-2. The document.close()
statement, however, is required to close the output stream properly. When you load this document and
click the button, notice that the document title in the browser’s title bar changes accordingly. As you click
back to the original and try the button again, notice that the dynamically written second page loads much
faster than even a reload of the original document.

LISTING 8-2

Using document.write() on the Current Window

<html>
<head>
<title>Writing to Same Doc</title>
<script type=”text/javascript”>
function reWrite() {

// assemble content for new window
var newContent = “<html><head><title>A New Doc</title></head>”;
newContent += “<body bgcolor=’aqua’><h1>This document is brand new.</h1>”;
newContent += “Click the Back button to see original document.”;
newContent += “</body></html>”;
// write HTML to new window document
document.write(newContent);
document.close(); // close layout stream

}
</script>
</head>
<body>
<form>
<input type=”button” value=”Replace Content” onclick=”reWrite()”>
</form>
</body>
</html>

In Listing 8-3, the situation is a bit more complex because the script generates a subwindow to which an
entirely script-generated document is written.

90

JavaScript TutorialPart II

14_069165 ch08.qxp 3/1/07 3:42 PM Page 90

You will have to turn off blocking pop-up windows temporarily to run this script.

To keep the reference to the new window alive across both functions, the newWindow variable is declared as
a global variable. As soon as the page loads, the onload event handler invokes the makeNewWindow()
function. This function generates a blank subwindow. I added a property to the third parameter of the
window.open() method that instructs the status bar of the subwindow to appear.

A button in the page invokes the subWrite() method. The first task it performs is to check the closed
property of the subwindow. This property returns true if the referenced window is closed. If that’s the case
(if the user closed the window manually), the function invokes the makeNewWindow() function again to
reopen that window.

With the window open, new content is assembled as a string variable. As with Listing 8-2, the content is writ-
ten in one blast (although that isn’t necessary for a separate window), followed by a close() method. But
notice an important difference: Both the write() and close() methods explicitly specify the subwindow.

LISTING 8-3

Using document.write() on Another Window

<html>
<head>
<title>Writing to Subwindow</title>
<script type=”text/javascript”>
var newWindow;
function makeNewWindow() {

newWindow = window.open(“”,””,”status,height=200,width=300”);
}

function subWrite() {
// make new window if someone has closed it
if (newWindow.closed) {

makeNewWindow();
}
// bring subwindow to front
newWindow.focus();
// assemble content for new window
var newContent = “<html><head><title>A New Doc</title></head>”;
newContent += “<body bgcolor=’coral’><h1>This document is brand new.</h1>”;
newContent += “</body></html>”;
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close(); // close layout stream

}
</script>
</head>
<body onload=”makeNewWindow()”>
<form>
<input type=”button” value=”Write to Subwindow” onclick=”subWrite()”>
</form>
</body>
</html>

NOTENOTE

91

Window and Document Objects 8

14_069165 ch08.qxp 3/1/07 3:42 PM Page 91

document.createElement() and
document.createTextNode() methods
The document.write() method works on a piece of a web page only while the page is loading into the
browser the first time. Any subsequent invocation of the method erases the page and writes a new page. But
if you want to add to or modify a page that has already loaded, you need to call upon the Dynamic HTML
capabilities of W3C DOM-compatible browsers. Your goal will be to add to, delete from, or replace sections
of the node hierarchy of the document. Most element objects have methods to perform those actions (see a
more in-depth discussion in Chapter 14). But if you need to add content, you’ll have to create new element
or text nodes. The document object has the methods to do that.

The document.createElement() method lets you create in the browser’s memory a brand-new element
object. To specify the precise element you wish to create, pass the tag name of the element as a string
parameter of the method:

var newElem = document.createElement(“p”);

You may also wish to add some attribute values to the element, which you may do by assigning values to
the newly created object’s properties, even before the element becomes part of the document.

As you saw in Chapter 4’s object hierarchy illustrations, an element object frequently needs text content
between its start and end tags. The W3C DOM way to create that text is to generate a brand-new text node
via the document.createTextNode() method and populate the node with the desired text. For example:

var newText = document.createTextNode(“Greetings to all.”);

The act of creating an element or text node does not by itself influence the document node tree. You must
invoke one of the various insertion or replacement methods to place the new text node in its element and
place the element in the document. You learn how to do this in the last tutorial chapter (Chapter 12).

document.getElementById() method
You met the document.getElementById() method in Chapter 4 when learning about the syntax for ref-
erencing element objects. This W3C DOM method is one you will use a lot. Get to know its finger-twisting
name well. Be sure to honor the upper- and lowercase spelling of this all-important method.

The sole parameter of this method is a quoted string containing the ID of the element you wish to reference.
The Evaluator Jr. page from Chapter 6 (and in the CD-ROM listings) has three element objects (form fields)
with IDs input, output, and inspector. Type this method in the top text box with each ID, as in the fol-
lowing example:

document.getElementById(“output”)

The method returns a value, which you typically preserve in a variable for use by subsequent script
statements:

var oneTable = document.getElementById(“salesResults”);

After the assignment statement, the variable represents the element object, allowing you to get and set its
properties or invoke whatever methods belong to that type of object.

The next logical step past the document level in the object hierarchy is the form. That’s where you will
spend the next lesson.

92

JavaScript TutorialPart II

14_069165 ch08.qxp 3/1/07 3:42 PM Page 92

Exercises
1. Which of the following references are valid, and which are not? Explain what is wrong with the

invalid references.

a. window.document.form[0]

b. self.entryForm.submit()

c. document.forms[2].name

d. document.getElementByID(“firstParagraph”)

e. newWindow.document.write(“Howdy”)

2. Write the JavaScript statement that displays an (annoying) dialog box welcoming visitors to your
web page.

3. Write the JavaScript statement that executes while the page loads to display the same message
from question 2 to the document as an <h1>-level headline on the page.

4. Create a page that prompts the user for his or her name as the page loads (via a dialog box) and
then welcomes the user by name in the body of the page.

5. Create a page with any content you like, but one that automatically displays a dialog box after the
page loads to show the user the URL of the current page.

93

Window and Document Objects 8

14_069165 ch08.qxp 3/1/07 3:42 PM Page 93

14_069165 ch08.qxp 3/1/07 3:42 PM Page 94

Most interactivity between a web page and the user takes place inside a
form. That’s where a lot of the interactive HTML stuff lives for every
browser: text fields, buttons, checkboxes, option lists, and so on.

As described in earlier chapters, you may use the modern document object
model (DOM) document.getElementById() method to reference any element,
including forms and form controls. But this chapter focuses on an older, yet
equally valid way of referencing forms and controls. It’s important to be familiar
with this widely used syntax so that you can understand existing JavaScript
source code written according to the original (and fully backward-compatible)
form syntax: the so-called DOM Level 0 syntax.

The form Object
Using the original DOM Level 0 syntax, you can reference a form object either by
its position in the array of forms contained by a document or by name (if you
assign an identifier to the name attribute inside the <form> tag). If only one form
appears in the document, it is still a member of an array (a one-element array)
and is referenced as follows:

document.forms[0]

Or use the string of the element’s name as the array index:

document.forms[“formName”]

Notice that the array reference uses the plural version of the word, followed by a
set of square brackets containing the index number (zero is always first) or name
of the element. Alternatively, you can use the form’s name (not as a quoted string)
as though it were a property of the document object:

document.formName

95

IN THIS CHAPTER
What the form object represents

How to access key form object
properties and methods

How text, button, and select
objects work

How to submit forms
from a script

How to pass information from
form elements to functions

Forms and Form Elements

15_069165 ch09.qxp 3/1/07 3:42 PM Page 95

Form as object and container
Unlike the modern DOM’s ID reference model — which lets a script dive anywhere into a document to grab
an element object reference — DOM Level 0 form syntax imposes a hierarchical approach. It treats the form
object as a container whose contents consist of the form control element objects (input, select, and
textarea elements). Figure 9-1 shows the structure of this hierarchy and its place relative to the document
object. You’ll see the effect this structure has on the way you reference form control elements in a moment.
This structure echoes perfectly the HTML tag organization within the <form> and </form> tag bookends.

FIGURE 9-1

DOM Level 0 hierarchy for forms and controls.

In addition to a large collection of properties and methods it has in common with all HTML element
objects, the form object features a number of items that are unique to this object. Almost all of these unique
properties are scripted representations of the form element’s attributes (action, target, and so on).
Scriptable browsers allow scripts to change these properties under script control, which gives your scripts
potentially significant power to direct the behavior of a form submission in response to user selections on
the page.

Accessing form properties
Forms are created entirely from standard HTML tags in the page. You can set attributes for name, target,
action, method, and enctype. Each of these is a property of a form object, accessed by all-lowercase
versions of those words, as in:

document.forms[0].action
document.formName.action

document

window

form

text

textarea checkbox reset option

radio button select

password hidden submit

96

JavaScript TutorialPart II

15_069165 ch09.qxp 3/1/07 3:42 PM Page 96

To change any of these properties, simply assign new values to them:

document.forms[0].action = “http://www.example.com/cgi/login.pl”;

form.elements[] property
In addition to keeping track of each type of element inside a form, the browser maintains a list of all control
elements within a form. This list is another array, with items listed according to the order in which their
HTML tags appear in the source code. It is generally more efficient to create references to elements directly,
using their names. However, sometimes a script needs to look through all of the elements in a form. This is
especially true if the content of a form changes with each loading of the page because the number of text
fields changes based on the user’s browser type (for example, a script on the page uses document.write()
to add an extra text box for information required only from Windows users).

The following code fragment shows the form.elements[] property at work in a for repeat loop that
looks at every element in a form to set the contents of text fields to an empty string. The script cannot sim-
ply barge through the form and set every element’s content to an empty string because some elements may
be types (for example, a button) whose value properties have different purposes.

var form = window.document.forms[0];
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
form.elements[i].value = “”;

}
}

In the first statement, I create a variable — form— that holds a reference to the first form of the document.
I do this so that when I make many references to form elements later in the script, the typical length of each
reference is much shorter (and marginally faster). I can use the form variable as a shortcut to building refer-
ences to items more deeply nested in the form.

Next, I start looping through the items in the elements array for the form. Each form control element has
a type property, which reveals what kind of form control it is: text, button, radio, checkbox, and so on.
I’m interested in finding elements whose type is text. For each of those, I set the value property to an
empty string.

I return to forms later in this chapter to show you how to submit a form without a Submit button and how
client-side form validation works.

Form Controls as Objects
Three kinds of HTML elements nested inside a <form> tag become scriptable objects in all browser DOMs.
Most of the objects owe their existence to the <input> tag in the page’s source code. Only the value
assigned to the type attribute of an <input> tag determines whether the element is a text box, password
entry field, hidden field, button, checkbox, or radio button. The other two kinds of form controls,
textarea and select, have their own tags.

To reference a particular form control as an object in DOM Level 0 syntax, you build the reference as a hier-
archy starting with the document, through the form, and then to the control. You’ve already seen how many
ways you can reference merely the form part — all of which are valid for building form control references.

97

Forms and Form Elements 9

15_069165 ch09.qxp 3/1/07 3:42 PM Page 97

But if you are using only the identifiers assigned to the form and form control elements (that is, none of the
associated arrays of elements), the syntax is as follows:

document.formName.controlName

For example, consider the following simple form:

<form name=”searchForm” action=”cgi-bin/search.pl”>
<input type=”text” name=”entry”>
<input type=”submit” name=”sender” value=”Search”>

</form>

The following sample references to the text input control are all valid:

document.searchForm.entry
document.searchForm.elements[0]
document.forms[“searchForm”].elements[“entry”]
document.forms[“searchForm”].entry

Although form controls have several properties in common, some properties are unique to a particular
control type or related types. For example, only a select object offers a property that reveals which item in
its list is currently selected. But checkboxes and radio buttons both have a property that indicates whether
the control is currently set to on. Similarly, all text-oriented controls operate the same way for reading and
modifying their content.

Having a good grasp of the scriptable features of form control objects is important to your success with
JavaScript. In the next sections, you meet the most important form control objects and see how scripts
interact with them.

Text-related input objects
Each of the four text-related HTML form elements — input elements of the text, password, and hidden
types, plus the textarea element — is an element in the document object hierarchy. All but the hidden
object display themselves in the page, enabling users to enter information. These objects also display text
information that changes in the course of using a page (although browsers capable of modern Dynamic
HTML also allow the scripted change of other body text in a document).

To make these form control objects scriptable in a page, you do nothing special to their normal HTML
tags — with the possible exception of assigning a name attribute. I strongly recommend assigning unique
names to every text-related form control element if your scripts will be getting or setting properties or
invoking their methods. Besides, if the form is actually submitted to a server program, the name attributes
must be assigned for the server to receive the element’s data.

For the visible objects in this category, event handlers are triggered from many user actions, such as giving a
field focus (getting the text insertion pointer in the field) and changing text (entering new text and leaving
the field). Most of your text-field actions are triggered by the change of text (the onchange event handler).
In current browsers, events fire in response to individual keystrokes as well.

Without a doubt, the single most-used property of a text-related element is the value property. This prop-
erty represents the current contents of the text element. A script can retrieve and set its content at any time.
Content of the value property is always a string. This may require conversion to numbers (see Chapter 6)
if text fields are used to enter values for some math operations.

98

JavaScript TutorialPart II

15_069165 ch09.qxp 3/1/07 3:42 PM Page 98

To demonstrate how a text field’s value property can be read and written, Listing 9-1 provides a complete
HTML page with a single-entry field. Its onchange event handler invokes the upperMe() function, which
converts the text to uppercase. In the upperMe() function, the first statement assigns the text object refer-
ence to a more convenient variable: field. A lot goes on in the second statement of the function. The right
side of the assignment statement performs a couple of key tasks. The reference to the value property of the
object (field.value) evaluates to whatever content is in the text field at that instant. Then that string is
handed over to one of JavaScript’s string functions, toUpperCase(), which converts the value to uppercase.
The evaluated result of the right-side statement is then assigned to the second variable: upperCaseVersion.
Nothing has changed yet in the text box. That comes in the third statement, where the value property of the
text box is assigned whatever the upperCaseVersion variable holds. The need for the second statement is
more for learning purposes so that you can see the process more slowly. In practice, you can combine the
actions of steps 2 and 3 into one power-packed statement:

field.value = field.value.toUpperCase();

LISTING 9-1

Getting and Setting a Text Object’s value Property

<html>
<head>
<title>Text Object value Property</title>
<script type=”text/javascript”>
function upperMe() {

var field = document.forms[0].converter;

continued

99

Forms and Form Elements 9

Text Object Behavior

Many scripters look to JavaScript to solve what are perceived as shortcomings or behavioral anomalies
with text-related objects in forms. I want to single these out early in your scripting experience so that

they do not confuse you later.

First, only the most recent browsers let scripts reliably alter the font, font size, font style, and text alignment of
a text object’s content. You can access changes through the element’s style-related properties (see Chapter 26).

Second, most browser forms practice a behavior that was recommended long ago as an informal standard by
web pioneers. When a form contains only one text input object, a press of the Enter/Return key while the text
object has focus automatically submits the form. For two or more fields in browsers other than IE5/Mac and
Safari, you need another way to submit the form (for example, a Submit button). This one-field submission
scheme works well in many cases, such as the search page of most web search sites. But if you are experi-
menting with simple forms containing only one field, you can submit the form with a press of the Enter/Return
key. Submitting a form that has no other action or target specified means the page performs an unconditional
reload, wiping out any information entered into the form. You can, however, cancel the submission through
an onsubmit event handler in the form, as shown later in this chapter. You can also script the press of the
Enter/Return key in any text field to submit a form (see Chapter 25).

15_069165 ch09.qxp 3/1/07 3:42 PM Page 99

LISTING 9-1 (continued)

var upperCaseVersion = field.value.toUpperCase();
field.value = upperCaseVersion;

}
</script>
</head>
<body>
<form onsubmit=”return false”>
<input type=”text” name=”converter” value=”sample” onchange=”upperMe()”>
</form>
</body>
</html>

Later in this chapter, I show you how to reduce even further the need for explicit references in functions such as
upperMe() in Listing 9-1. In the meantime, notice for a moment the onsubmit event handler in the <form>
tag. I delve more deeply into this event handler later in this chapter, but I want to point out the construction
that prevents a single-field form from being submitted when you press the Enter key. If the event handler
weren’t there, a press of the Enter key would reload the page, returning the field to its original text. Try it!

The button input object
I have used the button-type input element in many examples up to this point in the tutorial. The button is
one of the simplest objects to script. In the simplified object model of this tutorial, the button object has
only a few properties that are rarely accessed or modified in day-to-day scripts. Like the text object, the
visual aspects of the button are governed not by HTML or scripts, but by the operating system and browser
that the page visitor uses. By far the most useful event of the button object is the click event. It fires when-
ever the user clicks the button. Simple enough. No magic here.

The checkbox input object
A checkbox is also a simple element of the form object, but some of the properties may not be entirely intu-
itive. Unlike the value property of a plain button object (the text of the button label), the value property
of a checkbox is any other text you want associated with the object. This text does not appear on the page
in any fashion, but the property (initially set via the value attribute) might be important to a script that
wants to know more about the purpose of the checkbox within the form.

The key property of a checkbox object is whether the box is checked. The checked property is a Boolean
value: true if the box is checked, false if not. When you see that a property is a Boolean value, it’s a clue
that the value might be usable in an if or if...else condition expression. In Listing 9-2, the value of the
checked property determines which alert box the user sees.

LISTING 9-2

The Checkbox Object’s checked Property

<html>
<head>
<title>Checkbox Inspector</title>

100

JavaScript TutorialPart II

15_069165 ch09.qxp 3/1/07 3:42 PM Page 100

<script type=”text/javascript”>
function inspectBox() {

if (document.forms[0].checkThis.checked) {
alert(“The box is checked.”);

} else {
alert(“The box is not checked at the moment.”);

}
}
</script>
</head>
<body>
<form>
<input type=”checkbox” name=”checkThis”>Check here

<input type=”button” value=”Inspect Box” onclick=”inspectBox()”>
</form>
</body>
</html>

Checkboxes are generally used as preference setters rather than as action inducers. Although a checkbox
object has an onclick event handler, a click of a checkbox should never do anything drastic, such as navi-
gate to another page.

The radio input object
Setting up a group of radio objects for scripting requires a bit more work. To let the browser manage the
highlighting and unhighlighting of a related group of buttons, you must assign the same name to each of
the buttons in the group. You can have multiple radio groups within a form, but each member of the same
group must have the same name.

Assigning the same name to a form element forces the browser to manage the elements differently than if
they each had a unique name. Instead, the browser maintains an array list of objects with the same name.
The name assigned to the group becomes the name of the array. Some properties apply to the group as a
whole; other properties apply to individual buttons within the group and must be addressed via array index
references. For example, you can find out how many buttons are in a radio group by reading the length
property of the group:

document.forms[0].groupName.length

If you want to find out whether a particular button is currently highlighted, via the same checked property
used for the checkbox, you must access the button element individually:

document.forms[0].groupName[0].checked

Listing 9-3 demonstrates several aspects of the radio-button object, including how to look through a group
of buttons to find out which one is highlighted and how to use the value attribute and corresponding
property for meaningful work.

The page includes three radio buttons and a plain button. Each radio button’s value attribute contains the
full name of one of the Three Stooges. When the user clicks the button, the onclick event handler invokes
the fullName() function. In that function, the first statement creates a shortcut reference to the form.

101

Forms and Form Elements 9

15_069165 ch09.qxp 3/1/07 3:42 PM Page 101

Next, a for repeat loop looks through all the buttons in the stooges radio-button group. An if construc-
tion looks at the checked property of each button. When a button is highlighted, the break statement bails
out of the for loop, leaving the value of the i loop counter at the number where the loop broke ranks.
Then the alert dialog box uses a reference to the value property of the ith button so that the full name can
be displayed in the alert.

LISTING 9-3

Scripting a Group of Radio Objects

<html>
<head>
<title>Extracting Highlighted Radio Button</title>
<script type=”text/javascript”>
function fullName() {

var form = document.forms[0];
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].checked) {
break;

}
}
alert(“You chose “ + form.stooges[i].value + “.”);

}
</script>
</head>

<body>
<form>
<p>Select your favorite Stooge:
<input type=”radio” name=”stooges” value=”Moe Howard” checked>Moe
<input type=”radio” name=”stooges” value=”Larry Fine”>Larry
<input type=”radio” name=”stooges” value=”Curly Howard”>Curly

<input type=”button” name=”Viewer” value=”View Full Name...”
onclick=”fullName()”></p>
</form>
</body>
</html>

The select object
The most complex form control to script is the select element object. As you can see from the DOM Level
0 form object hierarchy diagram (see Figure 9-1), the select object is really a compound object: an object
that contains an array of option objects. Moreover, you can establish this object in HTML to display itself
as either a pop-up list or a scrolling list — the latter configurable to accept multiple selections by users. For
the sake of simplicity at this stage, this lesson focuses on deployment as a pop-up list that allows only single
selections.

102

JavaScript TutorialPart II

15_069165 ch09.qxp 3/1/07 3:42 PM Page 102

Some properties belong to the entire select object; others belong to individual options inside the select
object. If your goal is to determine which item the user selects, and you want the code to work on the
widest range of browsers, you must use properties of both the select and option objects.

The most important property of the select object itself is the selectedIndex property, accessed as follows:

document.forms[0].selectName.selectedIndex

This value is the index number of the currently selected item. As with most index counting schemes in
JavaScript, the first item (the one at the top of the list) has an index of zero. The selectedIndex value is
critical for enabling you to access properties of the selected option. Two important properties of an option
item are text and value, accessed as follows:

document.forms[0].selectName.options[n].text
document.forms[0].selectName.options[n].value

The text property is the string that appears onscreen in the select object’s list. It is unusual for this infor-
mation to be exposed as a form object property because in the HTML that generates a select object, the
text is defined as an <option> tag’s nested text. But inside the <option> tag, you can set a value attribute,
which, like the radio buttons shown earlier, enables you to associate some hidden string information with
each visible entry in the list.

To read the value or text property of a selected option most efficiently for all browsers, you can use the
select object’s selectedIndex property as an index value to the option. References for this kind of oper-
ation get pretty long, so take the time to understand what’s happening here. In the following function, the
first statement creates a shortcut reference to the select object. Then the selectedIndex property of the
select object is substituted for the index value of the options array of that same object:

function inspect() {
var list = document.forms[0].choices;
var chosenItemText = list.options[list.selectedIndex].value;

}

To bring a select object to life, use the onchange event handler. As soon as a user makes a new selection
in the list, this event handler runs the script associated with that event handler. Listing 9-4 shows a com-
mon application for a select object. Its text entries describe places to go in and out of a web site, and the
value attributes hold the URLs for those locations. When a user makes a selection in the list, the onchange
event handler triggers a script that extracts the value property of the selected option and assigns that value
to the location.href object property to effect the navigation. Under JavaScript control, this kind of navi-
gation doesn’t need a separate Go button on the page.

LISTING 9-4

Navigating with a select Object

<html>
<head>
<title>Select Navigation</title>
<script type=”text/javascript”>
function goThere() {

var list = document.forms[0].urlList;
location.href = list.options[list.selectedIndex].value;

continued

103

Forms and Form Elements 9

15_069165 ch09.qxp 3/1/07 3:42 PM Page 103

LISTING 9-4 (continued)

}
</script>
</head>

<body>
<form>
Choose a place to go:
<select name=”urlList” onchange=”goThere()”>

<option selected value=”index.html”>Home Page
<option value=”store.html”>Shop Our Store
<option value=”policies.html”>Shipping Policies
<option value=”http://www.google.com”>Search the Web

</select>
</form>
</body>
</html>

Recent browsers also expose the value property of the selected option item by way of the
value property of the select object. This is certainly a logical and convenient shortcut, and

you can use it safely if your target browsers include IE, Mozilla-based browsers, and Safari.

There is much more to the select object, including the ability to change the contents of a list in newer
browsers. Chapter 24 covers the select object in depth.

Passing Form Data and Elements to Functions
In all the examples so far in this lesson, when an event handler invokes a function that works with form ele-
ments, the form or form control is explicitly referenced in the function. But valuable shortcuts exist for
transferring information about the form or form control directly to the function without dealing with those
typically long references that start with the window or document object level.

JavaScript features a keyword — this— that always refers to whatever object contains the script in which
the keyword is used. Thus, in an onchange event handler for a text field, you can pass a reference to the
text input object to the function by inserting the this keyword as a parameter to the function:

<input type=”text” name=”entry” onchange=”upperMe(this)”>

At the receiving end, the function defines a parameter variable that turns that reference into a variable that
the rest of the function can use:

function upperMe(field) {
statement[s]

}

The name you assign to the function’s parameter variable is purely arbitrary, but it is helpful to give it a
name that expresses what the reference is. It is important that this reference is a live connection back to the
object. Therefore, statements in the script can get and set property values of the object at will.

NOTENOTE

104

JavaScript TutorialPart II

15_069165 ch09.qxp 3/1/07 3:42 PM Page 104

For other functions, you may wish to receive a reference to the entire form, rather than just the object call-
ing the function. This is certainly true if the function needs to access other elements of the same form.
Because every form control object contains a property that points to the containing form, you can use the
this keyword to reference the current control, plus its form property as this.form, as in:

<input type=”button” value=”Click Here” onclick=”inspect(this.form)”>

Then the function definition should have a parameter variable ready to be assigned to the form object refer-
ence. Again, you decide the name of the variable. I tend to use the variable name form as a way to remind
me exactly what kind of object is referenced:

function inspect(form) {
statement[s]

}

Listing 9-5 demonstrates passing references to both an individual form element and the entire form in the
performance of two separate acts. This page makes believe that it is connected to a database of Beatles
songs. When you click the Process Data button, it passes the form object, which the processData()
function uses to access the group of radio buttons inside a for loop. Additional references using the passed
form object extract the value properties of the selected radio button and the text field.

The text field has its own event handler, which passes just the text field to the verifySong() function.
Notice how short the reference is to reach the value property of the song field inside the function.

LISTING 9-5

Passing a Form Object and Form Element to Functions

<html>
<head>
<title>Beatle Picker</title>
<script type=”text/javascript”>
function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {

break
}

}
// assign values to variables for convenience
var beatle = form.Beatles[i].value
var song = form.song.value
alert(“Checking whether “ + song + “ features “ + beatle + “...”)

}

function verifySong(entry) {
var song = entry.value
alert(“Checking whether “ + song + “ is a Beatles tune...”)

}
</script>
</head>

<body>

continued

105

Forms and Form Elements 9

15_069165 ch09.qxp 3/1/07 3:42 PM Page 105

LISTING 9-5 (continued)

<form onsubmit=”return false”>
<p>Choose your favorite Beatle:
<input type=”radio” name=”Beatles” value=”John Lennon” checked>John
<input type=”radio” name=”Beatles” value=”Paul McCartney”>Paul
<input type=”radio” name=”Beatles” value=”George Harrison”>George
<input type=”radio” name=”Beatles” value=”Ringo Starr”>Ringo</p>

<p>Enter the name of your favorite Beatles song:

<input type=”text” name=”song” value = “Eleanor Rigby” onchange=”verifySong(this)”>
<input type=”button” name=”process” value=”Process Request...”
onclick=”processData(this.form)”></p>
</form>
</body>
</html>

If you’re a bit puzzled by the behavior of this example, here’s an explanation of the programming logic
behind what you experience. When you enter a new song title in the text box and click the Process Request
button, the button click action is interrupted by the onchange event handler of the text box. (Clicking
outside the text box or pressing the Tab key triggers the text field’s onchange event handler before anything
really happens outside the text box.) In other words, the button doesn’t really get clicked, because the
onchange alert dialog box comes up first. That’s why you have to click it what seems to be a second time to
get the combined song/Beatle verification. If you don’t change the text in the field, your click of the button
occurs without interruption, and the combined verification takes place.

Get to know the usage of the this keyword in passing form and form element objects to functions. The
technique not only saves you typing in your code, but also ensures accuracy in references to those objects.

As noted earlier, the trend to move scripting out of HTML tag markup is catching on.
Unfortunately, discrepancies between the ways that IE and other browsers handle event assign-

ments and event processing require explanations beyond the scope of this tutorial. You’ll meet them soon
enough, however, beginning in Chapter 14.

Submitting and Prevalidating Forms
The scripted equivalent of submitting a form is the form object’s submit() method. All you need in the
statement is a reference to the form and this method:

document.forms[0].submit();

Before you get ideas about having a script silently submit a form to a URL bearing the mailto: protocol,
forget it. Because such a scheme could expose visitors’ e-mail addresses without their knowledge, mailto:
submissions are either blocked or revealed to users as a security precaution.

Before a form is submitted, you may wish to perform some last-second validation of data in the form or in
other scripting (for example, changing the form’s action property based on user choices). You can do this
in a function invoked by the form’s onsubmit event handler. Specific validation routines are beyond the
scope of this tutorial (but are explained in substantial detail in Chapter 43 on the CD-ROM), but I want to
show you how the onsubmit event handler works.

NOTENOTE

106

JavaScript TutorialPart II

15_069165 ch09.qxp 3/1/07 3:42 PM Page 106

You can let the results of a validation function cancel a submission if the validation shows some incorrect
data or empty fields. To control submission, the onsubmit event handler must evaluate to return true (to
allow submission to continue) or return false (to cancel submission). This is a bit tricky at first because
it involves more than just having the function called by the event handler return true or false. The
return keyword must be part of the final evaluation.

Listing 9-6 shows a page with a simple validation routine that ensures that all fields have something in them
before allowing submission to continue. (The sample form has no action attribute, so this sample form
doesn’t get sent to the server.) Notice that the onsubmit event handler (which passes a reference to the
form object as a parameter — in this case, the this keyword points to the form object because its tag holds
the event handler) includes the return keyword before the function name.

The if condition performs two tests. The first is to make sure that we’re examining form controls whose
type properties are text (so as not to bother with, say, buttons). Next, it checks to see whether the value of
the text field is empty. The && operator (called a Boolean AND operator) forces both sides to evaluate to true
before the entire condition expression inside the parentheses evaluates to true. If either subtest fails, the
whole condition fails. When the function returns its true or false value, the event handler evaluates to
the requisite return true or return false.

LISTING 9-6

Last-Minute Checking Before Form Submission

<html>
<head>
<title>Validator</title>
<script type=”text/javascript”>
function checkForm(form) {

for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == “text” && form.elements[i].value == “”) {

alert(“Fill out ALL fields.”);
return false;

}
}
return true;

}
</script>
</head>

<body>
<form onsubmit=”return checkForm(this)”>
Please enter all requested information:

First Name:<input type=”text” name=”firstName”>

Last Name:<input type=”text” name=”lastName”>

Rank:<input type=”text” name=”rank”>

Serial Number:<input type=”text” name=”serialNumber”>

<input type=”submit”>
</form>
</body>
</html>

107

Forms and Form Elements 9

15_069165 ch09.qxp 3/1/07 3:42 PM Page 107

One quirky bit of behavior involving the submit() method and onsubmit event handler needs explana-
tion. Although you might think (and logically so, in my opinion) that the submit() method would be the
exact scripted equivalent of a click of a real Submit button, it’s not. The submit() method does not cause
the form’s submit event to fire at all. If you want to perform validation on a form submitted via the
submit() method, invoke the validation in the script function that ultimately calls the submit() method.

So much for the basics of forms and form controls. In Chapter 10, you step away from HTML for a moment
to look at more advanced JavaScript core language items: strings, math, and dates.

Exercises
1. Rework Listings 9-1, 9-2, 9-3, and 9-4 so that all the script functions receive the most efficient

form or form element references directly from the invoking event handler.

2. For the following form (assume that it’s the only form on the page), write at least 10 ways to refer-
ence the text input field as an object in all modern scriptable browsers.

<form name=”subscription” action=”cgi-bin/maillist.pl” method=”post”>
<input type=”text” id=”email” name=”email”>
<input type=”submit”>

</form>

3. In the following HTML tag, what kind of information do you think is being passed with the event
handler? Write a function that displays in an alert dialog box the information being passed.

<input type=”text” name=”phone” onchange=”format(this.value)”>

4. A document contains two forms, specifications and accessories. In the accessories
form is a field named acc1. Write at least two different statements that set the contents of that
field to Leather Carrying Case.

5. Create a page that includes a select object to change the background color of the current page.
The property that you need to set is document.bgColor, and the three values you should offer as
options are red, yellow, and green. In the select object, the colors should display as Stop,
Caution, and Go.

108

JavaScript TutorialPart II

15_069165 ch09.qxp 3/1/07 3:42 PM Page 108

For most of the lessons in the tutorial so far, the objects at the center of
attention belong to the document object model (DOM). But as indicated in
Chapter 2, a clear dividing line exists between the DOM and the JavaScript

language. The language has some of its own objects that are independent of the
DOM. These objects are defined such that if a vendor wished to implement
JavaScript as the programming language for an entirely different kind of product,
the language would still use these core facilities for handling text, advanced math
(beyond simple arithmetic), and dates. You can find formal specifications of these
objects in the ECMA-262 recommendation.

Core Language Objects
It is often difficult for newcomers to programming — or even experienced pro-
grammers who have not worked in object-oriented worlds before — to think
about objects, especially when attributed to things that don’t seem to have a
physical presence. For example, it doesn’t require lengthy study to grasp the
notion that a button on a page is an object. It has several physical properties that
make perfect sense. But what about a string of characters? As you learn in this
chapter, in an object-based environment such as JavaScript, everything that
moves is treated as an object — each piece of data from a Boolean value to a date.
Each such object probably has one or more properties that help define the con-
tent; such an object may also have methods associated with it to define what the
object can do or what you can do to the object.

I call all objects that are not part of the DOM core language objects. You can see
the full complement of them in the first two pages of the Quick Reference in
Appendix A. In this chapter, I focus on the String, Math, and Date objects.

109

IN THIS CHAPTER
How to modify strings with
common string methods

When and how to use
the Math object

How to use the Date object

Strings, Math,
and Dates

16_069165 ch10.qxp 3/1/07 3:43 PM Page 109

String Objects
You have used String objects many times in earlier lessons. A string is any text inside a quote pair. A quote
pair consists of either double quotes or single quotes. This allows one string to nest inside another, as often
happens in event handlers defined as tag attributes. In the following example, the alert() method
requires a quoted string as a parameter, but the entire method call also must be inside quotes:

onclick=”alert(‘Hello, all’)”

JavaScript imposes no practical limit on the number of characters that a string can hold. However, most
older browsers have a limit of 255 characters for a script statement. This limit is sometimes exceeded when
a script includes a lengthy string that is to become scripted content in a page. You need to divide such lines
into smaller chunks, using techniques described in a moment.

You have two ways to assign a string value to a variable. The simplest is a basic assignment statement:

var myString = “Howdy”;

This works perfectly well except in some exceedingly rare instances. You can also create a string object
using the more formal syntax that involves the new keyword and a constructor function (that is, it con-
structs a new object):

var myString = new String(“Howdy”);

Whichever way you use to initialize a variable with a string, the variable receiving the assignment can
respond to all String object methods.

Joining strings
Bringing two strings together as a single string is called concatenating strings, a term you learned in Chapter
6. String concatenation requires one of two JavaScript operators. Even in your first script in Chapter 3, you
saw how the addition operator (+) linked multiple strings to produce the HTML that gets inserted into a
placeholder element:

document.getElementById(“readout”).innerHTML =
“Your browser says it is: “ + “” +
navigator.userAgent + “.<hr />”;

As valuable as that operator is, another operator can be even more scripter friendly. This operator is helpful
when you are assembling large strings in a single variable. The strings may be so long or cumbersome that
you need to divide the building process into multiple statements. The pieces may be combinations of string
literals (strings inside quotes) or variable values. The clumsy way to do it (perfectly doable in JavaScript) is
to use the addition operator to append more text to the existing chunk:

var msg = “Four score”;
msg = msg + “ and seven”;
msg = msg + “ years ago,”;

But another operator, called the add-by-value operator, offers a handy shortcut. The symbol for the operator
is a plus and equal sign together (+=). This operator means append the stuff on the right of me to the end of the
stuff on the left of me. Therefore, the preceding sequence is shortened as follows:

var msg = “Four score”;
msg += “ and seven”;
msg += “ years ago,”;

110

JavaScript TutorialPart II

16_069165 ch10.qxp 3/1/07 3:43 PM Page 110

You can also combine the operators if the need arises:

var msg = “Four score”;
msg += “ and seven” + “ years ago”;

I use the add-by-value operator a lot when accumulating HTML text to be written to the current document
or another window.

String methods
Of all the core JavaScript objects, the String object has the most diverse collection of methods associated
with it. Many methods are designed to help scripts extract segments of a string. Another group, rarely used
and now obsolete in favor of Cascading Style Sheets (CSS), wraps a string with one of several style-oriented
tags (a scripted equivalent of tags for font size, style, and the like).

In a string method, the string being acted upon becomes part of the reference followed by the method
name. All methods return a value of some kind. Most of the time, the returned value is a converted version
of the string object referred to in the method call — but the original string is still intact. To capture the
modified version, you need to assign the results of the method to a variable:

var result = myString.methodName();

The following sections introduce you to several important string methods available to all browser brands
and versions.

Changing string case
Two methods convert a string to all uppercase or all lowercase letters:

var result = string.toUpperCase();
var result = string.toLowerCase();

Not surprisingly, you must observe the case of each letter of the method names if you want them to work.
These methods come in handy when your scripts need to compare strings that may not have the same case
(for example, a string in a lookup table compared with a string typed by a user). Because the methods don’t
change the original strings attached to the expressions, you can simply compare the evaluated results of the
methods:

var foundMatch = false;
if (stringA.toUpperCase() == stringB.toUpperCase()) {

foundMatch = true;
}

String searches
You can use the string.indexOf() method to determine whether one string is contained by another.
Even within JavaScript’s own object data, this can be useful information. For example, the
navigator.userAgent property reveals a lot about the browser that loads the page. A script can investi-
gate the value of that property for the existence of, say, “Win” to determine that the user has a Windows
operating system. That short string might be buried somewhere inside a long string, and all the script needs
to know is whether the short string is present in the longer one — wherever it might be.

The string.indexOf() method returns a number indicating the index value (zero-based) of the character
in the larger string where the smaller string begins. The key point about this method is that if no match
occurs, the returned value is -1. To find out whether the smaller string is inside, all you need to test is
whether the returned value is something other than -1.

111

Strings, Math, and Dates 10

16_069165 ch10.qxp 3/1/07 3:43 PM Page 111

Two strings are involved with this method: the shorter one and the longer one. The longer string is the one
that appears in the reference to the left of the method name; the shorter string is inserted as a parameter to
the indexOf() method. To demonstrate the method in action, the following fragment looks to see whether
the user is running Windows:

var isWindows = false;
if (navigator.userAgent.indexOf(“Win”) != -1) {

isWindows = true;
}

The operator in the if construction’s condition (!=) is the inequality operator. You can read it as meaning is
not equal to.

Extracting copies of characters and substrings
To extract a single character at a known position within a string, use the charAt() method. The parameter
of the method is an index number (zero-based) of the character to extract. When I say extract, I don’t mean
delete, but grab a snapshot of the character. The original string is not modified in any way.

For example, consider a script in a main window that is capable of inspecting a variable, stringA, in
another window that displays map images of different corporate buildings. When the window has a map of
Building C in it, the stringA variable contains “Building C”. The building letter is always at the 10th
character position of the string (or number 9 in a zero-based counting world), so the script can examine
that one character to identify the map currently in that other window:

var stringA = “Building C”;
var bldgLetter = stringA.charAt(9);

// result: bldgLetter = “C”

Another method — string.substring()— enables you to extract a contiguous sequence of characters,
provided that you know the starting and ending positions of the substring of which you want to grab a
copy. It is important that the character at the ending-position value not be part of the extraction: All appli-
cable characters, up to but not including that character, are part of the extraction. The string from which the
extraction is made appears to the left of the method name in the reference. Two parameters specify the start-
ing and ending index values (zero-based) for the start and end positions:

var stringA = “banana daiquiri”;
var excerpt = stringA.substring(2,6);

// result: excerpt = “nana”

String manipulation in JavaScript is fairly cumbersome compared with that in some other scripting lan-
guages. Higher-level notions of words, sentences, or paragraphs are absent. Therefore, sometimes it takes a
bit of scripting with string methods to accomplish what seems like a simple goal. Yet you can put your
knowledge of expression evaluation to the test as you assemble expressions that utilize heavily nested con-
structions. For example, the following fragment needs to create a new string that consists of everything from
the larger string except the first word. Assuming that the first word of other strings can be of any length, the
second statement uses the string.indexOf() method to look for the first space character and adds 1 to
that value to serve as the starting index value for an outer string.substring() method. For the second
parameter, the length property of the string provides a basis for the ending character’s index value (one
more than the actual character needed).

var stringA = “The United States of America”;
var excerpt = stringA.substring(stringA.indexOf(“ “) + 1, stringA.length);

// result: excerpt = “United States of America”

112

JavaScript TutorialPart II

16_069165 ch10.qxp 3/1/07 3:43 PM Page 112

Creating statements like this one is not something you are likely to enjoy over and over again, so in
Chapter 27, I show you how to create your own library of string functions you can reuse in all of your
scripts that need their string-handling facilities. More powerful string-matching facilities are also built into
today’s browsers by way of regular expressions (see Chapter 28 and Chapter 42 on the CD-ROM).

The Math Object
JavaScript provides ample facilities for math — far more than most scripters who don’t have a background
in computer science and math will use in a lifetime. But every genuine programming language needs these
powers to accommodate clever programmers who can make windows fly in circles onscreen.

The Math object contains all these powers. This object is unlike most of the other objects in JavaScript in
that you don’t generate copies of the object to use. Instead, your scripts summon a single Math object’s
properties and methods. (One Math object actually occurs per window or frame, but this has no impact
whatsoever on your scripts.) Programmers call this kind of fixed object a static object. That Math object
(with an uppercase M) is part of the reference to the property or method. Properties of the Math object are
constant values, such as pi and the square root of 2:

var piValue = Math.PI;
var rootOfTwo = Math.SQRT2;

Math object methods cover a wide range of trigonometric functions and other math functions that work on
numeric values already defined in your script. For example, you can find which of two numbers is the
larger:

var larger = Math.max(value1, value2);

Or you can raise one number to a power of 10:

var result = Math.pow(value1, 10);

More common, perhaps, is the method that rounds a value to the nearest integer value:

var result = Math.round(value1);

Another common request of the Math object is a random number. The Math.random() method returns a
floating-point number between 0 and 1. If you design a script to act like a card game, you need random
integers between 1 and 52; for dice, the range is 1 to 6 per die. To generate a random integer between 0 and
any top value, use the following formula

Math.floor(Math.random() * (n + 1))

where n is the top number. (Math.floor returns the integer part of any floating-point number.) To gener-
ate random numbers between 1 and any higher number, use this formula

Math.floor(Math.random() * n) + 1

where n equals the top number of the range. For the dice game, the formula for each die is

newDieValue = Math.floor(Math.random() * 6) + 1;

To see this, enter the right part of the preceding statement in the top text box of The Evaluator Jr. and
repeatedly click the Evaluate button.

113

Strings, Math, and Dates 10

16_069165 ch10.qxp 3/1/07 3:43 PM Page 113

The Date Object
Working with dates beyond simple tasks can be difficult business in JavaScript. A lot of the difficulty comes
with the fact that dates and times are calculated internally according to Greenwich Mean Time (GMT) —
provided that the visitor’s own internal PC clock and control panel are set accurately. As a result of this
complexity, better left for Chapter 30, this section of the tutorial touches on only the basics of the JavaScript
Date object.

A scriptable browser contains one global Date object (in truth, one Date object per window) that is always
present, ready to be called upon at any moment. The Date object is another one of those static objects.
When you wish to work with a date, such as displaying today’s date, you need to invoke the Date object
constructor function to obtain an instance of a Date object tied to a specific time and date. For example,
when you invoke the constructor without any parameters, as in

var today = new Date();

the Date object takes a snapshot of the PC’s internal clock and returns a date object for that instant. Notice
the distinction between the static Date object and a Date object instance, which contains an actual date
value. The variable, today, contains not a ticking clock but a value that you can examine, tear apart, and
reassemble as needed for your script.

Internally, the value of a Date object instance is the time, in milliseconds, from zero o’clock on January 1,
1970, in the GMT zone — the world standard reference point for all time conversions. That’s how a Date
object contains both date and time information.

You can also grab a snapshot of the Date object for a particular date and time in the past or future by speci-
fying that information as parameters to the Date object constructor function:

var someDate = new Date(“Month dd, yyyy hh:mm:ss”);
var someDate = new Date(“Month dd, yyyy”);
var someDate = new Date(yyyy,mm,dd,hh,mm,ss);
var someDate = new Date(yyyy,mm,dd);
var someDate = new Date(GMT milliseconds from 1/1/1970);

If you attempt to view the contents of a raw Date object, JavaScript converts the value to the local time-
zone string, as indicated by your PC’s control panel setting. To see this in action, use The Evaluator Jr.’s top
text box to enter the following:

new Date();

Your PC’s clock supplies the current date and time as the clock calculates them (even though JavaScript still
stores the date object’s millisecond count in the GMT zone). You can, however, extract components of the
Date object via a series of methods that you apply to a Date object instance. Table 10-1 shows an abbrevi-
ated listing of these properties and information about their values.

114

JavaScript TutorialPart II

16_069165 ch10.qxp 3/1/07 3:43 PM Page 114

TABLE 10-1

Some Date Object Methods

Method Value Range Description

dateObj.getTime() 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.getYear() 70-... Specified year minus 1900; four-digit year for 2000+

dateObj.getFullYear() 1970-... Four-digit year (Y2K-compliant); version 4+ browsers

dateObj.getMonth() 0-11 Month within the year (January = 0)

dateObj.getDate() 1-31 Date within the month

dateObj.getDay() 0-6 Day of week (Sunday = 0)

dateObj.getHours() 0-23 Hour of the day in 24-hour time

dateObj.getMinutes() 0-59 Minute of the specified hour

dateObj.getSeconds() 0-59 Second within the specified minute

dateObj.setTime(val) 0-... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.setYear(val) 70-... Specified year minus 1900; four-digit year for 2000+

dateObj.setMonth(val) 0-11 Month within the year (January = 0)

dateObj.setDate(val) 1-31 Date within the month

dateObj.setDay(val) 0-6 Day of week (Sunday = 0)

dateObj.setHours(val) 0-23 Hour of the day in 24-hour time

dateObj.setMinutes(val) 0-59 Minute of the specified hour

dateObj.setSeconds(val) 0-59 Second within the specified minute

Be careful about values whose ranges start with zero, especially the months. The getMonth()
and setMonth() method values are zero based, so the numbers are 1 less than the month

numbers you are accustomed to working with (for example, January is 0 and December is 11).

You may notice one difference about the methods that set values of a Date object. Rather than returning
some new value, these methods actually modify the value of the instance of the Date object referenced in
the call to the method.

Date Calculations
Performing calculations with dates frequently requires working with the millisecond values of the Date
objects. This is the surest way to compare date values. To demonstrate a few Date object machinations,
Listing 10-1 displays the current date and time as the page loads. Another script shows one way to calculate
the date and time seven days from the current date and time values.

CAUTION CAUTION

115

Strings, Math, and Dates 10

16_069165 ch10.qxp 3/1/07 3:43 PM Page 115

LISTING 10-1

Date Object Calculations

<html>
<head>
<title>Date Calculation</title>
<script type=”text/javascript”>
function nextWeek() {

var todayInMS = today.getTime();
var nextWeekInMS = todayInMS + (60 * 60 * 24 * 7 * 1000);
return new Date(nextWeekInMS);

}
</script>
</head>

<body>
Today is:
<script type=”text/javascript”>
var today = new Date();
document.write(today);
</script>

Next week will be:
<script type=”text/javascript”>
document.write(nextWeek());
</script>
</body>
</html>

In the Body portion, the first script runs as the page loads, setting a global variable (today) to the current
date and time. The string equivalent is written to the page. In the second Body script, the
document.write() method invokes the nextWeek() function to get a value to display. That function uses
the today global variable, copying its millisecond value to a new variable: todayInMS. To get a date seven
days from now, the next statement adds the number of milliseconds in 7 days (60 seconds times 60 minutes
times 24 hours times 7 days times 1000 milliseconds) to today’s millisecond value. Now the script needs a
new Date object calculated from the total milliseconds. This requires invoking the Date object constructor
with the milliseconds as a parameter. The returned value is a Date object, which is automatically converted
to a string version for writing to the page.

To add time intervals to or subtract time intervals from a Date object, you can use a shortcut that doesn’t
require the millisecond conversions. By combining the date object’s set and get methods, you can let the
Date object work out the details. For example, in Listing 10-1, you could eliminate the function and let the
following two statements in the second Body script obtain the desired result:

today.setDate(today.getDate() + 7);
document.write(today);

116

JavaScript TutorialPart II

16_069165 ch10.qxp 3/1/07 3:43 PM Page 116

Because JavaScript tracks the date and time internally as milliseconds, the accurate date appears in the end,
even if the new date is into the next month. JavaScript automatically takes care of figuring out how many
days there are in a month, as well as in leap years.

Many other quirks and complicated behavior await you if you script dates in your page. As later chapters
demonstrate, however, the results may be worth the effort.

Exercises
1. Create a web page that has one form field for entry of the user’s e-mail address and a Submit but-

ton. Include a presubmission validation routine that verifies that the text field has the @ symbol
used in all e-mail addresses before you allow submission of the form.

2. Given the string “Internet Explorer”, fill in the blanks of the string.substring() method
parameters here that yield the results shown to the right of each method call.

var myString = “Internet Explorer”;
myString.substring(___,___) // result = “Int”
myString.substring(___,___) // result = “plorer”
myString.substring(___,___) // result = “net Exp”

3. Fill in the rest of the function in the listing that follows so that it looks through every character of
the entry field and counts how many times the letter e appears in the field. (Hint: All that is miss-
ing is a for repeat loop.)

<html>
<head>
<title>Wheel o’ Fortuna</title>
<script type=”text/javascript”>
function countE(form) {

var count = 0;
var inputString = form.mainstring.value.toLowerCase();
missing code
var msg = “The string has “ + count;
msg += “ instances of the letter e.”;
alert(msg);

}
</script>
</head>

<body>
<form>
Enter any string: <input type=”text” name=”mainstring” size=”30”>

<input type=”button” value=”Count the Es” onclick=”countE(this.form)”>
</form>
</body>
</html>

4. Create a page that has two fields and one button. The button should trigger a function that gener-
ates two random numbers between 1 and 6, placing each number in one of the fields. (Think of
using this page as a substitute for rolling a pair of dice in a board game.)

5. Create a page that displays the number of days between today and next Christmas.

117

Strings, Math, and Dates 10

16_069165 ch10.qxp 3/1/07 3:43 PM Page 117

16_069165 ch10.qxp 3/1/07 3:43 PM Page 118

One of the attractive aspects of JavaScript for some applications on the
client is that it allows user actions in one frame or window to influence
what happens in other frames and windows. In this section of the tuto-

rial, you extend your existing knowledge of object references to the realm of mul-
tiple frames and windows.

Frames: Parents and Children
You’ve see in earlier top-level hierarchy illustrations (such as Figure 4-2) that the
window object is at the top of the chart. The window object also has several syn-
onyms, which stand in for the window object in special cases. For instance, in
Chapter 8, you learned that self is synonymous with window when the refer-
ence applies to the same window that contains the script’s document. In this les-
son, you learn the roles of three other references that point to objects behaving as
windows: frame, top, and parent.

Loading an ordinary HTML document into the browser creates a model in the
browser that starts out with one window object and the document it contains.
The top rungs of the hierarchy model are as simple as can be, as shown in Figure
11-1. This is where references begin with window or self (or with document
because the current window is assumed).

119

IN THIS CHAPTER
Relationships among frames in
the browser window

How to access objects and
values in other frames

How to control navigation of
multiple frames

Communication skills between
separate windows

Scripting Frames and
Multiple Windows

17_069165 ch11.qxp 3/1/07 3:43 PM Page 119

FIGURE 11-1

Single-frame window and document hierarchy.

The instant a framesetting document loads into a browser, the browser starts building a slightly different
hierarchy model. The precise structure of that model depends entirely on the structure of the frameset
defined in that framesetting document. Consider the following skeletal frameset definition:

<html>
<frameset cols=”50%,50%”>

<frame name=”leftFrame” src=”somedoc1.html”>
<frame name=”rightFrame” src=”somedoc2.html”>

</frameset>
</html>

This HTML splits the browser window into two frames side by side, with a different document loaded into
each frame. The model is concerned only with structure; it doesn’t care about the relative sizes of the frames
or whether they’re set up in columns or rows.

Framesets establish relationships among the frames in the collection. Borrowing terminology from the
object-oriented programming world, the framesetting document loads into a parent window. Each of the
frames defined in that parent window document is a child frame. Figure 11-2 shows the hierarchical model
of a two-frame environment. This illustration reveals a lot of subtleties about the relationships among
framesets and their frames.

It is often difficult at first to visualize the frameset as a window object in the hierarchy. After all, with the
exception of the URL showing in the Location/Address field, you don’t see anything about the frameset in
the browser. But that window object exists in the object model. Notice, too, that in the diagram the frame-
setting parent window has no document object showing. This may also seem odd, because the window
obviously requires an HTML file containing the specifications for the frameset. In truth, the parent window
has a document object associated with it, but it is omitted from the diagram to better portray the relation-
ships among parent and child windows. A frameset parent’s document cannot contain most of the typical
HTML objects such as forms and controls, so references to the parent’s document are rarely, if ever, used.

120

JavaScript TutorialPart II

17_069165 ch11.qxp 3/1/07 3:43 PM Page 120

FIGURE 11-2

Two-frame window and document hierarchy.

If you add a script to the framesetting document that needs to access a property or method of that window
object, references are like any single-frame situation. Think about the point of view of a script located in
that window. Its immediate universe is the very same window.

Things get more interesting when you start looking at the child frames. Each of these frames contains a
document object whose content you see in the browser window, and the structure is such that each frame’s
document is entirely independent of the other. It is as though each document lived in its own browser win-
dow. Indeed, that’s why each child frame is also a window type of object. A frame has the same kinds of
properties and methods as the window object that occupies the entire browser.

From the point of view of either child window in Figure 11-2, its immediate container is the parent win-
dow. When a parent window is at the top of the hierarchical model loaded in the browser, that window is
also referred to as the top object.

References Among Family Members
Given the frame structure of Figure 11-2, it’s time to look at how a script in any one of those windows can
access objects, functions, or variables in the others. An important point to remember about this facility is
that if a script has access to an object, function, or global variable in its own window, that same item can be
reached by a script from another frame in the hierarchy (provided that both documents come from the same
web server).

A script reference may need to take one of three possible routes in the two-generation hierarchy described
so far: parent to child; child to parent; or child to child. Each of the paths between these windows requires
a different reference style.

121

Scripting Frames and Multiple Windows 11

17_069165 ch11.qxp 3/1/07 3:43 PM Page 121

Parent-to-child references
Probably the least common direction taken by references is when a script in the parent document needs to
access some element of one of its frames. The parent contains two or more frames, which means that the
parent maintains an array of the child frame objects. You can address a frame by array syntax or by the
name you assign to it with the name attribute inside the <frame> tag. In the following examples of refer-
ence syntax, I substitute a placeholder named ObjFuncVarName for whatever object, function, or global
variable you intend to access in the distant window or frame. Remember that each visible frame contains a
document object, which generally is the container of elements you script; be sure that references to the ele-
ments include document. With that in mind, a reference from a parent to one of its child frames follows
any of these models:

[window.]frames[n].ObjFuncVarName
[window.]frames[“frameName”].ObjFuncVarName
[window.]frameName.ObjFuncVarName

Numeric index values for frames are based on the order in which their <frame> tags appear in the frame-
setting document. You will make your life easier, however, if you assign recognizable names to each frame
and use the frame’s name in the reference.

Child-to-parent references
It is not uncommon to place scripts in the parent (in the Head portion) that multiple child frames or multi-
ple documents in a frame use as a kind of script library. By loading in the frameset, these scripts load only
once while the frameset is visible. If other documents from the same server load into the frames over time,
they can take advantage of the parent’s scripts without having to load their own copies into the browser.

From the child’s point of view, the next level up the hierarchy is called the parent. Therefore, a reference
from a child frame to items at the parent level is simply:

parent.ObjFuncVarName

If the item accessed in the parent is a function that returns a value, the returned value transcends the par-
ent/child borders down to the child without hesitation.

When the parent window is also at the top of the object hierarchy currently loaded into the browser, you
can optionally refer to it as the top window, as in:

top.ObjFuncVarName

Using the top reference can be hazardous if for some reason your web page gets displayed in some other
web site’s frameset. What is your top window is not the master frameset’s top window. Therefore, I recom-
mend using the parent reference whenever possible (unless you want to blow away an unwanted framer of
your web site).

Child-to-child references
The browser needs a bit more assistance when it comes to getting one child window to communicate with
one of its siblings. One of the properties of any window or frame is its parent (whose value is null for a
single window). A reference must use the parent property to work its way out of the current frame to a
point that both child frames have in common — the parent, in this case. When the reference is at the parent
level, the rest of the reference can carry on as though it were starting at the parent. Thus, from one child to
one of its siblings, you can use any of the following reference formats:

122

JavaScript TutorialPart II

17_069165 ch11.qxp 3/1/07 3:43 PM Page 122

parent.frames[n].ObjFuncVarName
parent.frames[“frameName”].ObjFuncVarName
parent.frameName.ObjFuncVarName

A reference from the other sibling back to the first looks the same, but the frames[] array index or
frameName part of the reference differs. Of course, much more complex frame hierarchies exist in HTML.
Even so, the object model and referencing scheme provide a solution for the most deeply nested and
gnarled frame arrangement you can think of — following the same precepts you just learned.

Frame-Scripting Tips
One of the first mistakes that frame-scripting newcomers make is writing immediate script statements that
call on other frames while the pages load. The problem here is that you cannot rely on the document load-
ing sequence to follow the frameset source-code order. All you know for sure is that the parent document
begins loading first. Regardless of the order of <frame> tags, child frames can begin loading at any time.
Moreover, a frame’s loading time depends on other elements in the document, such as images or Java
applets.

Fortunately, you can use a certain technique to initiate a script when all the documents in the frameset are
completely loaded. Just as the load event for a window fires when that window’s document is fully loaded,
a parent’s load event fires after the load events in its child frames have fired. Therefore, you can specify an
onload event handler in the <frameset> tag. That handler might invoke a function in the framesetting
document that then has the freedom to tap the objects, functions, or variables of all frames throughout the
object hierarchy.

Make special note that a reference to a frame as a type of window object is quite separate from a reference to
the frame element object. An element object is one of those DOM element nodes in the document node
tree (see Chapter 4). The properties and methods of this node differ from the properties and methods that
accrue to a window-type object. It may be a difficult distinction to grasp, but it’s an important one. The way
you reference a frame — as a window object or element node — determines which set of properties and
methods are available to your scripts. See Chapter 15 for a more detailed introduction to element node
scripting.

If you start with a reference to the frame element object, you can still reach a reference to the document
object loaded into that frame, but the syntax is different, depending on the browser. IE4+ and Safari let you
use the same document reference as for a window; Mozilla-based browsers follow the W3C DOM standard
more closely, using the contentDocument property of the frame element. To accommodate both syntaxes,
you can build a reference as follows:

var docObj;
var frameObj = document.getElementById(“myFrame”);
if (frameObj.contentDocument) {

docObj = frameObj.contentDocument;
} else {

docObj = frameObj.document;
}

123

Scripting Frames and Multiple Windows 11

17_069165 ch11.qxp 3/1/07 3:43 PM Page 123

About iframe Elements
The iframe element is supported as a scriptable object in IE4+, Mozilla-based browsers, and Safari (among
other modern browsers). It is often used as a way to fetch and load HTML from a server without disturbing
the current HTML page. Therefore, it’s not uncommon for an iframe to be hidden from view while scripts
handle all the processing between it and the main document.

An iframe element becomes another member of the current window’s frames collection, but you may also
reference the iframe as an element object through W3C DOM document.getElementById() terminol-
ogy. As with the distinction between the traditional frame-as-window object and DOM element object, a
script reference to the document object within an iframe element object needs special handling. See
Chapter 16 for additional details.

Controlling Multiple Frames: Navigation Bars
If you are enamored of frames as a way to help organize a complex web page, you may find yourself want-
ing to control the navigation of one or more frames from a static navigation panel. Here, I demonstrate
scripting concepts for such control using an application called Decision Helper (which you can find in
Chapter 55 on the CD-ROM). The application consists of three frames (see Figure 11-3). The top-left frame
is one image that has four graphical buttons in it. The goal is to turn that image into a client-side image map
and script it so that the pages change in the right and bottom frames. In the top-right frame, the script loads
an entirely different document along the sequence of five different documents that go in there. In the bot-
tom frame, the script navigates to one of five anchors to display the segment of instructions that applies to
the document loaded in the top-right frame.

FIGURE 11-3

The Decision Helper screen.

124

JavaScript TutorialPart II

17_069165 ch11.qxp 3/1/07 3:43 PM Page 124

Listing 11-1 shows a slightly modified version of the actual file for the Decision Helper application’s naviga-
tion frame. The listing contains a couple of objects and concepts that have not yet been covered in this tuto-
rial, but as you will see, they are extensions to what you already know about JavaScript and objects. To help
simplify the discussion here, I remove the scripting and HTML for the top and bottom buttons of the area
map. In addition, I cover only the two navigation arrows.

LISTING 11-1

A Graphical Navigation Bar

<html>
<head>
<title>Navigation Bar</title>
<script type=”text/javascript”>
<!-- start
function goNext() {

var currOffset = parseInt(parent.currTitle);
if (currOffset < 5) {

currOffset += 1;
parent.entryForms.location.href = “dh” + currOffset + “.htm”;
parent.instructions.location.hash = “help” + currOffset;

} else {
alert(“This is the last form.”);

}
}
function goPrev() {

var currOffset = parseInt(parent.currTitle);
if (currOffset > 1) {

currOffset -= 1;
parent.entryForms.location.href = “dh” + currOffset + “.htm”;
parent.instructions.location.hash = “help” + currOffset;

} else {
alert(“This is the first form.”);

}
}
// end -->
</script>
</head>
<body bgcolor=”white”>
<map name=”navigation”>
<area shape=”rect” coords=”25,80,66,116” href=”javascript:goNext()”>
<area shape=”rect” coords=”24,125,67,161” href=”javascript:goPrev()”>
</map>
<img src=”dhNav.gif” height=”240” width=”96” border=”0” usemap=”#navigation”
alt=”navigation bar”>
</body>
</html>

125

Scripting Frames and Multiple Windows 11

17_069165 ch11.qxp 3/1/07 3:43 PM Page 125

Look first at the HTML section for the Body portion. Almost everything there is standard stuff for defining
client-side image maps. The coordinates define rectangles around each of the arrows in the larger image.
The href attributes for the two areas point to JavaScript functions defined in the Head portion of the docu-
ment. (The javascript: pseudo-URL is covered in Chapter 12.)

In the frameset that defines the Decision Helper application, names are assigned to each frame. The top-
right frame is called entryForms; the bottom frame is called instructions.

Knowing that navigation from page to page in the top-right frame requires knowledge of which page is cur-
rently loaded there, I build some other scripting into both the parent document and each of the documents
that loads into that frame. A global variable called currTitle is defined in the parent document. Its value
is an integer indicating which page of the sequence (1 through 5) is currently loaded. An onload event
handler in each of the five documents (named dh1.htm, dh2.htm, dh3.htm, dh4.htm, and dh5.htm)
assigns its page number to that parent global variable. This arrangement allows all frames in the frameset to
share that value easily.

When a user clicks the right-facing arrow to move to the next page, the goNext() function is called. The
first statement gets the currTitle value from the parent window and assigns it to a local variable:
currOffset. An if...else construction tests whether the current page number is less than 5. If so, the
add-by-value operator adds 1 to the local variable so I can use that value in the next two statements.

In those next two statements, I adjust the content of the two right frames. Using the parent reference to
gain access to both frames, I set the location.href property of the top-right frame to the name of the file
next in line (by concatenating the number with the surrounding parts of the filename). The second state-
ment sets the location.hash property (which controls the anchor being navigated to) to the correspon-
ding anchor in the instructions frame (anchor names help1, help2, help3, help4, and help5).

A click of the left-facing arrow reverses the process, subtracting 1 from the current page number (using the
subtract-by-value operator) and changing the same frames accordingly.

The example shown in Listing 11-1 is one of many ways to script a navigation frame in JavaScript.
Whatever methodology you use, much interaction occurs among the frames in the frameset.

References for Multiple Windows
In Chapter 8, you saw how to create a new window and communicate with it by way of the window object
reference returned from the window.open() method. In this section, I show you how one of those subwin-
dows can communicate with objects, functions, and variables in the window or frame that creates the sub-
window.

Every window object has a property called opener. This property contains a reference to the window or
frame that held the script whose window.open() statement generated the subwindow. For the main
browser window and frames therein, this value is null. Because the opener property is a valid window ref-
erence (when its value is not null), you can use it to begin the reference to items in the original window —
just like a script in a child frame uses parent to access items in the parent document. The parent–child ter-
minology doesn’t apply to subwindows, however.

Listing 11-2 and Listing 11-3 contain documents that work together in separate windows. Listing 11-2 dis-
plays a button that opens a smaller window and loads Listing 11-3 into it. The main window document also
contains a text field that gets filled in when you enter text in a corresponding field in the subwindow.

126

JavaScript TutorialPart II

17_069165 ch11.qxp 3/1/07 3:43 PM Page 126

Again, you may have to turn off pop-up blocking temporarily to experiment with these
examples.

In the main window document, the newWindow() function generates the new window. Because no other
statements in the document require the reference to the new window just opened, the statement does not
assign its returned value to any variable. This is an acceptable practice in JavaScript if you don’t need the
returned value of a function or method.

LISTING 11-2

A Main Window Document

<html>
<head>
<title>Main Document</title>
<script type=”text/javascript”>
function newWindow() {

window.open(“subwind.htm”,”sub”,”height=200,width=200”);
}
</script>
</head>

<body>
<form>
<input type=”button” value=”New Window” onclick=”newWindow()”>

Text incoming from subwindow:
<input type=”text” name=”entry”>
</form>
</body>
</html>

All the action in the subwindow document comes in the onchange event handler of the text field. It assigns
the subwindow field’s own value to the value of the field in the opener window’s document. Remember that
the contents of each window and frame belong to a document. So even after your reference targets a specific
window or frame, the reference must continue helping the browser find the ultimate destination, which is
generally some element of the document.

LISTING 11-3

A Subwindow Document

<html>
<head>
<title>A SubDocument</title>
</head>
<body>

continued

NOTENOTE

127

Scripting Frames and Multiple Windows 11

17_069165 ch11.qxp 3/1/07 3:43 PM Page 127

LISTING 11-3 (continued)

<form onsubmit=”return false”>
Enter text to be copied to the main window:
<input type=”text”
onchange=”opener.document.forms[0].entry.value = this.value”>
</form>
</body>
</html>

Just one more lesson to go before I let you explore all the details elsewhere in the book. I use the final tuto-
rial chapter to show you some fun things you can do with your web pages, such as changing images when
the user rolls the mouse atop a picture.

Exercises
Before answering the first three questions, study the structure of the following frameset for a web site that
lists college courses:

<frameset rows=”85%,15%”>
<frameset cols=”20%,80%”>

<frame name=”mechanics” src=”history101M.html”>
<frame name=”description” src=”history101D.html”>

</frameset>
<frameset cols=”100%”>

<frame name=”navigation” src=”navigator.html”>
</frameset>

</frameset>
</html>

1. Each document that loads into the description frame has an onload event handler in its <body>
tag that stores in the framesetting document’s global variable a course identifier called
currCourse. Write the onload event handler that sets this value to “history101”.

2. Draw a block diagram that describes the hierarchy of the windows and frames represented in the
frameset definition.

3. Write the JavaScript statements located in the navigation frame that loads the file
“french201M.html” into the mechanics frame and the file “french201D.html” into the
description frame.

4. While a frameset is still loading, a JavaScript error message suddenly appears, saying,
“window.document.navigation.form.selector is undefined.” What do you think is happening in
the application’s scripts, and how can you solve the problem?

5. A script in a child frame of the main window uses window.open() to generate a second window.
How can a script in the second window access the location object (URL) of the top (frameset-
ting) window in the main browser window?

128

JavaScript TutorialPart II

17_069165 ch11.qxp 3/1/07 3:43 PM Page 128

The previous eight lessons have been intensive, covering a lot of ground for
both programming concepts and JavaScript. Now it’s time to apply those
fundamentals to learning more advanced techniques. I cover two areas

here. First, I show you how to implement the ever-popular mouse rollover, in
which images swap when the user rolls the cursor around the screen. Then I
introduce you to techniques for modifying a page’s style and content after the
page has loaded.

The Image Object
One of the objects contained by the document is the image object — supported
in all scriptable browsers since the days of NN3 and IE4. Image object refer-
ences for a document are stored in the object model as an array belonging to the
document object. Therefore, you can reference an image by array index or image
name. Moreover, the array index can be a string version of the image’s name.
Thus, all of the following are valid references to an image object:

document.images[n]
document.images[“imageName”]
document.imageName

We are no longer constrained by ancient scriptable browser limitations that
required an image be encased within an a element to receive mouse events. You
may still want to do so if a click is intended to navigate to a new URL, but to use
a visitor’s mouse click to trigger local JavaScript execution, it’s better to let the
img element’s event handlers do all the work.

Interchangeable images
The advantage of having a scriptable image object is that a script can change the
image occupying the rectangular space already occupied by an image. In current

129

IN THIS CHAPTER
How to precache images

How to swap images for mouse
rollovers

Changing stylesheet settings

Modifying Body content
dynamically

Images and Dynamic HTML

18_069165 ch12.qxp 3/1/07 3:43 PM Page 129

browsers, the images can even change size, with surrounding content automatically reflowing around the
resized image.

The script behind this kind of image change is simple enough. All it entails is assigning a new URL to the
img element object’s src property. The size of the image on the page is governed by the height and width
attributes set in the tag as the page loads. The most common image rollovers use the same size of
image for each of the rollover states.

Precaching images
Images take extra time to download from a web server until the images are stored in the browser’s cache. If
you design your page so that an image changes in response to user action, you usually want the same fast
response that users are accustomed to in other programs. Making the user wait seconds for an image to
change can severely detract from enjoyment of the page.

JavaScript comes to the rescue by enabling scripts to load images into the browser’s memory cache without
displaying the image, a technique called precaching images. The tactic that works best is to preload the image
into the browser’s image cache while the page initially loads. Users are less impatient for those few extra sec-
onds as the main page loads than they are waiting for an image to download in response to some mouse
action.

Precaching an image requires constructing an image object in memory. An image object created in memory
differs in some respects from the document img element object that you create with the tag.
Memory-only objects are created by script, and you don’t see them on the page at all. But their presence in
the document code forces the browser to load the images as the page loads. The object model provides an
Image object constructor function to create the memory type of image object as follows:

var myImage = new Image(width, height);

Parameters to the constructor function are the pixel width and height of the image. These dimensions
should match the width and height attributes of the tag. When the image object exists in memory,
you can then assign a filename or URL to the src property of that image object:

myImage.src = “someArt.gif”;

When the browser encounters a statement assigning a URL to an image object’s src property, the browser
fetches and loads that image into the image cache. All the user sees is some extra loading information in the
status bar, as though another image were in the page. By the time the entire page loads, all images generated
in this way are tucked away in the image cache. You can then assign your cached image’s src property or
the actual image URL to the src property of the document image created with the tag:

document.images[0].src = myImage.src;

The change to the image in the document is instantaneous.

Listing 12-1 demonstrates a page that has one tag and a select list that enables you to replace the
image in the document with any of four precached images (including the original image specified for the
tag). If you type this listing, you can obtain copies of the four image files from the companion CD-ROM in
the Chapter 12 directory of listings. (You still must type the HTML and code, however.)

130

JavaScript TutorialPart II

18_069165 ch12.qxp 3/1/07 3:43 PM Page 130

LISTING 12-1

Precaching Images

<html>
<head>

<title>Image Object</title>
<script type=”text/javascript”>
// initialize empty array
var imageLibrary = new Array();
// pre-cache four images
imageLibrary[“image1”] = new Image(120,90);
imageLibrary[“image1”].src = “desk1.gif”;
imageLibrary[“image2”] = new Image(120,90);
imageLibrary[“image2”].src = “desk2.gif”;
imageLibrary[“image3”] = new Image(120,90);
imageLibrary[“image3”].src = “desk3.gif”;
imageLibrary[“image4”] = new Image(120,90);
imageLibrary[“image4”].src = “desk4.gif”;

// load an image chosen from select list
function loadCached(list) {

var img = list.options[list.selectedIndex].value;
document.thumbnail.src = imageLibrary[img].src;

}
</script>

</head>

<body >
<h2>Image Object</h2>

<form>

<select name=”cached” onchange=”loadCached(this)”>
<option value=”image1”>Bands
<option value=”image2”>Clips
<option value=”image3”>Lamp
<option value=”image4”>Erasers

</select>
</form>

</body>
</html>

As the page loads, it executes several statements immediately. These statements create an empty array that is
populated with four new memory image objects. Each image object has a filename assigned to its src prop-
erty. These images are loaded into the image cache as the page loads. Down in the Body portion of the doc-
ument, an tag stakes its turf on the page and loads one of the images as a starting image.

A select element lists user-friendly names for the pictures while housing (in the option values) the names
of image objects already precached in memory. When the user makes a selection from the list, the
loadCached() function extracts the selected item’s value — which is a string index of the image within the

131

Images and Dynamic HTML 12

18_069165 ch12.qxp 3/1/07 3:43 PM Page 131

imageLibrary array. The src property of the chosen image object is assigned to the src property of the
visible img element object on the page, and the precached image appears instantaneously.

Creating image rollovers
A favorite technique to add some pseudoexcitement to a page is to swap button images as the user rolls the
cursor atop them. The degree of change to the image is largely a matter of taste. The effect can be subtle (a
slight highlight or glow around the edge of the original image) or drastic (a radical change of color).
Whatever your approach, the scripting is the same.

When several of these graphical buttons occur in a group, I tend to organize the memory image objects as
arrays, and create naming and numbering schemes that facilitate working with the arrays. Listing 12-2
shows such an arrangement for four buttons that control a slide show. The code in the listing is confined to
the image-swapping portion of the application. This is the most complex and lengthiest listing of the tuto-
rial, so it requires a bit of explanation as it goes along. It begins with a stylesheet rule for each of the img
elements located in a controller container.

LISTING 12-2

Image Rollovers

<head>
<title>Slide Show/Image Rollovers</title>
<style type=”text/css”>

div#controller img {height: 70px; width: 136px; padding: 5px}
</style>
<script type=”text/javascript”>

Only browsers capable of handling image objects should execute statements that precache images. Therefore,
the entire sequence is nested inside an if construction that tests for the presence of the document.images
array. In older browsers, the condition evaluates to undefined, which an if condition treats as false:

if (document.images) {

Image precaching starts by building two arrays of image objects. One array stores information about the
images depicting the graphical button’s off position; the other is for images depicting their on position.
These arrays use strings (instead of integers) as index values. The string names correspond to the names
given to the visible img element objects whose tags come later in the source code. The code is clearer to
read (for example, you know that the offImgArray[“first”] entry has to do with the First button
image). Also, as you see later in this listing, rollover images don’t conflict with other visible images on the
page (a possibility if you rely exclusively on numeric index values when referring to the visible images for
the swapping).

After creating the array and assigning new blank image objects to the first four elements of the array, I go
through the array again, this time assigning file pathnames to the src property of each object stored in the
array. These lines of code execute as the page loads, forcing the images to load into the image cache along
the way:

132

JavaScript TutorialPart II

18_069165 ch12.qxp 3/1/07 3:43 PM Page 132

// precache all ‘off’ button images
var offImgArray = new Array();
offImgArray[“first”] = new Image(136,70);
offImgArray[“prev”] = new Image(136,70);
offImgArray[“next”] = new Image(136,70);
offImgArray[“last”] = new Image(136,70);

// off image array -- set ‘off’ image path for each button
offImgArray[“first”].src = “images/firstoff.png”;
offImgArray[“prev”].src = “images/prevoff.png”;
offImgArray[“next”].src = “images/nextoff.png”;
offImgArray[“last”].src = “images/lastoff.png”;

// precache all ‘on’ button images
var onImgArray = new Array();
onImgArray[“first”] = new Image(136,70);
onImgArray[“prev”] = new Image(136,70);
onImgArray[“next”] = new Image(136,70);
onImgArray[“last”] = new Image(136,70);

// on image array -- set ‘on’ image path for each button
onImgArray[“first”].src = “images/firston.png”;
onImgArray[“prev”].src = “images/prevon.png”;
onImgArray[“next”].src = “images/nexton.png”;
onImgArray[“last”].src = “images/laston.png”;

}

As you can see in the following HTML code, when the user rolls the mouse atop any of the visible docu-
ment image objects, the onmouseover event handler invokes the imageOn() function, passing the name of
the particular image. The imageOn() function uses that name to synchronize the document.images array
entry (the visible image) with the entry of the in-memory array of on images from the onImgArray array.
The src property of the array entry is assigned to the corresponding document image src property. At the
same time, the cursor changes to look like it does over active links.

// functions that swap images & status bar
function imageOn(imgName) {

if (document.images) {
document.images[imgName].style.cursor = “pointer”;
document.images[imgName].src = onImgArray[imgName].src;

}
}

The same goes for the onmouseout event handler, which needs to turn the image off by invoking the
imageOff() function with the same index value.

function imageOff(imgName) {
if (document.images) {

document.images[imgName].style.cursor = “default”;
document.images[imgName].src = offImgArray[imgName].src;

}
}

133

Images and Dynamic HTML 12

18_069165 ch12.qxp 3/1/07 3:43 PM Page 133

Both the onmouseover and onmouseout event handlers set the status bar text to a friendly descriptor — at
least in those browsers that still support displaying custom text in the status bar. The onmouseout event
handler sets the status bar message to an empty string.

function setMsg(msg) {
window.status = msg;
return true;

}

For this demonstration, I disable the functions that control the slide show. But I leave the empty function
definitions here so they catch the calls made by the clicks of the links associated with the images.

// controller functions (disabled)
function goFirst() {
}
function goPrev() {
}
function goNext(){
}
function goLast() {
}

</script>
</head>

<body>
<h1>Slide Show Controls</h1>

I elected to place the controller images inside a div element so that the group could be positioned or styled
as a group. Each img element’s onmouseover event handler calls the imageOn() function, passing the
name of the image object to be swapped. Because both the onmouseover and onmouseout event handlers
require a return true statement to work in older browsers, I combine the second function call (to
setMsg()) with the return true requirement. The setMsg() function always returns true and is com-
bined with the return keyword before the call to the setMsg() function. It’s just a trick to reduce the
amount of code in these event handlers. In later chapters, you will learn how to create event handler func-
tions that can derive the ID of the element receiving the event, allowing you to remove these event handler
assignments from the tags entirely.

<div id=”controller”>
<img src=”images/firstoff.png” name=”first” id=”first”

onmouseover=”imageOn(‘first’); return setMsg(‘Go to first picture’)”
onmouseout=”imageOff(‘first’); return setMsg(‘’)” onclick=”goFirst()”>

<img src=”images/prevoff.png” name=”prev” id=”prev”
onmouseover=”imageOn(‘prev’); return setMsg(‘Go to previous picture’)”
onmouseout=”imageOff(‘prev’); return setMsg(‘’)” onclick=”goPrev()”>

<img src=”images/nextoff.png” name=”next” id=”next”
onmouseover=”imageOn(‘next’); return setMsg(‘Go to next picture’)”
onmouseout=”imageOff(‘next’); return setMsg(‘’)” onclick=”goNext()”>

<img src=”images/lastoff.png” name=”last” id=”last”
onmouseover=”imageOn(‘last’); return setMsg(‘Go to last picture’)”
onmouseout=”imageOff(‘last’); return setMsg(‘’)” onclick=”goLast()”>

</div>
</body>

</html>

134

JavaScript TutorialPart II

18_069165 ch12.qxp 3/1/07 3:43 PM Page 134

You can see the results of this lengthy script in Figure 12-1. As the user rolls the mouse atop one of the
images, it changes from a light to dark color by swapping the entire image. You can access the image files on
the CD-ROM, and I encourage you to enter this lengthy listing and see the magic for yourself.

FIGURE 12-1

Typical mouse rollover image swapping.

Rollovers Without Scripts
As cool as the rollover effect is, thanks to CSS technology, you don’t always need JavaScript to accomplish
rollover dynamism. You can blend CSS with JavaScript to achieve the same effect. Listing 12-3 demonstrates
a version of Listing 12-2 but using CSS for the rollover effect, whereas JavaScript still handles the control of
the slide show.

The HTML for the buttons consists of li elements that are sized and assigned background images of the off
versions of the buttons. The text of each li element is surrounded by an a element so that CSS :hover
pseudoelements can be assigned. (Internet Explorer through version 7 requires this, whereas W3C DOM
browsers recognize :hover for all elements.) When the cursor hovers atop an a element, the background
image changes to the on version. Note, too, that onclick event handler assignments have been moved to
the script portion of the page, where they are performed after the page loads (to make sure the elements
exist).

LISTING 12-3

CSS Image Rollovers

<html>
<head>

<title>Slide Show/Image Rollovers</title>
<style type=”text/css”>

#controller {position: relative}

continued

135

Images and Dynamic HTML 12

18_069165 ch12.qxp 3/1/07 3:43 PM Page 135

LISTING 12-3 (continued)

#controller li {position: absolute; list-style: none; display: block;
height: 70px; width: 136px}

#controller a {display: block; text-indent: -999px; height: 70px}

#first {left: 0px}
#prev {left: 146px}
#next {left: 292px}
#last {left: 438px}

#first a {background-image: url(“images/firstoff.png”)}
#first a:hover {background-image: url(“images/firston.png”)}
#prev a {background-image: url(“images/prevoff.png”)}
#prev a:hover {background-image: url(“images/prevon.png”)}
#next a {background-image: url(“images/nextoff.png”)}
#next a:hover {background-image: url(“images/nexton.png”)}
#last a {background-image: url(“images/lastoff.png”)}
#last a:hover {background-image: url(“images/laston.png”)}

</style>
<script type=”text/javascript”>

// controller functions (disabled)
function goFirst() {
}
function goPrev() {
}
function goNext(){
}
function goLast() {
}

// event handler assignments
function init() {

if (document.getElementById) {
document.getElementById(“first”).onclick = goFirst;
document.getElementById(“prev”).onclick = goPrev;
document.getElementById(“next”).onclick = goNext;
document.getElementById(“last”).onclick = goLast;

}
}
window.onload = init;

</script>
</head>

<body>
<h1>Slide Show Controls</h1>
<ul id=”controller”>

<li id=”first”>First
<li id=”prev”>Previous

136

JavaScript TutorialPart II

18_069165 ch12.qxp 3/1/07 3:43 PM Page 136

<li id=”next”>Next
<li id=”last”>Last

</body>

</html>

The need to wrap the li element text (which the CSS shifts completely offscreen, because we don’t need the
text) for Internet Explorer forces scripters to address further considerations. In this application, a click of an
li element is intended to run a local script, not load an external URL. But the a element’s default behavior
is to load another URL. The # placeholder shown in Listing 12-3 causes the current page to reload, which
will wipe away any activity of the onclick event handler function. It is necessary, therefore, to equip each
of the slide-show navigation functions with some extra code lines that prevent the a element from executing
its default behavior. You’ll learn how to do that in Chapter 25 (it requires different syntax for incompatible
the W3C DOM and IE event models).

One other note about the CSS approach in Listing 12-3 is that there is no image precaching taking place.
You could add the precaching code for the on images from Listing 12-2 to get the alternative background
images ready for the browser to swap. That’s a case of CSS and JavaScript really working together.

The javascript: Pseudo-URL
You have seen instances in previous chapters of applying what is called the javascript: pseudo-URL to
the href attributes of <a> and <area> tags. This technique should be used sparingly at best, especially for
public web sites that may be accessed by users with nonscriptable browsers (for whom the links will be
inactive).

The technique was implemented to supplement the onclick event handler of objects that act as hyper-
links. Especially in the early scripting days, when elements such as images had no event handlers of their
own, hyperlinked elements surrounding those inactive elements allowed users to appear to interact directly
with elements such as images. When the intended action was to invoke a script function (rather than navi-
gate to another URL, as is usually the case with a hyperlink), the language designers invented the
javascript: protocol for use in assignments to the href attributes of hyperlink elements (instead of leav-
ing the required attribute empty).

When a scriptable browser encounters an href attribute pointing to a javascript: pseudo-URL, the
browser executes the script content after the colon when the user clicks the element. For example, the a ele-
ments of Listing 12-3 could have been written to point to javascript: pseudo-URLs that invoke script
functions on the page, such as:

Note that the javascript: protocol is not a published standard, despite its wide adoption by browser
makers. In a public web site that may be accessed by visitors with accessibility concerns (and potentially by
browsers having little or no JavaScript capability), a link should point to a server URL that performs an
action (for example, through a server program), which in turn replicates what client-side JavaScript does
(faster) for visitors with scriptable browsers.

137

Images and Dynamic HTML 12

18_069165 ch12.qxp 3/1/07 3:43 PM Page 137

Popular Dynamic HTML Techniques
Because today’s scriptable browsers uniformly permit scripts to access each element of the document and
automatically reflow the page’s content when anything changes, a high degree of dynamism is possible in
your applications. Dynamic HTML (DHTML) is a very deep subject, with lots of browser-specific peculiari-
ties. In this section of the tutorial, you will learn techniques that work in Internet Explorer and W3C DOM-
compatible browsers. I’ll focus on two of the most common tasks for which DHTML is used: changing
element styles and modifying Body content.

Changing stylesheet settings
Each element that renders on the page (and even some elements that don’t) has a property called style.
This property provides script access to all CSS properties supported for that element by the current browser.
Property values are the same as those used for CSS specifications — frequently, a different syntax from simi-
lar settings that used to be made by HTML tag attributes. For example, if you want to set the text color of a
blockquote element whose ID is FranklinQuote, the syntax is

document.getElementById(“FranklinQuote”).style.color = “rgb(255, 255, 0)”;

Because the CSS color property accepts other ways of specifying colors (such as the traditional hexadeci-
mal triplet — #ffff00), you may use those as well.

Some CSS property names, however, do not conform to JavaScript naming conventions. Several CSS prop-
erty names contain hyphens. When that occurs, the scripted equivalent of the property compresses the
words and capitalizes the start of each word. For example, the CSS property font-weight would be set in
script as follows:

document.getElementById(“highlight”).style.fontWeight = “bold”;

A related technique puts more of the design burden on the CSS code. For example, if you define CSS rules
for two different classes, you can simply switch the class definition being applied to the element by way of
the element object’s className property. Let’s say you define two CSS class definitions with different back-
ground colors:

.normal {background-color: #ffffff}

.highlighted {background-color: #ff0000}

In the HTML page, the element first receives its default class assignment as follows:

<p id=”news” class=”normal”>...</p>

A script statement can then change the class of that element object so that the highlighted style applies to it:

document.getElementById(“news”).className = “highlighted”;

Restoring the original class name also restores its look and feel. This approach is also a quick way to change
multiple style properties of an element with a single statement.

Dynamic content via W3C DOM nodes
In Chapter 8, you saw the document.createElement() and document.createTextNode() methods in
action. These methods create new document object model (DOM) objects out of thin air, which you may
then modify by setting properties (attributes) prior to plugging the new stuff into the document tree for all
to see.

138

JavaScript TutorialPart II

18_069165 ch12.qxp 3/1/07 3:43 PM Page 138

As an introduction to this technique, I’ll demonstrate the steps you would go through to add an element
and its text to a placeholding span element on the page. In this example, a paragraph element belonging to
a class called centered will be appended to a span whose ID is placeholder. Some of the text for the
content of the paragraph comes from a text field in a form (the visitor’s first name). Here is the complete
sequence:

var newElem = document.createElement(“p”);
newElem.className = “centered”;
var newText = document.createTextNode(“Thanks for visiting, “ +

document.forms[0].firstName.value);
// insert text node into new paragraph
newElem.appendChild(newText);
// insert completed paragraph into placeholder
document.getElementById(“placeholder”).appendChild(newElem);

The W3C DOM approach takes a lot of tiny steps to create, assemble, and insert the pieces into their desti-
nations. After the element and text nodes are created, the text node must be inserted into the element node.
Because the new element node is empty when it is created, the DOM appendChild() method plugs the
text node into the element (between its start and end tags, if you could see the tags). When the paragraph
element is assembled, it is inserted at the end of the initially empty span element. Additional W3C DOM
methods (described in Chapter 15 and Chapter 16) provide more ways to insert, remove, and replace
nodes.

Dynamic content through the innerHTML property
Prior to the W3C DOM specification, Microsoft invented a property of all element objects: innerHTML. This
property first appeared in Internet Explorer 4 and became popular due to its practicality. The property’s
value is a string containing HTML tags and other content, just as it would appear in an HTML document
inside the current element’s tags. Even though the W3C DOM working group did not implement this prop-
erty for the published standard, the property proved to be too practical and popular for modern browser
makers to ignore. You can find it implemented as a de facto standard in Mozilla-based browsers and Safari,
among others.

To show you the difference in the approach, the following code example shows the same content creation
and insertion as shown in the previous W3C DOM section, but this time with the innerHTML property:

// accumulate HTML as a string
var newHTML = “<p class=’centered’>Thanks for visiting, “;
newHTML += document.forms[0].firstName.value;
newHTML += “</p>”;
// blast into placeholder element’s content
document.getElementById(“placeholder”).innerHTML = newHTML;

Although the innerHTML version seems more straightforward — and makes it easier for HTML coders to
visualize what’s being added — the more code-intensive DOM node approach is more efficient when the
Body modification task entails lots of content. Extensive JavaScript string concatenation operations can slow
browser script processing. Sometimes, the shortest script is not necessarily the fastest.

And so ends the final lesson of the JavaScript Bible tutorial. If you have gone through every lesson and tried
your hand at the exercises, you are ready to dive into the rest of the book to learn the fine details and many
more features of both the DOM and the JavaScript language. You can work sequentially through the chap-
ters of Parts III and IV, but before too long, you should also take a peek at Chapter 45 on the CD-ROM to
learn some debugging techniques that help the learning process.

139

Images and Dynamic HTML 12

18_069165 ch12.qxp 3/1/07 3:43 PM Page 139

Exercises
1. Explain the difference between a document img element object and the memory type of an image

object.

2. Write the JavaScript statements needed to precache an image file named jane.jpg that later will
be used to replace the document image defined by the following HTML:

3. With the help of the code you wrote for question 2, write the JavaScript statement that replaces
the document image with the memory image.

4. Backward-compatible img element objects do not have event handlers for mouse events. How do
you trigger scripts needed to swap images for mouse rollovers?

5. Assume that a table element contains an empty table cell (td) element whose ID is
forwardLink. Using W3C DOM node creation techniques, write the sequence of script state-
ments that create and insert the following hyperlink into the table cell:

Next Page

140

JavaScript TutorialPart II

18_069165 ch12.qxp 3/1/07 3:43 PM Page 140

Document Objects
Reference

IN THIS PART
Chapter 13
JavaScript Essentials

Chapter 14
Document Object Model Essentials

Chapter 15
Generic HTML Element Objects

Chapter 16
Window and Frame Objects

Chapter 17
Location and History Objects

Chapter 18
The Document and Body Objects

Chapter 19
Link and Anchor Objects

Chapter 20
Image, Area, Map, and Canvas Objects

Chapter 21
The Form and Related Objects

Chapter 22
Button Objects

Chapter 23
Text-Related Form Objects

Chapter 24
Select, Option, and File Upload
Objects

Chapter 25
Event Objects

Chapter 26
Style Sheet and Style Objects

Chapter 27
AJAX and XML

19_069165 pt03.qxp 3/1/07 3:43 PM Page 141

19_069165 pt03.qxp 3/1/07 3:43 PM Page 142

W henever JavaScript is discussed in the context of the web browser
environment, it is sometimes difficult to distinguish between
JavaScript the scripting language and the objects that you use the

language to control. Even so, it’s important to separate the language from the
object model just enough to help you make important design decisions when
considering JavaScript-enhanced pages. You may come to appreciate the separa-
tion in the future if you use JavaScript for other object models, such as server-
side programming or scripting Flash animations. All the basics of the language
are identical. Only the objects differ.

This chapter elaborates on many of the fundamental subjects about the core
JavaScript language raised throughout the tutorial (Part II), particularly as they
relate to deploying scripts in a world in which visitors to your pages may use a
wide variety of browsers. Along the way, you receive additional insights into the
language itself. Fortunately, browser differences as they apply to JavaScript have
lessened considerably as modern browsers continue to inch closer to consistently
supporting the JavaScript (ECMAScript) standard. You can find details about the
JavaScript core language syntax in Part IV.

JavaScript Versions
The JavaScript language has its own numbering system, which is completely
independent of the version numbers assigned to browsers. The Mozilla
Foundation, successor to the Netscape browser development group that created
the language, continues its role as the driving force behind the JavaScript version
numbering system.

The first version, logically enough, was JavaScript 1.0. This was the version
implemented in Navigator 2 and the first release of Internet Explorer 3. As the
language evolved with succeeding browser versions, the JavaScript version num-
ber incremented in small steps. JavaScript 1.2 is the version that has been the

143

IN THIS CHAPTER
JavaScript language versions

How to separate the language
from the document object model

Where scripts go in your
documents

Language highlights for
experienced programmers

JavaScript Essentials

20_069165 ch13.qxp 3/1/07 3:44 PM Page 143

most long lived and stable, currently supported by Internet Explorer 7. Mozilla-based browsers and others
have inched forward with some new features in JavaScript 1.5 (Mozilla 1.0 and Safari), JavaScript 1.6
(Mozilla 1.8 browsers), and JavaScript 1.7 (Mozilla 1.8.1 and later).

Each successive generation of JavaScript employs additional language features. For example, in JavaScript
1.0, arrays were not developed fully, causing scripted arrays not to track the number of items in the array.
JavaScript 1.1 filled that hole by providing a constructor function for generating arrays and an inherent
length property for any generated array.

The JavaScript version implemented in a browser is not always a good predictor of core language features
available for that browser. For example, although JavaScript 1.2 (as implemented by Netscape in Netscape
Navigator 4) included broad support for regular expressions, not all of those features appeared in
Microsoft’s corresponding JScript implementation in Internet Explorer 4. By the same token, Microsoft
implemented try-catch error handling in its JScript in Internet Explorer 5, but Netscape didn’t include
that feature until the Mozilla-based Netscape Navigator 6 implementation of JavaScript 1.5. Therefore, the
language version number is an unreliable predictor in determining which language features are available for
you to use.

Core Language Standard: ECMAScript
Although Netscape first developed the JavaScript language, Microsoft incorporated the language in Internet
Explorer 3. Microsoft did not want to license the Java name from its trademark owner (Sun Microsystems),
which is why the language became known in the Internet Explorer environment as JScript. Except for some
very esoteric exceptions and the pace of newly introduced features, the two languages are essentially identi-
cal. The levels of compatibility between browser brands for a comparable generation are remarkably high
for the core language (unlike the vast disparities in object model implementations discussed in Chapter 14).

As mentioned in Chapter 2, standards efforts have been under way to create industrywide recommendations
for browser makers to follow (to make developers’ lives easier). The core language was among the first com-
ponents to achieve standard status. Through the European standards body called ECMA, a formal standard
for the language was agreed to and published. The first specification for the language, dubbed ECMAScript
by the standards group, was roughly the same as JavaScript 1.1 in Netscape Navigator 3. The standard
defines how various data types are treated, how operators work, what a particular data-specific syntax looks
like, and other language characteristics. A newer version (called version 3) added many enhancements to
the core language (version 2 was version 1 with errata fixed). The current version of ECMAScript is known
as ECMA-262, and you can access its specification at http://www.ecma-international.org/. If you
are a student of programming languages, you will find the document fascinating; if you simply want to
script your pages, you will probably find the minutia mind-boggling.

All mainstream browser developers have pledged to make their browsers compliant with the ECMA stan-
dard. The vast majority of the ECMAScript standard has appeared in Navigator since version 3 and Internet
Explorer since version 4, and as new features are added to the ECMA standard, they tend to find their way
into newer browsers as well. The latest version of ECMAScript is version 3, which has been supported in all
mainstream browsers for the past few years.

Version 4 of ECMAScript is currently in the works, along with comparable implementations of
JavaScript 2.0 and JScript by The Mozilla Foundation and Microsoft, respectively. An extension

to ECMAScript called E4X (ECMAScript for XML) was finalized in late 2005 and is implemented in browsers
based on Mozilla 1.8.1 or later (for example, Firefox 2.0). The Adobe ActionScript 3 language, which is used
in the development of Flash animations, fully supports E4X.

NOTENOTE

144

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 144

Embedding Scripts in HTML Documents
Scriptable browsers offer several ways to include scripts or scripted elements in your HTML documents.
Not all approaches are available in all versions of every browser, but you have sufficient flexibility starting
with Navigator 3 and some versions of Internet Explorer 3. When you consider that a healthy percentage of
computer users are now using browsers released within the past few years, it’s safe to assume a core level of
script support among web users. Exceptions to this rule include users who have specifically turned off
scripting in their browsers, some organizations that install browsers with scripting turned off, users with
physical disabilities who require specialized browsers, and users with mobile devices that have limited or no
script support. You should not forget these users when designing JavaScript in your pages; you want the
core information conveyed by your pages to reach all visitors, and scripting should enhance the experience
or convenience of those visiting with suitably equipped scriptable browsers.

<script> tags
The simplest and most compatible way to include script statements in an HTML document is inside a
<script>. . .</script> tag set that specifies the scripting language through the type attribute. You can
have any number of such tag sets in your document. For example, you can define some functions in the
Head section to be called by event handlers in HTML tags within the Body section. Another tag set can reside
within the Body section to write part of the content of the page as the page loads. Place only script statements
and comments between the start and end tags of the tag set. Do not place any HTML tags inside unless they
are part of a string parameter to a document.write() statement that creates content for the page.

Every opening <script> tag should specify the type attribute. Because the <script> tag is a generic tag
indicating that the contained statements are to be interpreted as executable script and not renderable
HTML, the tag is designed to accommodate any scripting language the browser knows.

Specifying the language version
Browsers starting with Internet Explorer 5, Mozilla 1 (Moz1), and Saf1 support the type attribute of the
<script> tag. This attribute accepts the type of a script as a MIME type. For example, the MIME type of
JavaScript is specified as type=”text/javascript”. So a <script> block for JavaScript is coded as follows:

<script type=”text/javascript”>...</script>

The type attribute is required for the <script> tag as of HTML 4. Earlier versions of HTML and, therefore,
earlier browsers recognize the language=”JavaScript” attribute setting as opposed to type. The
language attribute allows the scripter to write for a specific minimum version of JavaScript or, in the case
of Internet Explorer, other languages, such as VBScript. For example, the JavaScript interpreter built into
Navigator 3 knows the JavaScript 1.1 version of the language; Navigator 4 and Internet Explorer 4 include
the JavaScript 1.2 version. For versions beyond the original JavaScript, you may specify the language ver-
sion by appending the version number after the language name without any spaces, as in:

<script language=”JavaScript1.1”>...</script>

<script language=”JavaScript1.2”>...</script>

It’s important to note that the language attribute was deprecated in HTML 4, with the type attribute being
the recommended way of specifying the scripting language for <script> tags. However, the type attribute
didn’t gain browser support until Internet Explorer 5, Mozilla, and W3C DOM–compatible browsers, which

145

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 145

leaves legacy browsers in the dark if you use type by itself. To be both backward compatible and forward
looking, you can specify both the language and type attributes in your <script> tags, because older
browsers ignore the type attribute. Following is an example of how you might do this:

<script type=”text/javascript” language=”JavaScript 1.5”>...</script>

Of course, if you’re depending on features in JavaScript 1.5, you’ve forgone legacy browsers anyway. In this
case, just take the forward-looking approach and use the type attribute by itself.

<script for> tags
Internet Explorer 4 (and later) browsers offer a variation on the <script> tag that binds statements of a
<script> tag to a specific object and event generated by that object. In addition to the language specifica-
tion, the tag’s attributes must include for and event attributes (not part of the HTML 4.0 specification).
The value assigned to the for attribute is a reference to the desired object. Most often, this is simply the
identifier assigned to the object’s id attribute. (Since version 4, Internet Explorer enables you to reference
an object by either document.all.objectID or just objectID.) The event attribute is the event handler
name that you want the script to respond to. For example, if you design a script to perform some action
upon a mousedown event in a paragraph whose ID is myParagraph, the script statements are enclosed in
the following tag set:

<script for=”myParagraph” event=”onmousedown” type=”text/javascript”>
...
</script>

Statements inside the tag set execute only upon the firing of the event. No function definitions are required.

This way of binding an object’s event to a script means that there is no event handler defined in the ele-
ment’s tag. Therefore, it guarantees that only Internet Explorer 4 or later can carry out the script when the
event occurs. But the tag and attributes contain a lot of source code overhead for each object’s script, so this
is not a technique you should use for script statements that need to be called by multiple objects.

Also be aware that you cannot use this tag variation if non–Internet Explorer or pre–Internet Explorer 4
browsers load the page. In such browsers, script statements execute as the page loads, which certainly
causes script errors.

Hiding script statements from older browsers
It’s wonderful news that the number of people using old web browsers that don’t support scripting lan-
guages is rapidly approaching zero. However, new devices, such as mobile phones and pocket-size comput-
ers, often employ compact browsers that don’t have built-in JavaScript interpreters. So in some ways,
mobile devices have sent JavaScript developers back to the drawing board in terms of crafting pages that
gracefully degrade when scripting isn’t supported.

Nonscriptable browsers do not know about the <script> tag. Normally, browsers ignore tags that they
don’t understand. That’s fine when a tag is just one line of HTML, but a <script> tag delineates any num-
ber of script statement lines in a document. Old and compact browsers don’t know to expect a closing
</script> tag. Therefore, their natural inclination is to render any lines they encounter after the opening
<script> tag. Unfortunately, this places script code squarely in the rendered document — sure to confuse
anyone who sees such gibberish on the page.

You can, however, exercise a technique that tricks most nonscriptable browsers into ignoring the script
statements: surround the script statements (inside the <script> tag set) with HTML comment markers. An

146

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 146

HTML comment begins with the sequence <!-- and ends with -->. Therefore, you should embed these
comment sequences in your scripts according to the following format:

<script type=”text/javascript”>
<!--
script statements here
//-->
</script>

JavaScript interpreters know to ignore a line that begins with the HTML beginning comment sequence, but
they need a little help with the ending sequence. The close of the HTML comment starts with a JavaScript
comment sequence (//). This tells JavaScript to ignore the line; but a nonscriptable browser sees the ending
HTML symbols and begins rendering the page with the next HTML tag or other text in the document. An
older browser doesn’t know what the </script> tag is, so the tag is ignored, and rendering begins after
that.

Even with the assumption that most users have modern browsers, mobile devices put you in the position of
still having to account for the potential lack of script support. That’s why if you design your pages for public
access, it’s still a good idea to include these HTML comment lines in all your <script> tag sets. Make sure
they go inside the tags, not outside. Also note that most of the script examples in this book do not include
these comments for the sake of saving space in the listings.

Hiding scripts entirely?
It may be misleading to say that this HTML comment technique hides scripts from older browsers. In truth,
the comments hide the scripts from being rendered by the browsers. The tags and script statements, how-
ever, are still downloaded to the browser and appear in the source code when viewed by the user.

A common wish among authors is to truly hide scripts from visitors to a page. Client-side JavaScript must
be downloaded with the page and, therefore, is visible in the source view of pages. There are, of course,
some tricks you can implement that may disguise client-side scripts from prying eyes. The most easily
implemented technique is to let the downloaded page contain no visible elements — only scripts that
assemble the page that the visitor sees. Source code for such a page is simply the HTML for the page. But
that page is not interactive, because no scripting is attached unless it is written as part of the page — defeat-
ing the goal of hiding scripts. Any scripted solution for disguising scripts is immediately defeatable by the
user turning off scripting temporarily before downloading the page. All of your code is ready for source
view.

If you are worried about other scripters stealing your scripts, your best protection is to include a copyright
notification in your page’s source code. Not only are your scripts visible to the world, but so are a thief’s
scripts. This way, you can easily see when someone lifts your scripts verbatim.

One other option for minimizing other people “borrowing” your JavaScript code is to use a
JavaScript obfuscator, which is a special application that scrambles your code and makes it

much harder to read and understand. The code still works fine, but it is very hard to modify in any way. You
would use an obfuscator just before placing your code online, making sure to keep the original version for
making changes. A couple of JavaScript obfuscators that you might want to consider are Jasob (http://
www.jasob.com/) and JavaScript Obfuscator (http://www.stunnix.com/prod/jo/).

NOTENOTE

147

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 147

Hiding scripts from XHTML validators
If you are developing your pages in compliance with the XML version of HTML (a standard called XHTML),
some common characters you use in scripts — notably, the less-than (<) and ampersand (&) symbols — are
illegal in the XML world. When you attempt to run your XHTML code through a validation service that
tests for standard compliance, scripts will likely cause the validator to complain.

To get around this problem, you can encase your script statements in what is known as a CDATA (pro-
nounced “see-day-tah”) section. The syntax might look a little strange, with all the square brackets, but it is
the prescribed way to include such a section within a <script> tag, as follows:

<script type=”text/javascript” language=”JavaScript”>
// <![CDATA[

// script statements here
//]]>
</script>

XML validators know that a CDATA section can contain all kinds of non-XML code and thus ignore their
contents. The leading JavaScript comment symbols in front of the start and end portions let JavaScript inter-
preters ignore the XML markup (which otherwise would generate script errors). That’s some of the fun web-
page developers get to work with when making multiple standards work with one another.

Script libraries (.js files)
If you do a lot of scripting or script a lot of pages for a complex web application, you will certainly develop
some functions and techniques that you can use for several pages. Rather than duplicate the code in all
those pages (and go through the nightmare of making changes to all copies for new features or bug fixes),
you can create reusable script library files and link them to your pages.

Such an external script file contains nothing but JavaScript code — no <script> tags, no HTML. By remov-
ing the script code from the HTML document, you no longer have to worry about comment hiding or
CDATA section tricks.

The script file you create must be a text-only file, but its filename must end with the two-character exten-
sion .js. To instruct the browser to load the external file at a particular point in your regular HTML file,
you add a src attribute to the <script> tag as follows:

<script type=”text/javascript” src=”hotscript.js”></script>

This kind of tag should be the first <script> tag in the Head it loads before any other in-document
<script> tags load. If you load more than one external library, include a series of these tag sets at the top
of the document.

Take notice of two features about this external script tag construction. First, the <script> </script> tag
pair is required, even though nothing appears between them. You can mix <script> tag sets that specify
external libraries with in-document scripts in the same document. Second, avoid putting other script state-
ments between the start and end tags when the start tag contains a src attribute.

How you reference the source file in the src attribute depends on its physical location and your HTML
coding style. In the preceding example, the .js file is assumed to reside in the same directory as the HTML
file containing the tag. But if you want to refer to an absolute URL, the protocol for the file is http:// (just
as with an HTML file):

<script type=”text/javascript” src=”http://www.cool.com/hotscript.js”></script>

148

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 148

A very important prerequisite for using script libraries with your documents is that your web server soft-
ware must know how to map files with the .js extension to a MIME type of application/x-
javascript. If you plan to deploy JavaScript in this manner, be sure to test a sample on your web server
beforehand and arrange for any necessary server configuration adjustments.

When a user views the source of a page that links in an external script library, code from the .js file does
not appear in the window, even though the browser treats the loaded script as part of the current document.
However, the name or URL of the .js file is plainly visible (displayed exactly as it appears in your source
code). Anyone can then turn off JavaScript in the browser and open that file (using the http:// protocol)
to view the .js file’s source code. In other words, an external JavaScript source file is no more hidden from
view than JavaScript embedded directly in an HTML file.

Browser Version Detection
Without question, the biggest challenge facing many client-side scripters is how to program an application
that accommodates a wide variety of browser versions and brands, each one of which can bring its own
quirks and bugs. Happy is the intranet developer who knows for a fact that the company has standardized
its computers with a particular brand and version of browser. But that is a rarity, especially in light of the
concept of the extranet — private corporate networks and applications that open for access to the company’s
suppliers and customers.

Scripters have used many techniques to deal with different browsers and versions through the years.
Unfortunately, as the matrix of versions and scriptable features grew, many of the old techniques proved to
be cumbersome, if not troublesome. Having learned from these experiences, the scripting community has
sensibly reduced the clutter to two basic approaches to working with a wide range of browsers. In the end,
both approaches assist you in designing pages that convey the basic information that all visitors — script-
enabled or not — should be able to view and then use scripting to enhance that basic content with addi-
tional features or conveniences. In other words, you create one page and let the browser determine how
many extra bells and whistles are available for the visitor.

Coding for nonscriptable browsers
Very often, the first decision an application must make is whether the client accessing the site is JavaScript-
enabled. Non-JavaScript-enabled browsers fall into two categories: JavaScript-capable browsers that have
JavaScript turned off in the preferences and browsers that have no built-in JavaScript interpreter.

Except for some of the earliest releases of NN2, all JavaScript-capable browsers have a preferences setting to
turn off JavaScript (and a separate one for Java). You should know that even though JavaScript is turned on
by default in most browsers, many institutional deployments turn it off when the browser is installed on
client machines. The reasons behind this MIS deployment decision vary from scares about Java security vio-
lations incorrectly associated with JavaScript, valid JavaScript security concerns on some browser versions,
and the fact that some firewalls try to filter JavaScript lines from incoming HTML streams.

All JavaScript-capable browsers include a set of <noscript>. . .</noscript> tags to balance the
<script>. . .</script> tag set. If one of these browsers has JavaScript turned off, the <script> tag is
ignored, but the <noscript> tag is observed. As with the <noframes> tag, you can use the body of a
<noscript> tag set to display HTML that lets users know JavaScript is turned off; therefore, the full benefit
of the page isn’t available unless they turn on JavaScript. Listing 13-1 shows a skeletal HTML page that uses
these tags.

149

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 149

LISTING 13-1

Employing the <noscript> Tag

<html>
<head>

<title>Some Document</title>
<script type=”text/javascript”>

// script statements
</script>

</head>

<body>
<noscript>Your browser has JavaScript turned off.

You will experience a more enjoyable time at this Web site if you
turn JavaScript on.
<hr /></noscript>

<h2>The body of your document.</h2>
</body>
</html>

You can display any standard HTML within the <noscript> tag set. An icon image is a colorful way to
draw the user’s attention to the special advice at the top of the page. If your document is designed to create
content dynamically in one or more places in the document, you may have to include a <noscript> tag set
after more than one <script> tag set to let users know what they’re missing. Do not include the HTML
comment tags that you use in hiding JavaScript statements from older browsers; their presence inside the
<noscript> tags prevents the HTML from rendering.

Scripting for different browsers
Concerns over cross-browser compatibility reign supreme in most scripters’ minds. Even though the most
recent browsers are doing a decent job of providing a workable lowest common denominator of scriptabil-
ity, you will likely still have to consider a small, but not insignificant, percentage of visitors with less-than-
modern browsers. The first step in planning for compatibility is determining what your goals are for various
visitor classes.

Establishing goals
After you map out what you’d like your scripts to do, you must look at the implementation details to see
which browser is required for the most advanced aspect of the application. For example, if the design calls
for image swapping on mouse rollovers, that feature requires Netscape Navigator 3 or later and Internet
Explorer 4 or later, which is a given these days except in some mobile browsers. In implementing Dynamic
HTML (DHTML) features, you potentially have three different ways to implement tricks (such as movable
elements or changeable content), because the document object model (DOMs) require different scripting
(and sometimes HTML) for Netscape Navigator 4; Internet Explorer 4 and later; and the W3C DOM imple-
mented in Mozilla, Internet Explorer 5 and later, Safari, and other recent browsers.

In an ideal scenario, you have an appreciation for the kinds of browsers that your visitors use. For example,
if you want to implement some DHTML features, you should be fine designing for Internet Explorer 4 or

150

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 150

later, Mozilla, Safari, and W3C DOM treat Netscape Navigator 4 as though it were nonscriptable. Or you
may wish to forget the past and design your DHTML exclusively for W3C DOM–compatible browsers, in
which case Internet Explorer 5.5 is the minimum on the Internet Explorer side of things. Even this is a rea-
sonable approach, considering how many users now have a modern browser. If your web hosting service
maintains a log of visitor activity to your site, you can study the browsers listed among the hits to see which
browsers your visitors use.

After you determine the lowest common denominator for the optimum experience, you must decide how
gracefully you want to degrade the application for visitors whose browsers do not meet the common
denominator. For example, if you plan a page or site that requires a W3C DOM–compatible browser for all
the fancy doodads, you can provide an escape path with content in a simple format that every browser from
the text-based Lynx to anything older than Internet Explorer 6 can view.

In case you have a notion of creating an application or site that has multiple paths for viewing the same
content, it may sound good at the outset, but don’t forget that maintenance chores lie ahead as the site
evolves. Will you have the time, budget, and inclination to keep all paths up to date? Despite whatever
good intentions a designer of a new web site may have, in my experience, the likelihood that a site will be
maintained properly diminishes rapidly with the complexity of the maintenance task.

Object detection
The methodology of choice by far for implementing browser version branching is known as object detection.
The principle is simple: If an object type exists in the browser’s object model, it is safe to execute script
statements that work with that object.

Perhaps the best example of object detection is the way scripts can swap images on a page in browsers with-
out tripping up on the oldest browsers that don’t implement images as objects. In a typical image swap,
onmouseover and onmouseout event handlers (assigned to a link surrounding an image, to be backward
compatible) invoke functions that change the src property of the desired image. Each of those functions is
invoked for all scriptable browsers, but you want them to run their statements only when images can be
treated as objects.

Object models that implement images always include an array of image objects belonging to the document
object. The document.images array always exists, even with a length of zero when no images are on the
page. Therefore, if you wrap the image-swapping statements inside an if construction that lets browsers
pass only if the document.images array exists, older browsers simply skip the statements:

function imageSwap(imgName, url) {
if (document.images) {

document.images[imgName].src = url;
}

}

Object detection works best when you know for sure how all browsers implement the object. In the case of
document.images, the implementation across browsers is identical, so it is a very safe branching condi-
tion. That’s not always the case, and you should use this feature with careful thought. For example, Internet
Explorer 4 introduced a document object array called document.all, which is used very frequently in
building references to HTML element objects. Netscape Navigator 4, however, did not implement that
array; instead, it had a document-level array object called layers, which was not implemented in Internet
Explorer 4. Unfortunately, many scripters used the existence of these array objects not as prerequisites for
addressing those objects, but as determinants for the browser version. They set global variables signifying a
minimum version of Internet Explorer 4 if document.all existed and Netscape Navigator 4 if

151

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 151

document.layers existed. This is most dangerous, because there is no way of knowing whether a future ver-
sion of a browser may adopt the object of the other browser brand or eliminate a language feature. For example,
when the Mozilla-based Netscape version first arrived, it did so with all the layers stuff removed (replaced
by W3C standards–based features). Tons of scripts on the web used the existence of document.layers to
branch to Netscape-friendly code that didn’t even use document.layers. Thus, visitors using Netscape 6
or 7 found that scripts either broke or didn’t work, even though the browsers were more than capable of
doing the job.

This is why I recommend object detection not for browser version sniffing but for object availability branch-
ing, as shown previously for images. Moreover, it is safest to implement object detection only when all
major browser brands (and the W3C DOM recommendation) have adopted the object so that behavior is
predictable wherever your page loads in the future.

Techniques for object detection include testing for the availability of an object’s method. A reference to an
object’s method returns a value, so such a reference can be used in a conditional statement. For example,
the following code fragment demonstrates how a function can receive an argument containing the string ID
of an element and convert the string to a valid object reference for three different DOMs:

function myFunc(elemID) {
var obj;
if (document.getElementById) {

obj = document.getElementById(elemID);
} else if (document.all) {

obj = document.all(elemID);
} else if (document.layers) {

obj = document.layers[elemID];
}
if (obj) {

// statements that work on the object
}

}

With this object detection scheme, it no longer matters which browser brand, operating system, and version
support a particular way of changing an element ID to an object reference. Whichever of the three document
object properties or method is supported by the browser (or the first one, if the browser supports more than
one), that is the property or method used to accomplish the conversion. If the browser supports none of
them, no further statements execute. Keep in mind, however, that the first approach in this example is suffi-
cient (and recommended) as the technique for obtaining all objects from an ID in modern browsers.

If your script wants to check for the existence of an object’s property or method, you may also have to check
for the existence of the object beforehand if that object is not part of all browsers’ object models. An attempt
to reference a property of a nonexistent object in a conditional expression generates a script error. To pre-
vent the error, you can cascade the conditional tests with the help of the && operator. The following frag-
ment tests for the existence of both the document.body object and the document.body.style property:

if (document.body && document.body.style) {
// statements that work on the body’s style property

}

If the test for document.body fails, JavaScript bypasses the second test.

152

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 152

One potential “gotcha” in using conditional expressions to test for the existence of an object’s property is
that even if the property exists, but its value is zero or an empty string, the conditional test reports that the
property does not exist. To work around this potential problem, the conditional expression can examine the
data type of the value to ensure that the property genuinely exists. A nonexistent property for an object
reports a data type of undefined. Use the typeof operator (discussed in Chapter 33) to test for a valid
property:

if (document.body && typeof document.body.scroll != “undefined”) {
// statements that work on the body’s scroll property

}

I wholeheartedly recommend designing your scripts to take advantage of object detection in lieu of branch-
ing on particular browser name strings and version numbers. Scriptable features are gradually finding their
way into browsers embedded in a wide range of nontraditional computing devices. These browsers may not
go by the same names and numbering systems that we know today, yet such browsers may be able to inter-
pret your scripts. By testing for browser functionality, your scripts will likely require less maintenance in the
future.

Modifying content for scriptable browsers
Using object detection techniques, it is possible to alter the page so that visitors’ browsers with the desired
functionality have additional or alternative content available to them. Modern browsers that implement the
W3C DOM allow scripts to change elements and their attributes at will.

Changes of this type are typically made after the rest of the page has loaded so that your scripts can be
assured that any elements that are to be modified are present and ready to be scripted. Listing 13-2 is a sim-
ple example of how a function is triggered at load time to modify the destination of a link and insert some
text that only browsers supporting a basic W3C DOM feature see. The page also uses a <noscript> tag to
display content for those with scripting turned off.

LISTING 13-2

Presenting Different Content for Scriptable and Nonscriptable Browsers

<html>
<head>

<title></title>
<script type=”text/javascript” language=”JavaScript”>
// modify page for scriptable browsers
function updatePage() {

if (document.getElementById) {
document.getElementById(“mainLink”).href = “http://www.dannyg.com”;
document.getElementById(“welcome”).innerHTML =

“Howdy from the script!”;
}

}
window.onload = updatePage;
</script>

</head>

continued

153

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 153

LISTING 13-2 (continued)

<body bgcolor=”#FFFFFF”>
Where?
<hr />
<p id=”welcome”></p>
<noscript><p>If you can read this, JavaScript is not
available.</p></noscript>
<p>Here’s some stuff for everybody.</p>

</body>
</html>

As handy as it may be, in a strict W3C approach to JavaScript, you wouldn’t use the
innerHTML property because it isn’t officially part of the W3C standard. However, it is often

too powerful a convenience property to ignore, as much of the code throughout this book is a testament. The
book does show the W3C node manipulation alternative to innerHTML in some examples. Refer to Chapter
18 for a thorough explanation and examples of the W3C alternative to innerHTML.

You can see more object detection at work in Chapter 47 and Chapter 56 on the CD-ROM.

Designing for Compatibility
Each new major release of a browser brings compatibility problems for page authors. It’s not so much that
old scripts break in the new versions (well-written scripts rarely break in new versions). The problems
center on the new features that attract designers when the designers forget to accommodate visitors who
have not yet advanced to the latest and greatest browser version or who don’t share your browser brand
preference.

Catering only to the lowest common denominator can more than double your development time, due to the
expanded testing matrix necessary to ensure a good working page in all operating systems and on all ver-
sions. Decide how important the scripted functionality you employ in a page is for every user. If you want
some functionality that works only in a later browser, you may have to be a bit autocratic in defining the
minimum browser for scripted access to your page; any lesser browser gets shunted to a simpler presenta-
tion of your site’s data.

Another possibility is to make a portion of the site accessible to most, if not all, browsers, and restrict the
scripting to the occasional enhancement that nonscriptable browser users won’t miss. When the application
reaches a certain point in the navigation flow, the user needs a more capable browser to get to the really
good stuff. This kind of design is a carefully planned strategy that lets the site welcome all users up to a
point but then enables the application to shine for users of, say, W3C DOM–compatible browsers.

The ideal page is one that displays useful content in any browser but whose scripting enhances the experi-
ence of the page visitor — perhaps by offering more efficient site navigation or interactivity with the page’s
content. That is certainly a worthy goal to aspire to. But even if you can achieve this ideal on only some
pages, you will reduce the need for defining entirely separate, difficult-to-maintain paths for browsers of
varying capabilities.

NOTENOTE

154

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 154

Regardless of your specific browser compatibility strategy, the good news is that time tends to minimize the
problem. Web standards have solidified greatly in the past few years, and browser vendors have made sig-
nificant strides toward fully supporting those standards.

Dealing with beta browsers
If you have crafted a skillfully scripted web page or site, you may be concerned when a prerelease (or beta)
version of a browser available to the public causes script errors or other compatibility problems to appear
on your page. Do yourself a favor: Don’t overreact to bugs and errors that occur in prerelease browser ver-
sions. If your code is well written, it should work with any new generation of browser. If the code doesn’t
work correctly, consider the browser to be buggy. Report the bug (preferably with a simplified test-case
script sample) to the browser maker.

The exception to the “it’s a beta bug” rule arose in the transition from Netscape Navigator 4 to the Mozilla
engine (first released as Netscape Navigator 6). As you learn in Chapter 14, a conscious effort to eliminate a
proprietary Netscape Navigator 4 feature (the <layer> tag and corresponding scriptable object) caused
many Netscape Navigator 4 scripts to break on Moz1 betas (and final release). Had scripters gone to report
the problem to the new browsers’ developer (Mozilla), they would have learned about the policy change
and planned for the new implementation. It is extremely rare for a browser to eliminate a popular feature so
quickly, but it can happen. Stronger web standards have ideally minimized the chances of this situation
happening again any time soon.

It is often difficult to prevent yourself from getting caught up in a browser maker’s enthusiasm for a new
release. But remember that a prerelease version is not a shipping version. Users who visit your page with
prerelease browsers should know that there may be bugs in the browser. That your code does not work
with a prerelease version is not a sin; neither is it worth losing sleep over. Just be sure to connect with the
browser’s maker either to find out whether the problem will continue in the final release or to report the
bug so that the problem doesn’t make it into the release version.

The Evaluator Sr.
In Chapter 6, you were introduced to a slimmed-down version of The Evaluator Jr., which provides an
interactive workbench to experiment with expression evaluation and object inspection. At this point, you
should meet The Evaluator Sr., a tool you will use in many succeeding chapters to help you learn both core
JavaScript and DOM terminology.

155

JavaScript Essentials 13

IE Browser Version Headaches

As described more fully in the discussion of the navigator object in Chapter 39 on the CD-ROM, your
scripts can easily determine which browser is the one running the script. However, the properties that

reveal the version don’t always tell the whole story about Internet Explorer.

As you can see in detail in Chapter 39 on the CD-ROM, the navigator.appVersion property for Internet
Explorer 5, 5.5, 6, and 7 reports version 4 (the same as Internet Explorer 4). You can still sniff for specific ver-
sions (you can find the designation MSIE 6 or MSIE7 in the navigator.userAgent property), but the process
is not as straightforward as it could be. The best advice is to be vigilant when new browsers come on the
scene or adopt object detection techniques in your scripts.

20_069165 ch13.qxp 3/1/07 3:44 PM Page 155

Figure 13-1 shows the top part of the page. Two important features differentiate this full version from the Jr.
version in Chapter 6.

FIGURE 13-1

The Evaluator Sr.

First, you can try some Mozilla secure features if you have Code Base Principles turned on for your browser
(Chapter 46 on the CD-ROM) and you check the Use Code Base Security check box (Netscape Navigator 4
or later/Moz only). Second, the page has several HTML elements preinstalled, which you can use to explore
DOM properties and methods. As with the smaller version, a set of 26 one-letter global variables (a through
z) are initialized and ready for you to assign values for extended evaluation sequences.

You should copy the file evaluator.html from the companion CD-ROM to a local hard disk and set a
bookmark for it in all of your test browsers. Feel free to add your own elements to the bottom of the page to
explore other objects. I describe a version of The Evaluator for embedding in your projects as a debugging
tool in Chapter 45 on the CD-ROM, where you can learn more built-in functionality of The Evaluator.

Compatibility ratings in reference chapters
With the proliferation of scriptable browser versions since Navigator 2, it is important to know up front
whether a particular language or object model object, property, method, or event handler is supported in
the lowest common denominator for which you are designing. Therefore, beginning with Chapter 15 of this
reference part of the book, I include frequent compatibility ratings, such as the following example:

156

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 156

Compatibility: WinIE5+, MacIE5+, NN4+, Moz+, Safari+

A plus sign after a browser version number means that the language feature was first implemented in the
numbered version and continues to be supported in succeeding versions. A minus sign means that the fea-
ture is not supported in that browser. The browsers tested for compatibility include Internet Explorer for
Windows and Macintosh, Netscape Navigator, Mozilla (including all browsers based on the Mozilla engine),
and Apple Safari. I also recommend that you print the JavaScript and Browser Object Quick Reference file
shown in Appendix A. The file is on the companion CD-ROM in Adobe PDF format. This quick reference
clearly shows each object’s properties, methods, and event handlers, along with keys to the browser version
in which each language item is supported. You should find the printout to be valuable as a day-to-day
resource.

This is a great place to clarify what I mean by “all browsers based on the Mozilla engine.” There was a time,
not so long ago, when Mozilla pretty much meant Netscape, but those days are long gone. Now there are
several viable Mozilla-based browsers that fall under the Moz+ designation in the compatibility charts
throughout this book:

n Netscape

n Firefox

n Camino

The numbering systems of the individual browser brands are not linked to the underlying Mozilla engine
versions, making it difficult to know exactly which browser supports what feature. The following table
shows which individual browser brands and versions correspond to the Mozilla engine numbering system:

Mozilla Netscape Firefox Camino

m18 6.0 — —

0.9.4 6.2 — —

1.0.1 7.0 — —

1.4 7.1 — —

1.7.2 7.2 — —

1.7.5 8.0–8.1 1.0 —

1.8 — 1.5 1.0

1.8.1 — 2.0 —

As you can see, Netscape 6.0 and 6.2 were based on Mozilla versions less than 1. It is rare to see either of
these versions “in the wild” these days. The focus, therefore, is on Moz1 and later. Thus, the compatibility
charts use Moz1 as the baseline feature set.

In summary, when you see Moz+ in the compatibility charts, it ultimately resolves to Netscape 7 or later,
Firefox 1 or later, and Camino 1 or later, to name the most popular Mozilla-based browsers currently in use.

157

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 157

Language Essentials for
Experienced Programmers
In this section, experienced programmers can read the highlights about the core JavaScript language in
terms that may not make complete sense to those with limited or no scripting experience. This section is
especially for you if you found the tutorial of Part II rudimentary. Here, then, is the quick tour of the essen-
tial issues surrounding the core JavaScript language:

n JavaScript is a scripting language. The language is intended for use in an existing host environ-
ment (for example, a web browser) that exposes objects whose properties and behaviors are con-
trollable via statements written in the language. Scripts execute within the context of the host
environment. The host environment controls what, if any, external environmental objects may be
addressed by language statements running in the host environment. For security and privacy rea-
sons, web browsers generally afford little or no direct access through JavaScript to browser prefer-
ences, the operating system, or other programs beyond the scope of the browser. The exception to
this rule is that modern browsers allow deeper client access (with the user’s permission) through
trust mechanisms such as signed scripts (Mozilla) or trusted ActiveX controls (Microsoft).

n JavaScript is object based. Although JavaScript exhibits many syntactic parallels with the Java
language, JavaScript is not as pervasively object oriented as Java. The core language includes sev-
eral built-in static objects from which working objects are generated. Objects are created through
a call to a constructor function for any of the built-in objects plus the new operator. For example,
the following expression generates a String object and returns a reference to that object:

new String(“Hello”);

Table 13-1 lists the built-in objects with which scripters come into contact.

TABLE 13-1

JavaScript Built-In Objects
Array1 Boolean Date Error2

EvalError2 Function1 Math Namespace4

Number1 Object1 QName4 RangeError2

ReferenceError2 RegExp3 String1 SyntaxError2

TypeError2 URIError2 XML4

1Although defined in ECMA Level 1, was first available in NN3 and IE3/J2.
2Defined in ECMA Level 3; implemented in Moz1.
3Defined in ECMA Level 3; implemented fully in NN4 and IE6.
4Defined in E4X; implemented in Mozilla 1.8.1 (Firefox 2.0).

158

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 158

n JavaScript is loosely typed. Variables, arrays, and function return values are not defined to be of
any particular data type. In fact, an initialized variable can hold different data type values in subse-
quent script statements (obviously not good practice but possible nonetheless). Similarly, an array
may contain values of multiple types. The range of built-in data types is intentionally limited:

n Boolean (true or false)

n Null

n Number (double-precision 64-bit format IEEE 734 value)

n Object (encompassing the Array object)

n String

n Undefined

n XML (in E4X)

n The host environment defines global scope. Web browsers traditionally define a browser win-
dow or frame to be the global context for script statements. When a document unloads, all global
variables defined by that document are destroyed.

n JavaScript variables have either global or local scope. A global variable in a web browser is
typically initialized in var statements that execute as the document loads. All statements in that
document can read or write that global variable. A local variable is initialized inside a function
(also with the var operator). Only statements inside that function may access that local variable.

n Scripts sometimes access JavaScript static object properties and methods. Some static objects
encourage direct access to their properties or methods. For example, all properties of the Math
object act as constant values (for example, Math.PI).

n You can add properties or methods to working objects at will. To add a property to an object,
simply assign a value of any type to it. For example, to add an author property to a string object
named myText, use

myText.author = “Jane”;

Assign a function reference to an object property to give that object a new method:

// function definition
function doSpecial(arg1) {

// statements
}
// assign function reference to method name
myObj.handleSpecial = doSpecial;
...
// invoke method
myObj.handleSpecial(argValue);

Inside the function definition, the this keyword refers to the object that owns the method.

n JavaScript objects employ prototype-based inheritance. All object constructors create working
objects whose properties and methods inherit the properties and methods defined for the proto-
type of that object. Scripts can add and delete custom properties and methods associated with the
static object’s prototype so that new working objects inherit the current state of the prototype.
Scripts can freely override prototype property values or assign different functions to prototype
methods in a working object if desired without affecting the static object prototype. But if inher-
ited properties or methods are not modified in the current working object, any changes to the

159

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 159

static object’s prototype are reflected in the working object. (The mechanism is that a reference to
an object’s property works its way up the prototype inheritance chain to find a match to the prop-
erty name.)

n JavaScript includes a large set of operators. You can find most operators that you are accus-
tomed to working with in other languages.

n JavaScript provides typical control structures. All versions of JavaScript offer if, if-else,
for, and while constructions. JavaScript 1.2 (NN4+, IE4+, and all modern mainstream
browsers) added do-while and switch constructions. Iteration constructions provide break
and continue statements to modify control structure execution.

n JavaScript functions may or may not return a value. There is only one kind of JavaScript func-
tion. A value is returned only if the function includes a return keyword followed by the value to
be returned. Return values can be of any data type.

n JavaScript functions cannot be overloaded. A JavaScript function accepts zero or more argu-
ments, regardless of the number of parameter variables defined for the function. All arguments are
automatically assigned to the arguments array, which is a property of a function object.
Parameter variable data types are not predefined.

n Values are passed by reference and by value. An object passed to a function is actually a refer-
ence to that object, offering full read/write access to properties and methods of that object. But
other types of values (including object properties) are passed by value, with no reference chain to
the original object. Thus, the following nonsense fragment empties the text box when the
onchange event fires:

function emptyMe(arg1) {
arg1.value = “”;

}
...
<input type=”text” value=”Howdy” onchange=”emptyMe(this)”>

But in the following version, nothing happens to the text box:

function emptyMe(arg1) {
arg1 = “”;

}
...
<input type=”text” value=”Howdy” onchange=”emptyMe(this.value)”>

The local variable (arg1) simply changes from “Howdy” to an empty string.

The property assignment event handling technique in the previous example is a deliberate sim-
plification to make the code more readable. It is generally better to use the more modern

approach of binding events using the addEventListener() (NN6+/Moz/W3C) or attachEvent() (IE5+)
methods. A modern cross-browser event handling technique is explained in detail in Chapter 25.

n Error trapping techniques depend on JavaScript version. There was no error trapping in NN2
or IE3. Error trapping in NN3, NN4, and IE4 was event-driven in the web browser object model.
JavaScript, as implemented in IE5+ and Mozilla, Safari, and other recent browsers, supports try-
catch and throw statements, as well as built-in error objects that are not dependent on the host
environment.

n Memory management is not under script control. The host environment manages memory
allocation, including garbage collection. Different browsers may handle memory in different ways.

NOTENOTE

160

Document Objects ReferencePart III

20_069165 ch13.qxp 3/1/07 3:44 PM Page 160

n Whitespace (other than a line terminator) is insignificant. Space and tab characters may sepa-
rate lexical units (for example, keywords, identifiers, and so on).

n A line terminator is usually treated as a statement delimiter. Except in very rare construc-
tions, JavaScript parsers automatically insert the semicolon statement delimiter whenever they
encounter one or more line terminators (for example, carriage returns or line feeds). A semicolon
delimiter is required between two statements on the same physical line of source code. Moreover,
string literals may not have carriage returns in their source code (but an escaped newline charac-
ter (\n) may be part of the string).

Onward to Object Models
The core language is only a small part of what you work with while scripting web pages. The bulk of your
job entails understanding the ins and outs of DOMs as implemented in several generations of browsers.
That’s where Chapter 14 picks up the essentials story.

161

JavaScript Essentials 13

20_069165 ch13.qxp 3/1/07 3:44 PM Page 161

20_069165 ch13.qxp 3/1/07 3:44 PM Page 162

W ithout question, the biggest challenge facing client-side web scripters
is the sometimes-baffling array of document object models (DOMs)
that have competed for our attention throughout the short history of

scriptable browsers. Netscape got the ball rolling in Navigator 2 with the first
object model. By the time the version 4 browsers came around, the original
object model had gained not only some useful cross-browser features, but also a
host of features that were unique to Navigator or Internet Explorer. The object
models were diverging, causing no end of headaches for page authors whose
scripts had to run on as many browsers as possible. A ray of hope emerged from
the standards process of the World Wide Web Consortium (W3C) in the form of
a DOM recommendation. The DOM brought forward much of the original object
model, plus new ways of consistently addressing every object in a document. The
goal of this chapter is to put each of the object models into perspective and help
you understand how modern browsers have alleviated most of the object model
compatibility problems. But before we get to those specifics, let’s examine the role
of the object model in designing scripted applications.

The Object Model Hierarchy
The tutorial chapters of Part II introduce the fundamental ideas behind a docu-
ment object hierarchy in scriptable browsers. In other object-oriented environ-
ments, object hierarchy plays a much greater role than it does in JavaScript-able
browsers. (In JavaScript, you don’t have to worry about related terms, such as
classes, inheritance, and instances.) Even so, you cannot ignore the hierarchy
concept because some of your code relies on your ability to write references to
objects that depend on their positions within the hierarchy.

Calling these objects JavaScript objects is not correct. These are really browser
document objects: You just happen to use the JavaScript language to bring them
to life. Some scripters of Microsoft Internet Explorer use the VBScript language to

163

IN THIS CHAPTER
Object models versus browser
versions

Proprietary model extensions

Structure of the W3C DOM

Scripting trends

Document Object Model
Essentials

21_069165 ch14.qxp 3/1/07 3:44 PM Page 163

script the very same document objects. Technically speaking, JavaScript objects apply to data types and
other core language objects separate from the document.

Hierarchy as road map
For the programmer, the primary role of the document object hierarchy is to provide scripts a way to refer-
ence a particular object among all the objects that a browser window can contain. The hierarchy acts as a
road map the script can use to know precisely which object to address.

Consider, for a moment, a scene in which you and your friend Tony are in a high-school classroom. It’s get-
ting hot and stuffy as the afternoon sun pours in through the wall of windows on the west side of the room.
You ask Tony, “Would you please open a window?” and motion your head toward a particular window in
the room. In programming terms, you’ve issued a command to an object (whether or not Tony appreciates
the comparison). This human interaction has many advantages over anything you can do in programming.
First, by making eye contact with Tony before you speak, he knows that he is the intended recipient of the
command. Second, your body language passes along some parameters with that command, pointing ever so
subtly to a particular window on a particular wall.

If, instead, you are in the principal’s office using the public address system, and you broadcast the same
command (“Would you please open a window?”), no one knows what you mean. Issuing a command with-
out directing it to an object is a waste of time, because every object thinks, “That can’t be meant for me.” To
accomplish the same goal as your one-on-one command, the broadcast command has to be something like
“Would Tony Jeffries in Room 312 please open the middle window on the west wall?”

Let’s convert this last command to JavaScript dot syntax form (see Chapter 4). Recall from the tutorial that a
reference to an object starts with the most global point of view and narrows to the most specific point of
view. From the point of view of the principal’s office, the location hierarchy of the target object is

room312.Jeffries.Tony

You can also say that Tony’s knowledge about how to open a window is one of Tony’s methods. The com-
plete reference to Tony and his method then becomes

room312.Jeffries.Tony.openWindow()

Your job isn’t complete yet. The method requires a parameter detailing which window to open. In this case,
the window you want is the middle window of the west wall of Room 312. Or, from the hierarchical point
of view of the principal’s office, it becomes

room312.westWall.middleWindow

This object road map is the parameter for Tony’s openWindow() method. Therefore, the entire command
that comes over the PA system is

room312.Jeffries.Tony.openWindow(room312.westWall.middleWindow)

If, instead of barking out orders while sitting in the principal’s office, you attempt the same task through
radio from an orbiting space shuttle to all the inhabitants on Earth, imagine how laborious your object hier-
archy is. The complete reference to Tony’s openWindow() method and the window that you want opened
has to be mighty long to distinguish the desired objects from the billions of objects within the space shut-
tle’s view.

The point is that the smaller the scope of the object-oriented world you’re programming, the more you can
assume about the location of objects. For client-side JavaScript, the scope is no wider than the browser

164

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 164

itself. In other words, every object that a JavaScript script can work with resides within the browser applica-
tion. With few exceptions, a script does not access anything about your computer hardware, operating sys-
tem, other applications, desktop, or any other stuff beyond the browser program.

The first browser document object road map
Figure 14-1 shows the lowest-common-denominator document object hierarchy that is implemented in all
scriptable browsers, including scriptable legacy browsers such as IE3 and NN2. Notice that the window
object is the topmost object in the entire scheme. Everything you script in JavaScript is in the browser’s
window.

Pay attention to the shading of the concentric rectangles. Every object in the same shaded area is at the
same level relative to the window object. When a line from an object extends to the next-darker shaded rec-
tangle, that object contains all the objects in darker areas. At most, one of these lines exists between levels.
The window object contains the document object; the document object contains a form object; a form
object contains many different kinds of form control elements.

FIGURE 14-1

The lowest-common-denominator browser document object hierarchy.

window

document

selfframe top parent

locationhistory

form anchor

text

textarea checkbox reset option

radio button select

link

password submit

165

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 165

How Document Objects Are Born
Most of the objects that a browser creates for you are established when an HTML document loads into the
browser. The same kind of HTML code you use to create links, anchors, and input elements tells a
JavaScript-enhanced browser to create those objects in memory. The objects are there whether or not your
scripts call them into action.

The only visible differences to the HTML code for defining those objects are the one or more optional
attributes specifically dedicated to JavaScript. By and large, these attributes specify the event you want the
user interface element to react to and what JavaScript should do when the user takes that action. By relying
on the document’s HTML code to perform the object generation, you can spend more time figuring out how
to do things with those objects or have them do things for you.

Bear in mind that objects are created in their load order. And if you create a multiframe environment, a
script in one frame cannot communicate with another frame’s objects until both frames load. This trips up a
lot of scripters who create multiframe and multiwindow sites (more in Chapter 16).

Object Properties
A property generally defines a particular current setting of an object. The setting may reflect a visible attrib-
ute of an object, such as the state of a checkbox (selected or not); it may also contain information that is not
so obvious, such as the action and method of a submitted form.

Document objects have most of their initial properties assigned by the attribute settings of the HTML tags
that generate the objects. Thus, a property may be a word (for example, a name) or a number (for example,
a size). A property can also be an array, such as an array of images contained by a document. If the HTML
does not include all attributes, the browser usually fills in a default value for both the attribute and the cor-
responding JavaScript property.

166

Document Objects ReferencePart III

A Note to Experienced Object-Oriented Programmers

Although the basic object model hierarchy appears to have a class/subclass relationship, many of the tradi-
tional aspects of a true object-oriented environment don’t apply to the model. The original JavaScript doc-

ument object hierarchy is a containment hierarchy, not an inheritance hierarchy. No object inherits properties
or methods of an object higher up the chain. Neither is there any automatic message passing from object to
object in any direction. Therefore, you cannot invoke a window’s method by sending a message to it through
the document or a form object. All object references must be explicit.

Predefined document objects are generated only when the HTML code containing their definitions loads into
the browser. In Chapter 34, you learn how to create your own objects, but those objects do not present new
visual elements on the page that go beyond what HTML, Java applets, and plug-ins can portray.

Inheritance does play a role, as you will see later in this chapter, in the object model defined by the W3C. This
newer hierarchy is of a more general nature to accommodate requirements of XML as well as HTML. But the
containment hierarchy for HTML objects, as described in this section, is still valid in W3C DOM–compatible
browsers.

21_069165 ch14.qxp 3/1/07 3:44 PM Page 166

When used in script statements, property names are case sensitive. Therefore, if you see a property name
listed as bgColor, you must use it in a script statement with that exact combination of lowercase and
uppercase letters. But when you set an initial value of a property by way of an HTML attribute, the attribute
name (like all of HTML) is not case sensitive. Thus, <BODY BGCOLOR=”white”> and <body
bgcolor=”white”> both set the same bgColor property value. Although XHTML won’t validate correctly
if you use anything but lowercase letters for tag and attribute names, most browsers continue to be case
insensitive for markup, regardless of the HTML or XHTML version you specify for the page’s DOCTYPE. The
case for property names is not influenced by the case of the markup attribute name.

Each property determines its own read/write status. Some properties are read-only, whereas you can change
others on the fly by assigning a new value to them. For example, to put some new text into a text box
object, you assign a string to the object’s value property:

document.forms[0].phone.value = “555-1212”;

When an object contained by the document exists (that is, its HTML is loaded into the document), you can
also add one or more custom properties to that object. This can be helpful if you want to associate some
additional data with an object for later retrieval. To add such a property, simply specify it in the same state-
ment that assigns a value to it:

document.forms[0].phone.delimiter = “-”;

Any property you set survives as long as the document remains loaded in the window and scripts do not
overwrite the object. Be aware, however, that reloading the page usually destroys custom properties.

Object Methods
An object’s method is a command that a script can give to that object. Some methods return values, but that
is not a prerequisite for a method. Also, not every object has methods defined for it. In a majority of cases,
invoking a method from a script causes some action to take place. The resulting action may be obvious
(such as resizing a window) or something more subtle (such as sorting an array in memory).

All methods have parentheses after them, and methods always appear at the end of an object’s reference.
When a method accepts or requires parameters, the parameter values go inside the parentheses (with multi-
ple parameters separated by commas).

Although an object has its methods predefined by the object model, you can also assign one or more addi-
tional methods to an object that already exists (that is, after its HTML is loaded into the document). To do
this, a script in the document (or in another window or frame accessible by the document) must define a
JavaScript function and then assign that function to a new property name of the object. In the following
example, written to take advantage of modern browser features, the fullScreen() function invokes two
window object methods. By assigning the function reference to the new window.maximize property, I
define a maximize() method for the window object. Thus, a button’s event handler can call that method
directly.

// define the function
function fullScreen() {

this.moveTo(0,0);
this.resizeTo(screen.availWidth, screen.availHeight);

}
// assign the function to a custom property

167

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 167

window.maximize = fullScreen;
...
<!-- invoke the custom method -->
<input type=”button” value=”Maximize Window” onclick=”window.maximize()” />

Object Event Handlers
An event handler specifies how an object reacts to an event that is triggered by a user action (for example, a
button click) or a browser action (for example, the completion of a document load). Going back to the ear-
liest JavaScript-enabled browser, event handlers were defined inside HTML tags as extra attributes. They
included the name of the attribute, followed by an equal sign (working as an assignment operator) and a
string containing the script statement(s) or function(s) to execute when the event occurs (see Chapter 5).

Although event handlers are commonly defined in an object’s HTML tag, you also have the power to assign
or change an event handler just as you assign or change the property of an object. The value of an event
handler property looks like a function definition. For example, given this HTML definition

<input type=”text” name=”entry” onfocus=”doIt()” />

the value of the object’s onfocus (all lowercase) property is

function onfocus() {
doIt();

}

You can, however, assign an entirely different function to an event handler by assigning a function reference
to the property. Such references don’t include the parentheses that are part of the function’s definition. (You
see this again in Chapter 34 when you assign functions to object properties.)

Using the same text field definition you just looked at, you can assign a different function to the event han-
dler, because based on user input elsewhere in the document, you want the field to behave differently when
it receives the focus. If you define a function like this

function doSomethingElse() {
statements

}

you can then assign the function to the field with this assignment statement:

document.formName.entry.onfocus = doSomethingElse;

Because the new function reference is written in JavaScript, you must observe case for the function name.
Additionally, you are best served across all browsers by sticking with all-lowercase event handler names as
properties.

If your scripts create new element objects dynamically, you can assign event handlers to these objects by way
of event handler properties. For example, the following code uses W3C DOM syntax to create a new button
input element and assign an onclick event handler that invokes a function defined elsewhere in the script:

var newElem = document.createElement(“input”);
newElem.type = “button”;
newElem.value = “Click Here”;
newElem.onclick = doIt;
document.forms[0].appendChild(newElem);

168

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 168

Object Model Smorgasbord
A survey of the entire evolution of scriptable browsers from NN2 and IE3 through IE7 and Mozilla 1
(Moz1) reveals six distinct DOM families. Even if your job entails developing content for just one current
browser version, you may be surprised that family members from more than one DOM inhabit your author-
ing space.

Studying the evolution of the object model is extremely valuable for newcomers to scripting. It is too easy to
learn the latest object model gadgets in your current browser, only to discover that your heroic scripting
efforts are lost on earlier browsers accessing your pages. Even if you plan on supporting only modern
browsers, a cursory knowledge of object model history is a useful part of your JavaScript knowledge base.
Therefore, take a look at the six major object model types and how they came into being. Table 14-1 lists
the object model families (in chronological order of their release) and the browser versions that support
them. Later in this chapter are some guidelines you can follow to help you choose the object model(s) that
best suit your users’ appetites.

TABLE 14-1

Object Model Families

Model Browser Support

Basic Object Model NN2, NN3, IE3/J1, IE3/J2, NN4, IE4, IE5, IE5.5, IE6, Moz1, Safari 1, Safari 1.3/2, IE7

Basic Plus Images NN3, IE3.01 (Mac only), NN4, IE4, IE5, IE5.5, IE6, Moz1, Safari 1, Safari 1.3/2, IE7

NN4 Extensions NN4

IE4 Extensions IE4, IE5, IE5.5, IE6, IE7 (some features in all versions require Win32 OS)

IE5 Extensions IE5, IE5.5, IE6, IE7 (some features in all versions require Win32 OS)

W3C DOM (I and II) IE5 (partial), IE5.5 (partial), IE6 (partial), Moz1 (most), Safari 1 (partial), Safari 1.3/2 (most),
IE7 (partial)

It’s important to realize that even though browsers have come a long way toward providing unified support
for web standards, we’re not quite there yet. As of this writing, no current browser fully and accurately sup-
ports Levels I and II of the W3C DOM. Mozilla 1.75 (Firefox, Camino, and so on), Safari 1.3/2, and Opera
9 have all closed the compatibility gap considerably, but some issues not severely impacting HTML author-
ing remain.

Basic Object Model
The first scriptable browser, Netscape Navigator 2, implemented a very basic DOM. Figure 14-1, which you
saw earlier in the chapter, provides a visual guide to the objects that were exposed to scripting. The hierar-
chical structure starts with the window and drills inward toward the document, forms, and form control
elements. A document is a largely immutable page on the screen. Only elements that are by nature interac-
tive — links and form elements such as text fields and buttons — are treated as objects with properties,
methods, and event handlers.

169

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 169

The heavy emphasis on form controls opened numerous possibilities that were radical ideas at the time.
Because a script could inspect the values of form controls, forms could be prevalidated on the client. If the
page included a script that performed some calculations, data entry and calculated results were displayed
via editable text fields.

Additional objects that exist outside the document — window, history, and location objects — provide
scriptable access to simple yet practical properties of the browser that loads the page. The most global view of
the environment is the navigator object, which includes properties about the browser brand and version.

When Internet Explorer 3 arrived on the scene, the short life of Navigator 2 was nearing its end. Even
though NN3 was already widely available in prerelease form, Internet Explorer 3 implemented the basic
object model from NN2 (plus one window object property from NN3). Therefore, despite the browser ver-
sion number discrepancy, NN2 and IE3 were essentially the same with respect to their DOMs. For a brief
moment in Internet Time, there was nearly complete harmony between Microsoft and Netscape DOMs —
albeit at a very simple level.

Basic Object Model Plus Images
A very short time after Internet Explorer 3 was released, Netscape released Navigator 3 with an object
model that built upon the original version. A handful of existing objects — especially the window object —
gained new properties, methods, and/or event handlers. Scripts could also communicate with Java applets
as objects. But the biggest new object on the scene was the Image object and the array of image objects
exposed to the document object.

Most of the properties for a Navigator 3 image object gave read-only access to values typically assigned to
attributes in the tag. But you could modify one property — the src property — after the page
loaded. Scripts could swap out images within the fixed image rectangle. Although these new image objects
didn’t have mouse-related event handlers, nesting an image inside a link (which had onmouseover and
new onmouseout event handlers) let scripts implement image rollovers to liven up a page.

As more new scripters investigated the possibilities of adding JavaScript to their pages, frustration ensued
when the image swapping they implemented for Navigator 3 failed to work in Internet Explorer 3.
Although you could easily script around the lack of an image object to prevent script errors in Internet
Explorer 3, the lack of this cool page feature disappointed many. Had they also taken into account the
installed base of Navigator 2 in the world, they would have been disappointed there, too. To confuse mat-
ters even more, the Macintosh version of Internet Explorer 3.01 (the second release of the Internet Explorer
for Mac browser) implemented scriptable image objects.

Despite these rumblings of compatibility problems to come, the object model implemented in Navigator 3
eventually became the baseline reference for future DOMs. With few exceptions, code written for this object
model runs on all browsers from Navigator 3 and Internet Explorer 4 through the latest versions of both
brands and other modern browsers.

Navigator 4–Only Extensions
The next browser released to the world was Netscape Navigator 4. Numerous additions to the existing
objects put more power into the hands of scripters. You could move and resize browser windows within the
context of script-detectable screen object properties (for example, how big the user’s screen was). Two con-
cepts that represented new thinking about the object model were an enhanced event model and the layer
object.

170

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 170

Event capture model
Navigator 4 added many new events to the repertoire. Keyboard events and more mouse events (onmouse-
down and onmouseup) allowed scripts to react to more user actions on form control elements and links. All
of these events worked as they did in previous object models in which event handlers were typically
assigned as attributes to an element’s tag (although you could also assign event handlers as properties in
script statements). To facilitate some of the Dynamic HTML (DHTML) potential in the rest of the Navigator
4 object model, the event model was substantially enhanced.

At the root of the system is the idea that when a user performs some physical action on an event-aware
object (for example, clicking a form button), the event reaches that button from the top down through the
document object hierarchy. If you have multiple objects that share an event handler, it may be more con-
venient to capture that event in just one place — the window or document object level — rather than
assigning the same event handler to all the elements. The default behavior of Navigator 4 allowed the event
to reach the target object, just as it had in earlier browsers. But you could also turn on event capture in the
window, document, or layer object. When captured, the event could be handled at the upper level, pre-
processed before being passed onto its original target, or redirected to another object altogether.

Whether or not you capture events, the Navigator 4 event model produces an event object (lowercase e to
distinguish from the static Event object) for each event. That object contains properties that reveal more
information about the specific event, such as the keyboard character pressed for a keyboard event or the
position of a click event on the page. Any event handler can inspect event object properties to learn more
about the event and process the event accordingly.

Layers
Perhaps the most radical addition to the Navigator 4 object model was a new object that reflected an
entirely new HTML element: the layer element. A layer is a container that is capable of holding its own
HTML document, yet it exists in a plane in front of the main document. You can move, size, and hide a
layer under script control. This new element allowed, for the first time, overlapping elements in an HTML
page.

To accommodate the layer object in the document object hierarchy, Netscape defined a nesting hierarchy
such that a layer was contained by a document. As the result, the document object acquired a property
(document.layers) that was an array of layer objects in the document. This array exposed only the first
level of layer(s) in the current document object.

Each layer had its own document object because each layer could load an external HTML document if
desired. As a positionable element, a layer object had numerous properties and methods that allowed scripts
to move, hide, show, and change its stacking order.

Unfortunately for Netscape, the W3C did not agree to make the <layer> tag part of the HTML 4 specifica-
tion. As such, it is an orphan element that exists only in Navigator 4 (not implemented in Moz1 or later).
The same goes for the scripting of the layer object and its nested references.

Internet Explorer 4+ Extensions
Microsoft broke important new ground with the release of Internet Explorer 4, which came several months
after the release of Navigator 4. The main improvements were in the exposure of all HTML elements,
scripted support of cascading style sheets (CSS), and a new event model. Some other additions were avail-
able only on Windows 32-bit operating system platforms.

171

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 171

HTML element objects
The biggest change to the object model world was that every HTML element became a scriptable object,
while still supporting the original object model. Microsoft invented the document.all array (also called a
collection). This array contains references to every element in the document, regardless of element nesting. If
you assign an identifier (name) to the id attribute of an element, you can reference the element by the fol-
lowing syntax:

document.all.elementID

In most cases, you can also drop the document.all. part of the reference and begin with only the element ID.

Every element object has an entirely new set of properties and methods that give scripters a level of control
over document content unlike anything seen before. These properties and methods are explored in more
detail in Chapter 15. But several groups of properties deserve special mention here.

Four properties (innerHTML, innerText, outerHTML, and outerText) provide read/write access to the
actual content within the body of a document. This means that you no longer must use text boxes to dis-
play calculated output from scripts. You can modify content inside paragraphs, table cells, or anywhere on
the fly. The browser’s rendering engine immediately reflows a document when the dimensions of an ele-
ment’s content change. That feature puts the Dynamic in Dynamic HTML. To those of us who scripted the
static pages of earlier browsers, this feature — taken for granted today — was nothing short of a revelation.

The series of offset properties are related to the position of an element on the page. These properties are dis-
tinct from the kind of positioning performed by CSS. Therefore, you can get the dimensions and location of
any element on the page, making it easier to move positionable content atop elements that are part of the
document and may appear in various locations due to the browser window’s current size.

Finally, the style property is the gateway to CSS specifications defined for the element. It is important that
the script can modify the numerous properties of the style object. Therefore, you can modify font specifi-
cations, colors, borders, and the positioning properties after the page loads. The dynamic reflow of the page
takes care of any layout changes that the alteration requires (for example, adjusting to a bigger font size).

Element containment hierarchy
Although Internet Explorer 4 still recognizes the element hierarchy of the original object model (see Figure
14-1), the DOM for Internet Explorer 4 does not extend this kind of hierarchy fully into other elements. If
it did, it would mean that td elements inside a table might have to be addressed via its next outer tr or
table element (just as a form control element must be addressed through its containing form element).
Figure 14-2 shows how all HTML elements are grouped under the document object. The document.all
array flattens the containment hierarchy as far as referencing objects goes. A reference to the most deeply
nested TD element is still document.all.cellID. The highlighted pathway from the window object is the
predominant reference path used when working with the Internet Explorer 4 document object hierarchy.

Element containment in Internet Explorer 4, however, is important for other reasons. Because an element
can inherit some stylesheet attributes from an element that contains it, you should devise a document’s
HTML by embedding every piece of content in a container. Paragraph elements are text containers (with
start and end tags), not tall line breaks between text chunks. Internet Explorer 4 introduced the notion of a
parent–child relationship between a container and elements nested within it. Also, the position of an ele-
ment may be calculated relative to the position of its next outermost positioning context.

The bottom line here is that element containment doesn’t have anything to do with object references (like
the original object model). It has everything to do with the context of an element relative to the rest of the
page’s content.

172

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 172

FIGURE 14-2

The Internet Explorer 4 document object hierarchy.

Cascading Style Sheets
By arriving a bit later to market with its version 4 browser than Netscape, Microsoft benefited from having
the CSS Level 1 specification more fully developed before the browser’s release. Therefore, the implementa-
tion is far more complete than that of Navigator 4 (but it is not 100 percent compatible with the standard).

The scriptability of stylesheet properties is a bit at odds with the first-generation CSS specification, which
seemed to ignore the potential of scripting styles with JavaScript. Many CSS attribute names are hyphenated
words (for example, text-align, z-index). But hyphens are not allowed in identifier names in JavaScript.
This necessitated conversion of the multiword CSS attribute names to interCap JavaScript property names.
Therefore, text-align becomes textAlign, and z-index becomes zIndex. You can access all of these
properties through an element’s style property:

document.all.elementID.style.stylePropertyName

One byproduct of the scriptability of stylesheets in Internet Explorer 4 and later is what some might call the
phantom page syndrome. This occurs when the layout of a page is handled after the primary HTML for the
page has downloaded to the browser. As the page loads, not all content may be visible, or it may be in a
visual jumble. An onload event handler in the page then triggers scripts to set styles or content for the
page. Elements jump around to get to their final resting places. This may be disconcerting to some users
who at first see a link to click, but by the time the cursor reaches the click location, the page has reflowed,
thereby moving the link somewhere else on the page.

For Internet Explorer users with 32-bit Windows operating systems, Internet Explorer 4
includes some extra features in the object model that can enhance presentations. Filters are

stylesheet additives that offer a variety of visual effects on body text. For example, you can add a drop
shadow or a glowing effect to text simply by applying filter styles to the text, or you can create the equiva-
lent of a slide presentation by placing the content of each slide in a positioned div element. Although filters
follow the CSS syntax, they are not part of the W3C specification.

NOTENOTE

window
frame self top parent

text radio button select

password submit

textarea checkbox reset option

link styleSheets applets form images plugins embeds all

navigator screen history document location event

[elements]

style

anchor

selection

173

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 173

Event bubbling
Just as Netscape invented an event model for Navigator 4, so did Microsoft invent one for Internet Explorer
4. Unfortunately for cross-browser scripters, the two event models are quite different. Instead of events
trickling down the hierarchy to the target element, an Internet Explorer event starts at the target element
and, unless instructed otherwise, bubbles up through the element containment hierarchy to reach the
window object eventually. At any object along the way, an event handler can perform additional processing
on that event if desired. Therefore, if you want a single event handler to process all click events for the page,
assign the event handler to the body or window object so the events reach those objects (provided that the
event bubbling isn’t canceled by some other object along the containment hierarchy).

Internet Explorer also has an event object (a property of the window object) that contains details about the
event, such as the key pressed for a keyboard event and the location of a mouse event. Names for these
properties are entirely different from the event object properties of Navigator 4.

Despite what seem like incompatible, if not completely opposite, event models in Navigator 4 and Internet
Explorer 4, you can make a single set of scripts handle events in both browsers (see Chapter 25 and
Chapter 56 on the CD-ROM for examples). The Internet Explorer 4 event model continues to be the only
model supported by Internet Explorer through version 7.

Internet Explorer 5+ Extensions
With the release of Internet Explorer 5, Microsoft built more onto the proprietary object model it launched
in Internet Explorer 4. Although the range of objects remained pretty much the same, the number of prop-
erties, methods, and event handlers for the objects increased dramatically. Some of those additions were
added to meet some of the specifications of the W3C DOM (discussed in the next section), occasionally
causing a bit of incompatibility with Internet Explorer 4. But Microsoft also pushed ahead with efforts for
Windows users only that may not necessarily become industry standards: DHTML behaviors and HTML
applications.

A DHTML behavior is a chunk of script — saved as an external file — that defines some action (usually, a
change of one or more style properties) that you can apply to any kind of element. The goal is to create a
reusable component that you can load into any document whose elements require that behavior. As an
example of a DHTML behavior, you can define a behavior that turns an element’s text to red whenever the
cursor rolls atop it and reverts the text to black when the cursor rolls out. When you assign the behavior to
an element in the document (through CSS-like rule syntax), the element picks up that behavior and
responds to the user accordingly. You can apply that same behavior to any element(s) in the document. You
can see an example of a DHTML behavior in Chapter 15 in the description of the addBehavior() method
and read an extended discussion in Chapter 47 on the CD-ROM.

HTML applications (HTAs, in Microsoft parlance) are HTML files that include an XML element known as the
hta:application element. You can download an HTA to Internet Explorer 5 or later from the server as
though it were a web page (although its file extension is .hta rather than .htm or .html). A user can also
install an HTA on a client machine so that it behaves very much like an application, with a desktop icon
and significant control over the look of the window. HTAs are granted greater security privileges on the
client so that this application can behave more like a regular program. In fact, you can elect to turn off the
system menu bar and use DHTML techniques to build your own menu bar for the application.
Implementation details of HTAs are beyond the scope of this book, but you should be aware of their exis-
tence. More information is available at http://msdn.microsoft.com.

174

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 174

The W3C DOM
Conflicting browser object models from Netscape and Microsoft made life difficult for developers. Scripters
craved a standard that would serve as a common denominator, much as HTML and CSS standards did for
content and styles. The W3C took up the challenge of creating a DOM standard: the W3C DOM.

The charter of the W3C DOM working group was to create a DOM that could be applied to both HTML
and XML documents. Because an XML document can have tags of virtually any name (as defined by a
Document Type Definition), it has no intrinsic structure or fixed vocabulary of elements, as an HTML docu-
ment does. As a result, the DOM specification had to accommodate the known structure of HTML (as
defined in the HTML 4 specification) as well as the unknown structure of an XML document.

To make this work effectively, the working group divided the DOM specification into two sections. The first,
called the Core DOM, defines specifications for the basic document structure that HTML and XML docu-
ments share. This includes notions of a document containing elements that have tag names and attributes;
an element is capable of containing zero or more other elements. The second part of the DOM specification
addresses the elements and other characteristics that apply only to HTML. The HTML portion inherits all
the features of the Core DOM while providing a measure of backward compatibility to object models
already implemented in legacy browsers and providing a framework for new features.

It is important for veteran scripters to recognize that the W3C DOM does not specify all features from exist-
ing browser object models. Many features of the Internet Explorer 4 (and later) object model are not part of
the W3C DOM specification. This means that if you are comfortable in the Internet Explorer environment
and wish to shift your focus to writing for the W3C DOM spec, you have to change some practices as high-
lighted in this chapter. In many respects, especially with regard to DHTML applications, the W3C DOM is
an entirely new DOM with new concepts that you must grasp before you can successfully script in the envi-
ronment.

By the same token, you should be aware that whereas Mozilla-based browsers go to great lengths to imple-
ment all of DOM Level 1 and most of Level 2, Microsoft (for whatever reason) features only a partial imple-
mentation of the W3C DOM through Internet Explorer 5.5. Although IE6 and IE7 implement more W3C
DOM features, some important parts — notably, W3C DOM events — are missing. Other modern browsers,
such as Safari 1.3/2 and Opera 9, provide comprehensive W3C DOM support and have largely closed the
gap to compete with Mozilla in terms of supporting the W3C DOM.

DOM levels
Like most W3C specifications, one version is rarely enough. The job of the DOM working group was too
large to be swallowed whole in one sitting. Therefore, the DOM is a continually evolving specification. The
timeline of specification releases rarely coincides with browser releases. Therefore, it is very common for
any given browser release to include only some of the most recent W3C version.

The first formal specification, DOM Level 1, was released well after NN4 and IE4 shipped. The HTML por-
tion of Level 1 includes the so-called DOM Level 0 (there is no published standard by that name). This is
essentially the object model as implemented in Navigator 3 (and for the most part in Internet Explorer 3
plus image objects). Perhaps the most significant omission from Level 1 is an event model (it ignores even
the simple event model implemented in NN2 and IE3).

175

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 175

DOM Level 2 builds on the work of Level 1. In addition to several enhancements of both the Core and
HTML portions of Level 1, Level 2 adds significant new sections (published as separate modules) on the
event model, ways of inspecting a document’s hierarchy, XML namespaces, text ranges, stylesheets, and style
properties. Some modules of the Level 3 DOM have reached Recommendation status but are likely still a
way off from being implemented in major browsers to any significant degree.

What stays the same
By adopting DOM Level 0 as the starting point of the HTML portion of the DOM, the W3C provided a way
for a lot of existing script code to work even in a W3C DOM–compatible browser. Every object you see in
the original object model, starting with the document object (see Figure 14-1) plus the image object, are in
DOM Level 0. Almost all of the same object properties and methods are also available.

More important, when you consider the changes to referencing other elements in the W3C DOM (discussed
in the next section), we’re lucky that the old ways of referencing objects — such as forms, form control ele-
ments, and image — still work. Had the working group been planning from a clean slate, it is unlikely that
the document object would have been given properties consisting of arrays of forms, links, and images.

The only potential problems you could encounter with your existing code have to do with a handful of
properties that used to belong to the document object. In the new DOM, four style-related properties of the
document object (alinkColor, bgColor, linkColor, and vlinkColor) become properties of the body
object (referenced as document.body). In addition, the three link color properties pick up new names in
the process (aLink, link, and vLink). It appears, however, that for now, IE6 and Moz1 maintain backward
compatibility with the older document object color properties.

Also note that the DOM specification concerns itself only with the document and its content. Objects such
as window, navigator, and screen are not part of the DOM specification through Level 2. Scripters are
still at the mercy of browser makers for compatibility in these areas.

What isn’t available
As mentioned earlier, the W3C DOM is not simply a restatement of existing browser specifications. Many
convenience features of the Internet Explorer and Netscape Navigator object models do not appear in the
W3C DOM. If you develop DHTML content in Internet Explorer 4 or later or in Navigator 4, you have to
learn how to get along without some of these conveniences.

The Navigator 4 experiment with the <layer> tag was not successful in the W3C process. As a result, both
the tag and the scripting conventions surrounding it do not exist in the W3C DOM. To some scripters’
relief, the document.layerName referencing scenario (even more complex with nested layers) disappears
from the object model. A positioned element is treated as just another element with some special stylesheet
attributes that enable you to move it anywhere on the page, stack it amid other positioned elements, and
hide it from view.

Among popular Internet Explorer 4+ features missing from the W3C DOM are the document.all collec-
tion of HTML elements and four element properties that facilitate dynamic content: innerHTML,
innerText, outerHTML, and outerText. A new W3C way provides for acquiring an array of all elements
in a document, but generating HTML content to replace existing content or to be inserted in a document
requires a tedious sequence of statements (see the section “New DOM concepts” later in this chapter). Most
new browsers, however, have implemented the innerHTML property for HTML element objects.

176

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 176

New HTML practices
Exploitation of DHTML possibilities in the W3C DOM relies on modern HTML practices that by now have
ideally been adopted by the majority of HTML authors. At the core of these practices (espoused by the
HTML 4 specification) is making sure that all content is within an HTML container of some kind.
Therefore, instead of using the <p> tag as a separator between blocks of running text, surround each para-
graph of the running text with a <p>...</p> tag set. If you don’t do it, the browser treats each <p> tag as
the beginning of a paragraph and ends the paragraph element just before the next <p> tag or other block-
level element.

Although browsers continue to accept the omission of certain end tags (for td, tr, and li elements, for
instance) for backward compatibility, it is best to get into the habit of supplying these end tags if for no
other reason than that they help you visualize where an element’s sphere of influence truly begins and ends.

Any element that you intend to script — whether to change its content or its style — should have an identi-
fier assigned to the element’s id attribute. Form control elements still require name attributes if you submit
the form content to a server. But you can freely assign the same or a different identifier to a control’s id
attribute. Scripts can use either the id or the document.formReference.elementName reference to reach
a control object. Identifiers are essentially the same as the values you assign to the name attributes of form
and form input elements. Following the same rules for the name attribute value, an id identifier must be a
single word (no whitespace); it cannot begin with a numeral (to prevent conflicts in JavaScript); and it
should avoid punctuation symbols except for the underscore character.

New DOM concepts
With the W3C DOM come several concepts that may be new to you unless you have worked extensively
with the terminology of tree hierarchies. Concepts that have the most impact on your scripting are new
ways of referencing elements and nodes.

Element referencing
Script references to objects in the DOM Level 0 are observed in the W3C DOM for backward compatibility.
Therefore, a form input element whose name attribute is assigned the value userName is addressed just as it
always is

document.forms[0].userName

or

document.formName.userName

But because all elements of a document are exposed to the document object, you can use the document object
method designed to access any element whose ID is assigned. The method is document.getElementById(),
and the sole parameter is a string version of the identifier of the object whose reference you want to get. To
help put this in context with what you may have used with the Internet Explorer 4 object model, consider
the following HTML paragraph tag:

<p id=”myParagraph”>...</p>

In Internet Explorer 4 or later, you can reference this element with

var elem = document.all.myParagraph;

177

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 177

Although the document.all collection is not implemented in the W3C DOM, the document object
method (available in Internet Explorer 5 and later, Mozilla, Safari, and others) getElementById() enables
you to access any element by its ID:

var elem = document.getElementById(“myParagraph”);

This method is considered the appropriate technique for referencing an element based upon its ID.
Unfortunately for scripters, this method is difficult to type because it is case sensitive, so watch out for that
ending lowercase d.

A hierarchy of nodes
The issue surrounding containers (described earlier) comes into play for the underlying architecture of the
W3C DOM. Every element or free-standing chunk of text in an HTML (or XML) document is an object that
is contained by its next outermost container. Let’s look at a simple HTML document to see how this system
works. Listing 14-1 is formatted to show the containment hierarchy of elements and string chunks.

LISTING 14-1

A Simple HTML Document

<html>
<head>

<title>
A Simple Page

</title>
</head>

<body>
<p id=”paragraph1”>

This is the
<em id=”emphasis1”>

one and only

paragraph on the page.

</p>
</body>

</html>

What you don’t see in the listing is a representation of the document object. The document object exists
automatically when this page loads into a browser. It is important that the document object encompasses
everything you see in Listing 14-1. Therefore, the document object has a single nested element: the html
element. The html element in turn has two nested elements: head and body. The head element contains
the title element, whereas the title element contains a chunk of text. Down in the body element, the p
element contains three pieces: a string chunk, the em element, and another string chunk.

178

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 178

According to W3C DOM terminology, each container, stand-alone element (such as a br element), or text
chunk is known as a node — a fundamental building block of the W3C DOM. Nodes have parent–child
relationships when one container holds another. As in real life, parent–child relationships extend only
between adjacent generations, so a node can have zero or more children. However, the number of third-
generation nodes further nested within the family tree does not influence the number of children associated
with a parent. Therefore, in Listing 14-1, the html node has two child nodes: head and body, which are
siblings that have the same parent. The body element has one child (p), even though that child contains
three children (two text nodes and an em element node).

If you draw a hierarchical tree diagram of the document in Listing 14-1, it should look like the illustration
in Figure 14-3.

FIGURE 14-3

Tree diagram of nodes for the document in Listing 14-1.

If the document’s source code contains a Document Type Definition (in a DOCTYPE element)
above the <html> tag, the browser treats that DOCTYPE node as a sibling of the HTML ele-

ment node. In that case, the root document node contains two child nodes.

The W3C DOM (through Level 2) defines 12 different types of nodes, 7 of which have direct application in
HTML documents. These seven types of nodes appear in Table 14-2; the rest apply to XML. Of the 12
types, the three most common are the document, element, and text types. All W3C DOM browsers (includ-
ing Internet Explorer 5 and later, Mozilla, Safari, and others) implement the three common node types,
whereas Mozilla implements all of them, IE6 implements all but one, and Safari1 implements all but two.

NOTENOTE

document
+--<html>
 +--<head>
 | +--<title>
 | +--"A Simple Page"
 +--<body>
 +--<p ID="paragraph1">
 +--"This is the "
 +--<em ID="emphasis1">
 | +--"one and only"
 +--" paragraph on the page."

179

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 179

TABLE 14-2

W3C DOM HTML-Related Node Types

Type Number nodeName nodeValue Description IE6+ Moz1 Safari 1

Element 1 tag name Null Any HTML or XML Yes Yes Yes
tagged element

Attribute 2 attribute name Attribute value A name–value Yes Yes Yes
attribute pair in
an element

Text 3 #text text content A text fragment Yes Yes Yes
contained by
an element

Comment 8 #comment comment text HTML comment Yes Yes No

Document 9 #document Null Root document Yes Yes Yes
object

DocumentType10 DOCTYPE Null DTD specification No Yes No

Fragment 11 #document- Null Series of one or Yes Yes Yes
fragment more nodes outside

the document

Applying the node types of Table 14-2 to the node diagram in Figure 14-3, you can see that the simple page
consists of one document node, six element nodes, and four text nodes.

Node properties
A node has many properties, most of which are references to other nodes related to the current node. Table
14-3 lists all properties shared by all node types in DOM Level 2.

TABLE 14-3

Node Object Properties (W3C DOM Level 2)

Property Value Description IE6Win+ IE5Mac+ Moz1 Safari1

nodeName String Varies with node type (see Table 14-2) Yes Yes Yes Yes

nodeValue String Varies with node type (see Table 14-2) Yes Yes Yes Yes

nodeType Integer Constant representing each type Yes Yes Yes Yes

parentNode Object Reference to next outermost container Yes Yes Yes Yes

childNodes Array All child nodes in source order Yes Yes Yes Yes

firstChild Object Reference to first child node Yes Yes Yes Yes

lastChild Object Reference to last child node Yes Yes Yes Yes

previousSibling Object Reference to sibling node up in Yes Yes Yes Yes
source order

180

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 180

Property Value Description IE6Win+ IE5Mac+ Moz1 Safari1

nextSibling Object Reference to sibling node next in Yes Yes Yes Yes
source order

attributes NodeMap Array of attribute nodes Some Some Yes Some

ownerDocument Object Containing document object Yes Yes Yes Yes

namespaceURI String URI to namespace definition No No Yes Yes
(element and attribute nodes only)

Prefix String Namespace prefix (element and No No Yes Yes
attribute nodes only)

localName String Applicable to namespace-affected No No Yes Yes
nodes

You can find all of the properties shown in Table 14-3 that also show themselves to be imple-
mented in Internet Explorer 6 or later or Moz1 in Chapter 15, in the listing of properties that

all HTML element objects have in common. That’s because an HTML element, as a type of node, inherits all
of the properties of the prototypical node.

To help you see the meanings of the key node properties, Table 14-4 shows the property values of several
nodes in the simple page shown in Listing 14-1. For each node column, find the node in Figure 14-3 and
then follow the list of property values for that node, comparing the values against the actual node structure
in Figure 14-3.

TABLE 14-4

Properties of Selected Nodes for a Simple HTML Document

Properties Nodes

document html p “one and only”

nodeType 9 1 1 3

nodeName #document html p #text

nodeValue Null null null “one and only”

parentNode Null document body em

previousSibling Null null null null

nextSibling Null null null null

childNodes Html head “This is the “ (none)
body em

“ paragraph on the page.”

firstChild Html head “This is the “ null

lastChild Html body “ paragraph on the page.” null

NOTENOTE

181

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 181

The nodeType property is an integer that is helpful in scripts that iterate through an unknown collection of
nodes. Most content in an HTML document is of type 1 (an HTML element) or 3 (a text node), with the
outermost container, the document, of type 9. A node’s nodeName property is either the name of the node’s
tag (for an HTML element) or a constant value (preceded by a # [hash mark] as shown in Table 14-2). And,
which may surprise some, the nodeValue property is null except for the text node type, in which case the
value is the actual string of text of the node. In other words, for HTML elements, the W3C DOM does not
expose a container’s HTML as a string.

182

Document Objects ReferencePart III

The Object-Oriented W3C DOM

If you are familiar with concepts of object-oriented (OO) programming, you will appreciate the OO tenden-
cies in the way the W3C defines the DOM. The Node object includes sets of properties (see Table 14-3) and

methods (see Table 14-5) that are inherited by every object based on the Node. Most of the objects that inherit
the Node’s behavior have their own properties and/or methods that define their specific behaviors. The follow-
ing figure shows (in W3C DOM terminology) the inheritance tree from the Node root object. Most items are
defined in the Core DOM, whereas items shown in boldface are from the HTML DOM portion.

W3C DOM Node object inheritance tree.

You can see from the preceding figure that individual HTML elements inherit properties and methods from the
generic HTML element, which inherits from the Core Element object, which in turn inherits from the basic
Node.

It isn’t important to know the Node object inheritance to script the DOM. But it does help explain the ECMA
Script Language Binding appendix of the W3C DOM recommendation, as well as explain how a simple ele-
ment object winds up with so many properties and methods associated with it.

Node
+--Document
| +--HTMLDocument
+--CharacterData
| +--Text
| | +--CDATASection
| +--Comment
+--Attr
+--Element
| +--HTMLElement
| +-- (Each specific HTML element)
+--DocumentType
+--DocumentFragment
+--Notation
+--Entity
+--Entity Reference
+--ProcessingInstruction

21_069165 ch14.qxp 3/1/07 3:44 PM Page 182

It is doubtful that you will use all of the relationship-oriented properties of a node, primarily because there
is some overlap in how you can reach a particular node from any other. The parentNode property is
important because it is a reference to the current node’s immediate container. Although the firstChild
and lastChild properties point directly to the first and last children inside a container, most scripts gener-
ally use the childNodes property with array notation inside a for loop to iterate through child nodes. If
there are no child nodes, the childNodes array has a length of zero.

Node methods
Actions that modify the HTML content of a node in the W3C DOM world primarily involve the methods
defined for the prototype Node. Table 14-5 shows the methods and their support in the W3C DOM–
capable browsers.

TABLE 14-5

Node Object Methods (W3C DOM Level 2)

Method Description IE5+ Moz1 Safari 1

appendChild(newChild) Adds child node to end of current node Yes Yes Yes

cloneNode(deep) Grabs a copy of the current node Yes Yes Yes
(optionally with children)

hasChildNodes() Determines whether current node has Yes Yes Yes
children (Boolean)

insertBefore(new, ref) Inserts new child in front of another child Yes Yes Yes

removeChild(old) Deletes one child Yes Yes Yes

replaceChild(new, old) Replaces an old child with a new one Yes Yes Yes

isSupported(feature, version) Determines whether the node supports a No Yes Yes
particular feature

The important methods for modifying content are appendChild(), insertBefore(), removeChild(),
and replaceChild(). Note, however, that all of these methods assume that the point of view for the
action is from the parent of the nodes being affected by the methods. For example, to delete an element
(using removeChild()), you don’t invoke that method on the element being removed, but on its parent
element. This leaves open the possibility of creating a library of utility functions that obviate having to
know too much about the precise containment hierarchy of an element. A simple function that lets a script
appear to delete an element actually does so from its parent:

function removeElement(elemID) {
var elem = document.getElementById(elemID);
elem.parentNode.removeChild(elem);

}

If this seems like a long way to go to accomplish the same result as setting the outerHTML property of an
Internet Explorer 4 or later object to empty, you are right. Although some of this convolution makes sense
for XML, unfortunately, the W3C working group doesn’t seem to have HTML scripters’ best interests in
mind. All is not lost, however, as you see later in this chapter.

183

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 183

Generating new node content
The final point about the node structure of the W3C DOM focuses on the similarly gnarled way scripters
must go about generating content that they want to add or replace on a page. For text-only changes (for
example, the text inside a table cell), there is both an easy and a hard way to perform the task. For HTML
changes, there is only the hard way (plus a handy workaround discussed later). Let’s look at the hard way
first and then pick up the easy way for text changes.

To generate a new node in the DOM, you look to the variety of methods that are defined for the Core
DOM’s document object (and therefore are inherited by the HTML document object). A node creation
method is defined for nearly every node type in the DOM. The two important ones for HTML documents
are createElement() and createTextNode(). The first generates an element with whatever tag name
(string) you pass as a parameter; the second generates a text node with whatever text you pass.

When you first create a new element, it exists only in the browser’s memory and not as part of the docu-
ment containment hierarchy. Moreover, the result of the createElement() method is a reference to an
empty element except for the name of the tag. For example, to create a new p element, use

var newElem = document.createElement(“p”);

The new element has no ID, attributes, or any content. To assign some attributes to that element, you can
use the setAttribute() method (a method of every element object) or assign a value to the object’s corre-
sponding property. For example, to assign an identifier to the new element, use either

newElem.setAttribute(“id”, “newP”);

or

newElem.id = “newP”;

Both ways are perfectly legal. Even though the element has an ID at this point, it is not yet part of the docu-
ment, so you cannot retrieve it via the document.getElementById() method.

To add some content to the paragraph, next you generate a text node as a separate object:

var newText = document.createTextNode(“This is the second paragraph.”);

Again, this node is just sitting around in memory waiting for you to apply it as a child of some other node.
To make this text the content of the new paragraph, you can append the node as a child of the paragraph
element that is still in memory:

newElem.appendChild(newText);

If you were able to inspect the HTML that represents the new paragraph element, it would look like the
following:

<p id=”newP”>This is the second paragraph.</p>

The new paragraph element is ready for insertion into a document. Using the document shown in Listing
14-1, you can append it as a child of the body element:

document.body.appendChild(newElem);

At last, the new element is part of the document containment hierarchy. Now you can reference it just like
any other element in the document.

184

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 184

Replacing node content
The addition of the paragraph shown in the last section requires a change to a portion of the text in the
original paragraph (the first paragraph is no longer the one and only paragraph on the page). As mentioned
earlier, you can perform text changes via the replaceChild() method or by assigning new text to a text
node’s nodeValue property. Let’s see how each approach works to change the text of the first paragraph’s em
element from one and only to first.

To use replaceChild(), a script first must generate a valid text node with the new text:

var newText = document.createTextNode(“first”);

The next step is to use the replaceChild() method. But recall that the point of view for this method is
the parent of the child being replaced. The child here is the text node inside the em element, so you must
invoke the replaceChild() method on the em element. Also, the replaceChild() method requires two
parameters. The first parameter is the new node; the second is a reference to the node to be replaced.
Because the script statements get pretty long with the getElementById() method, an intermediate step
grabs a reference to the text node inside the em element:

var oldChild = document.getElementById(“emphasis1”).childNodes[0];

Now the script is ready to invoke the replaceChild() method on the em element, swapping the old text
node with the new:

document.getElementById(“emphasis1”).replaceChild(newText, oldChild);

If you want to capture the old node before it disappears, be aware that the replaceChild() method
returns a reference to the replaced node (which is only in memory at this point and not part of the docu-
ment node hierarchy). You can assign the method statement to a variable and use that old node somewhere
else, if needed.

This may seem like a long way to go; it is, especially if the HTML you are generating is complex. Fortunately,
you can take a simpler approach for replacing text nodes. All it requires is a reference to the text node being
replaced. You can assign that node’s nodeValue property its new string value:

document.getElementById(“emphasis1”).childNodes[0].nodeValue = “first”;

When an element’s content is entirely text (for example, a table cell that already has a text node in it), this is
the most streamlined way to swap text on the fly using W3C DOM syntax. This doesn’t work for the cre-
ation of the second paragraph text earlier in this chapter because the text node did not exist yet. The
createTextNode() method had to create it explicitly.

Also remember that a text node does not have any inherent style associated with it. The style of the contain-
ing HTML element governs the style of the text. If you want to change not only the text node’s text, but also
how it looks, you have to modify the style property of the text node’s parent element. Browsers that per-
form these kinds of content swaps and style changes automatically reflow the page to accommodate changes
in the size of the content.

To summarize, Listing 14-2 is a live version of the modifications made to the original document shown in
Listing 14-1. The new version includes a button and script that make the changes described throughout this
discussion of nodes. Reload the page to start over.

185

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 185

LISTING 14-2

Adding/Replacing DOM Content

<html>
<head>

<title>A Simple Page</title>
<script type=”text/javascript”>
function modify() {

var newElem = document.createElement(“p”);
newElem.id = “newP”;
var newText = document.createTextNode(“This is the second paragraph.”);
newElem.appendChild(newText);
document.body.appendChild(newElem);
document.getElementById(“emphasis1”).childNodes[0].nodeValue = “first”;

}
</script>

</head>

<body>
<button onclick=”modify()”>Add/Replace Text</button>

<p id=”paragraph1”>This is the <em id=”emphasis1”>one and
only paragraph on the page.</p>

</body>
</html>

Chapter 15 details node properties and methods that are inherited by all HTML elements. Most are imple-
mented in all modern W3C DOM browsers. Also look to the reference material for the document object in
Chapter 18 for other valuable W3C DOM methods.

A de facto standard: innerHTML
Microsoft was the first to implement the innerHTML property of all element objects starting with Internet
Explorer 4. Although the W3C DOM has not supported this property, scripters frequently find it more con-
venient to modify content dynamically by way of a string containing HTML markup than by creating and
assembling element and text nodes. As a result, most modern W3C DOM browsers, including Moz1 and
Safari 1, support the read/write innerHTML property of all element objects as a de facto standard.

When you assign a string containing HTML markup to the innerHTML of an existing element, the browser
automatically inserts the newly rendered elements into the document node tree. You may also use
innerHTML with unmarked text to perform the equivalent of the Internet Explorer–only innerText
property.

186

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 186

Despite the apparent convenience of the innerHTML property compared with the step-by-step process of
manipulating element and text node objects, browsers operate on nodes much more efficiently than on
assembly of long strings. This is one case where less JavaScript code does not necessarily translate to greater
efficiency.

Static W3C DOM HTML objects
The Moz1 DOM (but unfortunately, not Internet Explorer 5 or later) adheres to the core JavaScript notion of
prototype inheritance with respect to the object model. When a page loads into Moz1, the browser creates
HTML objects based on the prototypes of each object defined by the W3C DOM. For example, if you use
The Evaluator Sr. (discussed in Chapter 13) to see what kind of object the myP paragraph object is — enter
document.getElementById(“myP”) in the top text box and click the Evaluate button — it reports that
the object is based on the HTMLParagraphElement object of the DOM. Every instance of a p element
object in the page inherits its default properties and methods from HTMLParagraphElement (which in turn
inherits from HTMLElement, Element, and Node objects — all detailed in the JavaScript binding appendix
of the W3C DOM specification).

You can use scripting to add properties to the prototypes of some of these static objects. To do so, you must
use new features added to Moz1. Two new methods —__defineGetter__() and __defineSetter__()—
enable you to assign functions to a custom property of an object.

These methods are Mozilla specific. To prevent their possible collision with standardized
implementations of these features in future implementations of ECMAScript, the underscore

characters on either side of the method name are pairs of underscore characters.

The functions execute whenever the property is read — the function assigned via the
__defineGetter__() method — or modified — the function assigned through the __defineSetter__()
method. The common way to define these functions is in the form of an anonymous function (see Chapter
34). The formats for the two statements that assign these behaviors to an object prototype are as follows:

object.prototype.__defineGetter__(“propName”, function([param1[,...[,paramN]]]) {
// statements
return returnValue;

})
object.prototype.__defineSetter__(“propName”, function([param1[,...[,paramN]]]) {
// statements
return returnValue;

})

The example in Listing 14-3 demonstrates how to add a read-only property to every HTML element object
in the current document. The property, called childNodeDetail, returns an object. The object has two
properties: one for the number of element child nodes and one for the number of text child nodes. Note
that the this keyword in the function definition is a reference to the object for which the property is calcu-
lated. And because the function runs each time a script statement reads the property, any scripted changes
to the content after the page loads are reflected in the returned property value.

NOTENOTE

187

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 187

LISTING 14-3

Adding a Read-Only Prototype Property to All HTML Element Objects

<script type=”text/javascript”>
if (HTMLElement) {

HTMLElement.prototype.__defineGetter__(“childNodeDetail”, function() {
var result = {elementNodes:0, textNodes:0 }
for (var i = 0; i < this.childNodes.length; i++) {

switch (this.childNodes[i].nodeType) {
case 1:

result.elementNodes++;
break;

case 3:
result.textNodes++;
break;

}
}
return result;

})
}
</script>

To access the property, use it like any other property of the object. For example:

var BodyNodeDetail = document.body.childNodeDetail;

The returned value in this example is an object, so you use regular JavaScript syntax to access one of the
property values:

var BodyElemNodesCount = document.body.childNodeDetail.elementNodes;

Bidirectional event model
Despite the seemingly conflicting event models of NN4 (trickle down) and IE4 (bubble up), the W3C DOM
event model (defined in Level 2) manages to employ both event propagation models. This gives the scripter
the choice of where along an event’s propagation path the event gets processed. To prevent conflicts with
existing event model terminology, the W3C model invents many new terms for properties and methods for
events. Some coding probably requires W3C DOM–specific handling in a page aimed at multiple object
models.

The W3C event model also introduces a new concept called the event listener. An event listener is essentially
a mechanism that instructs an object to respond to a particular kind of event — very much like the way the
event handler attributes of HTML tags respond to events. But the DOM recommendation points out that it
prefers a more script-oriented way of assigning event listeners: the addEventListener() method available
for every node in the document hierarchy. Through this method, you advise the browser whether to force
an event to bubble up the hierarchy (the default behavior that is also in effect if you use the HTML attribute
type of event handler) or to be captured at a higher level.

188

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 188

Functions invoked by the event listener receive a single parameter consisting of the event object whose prop-
erties contain contextual details about the event (details such as the position of a mouse click, character code
of a keyboard key, or a reference to the target object). For example, if a form includes a button whose job is
to invoke a calculation function, the W3C DOM prefers the following way of assigning the event handler:

document.getElementById(“calcButton”).addEventListener(“click”, doCalc, false);

The addEventListener() method takes three parameters. The first parameter is a string of the event to lis-
ten for; the second is a reference to the function to be invoked when that event fires; and the third parameter
is a Boolean value. When you set this Boolean value to true, it turns on event capture whenever this event is
directed to this target. The function then takes its cue from the event object passed as the parameter:

function doCalc(evt) {
// get shortcut reference to input button’s form
var form = evt.target.form;
var results = 0;
// other statements to do the calculation //
form.result.value = results;

}

To modify an event listener, you use the removeEventListener() method to get rid of the old listener
and then employ addEventListener() with different parameters to assign the new one.

Preventing an event from performing its default action is also a different procedure in the W3C event model
than in Internet Explorer. In Internet Explorer 4 (as well as Navigator 3 and 4), you can cancel the default
action by allowing the event handler to evaluate to return false. Although this still works in Internet
Explorer 5 and later, Microsoft includes another property of the window.event object, called
returnValue. Setting that property to false anywhere in the function invoked by the event handler also
kills the event before it does its normal job. But the W3C event model uses a method of the event object,
preventDefault(), to keep the event from its normal task. You can invoke this method anywhere in the
function that executes when the event fires.

Detailed information about an event is contained in an event object that must be passed to an event handler
function where details may be read. If you assign event handlers via the W3C DOM addEventListener()
method or an event handler property, the event object is passed automatically as the sole parameter to the
event handler function. Include a parameter variable to catch the incoming parameter:

function swap(evt) {
// statements here to work with W3C DOM event object

}

But if you assign events through a tag attribute, you must explicitly pass the event object in the call to the
function:

Unfortunately, as of Internet Explorer 7 for Windows and Internet Explorer 5 for Macintosh, the W3C
DOM event model has yet to be supported by Microsoft. You can, however, make the Internet Explorer and
W3C event models work together if you assign event handlers by way of object properties or tag attributes,
and throw in a little object detection as described later in this chapter and in more detail in Chapter 25.

189

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 189

Scripting Trends
Although browser scripting had humble beginnings as a way to put some intelligence into form controls,
the capabilities of the JavaScript language and DOM have inspired many a web developer to create what are
essentially applications. Popular implementations of web-based e-mail systems use extensive scripting and
background communication with the server to keep pages updated quickly without having to fetch and re-
render the complete page each time you delete a message from the inbox list. It’s not uncommon for large
projects to involve multiple scripters (along with specialists in CSS, server programming, artists, and writ-
ers). Wrangling all the code can be a chore.

Separating content from scripting
Those who use CSS to style their sites have learned that separating style definitions from the HTML markup
makes a huge improvement in productivity when it comes time to change colors or font specifications
throughout a site. Instead of having to modify hundreds of tag specifications scattered around the
site, all it takes is a simple tweak of a single CSS rule in one .css file to have that change be implemented
immediately across the board.

The notion of using HTML purely for a page’s structure has also impacted scripting. It is rare these days for
a professional scripter to put an event handler attribute inside an HTML tag. That would be considered too
much mixing of content with behavior. In other words, the HTML markup should be able to stand on its
own so that those with nonscriptable browsers (including those with vision or motor disabilities who use
specialized browsers) can still get the fundamental information provided by the page. Any scripting that
impacts the display or behavior of the page is added to the page after the HTML markup has loaded and
rendered. Even assigning events to elements is done by script after the page load.

Script code is more commonly linked into a page from an external .js file. This isn’t part of the separation
of content and scripts trend, but a practice that offers many benefits, such as the same code being instantly
usable on multiple pages. Additionally, when projects involve many code chefs, scripters can work on their
code while writers work on the HTML and designers work on their external CSS code.

You will see lots of examples in this book that use event handler attributes inside tags and
scripts embedded within the page. This approach is primarily for simplicity of demonstrating a

language or DOM feature.

Using the W3C DOM where possible
Basic support for W3C DOM element referencing and content manipulation has been implemented in
mainstream browsers for so long that you can be assured that composing scripts for that model will work
for the bulk of your visitors. That’s not to say you can assume that every visitor is equipped that way, but
the hassles that scripters used to endure to support conflicting object models are behind us for the most
part. The days of writing extensive branching code for IE and Netscape are not-so-fond memories.

You still want to use object detection techniques to guard against the occasional old browser that stops by.
That’s where the technique of assigning event handlers by scripts can save a lot of headaches.

Except for some initializations that might occur while the page loads, most script execution in a web page
occurs at the instigation of an event: A user clicks a button, types something in a text box, chooses from a
select element, and so on. You can prevent older browsers from tripping up on W3C DOM syntax by
doing your fundamental object detection right in the event assignment code, as in the following simplified
example:

NOTENOTE

190

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 190

function setUpEvents() {
if (document.getElementById) {

// statements to bind events to elements
}

}
window.onload = setUpEvents;

Now browsers that don’t have even minimum support for the W3C DOM won’t generate script errors when
users click or type, because those events won’t be assigned for those browsers. Then scripts that survive
your object detection query can also modify the page, as you saw in Listing 13-2 in Chapter 13.

Handling events
You will still find some places where the W3C DOM isn’t enough. This is particularly true in processing
events, where Internet Explorer (at least through version 7) does not support the W3C DOM way of getting
details about an event to the event handler function. The W3C DOM automatically passes the event object
as a parameter to a handler function. In the Internet Explorer model, the event object is a property of the
window object. Therefore, your functions have to equalize the differences where necessary. For example, to
obtain a single variable representing the event object, regardless of browser, you can use a construction
similar to the following:

function calculate(evt) {
evt = (evt) ? evt : window.event;
// more statements to process event

}

Additional branching is necessary to inspect important details of the event. For example, the Internet
Explorer event object property pointing to the object that received the event is called srcElement, whereas
the W3C DOM version is called target. Again, a little bit of equalizing code in the event handler function
can handle the disparity. When your script has a reference to the element receiving the event, you can start
using W3C DOM properties and methods of the element, because Internet Explorer supports those. You
can find more details on event objects in Chapter 25.

Standards Compatibility Modes
(DOCTYPE Switching)
Both Microsoft and Netscape/Mozilla discovered that they had, over time, implemented CSS features in ways
that ultimately differed from the published standards that came later (usually after much wrangling among
working-group members). To compensate for these differences and make a clean break to be compatible
with the standards, the major browser makers decided to let the page author’s choice of <!DOCTYPE>
header element details determine whether the document was designed to follow the old way (sometimes
called quirks mode) or the standards-compatible way. The tactic, known informally as DOCTYPE switching,
is implemented in Internet Explorer 6 and later, Internet Explorer 5 for the Mac, and all Mozilla-based
browsers.

191

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 191

Although most of the differences between the two modes are small, there are some significant differences
between the two modes in Internet Explorer 6 and later, particularly when styles or DHTML scripts rely on
elements designed with borders, margins, and padding. Microsoft’s original box model measured the
dimensions of elements in a way that differed from the eventual CSS standard.

To place the affected browsers in CSS standards–compatible mode, you should include a <!DOCTYPE> ele-
ment at the top of every document that specifies any of the following details:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”
“http://www.w3.org/TR/REC-html40/loose.dtd”>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Frameset//EN”
“http://www.w3.org/TR/REC-html40/frameset.dtd”>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”
“http://www.w3.org/TR/REC-html40/strict.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

Be aware, however, that older versions of Internet Explorer for Windows, such as Internet Explorer 5 or
Internet Explorer 5.5, are ignorant of the standards-compatible mode and will use the old Microsoft quirks
mode regardless of <!DOCTYPE> setting. But using the standards-compatible mode DOCTYPE is more likely
to force your content and stylesheets to render more similarly across the latest browsers.

Where to Go from Here
These past two chapters provided an overview of the core language and object model issues that anyone
designing pages that use JavaScript must confront. The goal here is to stimulate your own thinking about
how to embrace or discard levels of compatibility with your pages as you balance your desire to generate
cool pages and serve your audience. From here on, the difficult choices are up to you.

To help you choose the objects, properties, methods, and event handlers that best suit your requirements, the
rest of the chapters in Part III and all of Part IV provide in-depth references to the DOM and core JavaScript
language features. Observe the compatibility ratings for each language term very carefully to help you deter-
mine which features best suit your audience’s browsers. Most example listings are complete HTML pages that

192

Document Objects ReferencePart III

21_069165 ch14.qxp 3/1/07 3:44 PM Page 192

you can load in various browsers to see how they work. Many others invite you to explore how things work
through The Evaluator Sr. (see Chapter 13). Play around with the files, making modifications to build your
own applications or expanding your working knowledge of JavaScript in the browser environment.

The language and object models have grown in the handful of years they have been in existence. The amount
of language vocabulary has increased astronomically. It takes time to drink it all in and feel comfortable that
you are aware of the powers available to you. Don’t worry about memorizing the vocabulary. It’s more impor-
tant to acquaint yourself with the features and come back later when you need the implementation details.

Be patient. Be persistent. The reward will come.

193

Document Object Model Essentials 14

21_069165 ch14.qxp 3/1/07 3:44 PM Page 193

21_069165 ch14.qxp 3/1/07 3:44 PM Page 194

The object model specifications implemented in Internet Explorer 4 or later
and W3C/Mozilla-based browsers feature a large set of scriptable objects
that represent what we often call generic HTML elements. Generic ele-

ments can be divided into two groups. One group, such as the b and strike
elements, defines font styles to be applied to enclosed sequences of text. The
need for these elements (and the objects that represent them) is all but gone due
to more page designers using style sheets. The second group of elements assigns
context to content within their start and end tags. Examples of contextual ele-
ments include h1, blockquote, and the ubiquitous p element. Although
browsers sometimes have consistent visual ways of rendering contextual elements
by default (for example, the large bold font of an <h1> tag), the specific render-
ing is not the intended purpose of the tags. No formal standard dictates that text
within an em element must be italicized: The style simply has become the custom
since the very early days of browsers.

All of these generic elements share a large number of scriptable properties, meth-
ods, and event handlers. The sharing extends not only among generic elements,
but also among virtually every renderable element — even if it has additional,
element-specific properties, methods, and/or event handlers that I cover in depth
in other chapters of this reference. Rather than repeat the details of these shared
properties, methods, and event handlers for each object throughout this refer-
ence, I describe them in detail only in this chapter (unless there is a special
behavior, bug, or trick associated with the item in some object described else-
where). In succeeding reference chapters, each object description includes a list
of the object’s properties, methods, and event handlers, but I do not list shared
items over and over (making it hard to find items that are unique to a particular
element). Instead, you see a pointer back to this chapter for the items in common
with generic HTML element objects.

195

IN THIS CHAPTER
Working with HTML
element objects

Common properties
and methods

Event handlers of all
element objects

Generic HTML
Element Objects

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 195

Generic Objects
Table 15-1 lists all of the objects that I treat in this reference as generic objects. All of these objects share the
properties, methods, and event handlers described in succeeding sections and have no special items that
require additional coverage elsewhere in this book.

TABLE 15-1

Generic HTML Element Objects

Formatting Objects Contextual Objects

b acronym

big address

center cite

i code

nobr dfn

rt del

ruby div

s em

small ins

strike kbd

sub listing

sup p

tt plaintext

u pre

wbr samp

span

strong

var

xmp

Properties Methods Event Handlers

accessKey addBehavior() onactivate

all[] addEventListener() onafterupdate

attributes[] appendChild() onbeforecopy

baseURI applyElement() onbeforecut

behaviorUrns[] attachEvent() onbeforedeactivate

canHaveChildren blur() onbeforeeditfocus

canHaveHTML clearAttributes() onbeforepaste

196

Document Objects Reference

elementObject

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 196

Properties Methods Event Handlers

childNodes[] click() onbeforeupdate

children cloneNode() onblur

cite compareDocumentPosition() oncellchange

className componentFromPoint() onclick

clientHeight contains() oncontextmenu

clientLeft createControlRange() oncontrolselect

clientTop detachEvent() oncopy

clientWidth dispatchEvent() oncut

contentEditable doScroll() ondataavailable

currentStyle dragDrop() ondatasetchanged

dateTime fireEvent() ondatasetcomplete

dataFld focus() ondblclick

dataFormatAs getAdjacentText() ondeactivate

dataSrc getAttribute() ondrag

dir getAttributeNode() ondragend

disabled getAttributeNodeNS() ondragenter

document getAttributeNS() ondragleave

filters[] getBoundingClientRect() ondragover

firstChild getClientRects() ondragstart

height getElementsByTagName() ondrop

hideFocus getElementsByTagNameNS() onerrorupdate

id getExpression() onfilterchange

innerHTML getFeature() onfocus

innerText getUserData() onfocusin

isContentEditable hasAttribute() onfocusout

isDisabled hasAttributeNS() onhelp

isMultiLine hasAttributes() onkeydown

isTextEdit hasChildNodes() onkeypress

lang insertAdjacentElement() onkeyup

language insertAdjacentHTML() onlayoutcomplete

lastChild insertAdjacentText() onlosecapture

length insertBefore() onmousedown

localName isDefaultNamespace() onmouseenter

namespaceURI isEqualNode() onmouseleave

nextSibling isSameNode() onmousemove

continued

197

elementObject

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 197

TABLE 15-1 (continued)

Properties Methods Event Handlers

nodeName isSupported() onmouseout

nodeType item() onmouseover

nodeValue lookupNamespaceURI() onmouseup

offsetHeight lookupPrefix() onmousewheel

offsetLeft mergeAttributes() onmove

offsetParent normalize() onmoveend

offsetTop releaseCapture() onmovestart

offsetWidth removeAttribute() onpaste

outerHTML removeAttributeNode() onpropertychange

outerText removeAttributeNS() onreadystatechange

ownerDocument removeBehavior() onresize

parentElement removeChild() onresizeend

parentNode removeEventListener() onresizestart

parentTextEdit removeExpression() onrowenter

prefix removeNode() onrowexit

previousSibling replaceAdjacentText() onrowsdelete

readyState replaceChild() onrowsinserted

recordNumber replaceNode() onscroll

runtimeStyle scrollIntoView() onselectstart

scopeName setActive()

scrollHeight setAttribute()

scrollLeft setAttributeNode()

scrollTop setAttributeNodeNS()

scrollWidth setAttributeNS()

sourceIndex setCapture()

style setExpression()

tabIndex setUserData()

tagName swapNode()

tagUrn tags()

textContent toString()

title urns()

uniqueID

unselectable

width

198

Document Objects Reference

elementObject

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 198

Syntax
To access element properties or methods, use this:

(IE4+) [document.all.]objectID.property | method([parameters])
(IE5+/W3C) document.getElementById(objectID).property | method([parameters])

It’s important to note that unless you have the specific need of supporting IE4, which is highly
unlikely at this point in time, you should rely solely on the latter approach of referencing ele-

ment properties and methods via the getElementById() method.

About these objects
All objects listed in Table 15-1 are document object model (DOM) representations of HTML elements that
influence either the font style or the context of some HTML content. The large set of properties, methods,
and event handlers associated with these objects also applies to virtually every other DOM object that repre-
sents an HTML element. Discussions about object details in this chapter apply to dozens of other objects
described in succeeding chapters of this reference section.

Properties
accessKey
Value: One-character string Read/Write
Compatibility: WinIE4+, MacIE4+, NN7+, Moz+, Safari+

For many elements, you can specify a keyboard character (letter, numeral, or punctuation symbol) that —
when typed as an Alt+key combination (on the Win32 OS platform), a Ctrl+key combination (on the
MacOS), or a Shift+Esc+key combination (on Opera) — brings focus to that element. An element that has
focus is the one that is set to respond to keyboard activity. If the newly focused element is out of view in the
document’s current scroll position, the document is scrolled to bring that focused element into view (also
see the scrollIntoView() method). The character you specify can be an uppercase or lowercase value,
but these values are not case sensitive. If you assign the same letter to more than one element, the user can
cycle through all elements associated with that accessKey value.

Internet Explorer gives some added powers to the accessKey property in some cases. For example, if you
assign an accessKey value to a label element object, the focus is handed to the form element associated
with that label. Also, when elements such as buttons have focus, pressing the spacebar acts the same as
clicking the element with a mouse.

Exercise some judgment in selecting characters for accessKey values. If you assign a letter that is normally
used to access one of the Windows version browser’s built-in menus (for example, Alt+F for the File menu),
that accessKey setting overrides the browser’s normal behavior. To users who rely on keyboard access to
menus, your control over that key combination can be disconcerting.

Example
Listing 15-1 shows an example of how to use the accessKey property to manipulate the keyboard interface
for navigating a web page. When you load the script in Listing 15-1, adjust the height of the browser win-
dow so that you can see nothing below the second dividing rule. Enter any character in the Settings portion
of the page and press Enter. (The Enter key may cause your computer to beep.) Then hold down the Alt
(Windows) or Ctrl (Mac) key while pressing the same keyboard key. The element from below the second
divider should come into view.

NOTENOTE

199

elementObject.accessKey

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 199

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) method. A modern cross-browser event handling technique is
explained in detail in Chapter 25.

LISTING 15-1

Controlling the accessKey Property

<html>
<head>

<title>accessKey Property</title>
<script type=”text/javascript”>
function assignKey(type, elem) {

if (window.event.keyCode == 13) {
switch (type) {

case “button”:
document.forms[“output”].access1.accessKey = elem.value;
break;

case “text”:
document.forms[“output”].access2.accessKey = elem.value;
break;

case “table”:
document.getElementById(“myTable”).accessKey = elem.value;

}
return false;

}
}
</script>

</head>
<body>

<h1>accessKey Property Lab</h1>
<hr />
Settings:

<form name=”input”>

Assign an accessKey value to the Button below and press Return: <input
type=”text” size=”2” maxlength=”1”
onkeypress=”return assignKey(‘button’, this)” />

Assign an accessKey value to the Text Box below and press Return:
<input type=”text” size=”2” maxlength=”1”
onkeypress=”return assignKey(‘text’, this)” />

Assign an accessKey value to the Table below (IE5.5+ only) and press
Return: <input type=”text” size=”2” maxlength=”1”
onkeypress=”return assignKey(‘table’, this)” />

</form>

Then press Alt (Windows) or Control (Mac) + the key.

Size the browser window to view nothing lower than this line.
<hr />

NOTENOTE

200

Document Objects Reference

elementObject.accessKey

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 200

<form name=”output” onsubmit=”return false”>
<input type=”button” name=”access1” value=”Standard Button” /> <input
type=”text” name=”access2” />

</form>
<table id=”myTable” cellpadding=”10” border=”2”>

<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>

</tr>
<tbody bgcolor=”red”>

<tr>
<td width=”100”>4</td>
<td>Primary Widget</td>
<td>$14.96</td>

</tr>
<tr>

<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>

</tr>
</tbody>

</table>
</body>

</html>

Related Item: scrollIntoView() method

all[]
Value: Array of nested element objects Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Exclusive to Internet Explorer, the all property is a collection (array) of every HTML element and (in IE5+)
XML tag within the scope of the current object. Items in this array appear in source-code order, and the
array is oblivious to element containment among the items. For HTML element containers, the source-code
order is dependent on the position of the start tag for the element; end tags are not counted. But for XML
tags, end tags appear as separate entries in the array.

Every document.all collection contains objects for the html, head, title, and body element objects even
if the actual HTML source code omits the tags. The object model creates these objects for every document
that is loaded into a window or frame. Although the document.all reference may be the most common
usage, the all property is available for any container element. For example, document.forms[0].all
exposes all elements defined within the first form of a page.

You can access any element that has an identifier assigned to its id attribute by that identifier in string form
(as well as by index integer). Rather than use the performance-costly eval() function to convert a string to
an object reference, use the string value of the name as an array index value:

var paragraph = document.all[“myP”];

201

elementObjectCollection.all

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 201

Internet Explorer enables you to use either square brackets or parentheses for single collection index values.
Thus, the following two examples evaluate identically:

var paragraph = document.all[“myP”];
var paragraph = document.all(“myP”);

In the rare case that two or more elements within the all collection have the same ID, the syntax for the
string index value returns a collection of just those identically named elements. But you can use a second
argument (in parentheses) to signify the integer of the initial collection and thus single out a specific
instance of that named element:

var secondRadio = document.all(“group0”,1);

As a more readable alternative, you can use the item() method (described later in this chapter) to access
the same kinds of items within a collection:

var secondRadio = document.all.item(“group0”,1);

Also see the tags() method (later in this chapter) as a way to extract a set of elements from an all collec-
tion that matches a specific tag name.

Although a few non-IE browsers support the all collection, you should strongly consider using the
document.getElementById() method described in Chapter 18, which is the official W3C and cross-
browser approach for referencing elements. The document.getElementById() method is supported
in IE5+.

Example
Use The Evaluator (see Chapter 13) to experiment with the all collection. Enter the following statements
one at a time in the lower text box, and review the results in the text area for each:

document.all
myTable.all
myP.all

If you encounter a numbered element within a collection, you can explore that element to see which tag is
associated with it. For example, if one of the results for the document.all collection says
document.all.8=[object], enter the following statement in the topmost text box:

document.all[8].tagName

Related Items: item(), tags(), document.getElementById() methods

attributes[]
Value: Array of attribute object references Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The attributes property consists of an array of attributes specified for an element. In IE5+, the attributes
array contains an entry for every possible property that the browser has defined for its elements — even if
the attribute is not set explicitly in the HTML tag. Also, any attributes that you add later via script facilities
such as the setAttribute() method are not reflected in the attributes array. In other words, the IE5+
attributes array is fixed, using default values for all properties except those that you explicitly set as attrib-
utes in the HTML tag.

Mozilla browsers’ attributes property returns an array that is a named node map (in W3C DOM
terminology) — an object that has its own properties and methods to read and write attribute values. For
example, you can use the getNamedItem(attrName) and item(index) methods on the array returned
from the attributes property to access individual attribute objects via W3C DOM syntax.

202

Document Objects Reference

elementObject.attributes

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 202

IE5+ and Mozilla have different ideas about what an attribute object should be. Table 15-2 shows the vari-
ety of properties of an attribute object as defined by the two object models. The larger set of properties in
Mozilla reveals its dependence on the W3C DOM node inheritance model discussed in Chapter 14.

TABLE 15-2

Attribute Object Properties

Property IE5+ Moz Description

attributes No Yes Array of nested attribute objects (null)

childNodes No Yes Child node array

firstChild No Yes First child node

lastChild No Yes Last child node

localName No Yes Name within current namespace

name No Yes Attribute name

nameSpaceURI No Yes XML namespace URI

nextSibling No Yes Next sibling node

nodeName Yes Yes Attribute name

nodeType No Yes Node type (2)

nodeValue Yes Yes Value assigned to attribute

ownerDocument No Yes Document object reference

ownerElement No Yes Element node reference

parentNode No Yes Parent node reference

prefix No Yes XML namespace prefix

previousSibling No Yes Previous sibling node

specified Yes Yes Whether attribute is explicitly specified (Boolean)

value No Yes Value assigned to attribute

The most helpful property of an attribute object is the Boolean specified property. In IE, this lets you
know whether the attribute is explicitly specified in the element’s tag. Because Mozilla returns only explic-
itly specified attributes in the attributes array, the value in Mozilla is always true. Most of the time,
however, you’ll probably use an element object’s getAttribute() and setAttribute() methods to read
and write attribute values.

Example
Use The Evaluator (see Chapter 13) to examine the values of the attributes array for some of the ele-
ments in that document. Enter each of the following expressions in the bottom text box, and see the array
contents in the Results text area for each:

document.body.attributes
document.getElementById(“myP”).attributes
document.getElementById(“myTable”).attributes

203

elementObject.attributes

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 203

If you have both IE5+ and a W3C DOM–compatible browser, compare the results you get for each of these
expressions. To view the properties of a single attribute in WinIE5+ by accessing the attributes array,
enter the following statement in the bottom text box:

document.getElementById(“myP”).attributes[“class”]

For W3C browsers, IE6+, and MacIE5, use the W3C DOM syntax:

document.getElementById(“myP”).attributes.getNamedItem(“class”)

Related Items: getAttribute(), mergeAttributes(), removeAttribute(), setAttribute()
methods

baseURI
Value: Full URI string Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

This property reveals the full path to the source from which the element was served. The property is handy
in applications that import XML data, in which case the source of an XML element is likely different from
the HTML page in which it is being processed.

behaviorUrns[]
Value: Array of behavior URN strings Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The Internet Explorer behaviorUrns property is designed to provide a list of addresses, in the form of
URNs (Uniform Resource Names), of all behaviors assigned to the current object. If there are no behaviors,
the array has a length of zero. In practice, however, IE5+ always returns an array of empty strings. Perhaps
the potential exposure of URNs by script was deemed to be a privacy risk.

Related Item: urns() method

canHaveChildren
Value: Boolean Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Useful in some dynamic content situations, the canHaveChildren property reveals whether a particular
element is capable of containing a child (nested) element. Most elements that have start and end tags (par-
ticularly the generic elements covered in this chapter) can contain nested elements. A nested element is
referred to as a child of its parent container.

Example
Listing 15-2 shows an example of how to use the canHaveChildren property to visually identify elements
on a page that can have nested elements. This example uses color to demonstrate the difference between an
element that can have children and one that cannot. The first button sets the color style property of every
visible element on the page to red. Thus, elements (including the normally non-childbearing ones such as
hr and input) are affected by the color change. But if you reset the page and click the largest button, only
those elements that can contain nested elements receive the color change.

204

Document Objects Reference

elementObject.canHaveChildren

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 204

LISTING 15-2

Reading the canHaveChildren Property

<html>
<head>

<title>canHaveChildren Property</title>
<script type=”text/javascript”>
function colorAll() {

var elems = document.getElementsByTagName(“*”);
for (var i = 0; i < elems.length; i++) {

elems[i].style.color = “red”;
}

}

function colorChildBearing() {
var elems = document.getElementsByTagName(“*”);
for (var i = 0; i < elems.length; i++) {

if (elems[i].canHaveChildren) {
elems[i].style.color = “red”;

}
}

}
</script>

</head>
<body>

<h1>canHaveChildren Property Lab</h1>
<hr />
<form name=”input”>

<input type=”button” value=”Color All Elements”
onclick=”colorAll()” />

<input type=”button” value=”Reset” onclick=”history.go(0)” />

<input type=”button”
value=”Color Only Elements That Can Have Children”
onclick=”colorChildBearing()” />

</form>

<hr />
<form name=”output”>

<input type=”checkbox” checked=”checked” />Your basic checkbox <input
type=”text” name=”access2” value=”Some textbox text.” />

</form>
<table id=”myTable” cellpadding=”10” border=”2”>

<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price</th>

</tr>
<tbody>

<tr>
<td width=”100”>4</td>

continued

205

elementObject.canHaveChildren

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 205

LISTING 15-2 (continued)

<td>Primary Widget</td>
<td>$14.96</td>

</tr>
<tr>

<td>10</td>
<td>Secondary Widget</td>
<td>$114.96</td>

</tr>
</tbody>

</table>
</body>

</html>

Related Items: childNodes, firstChild, lastChild, parentElement, parentNode properties;
appendChild(), hasChildNodes(), removeChild() methods.

canHaveHTML
Value: Boolean Read-Only and Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Not all HTML elements are containers of HTML content. The canHaveHTML property lets scripts find out
whether a particular object can accept HTML content, such as for insertion or replacement by object meth-
ods. The value for a p element, for example, is true. The value for a br element is false. The property is
read-only for all elements except HTML Components, in which case it is read/write.

Example
Use The Evaluator (see Chapter 13) in WinIE5+ to experiment with the canHaveHTML property. Enter the
following statements in the top text box, and observe the results:

document.getElementById(“input”).canHaveHTML
document.getElementById(“myP”).canHaveHTML

The first statement returns false because an input element (the top text box, in this case) cannot have
nested HTML. But the myP element is a p element that gladly accepts HTML content.

Related Items: appendChild(), insertAdjacentHTML(), insertBefore() methods

childNodes[]
Value: Array of node objects Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The childNodes property consists of an array of node objects contained by the current object. Note that
child nodes consist of both element objects and text nodes. Therefore, depending on the content of the cur-
rent object, the number of childNodes and children collections may differ.

206

Document Objects Reference

elementObject.childNodes

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 206

If you use the childNodes array in a for loop that iterates through a sequence of HTML (or
XML) elements, watch out for the possibility that the browser treats source-code whitespace

(blank lines between elements and even simple carriage returns between elements) as text nodes. This
potential problem affects MacIE5 and Mozilla. If present, these extra text nodes occur primarily surrounding
block elements.

Most looping activity through the childNodes array aims to examine, count, or modify element nodes
within the collection. If that is your script’s goal, test each node returned by the childNodes array, and ver-
ify that the nodeType property is 1 (element) before processing that node; otherwise, skip the node. The
skeletal structure of such a loop follows:

for (var i = 0; i < myElem.childNodes.length; i++) {
if (myElem.childNodes[i].nodeType == 1) {

statements to work on element node i
}

}

The presence of these phantom text nodes also impacts the nodes referenced by the firstChild and
lastChild properties, described later in this chapter.

Example
Listing 15-3 contains an example of how you might code a function that walks the child nodes of a given
node. The walkChildNodes() function shown in the listing accumulates and returns a hierarchical list of
child nodes from the point of view of the document’s HTML element (the default) or any element whose ID
you pass as a string parameter. This function is embedded in The Evaluator so that you can inspect the
child node hierarchy of that page or (when using evaluator.js for debugging as described in Chapter 45
on the CD-ROM) the node hierarchy within any page you have under construction. Try it out in The
Evaluator by entering the following statements in the top text box:

walkChildNodes()
walkChildNodes(document.getElementById(“myP”))

The results of this function show the nesting relationships among all child nodes within the scope of the
initial object. It also shows the act of drilling down to further childNodes collections until all child nodes
are exposed and catalogued. Text nodes are labeled accordingly. The first 15 characters of the actual text are
placed in the results to help you identify the nodes when you compare the results against your HTML
source code.

LISTING 15-3

Collecting Child Nodes

function walkChildNodes(objRef, n) {
var obj;
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef);

} else {
obj = objRef;

}

continued

CAUTION CAUTION

207

elementObject.childNodes

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 207

LISTING 15-3 (continued)

} else {
obj = (document.body.parentElement) ?

document.body.parentElement : document.body.parentNode;
}
var output = “”;
var indent = “”;
var i, group, txt;
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”;

}
} else {

n = 0;
output += “Child Nodes of <” + obj.tagName;
output += “>\n=====================\n”;

}
group = obj.childNodes;
for (i = 0; i < group.length; i++) {

output += indent;
switch (group[i].nodeType) {

case 1:
output += “<” + group[i].tagName;
output += (group[i].id) ? “ ID=” + group[i].id : “”;
output += (group[i].name) ? “ NAME=” + group[i].name : “”;
output += “>\n”;
break;

case 3:
txt = group[i].nodeValue.substr(0,15);
output += “[Text:\”” + txt.replace(/[\r\n]/g,”<cr>”);
if (group[i].nodeValue.length > 15) {

output += “...”;
}
output += “\”]\n”;
break;

case 8:
output += “[!COMMENT!]\n”;
break;

default:
output += “[Node Type = “ + group[i].nodeType + “]\n”;

}
if (group[i].childNodes.length > 0) {
output += walkChildNodes(group[i], n+1);

}
}
return output;

}

208

Document Objects Reference

elementObject.childNodes

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 208

Related Items: nodeName, nodeType, nodeValue, parentNode properties; cloneNode(),
hasChildNodes(), removeNode(), replaceNode(), swapNode() methods

children
Value: Array of element objects Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1.2+

The children property consists of an array of element objects contained by the current object. Unlike the
childNodes property, children does not take into account text nodes, but focuses strictly on the HTML
(and XML) element containment hierarchy from the point of view of the current object. Also unlike the
childNodes property, the children property works only in Internet Explorer and Safari 1.2+. Children
exposed to the current object are immediate children only. If you want to get all element objects nested
within the current object (regardless of how deeply nested they are), use the all collection instead.

Example
Listing 15-4 shows how you can use the children property to walk the child nodes of a given node. This
function accumulates and returns a hierarchical list of child elements from the point of view of the docu-
ment’s HTML element (the default) or any element whose ID you pass as a string parameter. This function is
embedded in The Evaluator so that you can inspect the parent–child hierarchy of that page or (when using
evaluator.js for debugging as described in Chapter 45 on the CD-ROM) the element hierarchy within
any page you have under construction. Try it out in The Evaluator by entering the following statements in
the top text box:

walkChildren()
walkChildren(“myTable”)

Notice in this example that the walkChildren() function is called with the name of an element instead of
a call to document.getElementId(). This reveals the flexibility of the walkChildren() function and
how it can operate on either an object or the name of an object (element). The walkChildNodes() func-
tion in Listing 15-3 offers the same flexibility.

The results of the walkChildren() function show the nesting relationships among all parent and child ele-
ments within the scope of the initial object. It also shows the act of drilling down to further children col-
lections until all child elements are exposed and cataloged. The element tags also display their id and/or
name attribute values if any are assigned to the elements in the HTML source code.

LISTING 15-4

Collecting Child Elements

function walkChildren(objRef, n) {
var obj;
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef);

} else {
obj = objRef;

}
} else {

obj = document.body.parentElement;

continued

209

elementObject.children

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 209

LISTING 15-4 (continued)

}
var output = “”;
var indent = “”;
var i, group;
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”;

}
} else {

n = 0;
output += “Children of <” + obj.tagName;
output += “>\n=====================\n”;

}
group = obj.children;
for (i = 0; i < group.length; i++) {

output += indent + “<” + group[i].tagName;
output += (group[i].id) ? “ ID=” + group[i].id : “”;
output += (group[i].name) ? “ NAME=” + group[i].name : “”;
output += “>\n”;
if (group[i].children.length > 0) {

output += walkChildren(group[i], n+1);
}

}
return output;

}

Related Items: canHaveChildren, firstChild, lastChild, parentElement properties;
appendChild(), removeChild(), replaceChild() methods

cite
Value: URL string Read/Write
Compatibility: WinIE6+, MacIE-, NN6+, Moz+, Safari+

The cite property contains a URL that serves as a reference to the source of an element, as in the author of
a quote. The property is intended to apply to only the blockquote, q, del, and ins element objects, but
IE supports it in a wider range of text content objects. This may or may not be a mistake, so it’s probably
not a safe bet to use the property outside its intended elements.

className
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

A class name is an identifier that is assigned to the class attribute of an element. To associate a cascading
style sheets (CSS) rule with several elements in a document, assign the same identifier to the class attri-
butes of those elements, and use that identifier (preceded by a period) as the CSS rule’s selector. An element’s
className property enables the application of different CSS rules to that element under script control.
Listing 15-5 shows an example of such a script.

210

Document Objects Reference

elementObject.className

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 210

Example
The style of an element toggles between on and off in Listing 15-5 by virtue of setting the element’s className
property alternatively to an existing style sheet class selector name and an empty string. When you set the
className to an empty string, the default behavior of the h1 element governs the display of the first header. A
click of the button forces the style sheet rule to override the default behavior in the first h1 element.

LISTING 15-5

Working with the className Property

<html>
<head>

<title>className Property</title>
<style type=”text/css”>
.special {font-size:16pt; color:red}
</style>
<script type=”text/javascript”>
function toggleSpecialStyle(elemID) {

var elem = (document.all) ? document.all(elemID) :
document.getElementById(elemID);

if (elem.className == “”) {
elem.className = “special”;

} else {
elem.className = “”;

}
}
</script>

</head>
<body>

<h1>className Property Lab</h1>
<hr />
<form name=”input”>

<input type=”button” value=”Toggle Class Name”
onclick=”toggleSpecialStyle(‘head1’)” />

</form>

<h1 id=”head1”>ARTICLE I</h1>
<p>Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

<h1>ARTICLE II</h1>
<p>A well regulated militia, being necessary to the security of a free

state, the right of the people to keep and bear arms, shall not be
infringed.</p>

</body>
</html>

211

elementObject.className

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 211

You can also create multiple versions of a style rule with different class selector identifiers and apply them at
will to a given element.

Related Items: rule, stylesheet objects (Chapter 26); id property

clientHeight
clientWidth
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN7, Moz1.0.1+, Safari+

These two properties by and large reveal the pixel height and width of the content within an element whose
style sheet rule includes height and width settings. In theory, these measures do not take into account any
margins, borders, or padding that you add to an element by way of style sheets. In practice, however, differ-
ent combinations of borders, margins, and padding influence these values in unexpected ways. One of the
more reliable applications of the clientHeight property enables you to discover, for example, where the
text of an overflowing element ends. To read the rendered dimensions of an element, you are better served
across browsers with the offsetHeight and offsetWidth properties.

For the document.body object, the clientHeight and clientWidth properties return the inside height
and width of the window or frame (plus or minus a couple of pixels). These take the place of desirable, but
nonexistent, window properties in IE.

Unlike earlier versions, Internet Explorer 5+ expanded the number of objects that employ these properties
to include virtually all objects that represent HTML elements. Values for these properties in Mozilla-based
browsers are zero except for document.body, which measures the browser’s current content area.

Example
Listing 15-6 for IE includes an example of how to size content dynamically on a page based on the client-
area width and height. This example calls upon the clientHeight and clientWidth properties of a div
element that contains a paragraph element. Only the width of the div element is specified in its style sheet
rule, which means that the paragraph’s text wraps inside that width and extends as deeply as necessary to
show the entire paragraph. The clientHeight property describes that depth. The clientHeight prop-
erty then calculates where a logo image should be positioned immediately after div, regardless of the length
of the text. As a bonus, the clientWidth property helps the script center the image horizontally with
respect to the paragraph’s text.

LISTING 15-6

Using clientHeight and clientWidth Properties

<html>
<head>

<title>clientHeight and clientWidth Properties</title>
<script type=”text/javascript”>
function showLogo() {

var paragraphW = document.getElementById(“myDIV”).clientWidth;
var paragraphH = document.getElementById(“myDIV”).clientHeight;
// correct for Windows/Mac discrepancies
var paragraphTop = (document.getElementById(“myDIV”).clientTop) ?

document.getElementById(“myDIV”).clientTop :
document.getElementById(“myDIV”).offsetTop;

212

Document Objects Reference

elementObject.clientHeight

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 212

var logoW = document.getElementById(“logo”).style.pixelWidth;
// center logo horizontally against paragraph
document.getElementById(“logo”).style.pixelLeft =

(paragraphW-logoW) / 2;
// position image immediately below end of paragraph
document.getElementById(“logo”).style.pixelTop =

paragraphTop + paragraphH;
document.getElementById(“logo”).style.visibility = “visible”;

}
</script>

</head>
<body>

<button onclick=”showLogo()”>Position and Show Logo Art</button>
<div id=”logo” style=”position:absolute; width:120px; visibility:hidden”>

</div>
<div id=”myDIV” style=”width:200px”>

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit involuptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident.</p>

</div>
</body>

</html>

To assist in the vertical positioning of the logo, the offsetTop property of the div object provides the
position of the start of the div with respect to its outer container (the body). Unfortunately, MacIE uses the
clientTop property to obtain the desired dimension. That measure (assigned to the paragraphTop
variable), plus the clientHeight of the div, provides the top coordinate of the image.

Related Items: offsetHeight, offsetWidth properties

clientLeft
clientTop
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The purpose and names of the clientLeft and clientTop properties are confusing at best. Unlike the
clientHeight and clientWidth properties, which apply to the content of an element, the clientLeft
and clientTop properties return essentially no more information than the thickness of a border around an
element — provided that the element is positioned. If you do not specify a border or do not position the ele-
ment, the values are zero (although the document.body object can show a couple of pixels in each direc-
tion without explicit settings). If you are trying to read the left and top coordinate positions of an element,
the offsetLeft and offsetTop properties are more valuable in WinIE; as shown in Listing 15-6, how-
ever, the clientTop property returns a suitable value in MacIE. Virtually all elements have the
clientLeft and clientTop properties in IE5+, whereas support in MacIE is less consistent.

Related Items: offsetLeft, offsetTop properties

213

elementObject.clientLeft

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 213

contentEditable
Value: Boolean Read/Write
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari 1.2+

IE5.5 introduced the concept of editable HTML content on a page. Element tags can include a
contenteditable attribute whose value is echoed via the contentEditable property of the element.
The default value for this property is inherit, which means that the property inherits whatever setting this
property has in the hierarchy of HTML containers outward to the body. If you set the contentEditable
property to true, that element and all nested elements set to inherit the value become editable; conversely,
a setting of false turns off the option to edit the content. Safari automatically provides a visual cue for
editable elements by giving an editable element a glowing blue border.

Example
Listing 15-7 demonstrates how to use the contentEditable property to create a very simple poetry editor.
When you click the button of a freshly loaded page, the toggleEdit() function captures the opposite of the
current editable state via the isContentEditable property of the div that is subject to edit. You switch on
editing for that element in the next statement by assigning the new value to the contentEditable property
of the div. For added impact, turn the text of the div to red to provide additional user feedback about what
is editable on the page. You can also switch the button label to one that indicates the action invoked by the
next click of that button.

LISTING 15-7

Using the contentEditable Property

<html>
<head>

<style type=”text/css”>
.normal {color: black}
.editing {color: red}
</style>
<script type=”text/javascript”>
function toggleEdit() {

var newState = !editableText.isContentEditable;
editableText.contentEditable = newState;
editableText.className = (newState) ? “editing” : “normal”;
editBtn.innerText = (newState) ? “Disable Editing” : “Enable Editing”;

}
</script>
<title>
</title>

</head>
<body>

<h1>Poetry Editor</h1>
<hr />
<p>Turn on editing to modify the following text:</p>
<div id=”noneditableText”>

Roses are red,

Violets are blue.

214

Document Objects Reference

elementObject.contentEditable

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 214

</div>
<div id=”editableText”>

Line 3,

Line 4.

</div>
<p><button id=”editBtn” onclick=”toggleEdit()”

onfocus=”this.blur()”>Enable Editing</button></p>
</body>

</html>

Related Item: isContentEditable property

currentStyle
Value: style object Read-Only
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

Every element has style attributes applied to it, even if those attributes are the browser’s default settings.
Because an element’s style object reflects only those properties whose corresponding attributes are explic-
itly set via CSS statements, you cannot use the style property of an element object to view default style
settings applied to an element. That’s where the currentStyle property comes in.

This property returns a read-only style object that contains values for every possible style property
applicable to the element. If a style property is explicitly set via CSS statement or script adjustment, the
current reading for that property is also available here. Thus, a script can inquire about any property to
determine whether it should change to meet some scripted design goal. For example, if you surround some
text with an tag, the browser by default turns that text into an italic font style. This setting is not
reflected in the element’s style object (fontStyle property) because the italic setting was not set via CSS;
by contrast, the element object’s currentStyle.fontStyle property reveals the true, current
fontStyle property of the element as italic.

Example
To change a style property setting, access it via the element’s style object. Use The Evaluator (see
Chapter 13) to compare the properties of the currentStyle and style objects of an element. For
example, an unmodified copy of The Evaluator contains an em element whose ID is “myEM”. Enter
document.getElementById(“myEM”).style in the bottom property listing text box and press Enter. Notice
that most of the property values are empty. Now enter document.getElementById(“myEM”).currentStyle
in the property listing text box and press Enter. Every property has a value associated with it.

Related Items: runtimeStyle, style objects (Chapter 26); window.getComputedStyle() for W3C
DOM browsers (Chapter 16)

dateTime
Value: Date string Read-Only
Compatibility: WinIE6+, MacIE-, NN6+, Moz+, Safari-

The dateTime property contains a date/time value that is used to establish a timestamp for an element.
Similar to the cite property, the dateTime property is intended to apply to a lesser number of element
objects (del and ins) than is actually supported in IE. This may or may not be a mistake, so it’s probably
not a safe bet to use the property outside its intended elements.

215

elementObject.dateTime

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 215

dataFld
dataFormatAs
dataSrc
Value: String Read/Write
Compatibility: WinIE4+, MacIE5, NN-, Moz-, Safari-

The dataFld, dataFormatAs, and dataSrc properties (along with more element-specific properties such
as dataPageSize and recordNumber) are part of the Internet Explorer data-binding facilities based on
ActiveX controls. The Win32 versions of IE4 and later have several ActiveX objects built into the browsers
that facilitate direct communication between a web page and a data source. Data sources include text files,
XML data, HTML data, and external databases (MacIE supports text files only). Data binding is a very large
topic, much of which extends more to discussions about Microsoft Data Source Objects (DSOs), ODBC,
and JDBC — subjects well beyond the scope of this book. But data binding is a powerful tool and can be of
use even if you are not a database guru. Therefore, this discussion of the three primary properties —
dataFld, dataFormatAs, and dataSrc— briefly covers data binding through Microsoft’s Tabular Data
Control DSO. This allows any page to access, sort, display, and filter (but not update) data downloaded into
a web page from an external text file (commonly, comma- or tab-delimited data).

You can load data from an external text file into a document with the help of the Tabular Data Control
(TDC). You retrieve the data by specifying the TDC object within an <object> tag set and specifying addi-
tional parameters, such as the URL of the text file and field delimiter characters. The object element can
go anywhere within the body of your document. (I tend to put it at the bottom of the code so that all nor-
mal page rendering happens before the control loads.) Retrieving the data simply brings it into the browser
and does not, on its own, render the data on the page.

If you haven’t worked with embedded objects in IE, the classid attribute value might seem a bit strange. The
most perplexing part to some is the long value of numeric data signifying the Globally Unique Identifier (GUID)
for the object, which is IE’s way of uniquely identifying objects. You must enter this value exactly as shown in
the following example for the proper ActiveX TDC to run. The HTML syntax for this object is as follows:

<object id=”objName” classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<param name=”DataURL” value=”URL”>
[additional optional parameters]

</object>

Table 15-3 lists the parameters available for the TDC. Only the DataURL parameter is required. Other
parameters — such as FieldDelim, UseHeader, RowDelim, and EscapeChar— may be helpful, depend-
ing on the nature of the data source.

TABLE 15-3

Tabular Data Control Parameters

Parameter Description

CharSet Character set of the data source file. Default is latin1.

DataURL URL of data source file (relative or absolute).

EscapeChar Character used to escape delimiter characters that are part of the data. Default is empty. A
common value is “\”.

216

Document Objects Reference

elementObject.dataFld

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 216

Parameter Description

FieldDelim Delimiter character between fields within a record. Default is comma (,). For a Tab
character, use a value of 	.

Language ISO language code of source data. Default is en-us.

TextQualifier Optional character surrounding a field’s data. Default is empty.

RowDelim Delimiter character between records. Default is newline (NL).

UseHeader Set to true if the first row of data in the file contains field names. Default is false.

The value you assign to the object element’s id attribute is the identifier that your scripts use to communi-
cate with the data after the page and data completely load. Therefore, you can have as many uniquely
named TDCs loaded in your page as there are data source files you want to access at the same time.

The initial binding of the data to HTML elements usually comes when you assign values to the datasrc
and datafld attributes of the elements. The datasrc attribute points to the dso identifier (matching the
id attribute of the object element, preceded by a hash symbol), whereas the datafld attribute points to
the name of the field whose data should be extracted. When you use data binding with an interactive ele-
ment such as a table, multiple records are displayed in consecutive rows of the table (more about this in a
moment).

Adjust the dataSrc and dataFld properties if you want the same HTML element (other than a table) to
change the data that it displays. These properties apply to a subset of HTML elements that can be associated
with external data: a, applet, body, button, div, frame, iframe, img, input (most types), label,
marquee, object, param, select, span, and textarea objects.

In some cases, your data source may store chunks of HTML-formatted text for rendering inside an element.
Unless directed otherwise, the browser renders a data source field as plain text — even if the content con-
tains HTML formatting tags. But if you want the HTML to be observed during rendering, you can set the
dataFormatAs property (or, more likely, the dataformatas attribute of the tag) to HTML. The default
value is text.

Example
Listing 15-8 is a simple document that has two TDC objects associated with it. The external files are different
formats of the U.S. Bill of Rights document. One file is a traditional, tab-delimited data file consisting of only
two records. The first record is a tab-delimited sequence of field names (named “Article1”, “Article2”,
and so on). The second record is a tab-delimited sequence of article content defined in HTML:

<h1>ARTICLE I</h1><p>Congress shall make...</p>

The second file is a raw-text file consisting of the full Bill of Rights with no HTML formatting attached.

When you load Listing 15-8, only the first article of the Bill of Rights appears in a blue-bordered box.
Buttons enable you to navigate to the previous and next articles in the series. Because the data source is a
traditional, tab-delimited file, the nextField() and prevField() functions calculate the name of the next
source field and assign the new value to the dataFld property. All of the data is already in the browser after
the page loads, so cycling through the records is as fast as the browser can reflow the page to accommodate
the new content.

217

elementObject.dataFld

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 217

LISTING 15-8

Binding Data to a Page

<html>
<head>

<title>Data Binding</title>
<style type=”text/css”>
#display {width:500px; border:10px ridge blue; padding:20px}
.hiddenControl {display:none}
</style>
<script type=”text/javascript”>
function nextField() {

var elem = document.getElementById(“display”);
var fieldName = elem.dataFld;
var currFieldNum = parseInt(fieldName.substring(7,

fieldName.length),10);
currFieldNum = (currFieldNum == 10) ? 1 : ++currFieldNum;
elem.dataFld = “Article” + currFieldNum;

}
function prevField() {

var elem = document.getElementById(“display”);
var fieldName = elem.dataFld;
var currFieldNum = parseInt(fieldName.substring(7,

fieldName.length),10);
currFieldNum = (currFieldNum == 1) ? 10 : --currFieldNum;
elem.dataFld = “Article” + currFieldNum;

}

function toggleComplete() {
if (document.getElementById(“buttonWrapper”).className == “”) {

document.getElementById(“display”).dataSrc = “#rights_raw”;
document.getElementById(“display”).dataFld = “column1”;
document.getElementById(“display”).dataFormatAs = “text”;
document.getElementById(“buttonWrapper”).className =

“hiddenControl”;
} else {

document.getElementById(“display”).dataSrc = “#rights_html”;
document.getElementById(“display”).dataFld = “Article1”;
document.getElementById(“display”).dataFormatAs = “HTML”;
document.getElementById(“buttonWrapper”).className = “”;

}
}
</script>

</head>
<body>

<h1>U.S. Bill of Rights</h1>
<form>

<input type=”button” value=”Toggle Complete/Individual”
onclick=”toggleComplete()” /> <input
type=”button” value=”Prev” onclick=”prevField()” /> <input
type=”button” value=”Next” onclick=”nextField()” />

218

Document Objects Reference

elementObject.dataFld

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 218

</form>
<div id=”display” datasrc=”#rights_html” datafld=”Article1”
dataformatas=”HTML”>
</div>
<object id=”rights_html”
classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Bill of Rights.txt” />
<param name=”UseHeader” value=”True” />
<param name=”FieldDelim” value=”	” />

</object> <object id=”rights_raw”
classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Bill of Rights (no format).txt” />
<param name=”FieldDelim” value=”\” />
<param name=”RowDelim” value=”\” />

</object>
</body>

</html>

Another button on the page enables you to switch between the initial piecemeal version of the document
and the unformatted version in its entirety. To load the entire document as a single record, the FieldDelim
and RowDelim parameters of the second object element eliminate their default values by replacing them
with characters that don’t appear in the document at all. And because the external file does not have a field
name in the file, the default value (column1 for the lone column in this document) is the data field. Thus,
in the toggleComplete() function, the dataSrc property is changed to the desired object element ID;
the dataFld property is set to the correct value for the data source; and the dataFormatAs property is
changed to reflect the different intention of the source content (to be rendered as HTML or as plain text).
When the display shows the entire document, you can hide the two radio buttons by assigning a
className value to the span element that surrounds the buttons. The className value is the identifier of
the class selector in the document’s style sheet. When the toggleComplete() function resets the
className property to empty, the default properties (normal inline display style) take hold.

One further example demonstrates the kind of power available to the TDC under script control. Listing
15-9 displays table data from a tab-delimited file of Academy Awards information. The data file has eight
columns of data, and each column heading is treated as a field name: Year, Best Picture, Best Director, Best
Director Film, Best Actress, Best Actress Film, Best Actor, and Best Actor Film. For the design of the page,
only five fields from each record appear: Year, Film, Director, Actress, and Actor. Notice in the listing that
the HTML for the table and its content is bound to the data source object and the fields within the data.

The dynamic part of this example is apparent in how you can sort and filter the data, after it is loaded into
the browser, without further access to the original source data. The TDC object features Sort and Filter
properties that enable you to act on the data currently loaded in the browser. The simplest kind of sorting
indicates on which field (or fields, via a semicolon-delimited list of field names) the entire data set should
be sorted. Leading the name of the sort field is either a plus (to indicate ascending) or minus (descending)
symbol. After setting the data object’s Sort property, invoke its Reset() method to tell the object to apply
the new property. The data in the bound table is immediately redrawn to reflect any changes.

Similarly, you can tell a data collection to display records that meet specific criteria. In Listing 15-9, two
select lists and a pair of radio buttons provide the interface to the Filter property’s settings. For example,
you can filter the output to display only those records in which the Best Picture was the same picture of the
winning Best Actress’s performance. Simple filter expressions are based on field names:

dataObj.Filter = “Best Picture” = “Best Actress Film”;

219

elementObject.dataFld

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 219

LISTING 15-9

Sorting Bound Data

<html>
<head>

<title>Data Binding - Sorting</title>
<script type=”text/javascript”>
function sortByYear(type) {

oscars.Sort = (type == “normal”) ? “-Year” : “+Year”;
oscars.Reset();

}
function filterInCommon(form) {

var filterExpr1 =
form.filter1.options[form.filter1.selectedIndex].value;

var filterExpr2 =
form.filter2.options[form.filter2.selectedIndex].value;

var operator = (form.operator[0].checked) ? “=” : “<>”;
var filterExpr = filterExpr1 + operator + filterExpr2;
oscars.Filter = filterExpr;
oscars.Reset();

}
</script>

</head>
<body>

<h1>Academy Awards 1978-2005</h1>
<form>

<p>Sort list by year from
newest to oldest or from oldest to
newest.</p>

<p>Filter listings for records whose <select name=”filter1”
onchange=”filterInCommon(this.form)”>

<option value=”Best Picture”>Best Picture</option>
<option value=”Best Director Film”>Best Director’s Film</option>
<option value=”Best Actress Film”>Best Actress’ Film</option>
<option value=”Best Actor Film”>Best Actor’s Film</option>

</select> <input type=”radio” name=”operator” checked=”checked”
onclick=”filterInCommon(this.form)” />is <input type=”radio”
name=”operator” onclick=”filterInCommon(this.form)” />is not
<select name=”filter2” onchange=”filterInCommon(this.form)”>

<option value=”Best Picture”>Best Picture</option>
<option value=”Best Director Film”>Best Director’s Film</option>
<option value=”Best Actress Film”>Best Actress’ Film</option>
<option value=”Best Actor Film”>Best Actor’s Film</option>

</select></p>
</form>
<table datasrc=”#oscars” border=”1” align=”center”>

<thead style=”background-color:yellow; text-align:center”>
<tr>

<td>Year</td>
<td>Film</td>

220

Document Objects Reference

elementObject.dataFld

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 220

<td>Director</td>
<td>Actress</td>
<td>Actor</td>

</tr>
</thead>
<tr>

<td><div id=”col1” datafld=”Year”></div></td>
<td><div id=”col2” datafld=”Best Picture”></div></td>
<td><div id=”col3” datafld=”Best Director”></div></td>
<td><div id=”col4” datafld=”Best Actress”></div></td>
<td><div id=”col5” datafld=”Best Actor”></div></td>

</tr>
</table>
<object id=”oscars” classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Academy Awards.txt” />
<param name=”UseHeader” value=”True” />
<param name=”FieldDelim” value=”	” />

</object>
</body>

</html>

Related Items: recordNumber, table.dataPageSize properties

dir
Value: “ltr” | “rtl” Read/Write
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The dir property (based on the dir attribute of virtually every text-oriented HTML element) controls
whether an element’s text is rendered left to right (the default) or right to left. By and large, this property
(and HTML attribute) is necessary only when you need to override the default directionality of a language’s
character set as defined by the Unicode standard.

Example
Changing this property value in a standard U.S. version of a browser only makes the right margin the starting
point for each new line of text (in other words, the characters are not rendered in reverse order). You can
experiment with this in The Evaluator by entering the following statements in the expression evaluation field:

document.getElementById(“myP”).dir = “rtl”

Related Item: lang property

disabled
Value: Boolean Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Though only form elements have a disabled property in IE4 and IE5, this property is associated with
every HTML element in IE5.5+. W3C DOM browsers apply the property only to form control and style
element objects. Disabling an HTML element (like form elements) usually gives the element a dimmed look,
indicating that it is not active. A disabled element does not receive any events. It also cannot receive focus,
either manually or by script. But a user can still select and copy a disabled body text element.

221

elementObject.disabled

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 221

If you disable a form control element, the element’s data is not submitted to the server with
the rest of the form elements. If you need to keep a form control locked down but still submit

it to the server, use the form element’s onsubmit event handler to enable the form control right before the
form is submitted.

Example
Use The Evaluator (see Chapter 13) to experiment with the disabled property on both form elements
(IE4+ and W3C) and regular HTML elements (WinIE5.5+). For IE4+ and W3C browsers, see what happens
when you disable the output text area by entering the following statement in the top text box:

document.forms[0].output.disabled = true

The text area is disabled for user entry, although you can still set the field’s value property via script (which
is how the true returned value got there).

If you have WinIE5.5+, disable the myP element by entering the following statement in the top text box:

document.getElementById(“myP”).disabled = true

The sample paragraph’s text turns gray.

Related Item: isDisabled property

document
Value: document object Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1.2+

In the context of HTML element objects as exposed in IE4+/Safari 1.2+, the document property is a refer-
ence to the document that contains the object. Though it is unlikely that you will need to use this property,
document may come in handy for complex scripts and script libraries that handle objects in a generic fash-
ion and do not know the reference path to the document containing a particular object. You might need a
reference to the document to inspect it for related objects. The W3C version of this property is
ownerDocument.

Example
The following simplified function accepts a parameter that can be any object in a document hierarchy. The
script finds out the reference of the object’s containing document for further reference to other objects:

function getCompanionFormCount(obj) {
var ownerDoc = obj.document;
return ownerDoc.forms.length;

}

Because the ownerDoc variable contains a valid reference to a document object, the return statement uses
that reference to return a typical property of the document object hierarchy.

Related Item: ownerDocument property

filters[]
Value: Array Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

NOTENOTE

222

Document Objects Reference

elementObject.filters

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 222

Filters are IE-specific style sheet add-ons that offer a greater variety of font rendering (such as drop shadows)
and transitions between hidden and visible elements. Each filter specification is a filter object. The filters
property contains an array of filter objects defined for the current element. You can apply filters to the
following set of elements: bdo, body, button, fieldset, img, input, marquee, rt, ruby, table, td,
textarea, th, and positioned div and span elements. See Chapter 26 for details about style sheet filters.

Related Item: filter object.

firstChild
lastChild
Value: Node object reference Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

W3C DOM-based DOMs are built around an architecture known as a node map. Each object defined by
HTML is a node in the map. A node has relationships with other nodes in the document — relationships
described in family terms of parents, siblings, and children.

A child node is an element that is contained by another element. The container is the parent of such a child.
Just as an HTML element can contain any number of child elements, so can a parent object have zero or
more children. A list of those children (returned as an array) can be read from an object by way of its
childNodes property:

var nodeArray = document.getElementById(“elementID”).childNodes;

Though you can use this array (and its length property) to get a reference to the first or last child node, the
firstChild and lastChild properties offer shortcuts to those positions. These are helpful when you wish
to insert a new child before or after all of the others, and you need a reference point for the IE
insertAdjacentElement() method or other method that adds elements to the document’s node list.

Example
Listing 15-10 contains an example of how to use the firstChild and lastChild properties to access
child nodes. These two properties come in handy in this example, which adds and replaces li elements to
an existing ol element. You can enter any text you want to appear at the beginning or end of the list. Using
the firstChild and lastChild properties simplifies access to the ends of the list. For the functions that
replace child nodes, the example uses the replaceChild() method. Alternatively for IE4+, you can mod-
ify the innerText property of the objects returned by the firstChild or lastChild property. This exam-
ple is especially interesting to watch when you add items to the list: The browser automatically renumbers
items to fit the current state of the list.

See the discussion of the childNodes property earlier in this chapter for details about the
presence of phantom nodes in some browser versions. The problem may influence your use of

the firstChild and lastChild properties.

As handy as it may be, in a strict W3C approach to JavaScript, you wouldn’t use the
innerHTML property because it isn’t officially part of the W3C standard. However, it is often

too powerful a convenience property to ignore, as much of the code throughout this book is a testament. The
book does show the W3C node manipulation alternative to innerHTML in some examples. Refer to Chapter
18 for a thorough explanation and examples of the W3C alternative to innerHTML.

NOTENOTE

CAUTION CAUTION

223

elementObject.firstChild

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 223

LISTING 15-10

Using firstChild and lastChild Properties

<html>
<head>

<title>firstChild and lastChild Properties</title>
<script type=”text/javascript”>
// helper function for prepend() and append()
function makeNewLI(txt) {

var newItem = document.createElement(“li”);
newItem.innerHTML = txt;
return newItem;

}
function prepend(form) {

var newItem = makeNewLI(form.input.value);
var firstLI = document.getElementById(“myList”).firstChild;
document.getElementById(“myList”).insertBefore(newItem, firstLI);

}
function append(form) {

var newItem = makeNewLI(form.input.value);
var lastLI = document.getElementById(“myList”).lastChild;
document.getElementById(“myList”).appendChild(newItem);

}
function replaceFirst(form) {

var newItem = makeNewLI(form.input.value);
var firstLI = document.getElementById(“myList”).firstChild;
document.getElementById(“myList”).replaceChild(newItem, firstLI);

}
function replaceLast(form) {

var newItem = makeNewLI(form.input.value);
var lastLI = document.getElementById(“myList”).lastChild;
document.getElementById(“myList”).replaceChild(newItem, lastLI);

}
</script>

</head>
<body>

<h1>firstChild and lastChild Property Lab</h1>
<hr />
<form>

<label>Enter some text to add to or replace in the OL
element:</label>

<input type=”text” name=”input” size=”50” />

<input type=”button” value=”Insert at Top”
onclick=”prepend(this.form)” /> <input type=”button”
value=”Append to Bottom” onclick=”append(this.form)” />

<input type=”button” value=”Replace First Item”
onclick=”replaceFirst(this.form)” /> <input type=”button”
value=”Replace Last Item” onclick=”replaceLast(this.form)” />

</form>

224

Document Objects Reference

elementObject.firstChild

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 224

<ol id=”myList”>
Initial Item 1
Initial Item 2
Initial Item 3
Initial Item 4

</body>

</html>

Related Items: nextSibling, parentElement, parentNode, previousSibling properties;
appendChild(), hasChildNodes(), removeChild(), removeNode(), replaceChild(),
replaceNode() methods

height
width
Value: Integer or percentage string Read/Write and Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The height and width properties described here are not the identically named properties that belong to an
element’s style. Rather, these properties reflect the values normally assigned to height and width attributes
of elements such as img, applet, table, and so on. As such, these properties are accessed directly from the
object (for example, document.getElementById(“myTable”).width in IE4+) rather than through the
style object (for example, document.getElementById(“myDIV”).style.width). Only elements for
which the HTML 4.x standard provides height and width attributes have the corresponding properties.

Values for these properties are either integer pixel values (numbers or strings) or percentage values (strings
only). If you need to perform some math on an existing percentage value, use the parseInt() function to
extract the numeric value for use with math calculations. If an element’s height and width attributes are
set as percentage values, you can use the offsetHeight and offsetWidth properties in many modern
browsers to get the rendered pixel dimensions.

Property values are read/write for the image object in most recent browser versions because you can resize
an image object in IE4+ and Mozilla after the page loads. Properties are read/write for some other objects
(such as the table object) — but not necessarily all others that support these properties.

In general, you cannot set the value of these properties to something less than is required to render the ele-
ment. This is particularly true of a table. If you attempt to set the height value to less than the amount of
pixels required to display the table as defined by its style settings, your changes have no effect (even though
the property value retains its artificially low value). For other objects, however, you can set the size to any-
thing you like, and the browser scales the content accordingly (images, for example). If you want to see
only a segment of an element (in other words, to crop the element), use a style sheet to set the element’s
clipping region.

Example
The following example demonstrates how to use the width property by increasing the width of a table by
10 percent:

var tableW = parseInt(document.getElementById(“myTable”).width);
document.getElementById(“myTable”).width = (tableW * 1.1) + “%”;

225

elementObject.height

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 225

Because the initial setting for the width attribute of the table element is set as a percentage value, the
script calculation extracts the number from the percentage width string value. In the second statement, the
old number is increased by 10 percent and turned into a percentage string by appending the percentage
symbol to the value. The resulting string value is assigned to the width property of the table.

Related Items: clientHeight, clientWidth properties; style.height, style.width properties

hideFocus
Value: Boolean Read/Write
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

In IE for Windows, button types of form controls and links display a dotted rectangle around some part of
the element whenever that element has focus. If you set the tabindex attribute or tabIndex property of
any other kinds of elements in IE5+, they, too, display that dotted line when given focus. You can still let an
element receive focus but hide that dotted line by setting the hideFocus property of the element object to
true (default value is false).

Hiding focus does not disable the element. In fact, if the element about to receive focus is scrolled out of
view, the page scrolls to bring the element into view. Form controls that respond to keyboard action (for
example, pressing the spacebar to check or uncheck a checkbox control) also continue to work as normal.
For some designers, the focus rectangle harms the design goals of the page. The hideFocus property gives
them more control over the appearance while maintaining consistency of operation with other pages. There
is no corresponding HTML attribute for a tag, so you can use an onload event handler in the page to set
the hideFocus property of desired objects after the page loads.

Example
Use The Evaluator (see Chapter 13) to experiment with the hideFocus property in WinIE5.5+. Enter the
following statement in the top text box to assign a tabIndex value to the myP element so that by default,
the element receives focus and the dotted rectangle:

document.getElementById(“myP”).tabIndex = 1

Press the Tab key several times until the paragraph receives focus. Now disable the focus rectangle:

document.getElementById(“myP”).hideFocus = true

If you now press the Tab key several times, the dotted rectangle does not appear around the paragraph. To
prove that the element still receives focus, scroll the page down to the bottom so that the paragraph is not
visible (you may have to resize the window). Click one of the focusable elements at the bottom of the page
and then press the Tab key slowly until the Address field toolbar has focus. Press the Tab key once. The
page scrolls to bring the paragraph into view, but there is no focus rectangle around the element.

Related Items: tabIndex property; srcollIntoView() method

id
Value: String (See text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The id property returns the identifier assigned to an element’s id attribute in the HTML code. A script can-
not modify the ID of an existing element or assign an ID to an element that lacks one. But if a script creates
a new element object, an identifier may be assigned to it by way of the id property.

226

Document Objects Reference

elementObject.id

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 226

Example
Rarely do you need to access this property in a script — unless you write an authoring tool that iterates
through all elements of a page to extract the IDs assigned by the author. You can retrieve an object reference
when you know the object’s id property (via the document.getElementById(elemID) method). But if
for some reason your script doesn’t know the ID of, say, the second paragraph of a document, you can
extract that ID as follows:

var elemID = document.getElementsByTagName(“p”)[1].id;

Related Item: className property

innerHTML
innerText
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

One way that Internet Explorer exposes the contents of an element is through the innerHTML and
innerText properties. (NN6+/Moz/Safari offer only the innerHTML property.) All content defined by these
inner properties consists of document data that is contained by an element’s start and end tags but does not
include the tags themselves (see the outerText and outerHTML properties). Setting these inner properties
is a common way to modify a portion of a page’s content after the page loads.

The innerHTML property contains not only the text content for an element as seen on the page, but also
every bit of HTML tagging that is associated with that content. (If there are no tags in the content, the text is
rendered as is.) For example, consider the following bit of HTML source code:

<p id=”paragraph1”>”How are you?” he asked.</p>

The value of the paragraph object’s innerHTML property (document.getElementById(“para-
graph1”).innerHTML) is

“How are you?” he asked.

The browser interprets any HTML tags included in a string you assign to an element’s innerHTML property
as tags. This also means that you can introduce entirely new nested elements (or child nodes in the modern
terminology) by assigning a slew of HTML content to an element’s innerHTML property. The document’s
object model adjusts itself to the newly inserted content.

By contrast, the innerText property knows only about the text content of an element container. In the example
you just saw, the value of the paragraph’s innerText property (document.getElementById(“paragraph1”)
.innerText) is

“How are you?” he asked.

It’s important to remember that if you assign a string to the innerText property of an element, and that
string contains HTML tags, the tags and their angle brackets appear in the rendered page and are not inter-
preted as live tags.

The W3C DOM Level 3 adds a textContent property that serves as the standard equivalent of
innerText. Browser support for textContent currently consists solely of Moz1.7+.

Do not modify the innerHTML property to adjust the HTML for frameset, html, head, or title objects.
You may modify table constructions through either innerHTML or the various table-related methods that
create or delete rows, columns, and cells (see Chapter 38 on the CD-ROM). It is also safe to modify the con-
tents of a cell by setting its innerHTML or innerText property.

227

elementObject.innerHTML

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 227

When the HTML you insert includes a <script> tag, be sure to include the defer attribute to the opening
tag. This goes even for scripts that contain function definitions, which you might consider to be deferred
automatically.

The innerHTML property is not supported by the W3C DOM, but it does share widespread support in all
modern browsers. You could argue that a pure W3C DOM node manipulation approach is more structured
than just assigning HTML code to innerHTML, but the ease of making a single property assignment has so
far won out in the practicality of everyday scripting. Whenever possible, the examples in this book use the
W3C approach to alter the HTML code for a node, but there are several instances where innerHTML is sim-
ply too concise an option to resist.

Example
Listing 15-11 contains an example of how to use the innerHTML and innerText properties to alter
dynamically the content within a page. The page generated in the listing contains an h1 element label and a
paragraph of text. The purpose is to demonstrate how the innerHTML and innerText properties differ in
their intent. Two text boxes contain the same combination of text and HTML tags that replaces the inner
content of the paragraph’s label.

If you apply the default content of the first text box to the innerHTML property of the label1 object, the
italic style is rendered as such for the first word. In addition, the text in parentheses is rendered with the
help of the small style sheet rule assigned by virtue of the surrounding tags. But if you apply that
same content to the innerText property of the label object, the tags are rendered as is.

Use this as a laboratory to experiment with some other content in both text boxes. See what happens when
you insert a
 tag within some text in both text boxes.

LISTING 15-11

Using innerHTML and innerText Properties

<html>
<head>

<title>innerHTML and innerText Properties</title>
<style type=”text/css”>
h1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial,

sans-serif}
.small {font-size:12pt; font-weight:400; color:gray}
</style>
<script type=”text/javascript”>
function setGroupLabelAsText(form) {

var content = form.textInput.value;
if (content) {

document.getElementById(“label1”).innerText = content;
}

}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value;
if (content) {

document.getElementById(“label1”).innerHTML = content;
}

}

228

Document Objects Reference

elementObject.innerHTML

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 228

</script>
</head>
<body>

<form>
<p><input type=”text” name=”HTMLInput”

value=”<I>First</I> Article <SPAN
CLASS=’small’>(of ten)”
size=”50” /> <input type=”button” value=”Change Heading HTML”
onclick=”setGroupLabelAsHTML(this.form)” /></p>

<p><input type=”text” name=”textInput”
value=”<I>First</I> Article <SPAN
CLASS=’small’>(of ten)”
size=”50” /> <input type=”button” value=”Change Heading Text”
onclick=”setGroupLabelAsText(this.form)” /></p>

</form>
<h1 id=”label1”>

ARTICLE I
</h1>
<p>Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</body>
</html>

Related Items: outerHTML, outerText, textContent properties; replaceNode() method

isContentEditable
Value: Boolean Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari 1.2+

The isContentEditable property returns a Boolean value indicating whether a particular element object
is set to be editable (see the discussion of the contentEditable property earlier in this chapter). This
property is helpful because if a parent element’s contentEditable property is set to true, a nested ele-
ment’s contentEditable property likely is set to its default value inherit. But because its parent is
editable, the isContentEditable property of the nested element returns true.

Example
Use The Evaluator (see Chapter 13) to experiment with both the contentEditable and
isContentEditable properties on the myP and nested myEM elements (reload the page to start with a
known version). Check the current setting for the myEM element by typing the following statement in the
top text box:

myEM.isContentEditable

This value is false because no element upward in the element containment hierarchy is set to be editable
yet. Next, turn on editing for the surrounding myP element:

myP.contentEditable = true

229

elementObject.isContentEditable

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 229

At this point, the entire myP element is editable because its child element is set, by default, to inherit the
edit state of its parent. Prove it by entering the following statement in the top text box:

myEM.isContentEditable

Although the myEM element is shown to be editable, no change has accrued to its contentEditable property:

myEM.contentEditable

This property value remains the default inherit.

You can see an additional example of these two properties in use in Listing 15-7.

Related Item: contentEditable property

isDisabled
Value: Boolean Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The isDisabled property returns a Boolean value that indicates whether a particular element object is set to
be disabled (see the discussion of the disabled property earlier in this chapter). This property is helpful; if a
parent element’s disabled property is set to true, a nested element’s disabled property likely is set to its
default value of false. But because its parent is disabled, the isDisabled property of the nested element
returns true. In other words, the isDisabled property returns the actual disabled status of an element
regardless of its disabled property.

Example
Use The Evaluator (see Chapter 13) to experiment with both the disabled and isDisabled properties on
the myP and nested myEM elements (reload the page to start with a known version). Check the current set-
ting for the myEM element by typing the following statement in the top text box:

myEM.isDisabled

This value is false because no element upward in the element containment hierarchy is set for disabling
yet. Next, disable the surrounding myP element:

myP.disabled = true

At this point, the entire myP element (including its children) is disabled. Prove it by entering the following
statement in the top text box:

myEM.isDisabled

Although the myEM element is shown as disabled, no change has accrued to its disabled property:

myEM.disabled

This property value remains the default false.

Related Item: disabled property

isMultiLine
Value: Boolean Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

230

Document Objects Reference

elementObject.isMultiLine

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 230

The isMultiLine property returns a Boolean value that reveals whether the element object is capable of
occupying or displaying more than one line of text. It is important that this value does not reveal whether
the element actually occupies multiple lines; rather, it indicates the potential of doing so. For example, a text
input element cannot wrap to multiple lines, so its isMultiLine property is false. However, a button
element can display multiple lines of text for its label, so it reports true for the isMultiLine property.

Example
Use The Evaluator (see Chapter 13) to read the isMultiLine property for elements on that page. Try the
following statements in the top text box:

document.body.isMultiLine
document.forms[0].input.isMultiLine
myP.isMultiLine
myEM.isMultiLine

All but the text field form control report that they are capable of occupying multiple lines.

isTextEdit
Value: Boolean Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The isTextEdit property reveals whether an object can have a WinIE TextRange object created with its
content. (See the TextRange object in Chapter 36 on the CD-ROM.) You can create TextRange objects
from only a limited selection of objects in IE4+ for Windows: body, button, text type input, and
textarea. This property always returns false in MacIE.

Example
Good coding practice dictates that your script check for this property before invoking the
createTextRange() method on any object. A typical implementation is as follows:

if (document.getElementById(“myObject”).isTextEdit) {
var myRange = document.getElementById(“myObject”).createTextRange();
[more statements that act on myRange]

}

Related Items: createRange() method; TextRange object (Chapter 36 on the CD-ROM)

lang
Value: ISO language code string Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The lang property governs the written language system used to render an element’s text content when
overriding the default browser’s language system. The default value for this property is an empty string
unless the corresponding lang attribute is assigned a value in the element’s tag. Modifying the property
value by script control does not appear to have any effect in the current browser implementations.

Example
Values for the lang property consist of strings containing valid ISO language codes. Such codes have, at mini-
mum, a primary language code (for example, “fr” for French) plus an optional region specifier (for example,
“fr-ch” for Swiss French). The code to assign a Swiss German value to an element looks like the following:

document.getElementById(“specialSpan”).lang = “de-ch”;

231

elementObject.lang

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 231

language
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE4+’s architecture allows for multiple scripting engines to work with the browser. Two engines are included
with the basic Windows version browser: JScript (compatible with JavaScript) and Visual Basic Scripting Edition
(VBScript). The default scripting engine is JScript. But if you wish to use VBScript or some other scripting lan-
guage in statements that are embedded within event handler attributes of a tag, you can specifically direct the
browser to apply the desired scripting engine to those script statements by way of the language attribute of the
tag. The language property provides scripted access to that property. Unless you intend to modify the event
handler HTML code and replace it with a statement in VBScript (or any other non-JScript-compatible language
installed with your browser), you do not need to modify this property (or read it, for that matter).

Valid values include JScript, javascript, vbscript, and vbs. Third-party scripting engines have their
own identifier for use with this value. Because the language attribute was also used in the <script> tag,
Internet Explorer 5 observes language=”xml” as well.

Related Item: script element object

lastChild
(See firstChild)

length
Value: Integer Read-Only and Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The length property returns the number of items in an array or collection of objects. Its most common
application is as a boundary condition in a for loop. Though arrays and collections commonly use integer
values as index values (always starting with zero), the length value is the actual number of items in the
group. Therefore, to iterate through all items of the group, the condition expression should include a less-
than (<) symbol rather than a less-than-or-equal (<=) symbol, as in the following:

for (var i = 0; i < someArray.length; i++) {...}

For decrementing through an array (in other words, starting from the last item in the array and working
toward the first), the initial expression must initialize the counting variable as the length minus one:

for (var i = someArray.length - 1; i >= 0; i--) {...}

For most arrays and collections, the length property is read-only and governed solely by the number of
items in the group. But in more recent versions of the browsers, you can assign values to some object arrays
(areas, options, and the select object) to create placeholders for data assignments. See the discussions
of the area, select, and option element objects for details. A plain JavaScript array can also have its
length property value modified by script to either trim items from the end of the array or reserve space for
additional assignments. See Chapter 31 for more about the Array object.

Example
You can try the following sequence of statements in the top text box of The Evaluator to see how the
length property returns values (and sets them for some objects). Note that some statements work in only
some browser versions.

(All browsers) document.forms.length
(All browsers) document.forms[0].elements.length

232

Document Objects Reference

elementObjectCollection.length

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 232

(NN3+, IE4+) document.images.length
(NN4+) document.layers.length
(IE4+) document.all.length
(IE5+, W3C) document.getElementById(“myTable”).childNodes.length

All of these statements are shown primarily for completeness. Unless you have a good reason to support
legacy browsers, the last technique (IE5+, W3C) should be used to access the length property.

Related Items: area, select, option, and Array objects

localName
namespaceURI
prefix
Value: String Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The three properties localName, namespaceURI, and prefix apply to any node in an XML document that
associates a namespace URI with an XML tag. Although NN6 exposes all three properties for all element
(and node) objects, the properties do not return the desired values. However, Mozilla-based browsers,
including NN7+, remedy the situation. To understand better what values these three properties represent,
consider the following XML content:

<x xmlns:bk=’http://bigbooks.org/schema’>
<bk:title>To Kill a Mockingbird</bk:title>

</x>

The element whose tag is <bk:title> is associated with the Namespace URI defined for the block, and the
element’s namespaceURI property would return the string http:// bigbooks.org/schema. The tag
name consists of a prefix (before the colon) and the local name (after the colon). In the preceding example,
the prefix property for the element defined by the <bk:title> tag would be bk, whereas the localName
property would return title. The localName property of any node returns the same value as its
nodeName property value, such as #text for a text node.

For more information about XML Namespaces, visit http://www.w3.org/TR/REC-xml-names.

Related Items: scopeName, tagUrn properties

nextSibling
previousSibling
Value: Object reference Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

A sibling node is one that is at the same nested level as another node in the hierarchy of an HTML document.
For example, the following p element has two child nodes (the em and span elements). Those two child
nodes are siblings.

<p>MegaCorp is the source of the hottest gizmos.</p>

Sibling order is determined solely by the source-code order of the nodes. Therefore, in the previous exam-
ple, the em node has no previousSibling property. Meanwhile, the span node has no nextSibling
property (meaning that these properties return null). These properties provide another way to iterate
through all nodes at the same level.

233

elementObject.nextSibling

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 233

Example
The following function assigns the same class name to all child nodes of an element:

function setAllChildClasses(parentElem, className) {
var childElem = parentElem.firstChild;
while (childElem.nextSibling) {

childElem.className = className;
childElem = childElem.nextSibling;

}
}

This example is certainly not the only way to achieve the same results. Using a for loop to iterate through
the childNodes collection of the parent element is an equally valid approach.

Related Items: firstChild, lastChild, childNodes properties; hasChildNodes(),
insertAdjacentElement() methods

nodeName
Value: String Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

For HTML and XML elements, the name of a node is the same as the tag name. The nodeName property is
provided for the sake of consistency with the node architecture specified by the formal W3C DOM stan-
dard. The value, just like the tagName property, is an all-uppercase string of the tag name (even if the
HTML source code is written with lowercase tags).

Some nodes, such as the text content of an element, do not have a tag. The nodeName property for such a
node is a special value: #text. Another kind of node is an attribute of an element. For an attribute, the
nodeName is the name of the attribute. See Chapter 14 for more about Node object properties.

Example
The following function demonstrates one (not very efficient) way to assign a new class name to every p ele-
ment in an IE5+ document:

function setAllPClasses(className) {
for (var i = 0; i < document.all.length; i++) {

if (document.all[i].nodeName == “P”) {
document.all[i].className = className;

}
}

}

A more efficient approach uses the getElementsByTagName() method to retrieve a collection of all p ele-
ments and then iterate through them directly.

Related Item: tagName property

nodeType
Value: Integer Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

234

Document Objects Reference

elementObject.nodeType

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 234

The W3C DOM specification identifies a series of constant values that denote categories of nodes. Every
node has a value that identifies its type, but not all browsers support the nodeType property on all node
types as objects. Table 15-4 lists the nodeType values implemented in recent browsers; all of the values are
considered part of the W3C DOM Level 2 specification.

TABLE 15-4

nodeType Property Values

Value Description WinIE MacIE Moz Safari

1 Element node 5 5 1 1

2 Attribute node 6 5 1 1

3 Text (#text) node 5 5 1 1

4 CDATA section node - - - -

5 Entity reference node - - - -

6 Entity node - - - -

7 Processing instruction node - - - -

8 Comment node 6 5 1 -

9 Document node 5 5 1 1

10 Document type node - - 1 1

11 Document fragment node 6 5 1 1

12 Notation node - - - -

The nodeType value is automatically assigned to a node, whether the node exists in the document’s HTML
source code or is generated on the fly via a script. For example, if you create a new element node through
any of the ways available by script (for example, by assigning a string encased in HTML tags to the
innerHTML property or by explicitly invoking the document.createElement() method), the new ele-
ment assumes a nodeType of 1.

Mozilla-based browsers and Safari go one step further in supporting the W3C DOM specification by imple-
menting a set of Node object property constants for each of the nodeType values. Table 15-5 lists the entire
set as defined in the DOM Level 2 specification. Substituting these constants for nodeType integers can
improve the readability of a script. For example, instead of

if (myElem.nodeType == 1) {...}

it is much easier to see what’s going on with

if (myElem.nodeType == Node.ELEMENT_NODE) {...}

235

elementObject.nodeType

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 235

TABLE 15-5

W3C DOM nodeType Constants

Reference nodeType Value

Node.ELEMENT_NODE 1

Node.ATTRIBUTE_NODE 2

Node.TEXT_NODE 3

Node.CDATA_SECTION_NODE 4

Node.ENTITY_REFERENCE_NODE 5

Node.ENTITY_NODE 6

Node.PROCESSING_INSTRUCTION_NODE 7

Node.COMMENT_NODE 8

Node.DOCUMENT_NODE 9

Node.DOCUMENT_TYPE_NODE 10

Node.DOCUMENT_FRAGMENT_NODE 11

Node.NOTATION_NODE 12

Example
You can experiment with viewing nodeType property values in The Evaluator. The p element whose ID is
myP is a good place to start. The p element itself is a nodeType of 1:

document.getElementById(“myP”).nodeType

This element has three child nodes: a string of text (nodeName #text), an em element (nodeName em), and
the rest of the text of the element content (nodeName #text). If you view the nodeType of either of the text
portions, the value comes back as 3:

document.getElementById(“myP”).childNodes[0].nodeType

Related Item: nodeName property

nodeValue
Value: Number, string, or null Read/Write
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

For a text node, the nodeValue property consists of the actual text for that node. Such a node cannot con-
tain any further nested elements, so the nodeValue property offers another way of reading and modifying
what Internet Explorer implements as an element’s innerText property (but in the W3C DOM, you must
reference the child text node of an element to get or set its node value).

Of the node types implemented in the W3C DOM–capable browsers, only the text and attribute types have
readable values. The nodeValue property of an element type of node returns a null value. For an attribute
node, the nodeValue property consists of the value assigned to that attribute. According to the W3C DOM
standard, attribute values should be reflected as strings. WinIE5, however, returns values of type Number
when the value is all numeric characters. Even if you assign a string version of a number to such a

236

Document Objects Reference

elementObject.nodeValue

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 236

nodeValue property, it is converted to a Number type internally. Other browsers return nodeValue values
as strings in all cases (and convert numeric assignments to strings).

Example
You can use the nodeValue property to carry out practical tasks. As an example, nodeValue can be used to
increase the width of a textarea object by 10 percent. The nodeValue is converted to an integer before
performing the math and reassignment:

function widenCols(textareaElem) {
var colWidth = parseInt(textareaElem.attributes[“cols”].nodeValue, 10);
textareaElem.attributes[“cols”].nodeValue = (colWidth * 1.1);

}

As another example, you can replace the text of an element, assuming that the element contains no further
nested elements:

function replaceText(elem, newText) {
if (elem.childNodes.length == 1 && elem.firstChild.nodeType == 3) {

elem.firstChild.nodeValue = newText;
}

}

The function builds in one final verification that the element contains just one child node and that it is a
text type. An alternative version of the assignment statement of the second example uses the innerText
property in IE with identical results:

elem.innerText = newText;

You could also use the textContent property in Moz1.7+ to achieve the same concise result:

elem.textContent = newText;

Related Items: attributes, innerText, nodeType properties

offsetHeight
offsetWidth
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

These properties, which ostensibly report the height and width of any element, have had a checkered his-
tory due to conflicts between interpretations of the CSS box model by Microsoft and the W3C. Both proper-
ties were invented by Microsoft for IE4. Although they are not part of any W3C standard, other modern
browsers, including Mozilla-based browsers and Safari, implement the properties because they’re so valu-
able to scripters.

Assuming that you specify style sheet rules for the width or height of an inline (nonpositioned) element, the
offsetHeight and offsetWidth properties act differently depending on whether the page puts the
browser in standards-compatible mode (via the DOCTYPE). More specifically, when IE6+ is set to stan-
dards-compatible mode (by DOCTYPE switching, as described in Chapter 14), the properties measure the
pixel dimensions of the element’s content plus any padding or borders, excluding margins. This is also the
default behavior for Mozilla and Safari, which adhere to the W3C box model. In quirks mode, however, the
default IE6+ behavior is to return a height and width of only the element’s content, with no accounting for
padding, borders, or margins. For versions of IE prior to IE6, this is the only behavior.

237

elementObject.offsetHeight

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 237

Note that for a normal block-level element whose height and width are not specified, the offsetHeight is
determined by the actual height of the content after all text flows. But the offsetWidth always extends the
full width of the containing element. Therefore, the offsetWidth property does not reveal the rendered
width of text content that is narrower than the full parent element width. For example, a p element consist-
ing of only a few words may report an offsetWidth of many hundreds of pixels because the paragraph’s
block extends the full width of the body element that represents the containing parent of the p element.
To find out the actual width of text within a full-width, block-level element, wrap the text within an inline
element (such as a span), and inspect the offsetWidth property of the span.

Example
With IE4+, you can substitute the offsetHeight and offsetWidth properties for clientHeight and
clientWidth in Listing 15-6. The reason is that the two elements in question have their widths hard-wired
in style sheets. Thus, the offsetWidth property follows that lead rather than observing the default width
of the parent (BODY) element.

With IE5+ and W3C browsers, you can use The Evaluator to inspect the offsetHeight and offsetWidth
property values of various objects on the page. Enter the following statements in the top text box:

document.getElementById(“myP”).offsetWidth
document.getElementById(“myEM”).offsetWidth
document.getElementById(“myP”).offsetHeight
document.getElementById(“myTable”).offsetWidth

Related Items: clientHeight, clientWidth properties

offsetLeft
offsetTop
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The offsetLeft and offsetTop properties can suffer from the same version vagaries that afflict
offsetHeight and offsetWidth properties when borders, margins, and padding are associated with an
element and DOCTYPE switching is a factor. However, the offsetLeft and offsetTop properties are valu-
able in providing pixel coordinates of an element within the positioning context of the parent element —
even when the elements are not positioned explicitly.

The offsetLeft and offsetTop properties for positioned elements in MacIE do not return
the same values as the style.left and style.top properties of the same element. See

Listing 40-5 on the CD-ROM for an example of how to correct these discrepancies without having to hard-
wire the precise pixel differences in your code.

The element used as a coordinate context for these properties is whatever element the offsetParent prop-
erty returns. This means that to determine the precise position of any element, you may have to add some
code that iterates through the offsetParent hierarchy until that property returns null.

Although the offsetLeft and offsetTop properties are not part of the W3C DOM specification, they are
supported across most browsers because they are convenient for some scriptable Dynamic HTML (DHTML)
tasks. Through these two properties, a script can read the pixel coordinates of any block-level or inline ele-
ment. Measurements are made relative to the body element, but this may change in the future. See the dis-
cussion later in this chapter about the offsetParent property.

NOTENOTE

238

Document Objects Reference

elementObject.offsetLeft

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 238

Example
The following IE script statements use all four offset dimensional properties to size and position a div
element so that it completely covers a span element located within a p element. This can be for a fill-in-the-
blank quiz that provides text entry fields elsewhere on the page. As the user gets an answer correct, the
blocking div element is hidden to reveal the correct answer.

document.all.blocker.style.pixelLeft = document.all.span2.offsetLeft
document.all.blocker.style.pixelTop = document.all.span2.offsetTop
document.all.blockImg.height = document.all.span2.offsetHeight
document.all.blockImg.width = document.all.span2.offsetWidth

Because the offsetParent property for the span element is the body element, the positioned div element
can use the same positioning context (it’s the default context, anyway) for setting the pixelLeft and
pixelTop style properties. (Remember that positioning properties belong to an element’s style object.)
The offsetHeight and offsetWidth properties can read the dimensions of the span element (the exam-
ple has no borders, margins, or padding to worry about) and assign them to the dimensions of the image
contained by the blocker div element.

This example is also a bit hazardous in some implementations. If the text of span2 wraps to a new line, the
new offsetHeight value has enough pixels to accommodate both lines. But the blockImg and blocker
div elements are block-level elements that render as a simple rectangle. In other words, the blocker ele-
ment doesn’t turn into two separate strips to cover the pieces of span2 that spread across two lines.

Related Items: clientLeft, clientTop, offsetParent properties

offsetParent
Value: Object reference Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The offsetParent property returns a reference to the object that acts as a positioning context for the cur-
rent element. Values for the offsetLeft and offsetTop properties are measured relative to the top-left
corner of the offsetParent object.

The returned object is usually, but not always, the next outermost block-level container. For most document
elements, the offsetParent object is the document.body object (with exceptions for some elements in
some browsers).

Table cells, for example, have different offsetParent elements in different browsers:

Browser td offsetParent

WinIE4 tr

WinIE5+/NN7+/Moz table

MacIE table

NN6 body

Fortunately, the property behaves predictably for positioned elements in most modern browsers. For exam-
ple, a first-level positioned element’s offsetParent element is the body; the offsetParent of a nested
positioned element (for example, one absolute-positioned div inside another) is the next outer container
(in other words, the positioning context of the inner element).

239

elementObject.offsetParent

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 239

Example
You can use the offsetParent property to help you locate the position of a nested element on the page.
Listing 15-12 demonstrates how a script can walk up the hierarchy of offsetParent objects in IE for
Windows to assemble the location of a nested element on a page. The goal of the exercise in Listing 15-12 is
to position an image at the top-left corner of the second table cell. The entire table is centered on the page.

The onload event handler invokes the setImagePosition() function. The function first sets a Boolean flag
that determines whether the calculations should be based on the client or offset sets of properties. WinIE4
and MacIE5 rely on client properties, whereas WinIE5+ works with the offset properties. The discrepancies
even out, however, with the while loop. This loop traverses the offsetParent hierarchy starting with the
offsetParent of the cell out to, but not including, the document.body object. The body object is not
included because that is the positioning context for the image. In IE5, the while loop executes only once
because just the table element exists between the cell and the body; in IE4, the loop executes twice to
account for the tr and table elements up the hierarchy. Finally, the cumulative values of left and top meas-
ures are applied to the positioning properties of the div object’s style, and the image is made visible.

LISTING 15-12

Using the offsetParent Property

<html>
<head>

<title>offsetParent Property</title>
<script type=”text/javascript”>
function setImagePosition(){

var x = 0;
var y = 0;
var offsetPointer = document.getElementById(“myCell”); // cElement;
while (offsetPointer) {

x += offsetPointer.offsetLeft;
y += offsetPointer.offsetTop;
offsetPointer = offsetPointer.offsetParent;

}
// correct for MacIE body margin factors
if (navigator.userAgent.indexOf(“Mac”) != -1 &&

typeof document.body.leftMargin != “undefined”) {
x += document.body.leftMargin;
y += document.body.topMargin;

}
document.getElementById(“myDIV”).style.left = x + “px”;
document.getElementById(“myDIV”).style.top = y + “px”;
document.getElementById(“myDIV”).style.visibility = “visible”;

}
</script>

</head>
<body onload=”setImagePosition()”>

<h1>The offsetParent Property</h1>
<hr />
<p>After the document loads, the script positions a small image in the

upper left corner of the second table cell.</p>
<table border=”1” align=”center”>

240

Document Objects Reference

elementObject.offsetParent

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 240

<tr>
<td>This is the first cell</td>
<td id=”myCell”>This is the second cell.</td>

</tr>
</table>
<img id=”myDIV” alt=”image” src=”end.gif” height=”12” width=”12”

style=”position:absolute; visibility:hidden; height:12px;
width:12px” />

</body>
</html>

Related Items: offsetLeft, offsetTop, offsetHeight, offsetWidth properties

outerHTML
outerText
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1.3+

One way that Internet Explorer and Safari 1.3+ expose an entire element to scripting is by way of the
outerHTML and outerText properties. The primary distinction between these two properties is that
outerHTML includes the element’s start and end tags, whereas outerText includes only rendered text that
belongs to the element (including text from any nested elements).

The outerHTML property contains not only the text content for an element as seen on the page, but also
every bit of HTML tagging associated with that content. For example, consider the following bit of HTML
source code:

<p id=”paragraph1”>”How are you?” he asked.</p>

The value of the p object’s outerHTML property (document.all.paragraph1. outerHTML) is exactly the
same as that of the source code.

The browser interprets any HTML tags in a string that you assign to an element’s outerHTML property. This
means that you can delete (set the property to an empty string) or replace an entire tag with this property.
The document’s object model adjusts itself to whatever adjustments you make to the HTML in this manner.

In contrast, the outerText property knows only about the text content of an element container. In the
preceding example, the value of the paragraph’s outerText property
(document.all.paragraph1.innerText) is

“How are you?” he asked.

If this looks familiar, it’s because in most cases the innerText and outerText properties of an existing
element return the same strings.

Example
Listing 15-13 demonstrates how to use the outerHTML and outerText properties to access and modify
web-page content dynamically. The page generated by Listing 15-13 (WinIE4+/Safari 1.3+ only) contains an
h1 element label and a paragraph of text. The purpose is to demonstrate how the outerHTML and
outerText properties differ in their intent. Two text boxes contain the same combination of text and
HTML tags that replaces the element that creates the paragraph’s label.

241

elementObject.outerHTML

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 241

If you apply the default content of the first text box to the outerHTML property of the label1 object, the
h1 element is replaced by a span element whose class attribute acquires a different style sheet rule defined
earlier in the document. Notice that the ID of the new span element is the same as that of the original h1
element. This allows the script attached to the second button to address the object. But this second script
replaces the element with the raw text (including tags). The element is gone, and any attempt to change the
outerHTML or outerText properties of the label1 object causes an error because there is no longer a
label1 object in the document.

Use this laboratory to experiment with some other content in both text boxes.

LISTING 15-13

Using outerHTML and outerText Properties

<html>
<head>

<title>outerHTML and outerText Properties</title>
<style type=”text/css”>
h1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial,

sans-serif}
.heading {font-size:20pt; font-weight:bold; font-family:”Arial Black”,

Arial, sans-serif}
</style>
<script type=”text/javascript”>
function setGroupLabelAsText(form) {

var content = form.textInput.value;
if (content) {

document.getElementById(“label1”).outerText = content;
}

}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value;
if (content) {

document.getElementById(“label1”).outerHTML = content;
}

}
</script>

</head>
<body>

<form>
<p><input type=”text” name=”HTMLInput”

value=”Article the
First”
size=”55” /> <input type=”button” value=”Change Heading HTML”
onclick=”setGroupLabelAsHTML(this.form)” /></p>

<p><input type=”text” name=”textInput”
value=”Article the
First”
size=”55” /> <input type=”button” value=”Change Heading Text”
onclick=”setGroupLabelAsText(this.form)” /></p>

</form>
<h1 id=”label1”>ARTICLE I</h1>

242

Document Objects Reference

elementObject.outerHTML

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 242

<p>Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of
grievances.</p>

</body>
</html>

Related Items: innerHTML, innerText properties; replaceNode() method

ownerDocument
Value: Document object reference Read-Only
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The ownerDocument property belongs to any element or node in the W3C DOM. The property’s value is a ref-
erence to the document node that ultimately contains the element or node. If a script encounters a reference to
an element or node (perhaps it has been passed as a parameter to a function), the object’s ownerDocument
property provides a way to build references to other objects in the same document or to access properties and
methods of the document objects. IE’s proprietary version of this property is simply document.

Example
Use The Evaluator (see Chapter 13) to explore the ownerDocument property. Enter the following statement
in the top text box:

document.body.childNodes[5].ownerDocument

The result is a reference to the document object. You can use that to inspect a property of the document, as
shown in the following statement, which you should enter in the top text box:

document.body.childNodes[5].ownerDocument.URL

This returns the document.URL property for the document that owns the child node.

Related Item: document object

parentElement
Value: Element object reference or null Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1.2+

The parentElement property returns a reference to the next outermost HTML element from the current
element. This parent–child relationship of elements is often, but not always, the same as a parent–child
node relationship (see the parentNode property later in this chapter). The difference is that the
parentElement property deals only with HTML elements as reflected as document objects, whereas a node
is not necessarily an HTML element (for example, an attribute or text chunk).

There is also a distinction between parentElement and offsetParent properties. The latter returns an
element that may be many generations removed from a given element but is the immediate parent with
regard to positioning context. For example, a td element’s parentElement property is most likely its
enclosing tr element, but a td element’s offsetParent property is its table element.

A script can walk the element hierarchy outward from an element with the help of the parentElement
property. The top of the parent chain is the html element. Its parentElement property returns null.

243

elementObject.parentElement

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 243

Example
You can experiment with the parentElement property in The Evaluator. The document contains a p
element named myP. Type each of the following statements from the left column in the top expression
evaluation text box and press Enter to see the results.

Expression Result

document.getElementById(“myP”).tagName p

document.getElementById(“myP”).parentElement [object]

document.getElementById(“myP”).parentElement.tagName body

document.getElementById(“myP”).parentElement.parentElement [object]

document.getElementById(“myP”).parentElement.parentElement.tagName html

document.getElementById(“myP”).parentElement.parentElement.parentElement null

Related Items: offsetParent, parentNode properties

parentNode
Value: Node object reference or null Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The parentNode property returns a reference to the next outermost node that is reflected as an object
belonging to the document. For a standard element object, the parentNode property is the same as
IE/Safari’s parentElement because both objects happen to have a direct parent–child node relationship as
well as a parent–child element relationship.

Other kinds of content, however, can be nodes, including text fragments within an element. A text fragment’s
parentNode property is the next outermost node or element that encompasses that fragment. A text node
object in IE/Safari 1.3+ does not have a parentElement property.

Example
Use The Evaluator to examine the parentNode property values of both an element and a nonelement node.
Begin with the following two statements, and watch the results of each:

document.getElementById(“myP”).parentNode.tagName
document.getElementById(“myP”).parentElement.tagName (IE/Safari1.3+ only)

Now examine the properties from the point of view of the first text fragment node of the myP paragraph
element:

document.getElementById(“myP”).childNodes[0].nodeValue
document.getElementById(“myP”).childNodes[0].parentNode.tagName
document.getElementById(“myP”).childNodes[0].parentElement (IE/Safari1.3+ only)

Notice (in IE) that the text node does not have a parentElement property.

Related Items: childNodes, nodeName, nodeType, nodeValue, parentElement properties

244

Document Objects Reference

elementObject.parentNode

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 244

parentTextEdit
Value: Element object reference or null Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Only a handful of objects in IE’s object model are capable of creating text ranges (see the TextRange object
in Chapter 36 on the CD-ROM). To find an object’s next outermost container capable of generating a text
range, use the parentTextEdit property. If an element is in the hierarchy, that element’s object reference is
returned. Otherwise (for example, document.body.parentTextEdit), the value is null. MacIE always
returns a value of null because the browser doesn’t support the TextRange object.

Example
Listing 15-14 contains an example that demonstrates how to use the parentTextEdit property to create a
text range. The page resulting from Listing 15-14 contains a paragraph of Latin text and three radio buttons
that select the size of a paragraph chunk: one character, one word, or one sentence. If you click anywhere
within the large paragraph, the onclick event handler invokes the selectChunk() function. The function
first examines which of the radio buttons is selected to determine how much of the paragraph to highlight
(select) around the point at which the user clicks.

After the script employs the parentTextEdit property to test whether the clicked element has a valid parent
capable of creating a text range, it calls on the property again to help create the text range. From there,
TextRange object methods shrink the range to a single insertion point, move that point to the spot nearest the
cursor location at click time, expand the selection to encompass the desired chunk, and select that bit of text.

Notice one workaround for the TextRange object’s expand() method anomaly: If you specify a sentence,
IE doesn’t treat the beginning of a p element as the starting end of a sentence automatically. A camouflaged
(white text color) period is appended to the end of the previous element to force the TextRange object to
expand only to the beginning of the first sentence of the targeted p element.

LISTING 15-14

Using the parentTextEdit Property

<html>
<head>

<title>parentTextEdit Property</title>
<style type=”text/css”>
p {cursor:hand}
</style>
<script type=”text/javascript”>
function selectChunk() {

var chunk, range;
for (var i = 0; i < document.forms[0].chunk.length; i++) {

if (document.forms[0].chunk[i].checked) {
chunk = document.forms[0].chunk[i].value;
break;

}
}
var x = window.event.clientX;
var y = window.event.clientY;

continued

245

elementObject.parentTextEdit

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 245

LISTING 15-14 (continued)

if (window.event.srcElement.parentTextEdit) {
range = window.event.srcElement.parentTextEdit.createTextRange();
range.collapse();
range.moveToPoint(x, y);
range.expand(chunk);
range.select();

}
}
</script>

</head>
<body bgcolor=”white”>

<form>
<p>Choose how much of the paragraph is to be selected when you click

anywhere in it:

<input type=”radio” name=”chunk” value=”character”
checked=”checked” />Character <input type=”radio” name=”chunk”
value=”word” />Word <input type=”radio” name=”chunk”
value=”sentence” />Sentence .</p>

</form>
<p onclick=”selectChunk()”>Lorem ipsum dolor sit amet, consectetaur

adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut
enim adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit involuptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>

</body>
</html>

Related Items: isTextEdit property; TextRange object (Chapter 36 on the CD-ROM)

prefix
(See localName)

previousSibling
(See nextSibling)

readyState
Value: String (integer for OBJECT object) Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

A script can query an element in IE to find out whether it has loaded all ancillary data (for example, exter-
nal image files or other media files) before other statements act on that object or its data. The readyState
property lets you know the loading status of an element.

Table 15-6 lists the possible values and their meanings.

246

Document Objects Reference

elementObject.readyState

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 246

TABLE 15-6

readyState Property Values

HTML Value OBJECT Value Description

complete 4 Element and data are fully loaded.

interactive 3 Data may not be loaded fully, but user can interact with element.

loaded 2 Data is loaded, but object may be starting up.

loading 1 Data is loading.

uninitialized 0 Object has not started loading data yet.

For most HTML elements, this property always returns complete. Most of the other states are used by ele-
ments such as img, embed, and object, which load external data and even start other processes (such as
ActiveX controls) to work.

One word of caution: Do not expect the readyState property to reveal whether an object exists in the docu-
ment (for example, uninitialized). If the object does not exist, it cannot have a readyState property; the
result is a script error for an undefined object. If you want to run a script only after every element and its data
are fully loaded, trigger the function by way of the onload event handler for the body element or the
onreadystatechange event handler for the object (and check that the readyState property is complete).

Example
To witness a readyState property other than complete for standard HTML, you can try examining the
property in a script that immediately follows an tag:

...

<script type=”text/javaScript”>
alert(document.getElementById(“myImg”).readyState);
</script>
...

Putting this fragment into a document that is accessible across a slow network helps. If the image is not in
the browser’s cache, you might get the uninitialized or loading result. The former means that the img
object exists, but it has not started receiving the image data from the server. If you reload the page, chances
are that the image will load instantaneously from the cache, and the readyState property will report
complete.

Related Items: onreadystatechange event handler

recordNumber
Value: Integer or null Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Virtually every object has a recordNumber property, but it applies only to elements used in Internet
Explorer data binding to represent repeated data. For example, if you display 30 records from an external
data store in a table, the tr element in the table is represented only once in the HTML. However, the

247

elementObject.recordNumber

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 247

browser repeats the table row (and its component cells) to accommodate all 30 rows of data. If you click a
row, you can use the recordNumber property of the tr object to see which record was clicked. A common
application of this facility is in data binding situations that allow for updating records. For example, script a
table so that clicking an uneditable row of data displays that record’s data in editable text boxes elsewhere
on the page. If an object is not bound to a data source, or if it is a nonrepeating object bound to a data
source, the recordNumber property is null.

Example
Listing 15-15 shows how to use the recordNumber property to navigate to a specific record in a sequence
of data. The data source is a small, tab-delimited file consisting of 20 records of Academy Awards data.
Thus, the table that displays a subset of the fields is bound to the data source object. Also bound to the data
source object are three span objects embedded within a paragraph near the top of the page. As the user
clicks a row of data, three fields from that clicked record are placed in the bound span objects.

The script part of this page is a mere single statement. When the user triggers the onclick event handler of
the repeated tr object, the function receives as a parameter a reference to the tr object. The data store
object maintains an internal copy of the data in a recordset object. One of the properties of this
recordset object is the AbsolutePosition property, which is the integer value of the current record that
the data object points to (it can point to only one row at a time, and the default row is the first row). The
statement sets the AbsolutePosition property of the recordset object to the recordNumber property
for the row that the user clicks. Because the three span elements are bound to the same data source, they
are immediately updated to reflect the change to the data object’s internal pointer to the current record.
Notice, too, that the third span object is bound to one of the data source fields not shown in the table. You
can reach any field of a record because the data source object holds the entire data source content.

LISTING 15-15

Using the Data Binding recordNumber Property

<html>
<head>

<title>Data Binding (recordNumber)</title>
<style type=”text/css”>
.filmTitle {font-style:italic}
</style>
<script type=”text/javascript”>
// set recordset pointer to the record clicked on in the table.
function setRecNum(row) {

document.oscars.recordset.AbsolutePosition = row.recordNumber;
}
</script>

</head>
<body>

<p>Academy Awards 1978-2005 (Click on a table row to extract data
from one record.)</p>

<p>The award for Best Actor of <span datasrc=”#oscars”
datafld=”Year”>
 went to
 for his outstanding achievement in the film <span
class=”filmTitle”

248

Document Objects Reference

elementObject.recordNumber

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 248

datasrc=”#oscars” datafld=”Best Actor Film”>.</p>
<table border=”1” datasrc=”#oscars” align=”center”>

<thead style=”background-color:yellow; text-align:center”>
<tr>

<td>Year</td>
<td>Film</td>
<td>Director</td>
<td>Actress</td>
<td>Actor</td>

</tr>
</thead>
<tr id=”repeatableRow” onclick=”setRecNum(this)”>

<td><div id=”col1” datafld=”Year”></div></td>
<td><div class=”filmTitle” id=”col2” datafld=”Best
Picture”></div></td>
<td><div id=”col3” datafld=”Best Director”></div></td>
<td><div id=”col4” datafld=”Best Actress”></div></td>
<td><div id=”col5” datafld=”Best Actor”></div></td>

</tr>
</table>
<object id=”oscars” classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<param name=”DataURL” value=”Academy Awards.txt” />
<param name=”UseHeader” value=”True” />
<param name=”FieldDelim” value=”	” />

</object>
</body>

</html>

Related Items: dataFld, dataSrc properties; table, tr objects (Chapter 38 on the CD-ROM)

runtimeStyle
Value: style object Read-Only
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

You can determine the browser default settings for style sheet attributes with the help of the runtimeStyle
property. The style object that this property returns contains all style attributes and the default settings at
the time the page loads. This property does not reflect values assigned to elements by style sheets in the
document or by scripts. The default values returned by this property differ from the values returned by the
currentStyle property. The latter includes data about values that are not assigned explicitly by style
sheets yet are influenced by the default behavior of the browser’s rendering engine. In contrast, the
runtimeStyle property shows unassigned style values as empty or zero.

Example
To change a style property setting, access it via the element’s style object. Use The Evaluator (see Chapter 13)
to compare the properties of the runtimeStyle and style objects of an element. For example, an unmodi-
fied copy of The Evaluator contains an em element whose ID is “myEM”. Enter both

document.getElementById(“myEM”).style.color

and

document.getElementById(“myEM”).runtimeStyle.color

249

elementObject.runtimeStyle

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 249

in the top text box in turn. Initially, both values are empty. Now assign a color to the style property via the
top text box:

document.getElementById(“myEM”).style.color = “red”

If you type the two earlier statements in the top box, you can see that the style object reflects the change,
whereas the runtimeStyle object holds onto its original (empty) value.

Related Items: currentStyle property; style object (Chapter 26)

scopeName
tagUrn
Value: String Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The scopeName property is associated primarily with XML code that is embedded within a document. When
you include XML, you can specify one or more XML Namespaces that define the owner of a custom tag
name, thus aiming toward preventing conflicts of identical custom tags from different sources in a document.

See Chapter 27 for more about XML objects.

The XML Namespace is assigned as an attribute of the <html> tag that surrounds the entire document:

<html xmlns:fred=’http://www.someURL.com’>

After that, the Namespace value precedes all custom tags linked to that Namespace:

<fred:FIRST_Name id=”fredFirstName”/>

To find out the Namespace owner of an element, you can read the scopeName property of that element. For
the preceding example, the scopeName returns fred. For regular HTML elements, the returned value is
always HTML. The tagURN property sits alongside scopeName and stores the URI for the namespace.

The scopeName property is available only in Win32 and UNIX flavors of IE5+. The comparable properties
for scopeName and tagURN in the W3C DOM are prefix and namespaceURI.

Example
If you have a sample document that contains XML and a namespace spec, you can use document.write()
or alert() methods to view the value of the scopeName property. The syntax is

document.getElementById(“elementID”).scopeName

Related Item: tagUrn property

scrollHeight
scrollWidth
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1.0.1+, Safari+

The scrollHeight and scrollWidth properties contain the pixel measures of an object, regardless of
how much of the object is visible on the page. Therefore, if the browser window displays a vertical scroll
bar, and the body extends below the bottom of the viewable space in the window, the scrollHeight takes

CROSS-REFCROSS-REF

250

Document Objects Reference

elementObject.scrollHeight

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 250

into account the entire height of the body as though you were to scroll downward and see the entire ele-
ment. For most elements that don’t have their own scroll bars, the scrollHeight and scrollWidth
properties have the same values as the clientHeight and clientWidth properties.

Example
Use The Evaluator (see Chapter 13) to experiment with these two properties of the textarea object, which
displays the output of evaluations and property listings. To begin, enter the following in the bottom one-
line text box to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Now enter the following property expression in
the top one-line text box to see the scrollHeight property of the output textarea when it holds the
dozens of lines of property listings:

document.getElementById(“output”).scrollHeight

The result, some number probably in the hundreds, is now displayed in the output textarea. This means
that you can scroll the content of the output element vertically to reveal that number of pixels. Click the
Evaluate button once more. The result, 13 or 14, is a measure of the scrollHeight property of the
textarea that had only the previous result in it. The scrollable height of that content was only 13 or 14
pixels, the height of the font in the textarea. The scrollWidth property of the output textarea is fixed
by the width assigned to the element’s cols attribute (as calculated by the browser to determine how wide
to make the text area on the page).

Related Items: clientHeight , clientWidth properties; window.scroll() method

scrollLeft
scrollTop
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN7+, Moz1.0.1+, Safari+

If an element is scrollable (in other words, it has its own scroll bars), you can find out how far the element
is scrolled in the horizontal and vertical direction via the scrollLeft and scrollTop properties. These
values are pixels. For nonscrollable elements, these values are always zero — even if they are contained by
elements that are scrollable. For example, if you scroll a browser window (or frame in a multiframe environ-
ment) vertically, the scrollTop property of the body object is whatever the pixel distance is between the
top of the object (now out of view) and the first visible row of pixels of the element. But the scrollTop
value of a table that is in the document remains zero.

Netscape browsers prior to version 7 (Mozilla) treat scrolling of a body element from the point of view of
the window. If you want to find out the scrolled offset of the current page in these browsers, use
window.scrollX and window.scrollY.

Scripts that involve tracking mouse events in IE need to take into account the scrollLeft and scrollTop
properties of the body to compensate for scrolling of the page. See the Event object in Chapter 25.

Example
Use The Evaluator (see Chapter 13) to experiment with these two properties of the textarea object, which
displays the output of evaluations and property listings. To begin, enter the following in the bottom one-
line text box to list the properties of the body object:

document.body

251

elementObject.scrollLeft

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 251

This displays a long list of properties for the body object. Use the textarea’s scroll bar to page down a
couple of times. Now enter the following property expression in the top one-line text box to see the
scrollTop property of the output textarea after you scroll:

document.getElementById(“output”).scrollTop

The result, some number, is now displayed in the output textarea. This means that the content of the
output element was scrolled vertically. Click the Evaluate button once more. The result, 0, is a measure of
the scrollTop property of the textarea that had only the previous result in it. There wasn’t enough con-
tent in the textarea to scroll, so the content was not scrolled at all. The scrollTop property, therefore, is
zero. The scrollLeft property of the output is always zero because the textarea element is set to wrap
any text that overflows the width of the element. No horizontal scroll bar appears in this case, and the
scrollLeft property never changes.

Related Items: clientLeft, clientTop properties; window.scroll() method

sourceIndex
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The sourceIndex property returns the numeric index (zero-based) of the object within the entire docu-
ment, which is the group of all elements in the document.

Example
Although the operation of this property is straightforward, the sequence of elements exposed by the docu-
ment.all property may not be. To that end, you can use The Evaluator (see Chapter 13) to experiment in
IE4+ with the values that the sourceIndex property returns to see how the index values of the docu-
ment.all collection follow the source code.

To begin, reload The Evaluator. Enter the following statement in the top text box to set a preinitialized
global variable:

a = 0

When you evaluate this expression, a zero should appear in the Results box. Next, enter the following state-
ment in the top text box:

document.all[a].tagName + “ [“ + a++ + “]”

There are a lot of plus signs in this statement, so be sure you enter it correctly. As you successively evaluate
this statement (repeatedly click the Evaluate button), the global variable (a) is incremented, enabling you to
walk through the elements in source-code order. The sourceIndex value for each HTML tag appears in
square brackets in the Results box. You generally begin with the following sequence:

html [0]
head [1]
title [2]

You can continue until there are no more elements, at which point an error message appears because the
value of a exceeds the number of elements in the document.all array. Compare your findings against the
HTML source code view of The Evaluator.

Related Item: item() method

252

Document Objects Reference

elementObject.sourceIndex

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 252

style
Value: style object reference Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The style property is the gateway to an element’s style sheet settings. The property’s value is a style
object whose properties enable you to read and write the style sheet settings for the element. Although
scripts do not usually manipulate the style object as a whole, it is quite common in a DHTML page for
scripts to get or set multiple properties of the style object to effect animation, visibility, and all appearance
parameters of the element. Note that style properties returned through this object are only those that are
explicitly set by the element’s style attribute or by script.

You can find significant differences in the breadth of properties of the style object in different versions of
IE and NN. See Chapter 26 for more details on the style object.

Example
Most of the action with the style property has to do with the style object’s properties, so you can use
The Evaluator here simply to explore the lists of style object properties available on as many DHTML-
compatible browsers as you have running. To begin, enter the following statement in the bottom, one-line
text box to inspect the style property for the document.body object:

document.body.style

Now inspect the style property of the table element that is part of the original version of The Evaluator.
Enter the following statement in the bottom text box:

document.getElementById(“myTable”).style

In both cases, the values assigned to the style object’s properties are quite limited by default.

Related Items: currentStyle, runtimeStyle properties; style object (Chapter 26)

tabIndex
Value: Integer Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The tabIndex property controls where in the tabbing sequence the current object receives focus. This
property obviously applies only to elements that can receive focus. IE5+ permits giving focus to more ele-
ments than most other browsers, but for all browsers compatible with this property, the primary elements
for which you may want to control focus (namely, form input elements) are covered.

In general, browsers treat form elements as focusable elements by default. Nonform elements usually don’t
receive focus unless you specifically set their tabIndex properties (or tabindex tag attributes). If you set
the tabIndex property of one form element to 1, that element is first in the tabbing order. Meanwhile, the
rest fall into source-code tabbing order on successive presses of the Tab key. If you set two elements to, say,
1, the tabbing proceeds in source-code order for those two elements and then on to the rest of the elements
in source-code order starting with the top of the page.

In Internet Explorer and Moz1.8+, you can remove an element from tabbing order entirely by setting its
tabIndex property to -1. Users can still click those elements to make changes to form element settings,
but tabbing bypasses the element.

253

elementObject.tabIndex

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 253

Example
Listing 15-16 contains a sample script that demonstrates how to control the tab order of a form via the
tabIndex property. This example demonstrates not only the way you can modify the tabbing behavior of a
form on the fly, but also how to force form elements out of the tabbing sequence entirely in IE. In this page,
the top form (named lab) contains four elements. Scripts invoked by buttons in the bottom form control
the tabbing sequence. Notice that the tabindex attributes of all bottom form elements are set to -1, which
means that these control buttons are not part of the tabbing sequence in IE and Moz1.8+.

When you load the page, the default tabbing order for the lab form control elements (default setting of
zero) takes charge. If you start pressing the Tab key, the precise results at first depend on the browser you
use. In IE, the Address field is first selected; next, the Tab sequence gives focus to the window (or frame, if
this page were in a frameset); finally, the tabbing reaches the lab form. Continue pressing the Tab key, and
watch how the browser assigns focus to each of the element types. In NN6+/Moz, however, you must click
anywhere on the content to get the Tab key to start working on form controls.

The sample script inverts the tabbing sequence with the help of a for loop that initializes two variables that
work in opposite directions as the looping progresses. This gives the last element the lowest tabIndex
value. The skip2() function simply sets the tabIndex property of the second text box to -1, removing it
from the tabbing entirely (IE only). Notice, however, that you can click in the field and still enter text.
(See the disabled property earlier in this chapter to see how to prevent field editing.) NN6+/Moz does not
provide a tabIndex property setting that forces the browser to skip a form control. You should disable the
control instead.

LISTING 15-16

Controlling the tabIndex Property

<html>
<head>

<title>tabIndex Property</title>
<script type=”text/javascript”>
function invert() {

var form = document.lab;
for (var i = 0, j = form.elements.length; i < form.elements.length;

i++, j--) {
form.elements[i].tabIndex = j;

}
}

function skip2() {
if (navigator.userAgent.indexOf(“MSIE”) != -1) {

document.lab.text2.tabIndex = -1;
} else {

alert(“Not available.”);
}

}

function resetTab() {
var form = document.lab;
for (var i = 0; i < form.elements.length; i++) {

form.elements[i].tabIndex = 0;
}

254

Document Objects Reference

elementObject.tabIndex

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 254

}
</script>

</head>
<body>

<h1>tabIndex Property Lab</h1>
<hr />
<form name=”lab”>

Text box no. 1: <input type=”text” name=”text1” />

Text box no. 2: <input type=”text” name=”text2” />

<input type=”button” value=”A Button” />

<input type=”checkbox” />And a checkbox

</form>
<hr />
<form name=”control”>

<input type=”button” value=”Invert Tabbing Order” tabindex=”-1”
onclick=”invert()” />

<input type=”button” value=”Skip Text box no. 2 (IE Only)”
tabindex=”-1” onclick=”skip2()” />

<input type=”button” value=”Reset to Normal Order” tabindex=”-1”
onclick=”resetTab()” />

</form>
</body>

</html>

The final function, resetTab(), sets the tabIndex property value to zero for all lab form elements; this
restores the default order.

Related Items: blur(), focus() methods

tagName
Value: String Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The tagName property returns a string of the HTML or XML tag name belonging to the object. All tagName
values are returned in all-uppercase characters, even if the source code is written in all-lowercase characters
or a mixture. This consistency makes it easier to perform string comparisons. For example, you can create a
generic function that contains a switch statement to execute actions for some tags and not others. The
skeleton of such a function looks like the following:

function processObj(objRef) {
switch (objRef.tagName) {
case “TR”:

[statements to deal with table row object]
break;

case “TD”:
[statements to deal with table cell object]
break;

case “COLGROUP”:
[statements to deal with column group object]
break;

255

elementObject.tagName

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 255

default:
[statements to deal with all other object types]

}
}

Example
You can also see the tagName property in action in the example associated with the sourceIndex property
discussed earlier in the chapter. In that example, the tagName property is read from a sequence of objects in
source-code order.

Related Items: nodeName property; getElementsByTagName() method

tagUrn
(See scopeName)

textContent
Value: String Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.7+, Safari-

This property stores the text string of a node, including any combined text nodes within an element. This
means that the content of a node is reflected in the textContent property as a single string of text even if it
has other nested elements, such as em. If you replace the content of a node with a string of text by setting
the textContent property, all previous node content is replaced, including nested elements. You can think
of the textContent property as the W3C DOM equivalent of IE’s innerText property.

Related Item: innerText property

title
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The W3C standard states that you should use the title property (and title attribute) in an advisory role.
Most browsers interpret this role as text assigned to tooltips that pop up momentarily while the cursor rests
atop an element. The advantage of having this property available for writing is that your scripts can modify
an element’s tooltip text in response to other user interaction on the page. A tooltip can provide brief help
about the behavior of icons or links on the page. It can also convey a summary of key facts from the desti-
nation of a link, thus enabling a visitor to see vital information without having to navigate to the other page.

As with setting the status bar, I don’t recommend using tooltips for conveying mission-critical information
to the user. Not all users are patient enough to let the pointer pause for the tooltip to appear. On the other
hand, a user may be more likely to notice a tooltip when it appears rather than a status-bar message (even
though the latter appears instantaneously).

Example
Listing 15-17 provides a glimpse at how you can use the title property to establish tooltips for a page. A
simple paragraph element has its title attribute set to “First Time!”, which is what the tooltip displays
if you roll the pointer atop the paragraph and pause after the page loads. But an onmouseover event han-
dler for that element increments a global variable counter in the script, and the title property of the para-
graph object is modified with each mouseover action. The count value is made part of a string assigned to
the title property. Notice that there is not a live connection between the title property and the variable;
instead, the new value explicitly sets the title property.

256

Document Objects Reference

elementObject.title

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 256

LISTING 15-17

Controlling the title Property

<html>
<head>

<title>title Property</title>
<script type=”text/javascript”>
// global counting variable
var count = 0;

function setToolTip(elem) {
elem.title = “You have previously rolled atop this paragraph “ +

count + “ time(s).”;
}

function incrementCount(elem) {
count++;
setToolTip(elem);

}
</script>

</head>
<body>

<h1>title Property Lab</h1>
<hr />
<p id=”myP” title=”First Time!” onmouseover=”incrementCount(this)”>Roll

the mouse over this paragraph a few times.

Then pause atop it to view the tooltip.</p>

</body>
</html>

Related Item: window.status property

uniqueID
Value: String Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

You can let the WinIE5+ browser generate an identifier (id property) for a dynamically generated element
on the page with the aid of the uniqueID property. You should use this feature with care, because the ID it
generates at any given time may differ from the ID generated the next time the element is created in the
page. Therefore, you should use the uniqueID property when your scripts require an unknown element to
have an id property, but the algorithms are not expecting any specific identifier.

To guarantee that an element gets only one ID assigned to it while the object exists in memory, assign the
value via the uniqueID property of that same object — not some other object. After you retrieve the
uniqueID property of an object, the property’s value stays the same no matter how often you access the
property again. In general, you assign the value returned by the uniqueID property to the object’s id prop-
erty for other kinds of processing. (For example, the parameter of a getElementById() method requires
the value assigned to the id property of an object.)

257

elementObject.uniqueID

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 257

Example
Listing 15-18 demonstrates the recommended syntax for obtaining and applying a browser-generated iden-
tifier for an object. After you enter some text in the text box and click the button, the addRow() function
appends a row to the table. The left column displays the identifier generated via the table row object’s
uniqueID property. IE5+ generates identifiers in the format “ms__idn”, where n is an integer starting with
zero for the current browser session. Because the addRow() function assigns uniqueID values to the row
and the cells in each row, the integer for each row is three greater than the previous one. There is no guar-
antee that future generations of the browser will follow this format, so do not rely on the format or
sequence in your scripts.

LISTING 15-18

Using the uniqueID Property

<html>
<head>

<title>Inserting an WinIE5+ Table Row</title>
<script type=”text/javascript”>
function addRow(item1) {

if (item1) {
// assign long reference to shorter var name
var theTable = document.getElementById(“myTable”);
// append new row to the end of the table
var newRow = theTable.insertRow(theTable.rows.length);
// give the row its own ID
newRow.id = newRow.uniqueID;

// declare cell variable
var newCell;

// an inserted row has no cells, so insert the cells
newCell = newRow.insertCell(0);
// give this cell its own id
newCell.id = newCell.uniqueID;
// display the row’s id as the cell text
newCell.innerText = newRow.id;
newCell.bgColor = “yellow”
// re-use cell var for second cell insertion
newCell = newRow.insertCell(1);
newCell.id = newCell.uniqueID;
newCell.innerText = item1;

}
}
</script>

</head>
<body>

<table id=”myTable” border=”1”>
<tr>

<th>Row ID</th>
<th>Data</th>

</tr>

258

Document Objects Reference

elementObject.uniqueID

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 258

<tr id=”firstDataRow”>
<td>firstDataRow</td>
<td>Fred</td>

</tr>
<tr id=”secondDataRow”>

<td>secondDataRow</td>
<td>Jane</td>

</tr>
</table>
<hr />
<form>

Enter text to be added to the table:

<input type=”text” name=”input” size=”25” />

<input type=’button’ value=’Insert Row’
onclick=’addRow(this.form.input.value)’ />

</form>
</body>

</html>

Related Items: id property; getElementById() method

unselectable
Value: String constant (“on” or “off”) Read/Write
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

This property controls the selectability of an element — that is, whether the element’s content can be
selected by the user. You might use this property to prevent a sensitive piece of data from being selected and
copied.

Methods
addBehavior(“URL”)
Returns: Integer ID
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The addBehavior() method imports an external Internet Explorer behavior and attaches it to the current
object, thereby extending the properties and/or methods of that object. (See Chapter 48 on the CD-ROM
for details on IE behaviors.) The sole parameter of the addBehavior() method is a URL pointer to the
behavior component’s code. This component may be in an external file (with an .htc extension), in which
case the parameter can be a relative or absolute URL. IE also includes a library of built-in (default) behav-
iors, whose URLs are in the following format:

#default#behaviorName

Here, behaviorName is one of the default behaviors (see Chapter 48 on the CD-ROM). If the behavior is
imported into the document via the object tag, the addBehavior() method parameter is the ID of that
element in the following format:

#objectID

259

elementObject.addBehavior()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 259

When you add a behavior, the loading of the external code occurs asynchronously. This means that even
though the method returns a value instantly, the behavior is not necessarily ready to work. Only when the
behavior is fully loaded can it respond to events or allow access to its properties and methods. Behaviors
loaded from external files observe domain security rules.

Example
Listing 15-19a shows what a behavior file looks like. It is the file used to demonstrate the addBehavior()
method in Listing 15-19b. The behavior component and the HTML page that loads it must come from the
same server and domain; they also must load via the same protocol (for example, http://, https://, and
file:// are mutually exclusive, mismatched protocols).

LISTING 15-19A

The makeHot.htc Behavior Component

<PUBLIC:ATTACH EVENT=”onmousedown” ONEVENT=”makeHot()” />
<PUBLIC:ATTACH EVENT=”onmouseup” ONEVENT=”makeNormal()” />
<PUBLIC:PROPERTY NAME=”hotColor” />
<PUBLIC:METHOD NAME=”setHotColor” />
<SCRIPT LANGUAGE=”JScript”>
var oldColor;
var hotColor = “red”;

function setHotColor(color) {
hotColor = color;

}

function makeHot() {
if (event.srcElement == element) {

oldColor = style.color;
runtimeStyle.color = hotColor;

}
}

function makeNormal() {
if (event.srcElement == element) {

runtimeStyle.color = oldColor;
}

}
</SCRIPT>

The object to which the component is attached is a simple paragraph object, shown in Listing 15-19b.
When the page loads, the behavior is not attached, so clicking the paragraph text has no effect.

When you turn on the behavior by invoking the turnOn() function, the addBehavior() method attaches
the code of the makeHot.htc component to the myP object. At this point, the myP object has one more
property, one more method, and two more event handlers that are written to be made public by the compo-
nent’s code. If you want the behavior to apply to more than one paragraph in the document, you have to
invoke the addBehavior() method for each paragraph object.

260

Document Objects Reference

elementObject.addBehavior()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 260

After the behavior file is instructed to start loading, the setInitialColor() function is called to set the
new color property of the paragraph to the user’s choice from the select list. But this can happen only if
the component is fully loaded. Therefore, the function checks the readyState property of myP for com-
pleteness before invoking the component’s function. If IE is still loading the component, the function is
invoked again in 500 milliseconds.

As long as the behavior is loaded, you can change the color used to turn the paragraph hot. The function
first ensures that the component is loaded by checking that the object has the new color property. If it does,
the method of the component is invoked (as a demonstration of how to expose and invoke a component
method). You can also simply set the property value.

LISTING 15-19B

Using addBehavior() and removeBehavior()

<html>
<head>

<title>addBehavior() and removeBehavior() Methods</title>
<script type=”text/javascript”>
var myPBehaviorID;

function turnOn() {
myPBehaviorID =

document.getElementById(“myP”).addBehavior(“makeHot.htc”);
setInitialColor();

}

function setInitialColor() {
if (document.getElementById(“myP”).readyState == “complete”) {

var select = document.forms[0].colorChoice;
var color = select.options[select.selectedIndex].value;
document.getElementById(“myP”).setHotColor(color);

} else {
setTimeout(“setInitialColor()”, 500);

}
}

function turnOff() {
document.getElementById(“myP”).removeBehavior(myPBehaviorID);

}

function setColor(select, color) {
if (document.getElementById(“myP”).hotColor) {

document.getElementById(“myP”).setHotColor(color);
} else {

alert(“This feature is not available. Turn on the Behavior
first.”);
select.selectedIndex = 0;

}

continued

261

elementObject.addBehavior()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 261

LISTING 15-19B (continued)

}

function showBehaviorCount() {
var num = document.getElementById(“myP”).behaviorUrns.length;
var msg = “The myP element has “ + num + “ behavior(s). “;
if (num > 0) {

msg += “Name(s): \r\n”;
for (var i = 0; i < num; i++) {

msg += document.getElementById(“myP”).behaviorUrns[i] + “\r\n”;
}

}
alert(msg);

}
</script>

</head>
<body>

<h1>addBehavior() and removeBehavior() Method Lab</h1>
<hr />
<p id=”myP”>This is a sample paragraph. After turning on the behavior, it

will turn your selected color when you mouse down anywhere in this
paragraph.</p>

<form>
<input type=”button” value=”Switch On Behavior” onclick=”turnOn()” />
Choose a ‘hot’ color: <select name=”colorChoice”
onchange=”setColor(this, this.value)”>

<option value=”red”>red</option>
<option value=”blue”>blue</option>
<option value=”cyan”>cyan</option>

</select>

<input type=”button” value=”Switch Off Behavior”
onclick=”turnOff()” />
<p><input type=”button” value=”Count the URNs”

onclick=”showBehaviorCount()” /></p>
</form>

</body>
</html>

To turn off the behavior, the removeBehavior() method is invoked. Notice that the removeBehavior()
method is associated with the myP object, and the parameter is the ID of the behavior added earlier. If you
associate multiple behaviors with an object, you can remove one without disturbing the others, because
each has its own unique ID.

Related Items: readyState property; removeBehavior() method; behaviors (Chapter 48 on the
CD-ROM)

262

Document Objects Reference

elementObject.addBehavior()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 262

addEventListener(“eventType”, listenerFunc, useCapture)
removeEventListener(“eventType”, listenerFunc, useCapture)
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The W3C DOM’s event mechanism accommodates both event bubbling and trickling (see Chapter 25).
Although the new mechanism supports the long-standing notion of binding an event to an element by way
of HTML attributes (for example, the old onclick event handler), it encourages binding events by register-
ing an event listener with an element. (In browsers that support the W3C event model, other ways of bind-
ing events — such as event handler attributes — are internally converted to registered events.)

To tell the DOM that an element should listen for a particular kind of event, use the addEventListener()
method on the element object. The method requires three parameters. The first is a string version of the
event type for which the element should listen. Event type strings do not include the well-used on prefix of
event handlers; instead, the names consist only of the event and are usually in all lowercase (except for
some special systemwide events preceded by DOM). Table 15-7 shows all the events recognized by the
W3C DOM specification (including some new DOM ones that are not yet implemented in browsers).

TABLE 15-7

W3C DOM Event Listener Types

abort error

blur focus

change load

click mousedown

DOMActivate mousemove

DOMAttrModified mouseout

DOMCharacterDataModified mouseover

DOMFocusIn mouseup

DOMFocusOut reset

DOMNodeInserted resize

DOMNodeInsertedIntoDocument scroll

DOMNodeRemoved select

DOMNodeRemovedFromDocument submit

DOMSubtreeModified unload

263

elementObject.addEventListener()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 263

Note that the event types specified in the DOM Level 2 are more limited than the wide range of events
defined in IE4+. Also, the W3C temporarily tabled the issue of keyboard events until DOM Level 3.
Fortunately, most W3C-compatible browsers implement keyboard events in a fashion that likely will appear
as part of the W3C DOM Level 3.

The second parameter of the addEventListener() method is a reference to the JavaScript function to be
invoked. This is the same form used to assign a function to an event property of an object (for example,
objReference.onclick = someFunction), and it should not be a quoted string. This approach also
means that you cannot specify parameters in the function call. Therefore, functions that need to reference
forms or form control elements must build their own references (with the help of the event object’s property
that says which object is the event’s target).

By default, the W3C DOM event model has events bubble upward through the element container hierarchy
starting with the target object of the event (for example, the button being clicked). However, if you specify
true for the third parameter of the addEventListener() method, event capture is enabled for this partic-
ular event type whenever the current object is the event target. This means that any other event type tar-
geted at the current object bubbles upward unless it, too, has an event listener associated with the object
and the third parameter is set to true.

Using the addEventListener() method requires that the object to which it is attached already exists.
Therefore, you most likely will use the method inside an initialization function triggered by the onload
event handler for the page. (The document object can use addEventListener() for the load event imme-
diately, because the document object exists early in the loading process.)

A script can also eliminate an event listener that was previously added by script. The removeEventListener()
method takes the same parameters as addEventListener(), which means that you can turn off one
listener without disturbing others. In fact, because you can add two listeners for the same event and listener
function (one set to capture and one not — a rare occurrence indeed), the three parameters of the
removeEventListener() enable you to specify precisely which listener to remove from an object.

Unlike the event capture mechanism of NN4, the W3C DOM event model does not have a global capture
mechanism for an event type regardless of target. And with respect to Internet Explorer, the
addEventListener() method is closely analogous to the IE5+ attachEvent() method. Also, event cap-
ture in IE5+ is enabled via the separate setCapture() method. Both the W3C and IE event models use
their own syntaxes to bind objects to event handling functions, so the actual functions may be capable of
serving both models with browser version branching required only for event binding. See Chapter 25 for
more about event handling with these two event models.

Example
Listing 15-20 provides a compact workbench to explore and experiment with the basic W3C DOM event
model. When the page loads, no event listeners are registered with the browser (except the control buttons,
of course). But you can add an event listener for a click event in bubble and/or capture mode to the body
element or the p element that surrounds the span holding the line of text. If you add an event listener and
click the text, you see a readout of the element processing the event and information indicating whether the
event phase is bubbling (3) or capture (1). With all event listeners engaged, notice the sequence of events
being processed. Remove listeners one at a time to see the effect on event processing.

264

Document Objects Reference

elementObject.addEventListener()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 264

LISTING 15-20

W3C Event Lab

<html>
<head>

<title>W3C Event Model Lab</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
// add event listeners
function addBubbleListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent,
false);

}
function addCaptureListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent,
true);

}
// remove event listeners
function removeBubbleListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”,
reportEvent, false);

}
function removeCaptureListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”,
reportEvent, true);

}
// display details about any event heard
function reportEvent(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode :
evt.target;

if (elem.id == “mySPAN”) {
var msg = “Event processed at “ + evt.currentTarget.tagName +
“ element (event phase = “ + evt.eventPhase + “).\n”;
document.controls.output.value += msg;

}
}
// clear the details textarea
function clearTextArea() {

document.controls.output.value = “”;
}
</script>

</head>
<body id=”myBODY”>

<h1>W3C Event Model Lab</h1>
<hr />
<p id=”myP”>This paragraph (a SPAN element nested

continued

265

elementObject.addEventListener()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 265

LISTING 15-20 (continued)

inside a P element) can be set to listen for “click” events.</p>
<hr />
<form name=”controls” id=”controls”>

<p>Examine click event characteristics: <input type=”button”
value=”Clear” onclick=”clearTextArea()” />

<textarea name=”output” cols=”80” rows=”6” wrap=”virtual”>
</textarea></p>

<table cellpadding=”5” border=”1”>
<caption style=”font-weight:bold”>Control Panel</caption>
<tr style=”background-color:#ffff99”>

<td rowspan=”2”>”Bubble”-type click listener:</td>
<td><input type=”button” value=”Add to BODY” onclick=

“addBubbleListener(‘myBODY’)” /></td>
<td><input type=”button” value=”Remove from BODY” onclick=

“removeBubbleListener(‘myBODY’)” /></td>
</tr>
<tr style=”background-color:#ffff99”>

<td><input type=”button” value=”Add to P” onclick=
“addBubbleListener(‘myP’)” /></td>

<td><input type=”button” value=”Remove from P” onclick=
“removeBubbleListener(‘myP’)” /></td>

</tr>
<tr style=”background-color:#ff9999”>

<td rowspan=”2”>”Capture”-type click listener:</td>
<td><input type=”button” value=”Add to BODY” onclick=

“addCaptureListener(‘myBODY’)” /></td>
<td><input type=”button” value=”Remove from BODY” onclick=

“removeCaptureListener(‘myBODY’)” /></td>
</tr>
<tr style=”background-color:#ff9999”>

<td><input type=”button” value=”Add to P” onclick=
“addCaptureListener(‘myP’)” /></td>

<td><input type=”button” value=”Remove from P” onclick=
“removeCaptureListener(‘myP’)” /></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: attachEvent(), detachEvent(), dispatchEvent(), fireEvent(),
removeEventListener() methods

appendChild(elementObject)
Returns: Node object reference
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The appendChild() method inserts an element or text node (defined by other code that comes before it)
as the new, last child of the current element. Aside from the more obvious application of adding a new child

266

Document Objects Reference

elementObject.appendChild()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 266

element to the end of a sequence of child nodes, the appendChild() method is also practical for building
element objects and their content before appending, replacing, or inserting the element into an existing
document. The document.createElement() method generates a reference to an element of whatever tag
name you assign as that method’s parameter.

The appendChild() method returns a reference to the appended node object. This reference differs from
the object that is passed as the method’s parameter because the returned value represents the object as part
of the document rather than as a freestanding object in memory.

Example
Listing 15-21 contains an example that shows how to use the appendChild() method in concert with
removeChild() and replaceChild() to modify child elements in a document. Because many W3C
DOM browsers treat source-code carriage returns as text nodes (and, thus, child nodes of their parent), the
HTML for the affected elements in Listing 15-21 is shown without carriage returns between elements.

The append() function creates a new li element and then uses the appendChild() method to attach the
text box text as the displayed text for the item. The nested expression, document.createTextNode(form
.input.value), evaluates to a legitimate node that is appended to the new li item. All of this occurs
before the new li item is added to the document. In the final statement of the function, appendChild()
is invoked from the vantage point of the ul element — thus adding the li element as a child node of the
ul element.

Invoking the replaceChild() method in the replace() function uses some of the same code. The main
difference is that the replaceChild() method requires a second parameter: a reference to the child ele-
ment to be replaced. This demonstration replaces the final child node of the ul list, so the function takes
advantage of the lastChild property of all elements to get a reference to that final nested child. That refer-
ence becomes the second parameter to replaceChild().

LISTING 15-21

Various Child Methods

<html>
<head>

<title>appendChild(), removeChild(), and replaceChild() Methods</title>
<script type=”text/javascript”>
function append(form) {

if (form.input.value) {
var newItem = document.createElement(“LI”);
newItem.appendChild(document.createTextNode(form.input.value));
document.getElementById(“myUL”).appendChild(newItem);

}
}

function replace(form) {
if (form.input.value) {

var newItem = document.createElement(“LI”);
var lastChild = document.getElementById(“myUL”).lastChild;
newItem.appendChild(document.createTextNode(form.input.value));

continued

267

elementObject.appendChild()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 267

LISTING 15-21 (continued)

document.getElementById(“myUL”).replaceChild(newItem, lastChild);
}

}

function restore() {
var oneChild;
var mainObj = document.getElementById(“myUL”);
while (mainObj.childNodes.length > 2) {

oneChild = mainObj.lastChild;
mainObj.removeChild(oneChild);

}
}
</script>

</head>
<body>

<h1>Child Methods</h1>
<hr />
Here is a list of items:
<ul id=”myUL”>First ItemSecond Item
<form>

Enter some text to add/replace in the list: <input type=”text”
name=”input” size=”30” />

<input type=”button” value=”Append to List”
onclick=”append(this.form)” /> <input type=”button”
value=”Replace Final Item” onclick=”replace(this.form)” /> <input
type=”button” value=”Restore List” onclick=”restore()” />

</form>
</body>

</html>

The final part of the demonstration uses the removeChild() method to peel away all children of the ul
element until just the two original items are left standing. Again, the lastChild property comes in handy
as the restore() function keeps removing the last child until only two remain.

Related Items: removeChild(), replaceChild() methods; nodes and children (Chapter 14)

applyElement(elementObject[, type])
Returns: Nothing
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The applyElement() method enables you to insert a new element as the parent or child of the current
object. An important feature of this method is that the new object is wrapped around the current object (if
the new element is to become the parent) or the current object’s content (if the new element is to become a
child). When the new element becomes a child, all previous children are nested further by one generation
to become immediate children of the new element. You can imagine how the resulting action of this method
affects the containment hierarchy of the current element, so you must be careful how you use the
applyElement() method.

268

Document Objects Reference

elementObject.applyElement()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 268

One parameter, a reference to the object to be applied, is required. This object may be generated from con-
structions such as document.createElement() or from one of the child or node methods that returns an
object. The second parameter is optional, and it must be one of the following values:

Parameter Value Description

outside New element becomes the parent of the current object.

inside New element becomes the immediate child of the current object.

If you omit the second parameter, the default value (outside) is assumed. Listing 15-22 shows how the
applyElement() method is used both with and without default values.

Example
To help you visualize the impact of the applyElement() method with its different parameter settings,
Listing 15-22 enables you to apply a new element (an em element) to a span element inside a paragraph. At
any time, you can view the HTML of the entire p element to see where the em element is applied, as well as
its impact on the element containment hierarchy for the paragraph.

After you load the page, inspect the HTML for the paragraph before doing anything else. Notice the span
element and its nested font element, both of which surround the one-word content. If you apply the em
element inside the span element (click the middle button), the span element’s first (and only) child ele-
ment becomes the em element; the font element is now a child of the new em element.

LISTING 15-22

Using the applyElement() Method

<html>
<head>

<title>applyElement() Method</title>
<script type=”text/javascript”>
function applyOutside() {

var newItem = document.createElement(“EM”);
newItem.id = newItem.uniqueID;
document.getElementById(“mySpan”).applyElement(newItem);

}

function applyInside() {
var newItem = document.createElement(“EM”);
newItem.id = newItem.uniqueID;
document.getElementById(“mySpan”).applyElement(newItem, “inside”);

}

function showHTML() {
alert(document.getElementById(“myP”).outerHTML);

}
</script>

</head>

continued

269

elementObject.applyElement()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 269

LISTING 15-22 (continued)

<body>
<h1>applyElement() Method</h1>
<hr />
<p id=”myP”>A simple paragraph with a <font

size=”+1”>special word in it.</p>
<form>

<input type=”button” value=”Apply Outside”
onclick=”applyOutside()” /> <input type=”button”
value=”Apply Inside” onclick=”applyInside()” /> <input
type=”button” value=”Show <P> HTML...”
onclick=”showHTML()” />

<input type=”button” value=”Restore Paragraph”
onclick=”location.reload()” />

</form>
</body>

</html>

The visible results of applying the em element inside and outside the span element in this case are the same.
But you can see from the HTML results that each element impacts the element hierarchy quite differently.

Related Items: insertBefore(), appendChild(), insertAdjacentElement() methods

attachEvent(“eventName”, functionRef)
detachEvent(“eventName”, functionRef)
Returns: Boolean
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The attachEvent() method originated as a means to bind events for IE behaviors (see Chapter 48 on the
CD-ROM). But the method has gained acceptance as an IE alternative to the W3C addEventListener()
event binding method. To illustrate the method’s usage, I want you to first consider the following example
of the typical property assignment approach to binding an event handler:

myObject.onmousedown = setHilite;

The version with attachEvent() is as follows:

myObject.attachEvent(“onmousedown”, setHilite);

Both parameters are required. The first parameter is a string version (case insensitive) of the event name.
The second is a reference to the function to be invoked when the event fires for this object. A function refer-
ence is an unquoted, case-sensitive identifier for the function without any parentheses (which also means
that you cannot pass parameters in this function call).

There is a subtle benefit to using attachEvent() over the event property binding approach. When you use
attachEvent(), the method returns a Boolean value of true if the event binding succeeds. IE triggers a
script error if the function reference fails, so don’t rely on a returned value of false to catch these kinds of
errors. Also, there is no validation that the object recognizes the event name.

270

Document Objects Reference

elementObject.attachEvent()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 270

If you have used attachEvent() to bind an event handler to an object’s event, you can disconnect that
binding with the detachEvent() method. The parameters are the same as for attachEvent(). The
detachEvent() method cannot unbind events whose associations are established via tag attributes or
event property settings.

The W3C DOM event model provides functionality similar to these IE-only methods:
addEventListener() and removeEventListener().

Example
Use The Evaluator (see Chapter 13) to create an anonymous function that is called in response to an
onmousedown event of the first paragraph on the page. Begin by assigning the anonymous function to
global variable a (already initialized in The Evaluator) in the top text box:

a = new Function(“alert(‘Function created at “ + (new Date()) + “‘)”)

The quote marks and parentheses can get jumbled easily, so enter this expression carefully. When you enter
the expression successfully, the Results box shows the function’s text. Now assign this function to the
onmousedown event of the myP element by entering the following statement in the top text box:

document.getElementById(“myP”).attachEvent(“onmousedown”, a)

The Results box displays true when successful. If you mouse down on the first paragraph, an alert box dis-
plays the date and time when the anonymous function was created (when the new Date() expression was
evaluated).

Now disconnect the event relationship from the object by entering the following statement in the top text box:

document.getElementById(“myP”).detachEvent(“onmousedown”, a)

Related Items: addEventListener(), detachEvent(), dispatchEvent(), fireEvent(),
removeEventListener() methods; event binding (Chapter 14)

blur()
focus()
Returns: Nothing
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The blur() method removes focus from an element, whereas the focus() method gives focus to an ele-
ment. Even though the blur() and focus() methods have been around since the earliest scriptable
browsers, not every focusable object has enjoyed these methods since the beginning. Browsers before IE4
and NN6 limited these methods primarily to the window object and form control elements.

Windows
For window objects, the blur() method (NN3+, IE4+) pushes the referenced window to the back of all
other open windows. If other browser suite windows (such as e-mail or newsreader windows) are open, the
window receiving the blur() method is placed behind these windows as well.

The window.blur() method does not adjust the stacking order of the current window in
Mozilla-based browsers (thus, the Put Me in Back button in Listing 15-23 doesn’t work in

those browsers). But a script in a window can invoke the focus() method of another window to bring that
other window to the front (provided that a scriptable linkage, such as the window.opener property, exists
between the two windows).

CAUTION CAUTION

271

elementObject.blur()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 271

The minute you create another window for a user in your web-site environment, you must pay attention to
window layer management. With browser windows so easily activated by the slightest mouse click, a user
can lose a smaller window behind a larger one in a snap. Most inexperienced users don’t think to check the
Windows taskbar or browser menu bar (if the browser is so equipped) to see whether a smaller window is
still open and then activate it. If that subwindow is important to your site design, you should present a
button or other device in each window that enables users to switch among windows safely. The
window.focus() method brings the referenced window to the front of all the windows.

Rather than supply a separate button on your page to bring a hidden window forward, you should build
your window-opening functions in such a way that if the window is already open, the function automati-
cally brings that window forward (as shown in Listing 15-23). This removes the burden of window
management from your visitors.

The key to success with this method is making sure that your references to the desired windows are correct.
Therefore, be prepared to use the window.opener property to refer to the main window if a subwindow
needs to bring the main window back into focus.

Form control elements
The blur() and focus() methods apply primarily to text-oriented form controls: text input, select, and
textarea elements.

Just as a camera lens blurs when it goes out of focus, a text object blurs when it loses focus — when some-
one clicks or tabs out of the field. Under script control, blur() deselects whatever may be selected in the
field, and the text insertion pointer leaves the field. The pointer does not proceed to the next field in tab-
bing order, as it does if you perform a blur by tabbing out of the field manually.

For a text object, having focus means that the text insertion pointer is flashing in that text object’s field.
Giving a field focus is like opening it up for human editing.

Setting the focus of a text box or textarea does not by itself enable you to place the cursor at any specified
location in the field. The cursor usually appears at the beginning of the text. To prepare a field for entry to
remove the existing text, use both the focus() and select() methods in series.

There is a caveat about using focus() and select() together to preselect the content of a text box for
immediate editing: Many versions of Internet Explorer fail to achieve the desired results due to an internal
timing problem. You can work around this problem (and remain compatible with other browsers) by initiat-
ing the focus and selection actions through a setTimeout() method. See Chapter 43 on the CD-ROM on
data validation for an example.

A common design requirement is to position the insertion pointer at the end of a text box or textarea so
that a user can begin appending text to existing content immediately. This is possible in IE4+ with the help
of the TextRange object. The following script fragment moves the text insertion pointer to the end of a
textarea element whose ID is myTextarea:

var range = document.getElementById(“myTextarea”).createTextRange();
range.move(“textedit”);
range.select();

You should be very careful in combining blur() or focus() methods with onblur and onfocus event
handlers — especially if the event handlers display alert boxes. Many combinations of these events and
methods can cause an infinite loop in which it is impossible to dismiss the alert dialog box completely. On
the other hand, there is a useful combination for older browsers that don’t offer a disabled property for
text boxes. The following text box event handler can prevent users from entering text in a text box:

onfocus = “this.blur()”;

272

Document Objects Reference

elementObject.blur()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 272

Some operating systems and browsers enable you to give focus to elements such as buttons (including radio
and checkbox buttons) and hypertext links (encompassing both a and area elements). Typically, once such
an element has focus, you can accomplish the equivalent of a mouse click on the element by pressing the
spacebar. This is helpful for accessibility to those who have difficulty using a mouse.

An unfortunate side effect of button focus in Win32 environments is that the focus highlight (a dotted rec-
tangle) remains around the button after a user clicks it and until another object gets focus. You can elimi-
nate this artifact for browsers and objects that implement the onmouseup event handler by including the
following event handler in your buttons:

onmouseup = “this.blur()”;

IE5.5+ recognizes the often undesirable effect of that dotted rectangle and lets scripts set the hideFocus
property of an element to true to keep that rectangle hidden while giving the element focus. It is a trade-off
for the user, however, because there is no visual feedback about which element has focus.

Other elements
For other kinds of elements that support the focus() method, you can bring an element into view in lieu
of the scrollIntoView() method. Link (a) and area elements in Windows versions of IE display the
dotted rectangle around them after a user brings focus to them. To eliminate that artifact, use the same

onmouseup = “this.blur()”;

event handler (or IE5.5+ hideFocus property) just described for form controls.

Example
Listing 15-23 contains an example of using the focus() and blur() methods to tinker with changing the
focus of windows. This example creates a two-window environment; from each window, you can bring the
other window to the front. The main window uses the object returned by window.open() to assemble the
reference to the new window. In the subwindow (whose content is created entirely on the fly by JavaScript),
self.opener is summoned to refer to the original window, whereas self.blur() operates on the sub-
window itself. Blurring one window and focusing on another window yields the same result of sending the
window to the back of the pile.

LISTING 15-23

The window.focus() and window.blur() Methods

<html>
<head>

<title>Window Focus() and Blur()</title>
<script type=”text/javascript”>
// declare global variable name
var newWindow = null;

function makeNewWindow() {
// check if window already exists
if (!newWindow || newWindow.closed) {

// store new window object in global variable
newWindow = window.open(“”,””,”width=250,height=250”);

continued

273

elementObject.blur()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 273

LISTING 15-23 (continued)

// pause briefly to let IE3 window finish opening
setTimeout(“fillWindow()”,100);

} else {
// window already exists, so bring it forward
newWindow.focus();

}
}

// assemble new content and write to subwindow
function fillWindow() {

var newContent = “<html><head><title>Another Sub
Window<\/title><\/head>”;
newContent += “<body bgColor=’salmon’>”;
newContent += “<h1>A Salmon-Colored Subwindow.<\/h1>”;
newContent += “<form><input type=’button’ value=’Bring Main to Front’
onclick=’self.opener.focus()’>”;
newContent += “<form><input type=’button’ value=’Put Me in Back’
onclick=’self.blur()’>”;
newContent += “<\/form><\/body><\/html>”;
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close();

}
</script>

</head>
<body>

<h1>Window focus() and blur() Methods</h1>
<hr />
<form>

<input type=”button” name=”newOne” value=”Show New Window”
onclick=”makeNewWindow()” />

</form>
</body>

</html>

A key ingredient to the success of the makeNewWindow() function in Listing 15-23 is the first conditional
expression. Because newWind is initialized as a null value when the page loads, that is its value the first
time through the function. But after you open the subwindow the first time, newWind is assigned a value
(the subwindow object) that remains intact even if the user closes the window. Thus, the value doesn’t
revert to null by itself. To catch the possibility that the user has closed the window, the conditional expres-
sion also sees whether the window is closed. If it is, a new subwindow is generated, and that new window’s
reference value is reassigned to the newWind variable. On the other hand, if the window reference exists and
the window is not closed, the focus() method brings that subwindow to the front.

You can see the focus() method for a text object in action in Chapter 25’s description of the select()
method for text objects.

Related Items: window.open(), document.formObject.textObject.select() methods

274

Document Objects Reference

elementObject.blur()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 274

clearAttributes()
Returns: Nothing
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The clearAttributes() method removes all attributes from an element except the name and id values.
Thus, styles and event handlers are removed, as are custom attributes assigned in either the HTML source
code or later by script. You should know that the clearAttributes() method does not alter the length of
the element’s attributes collection, because the collection always contains all possible attributes for an
element. (See the attributes property for elements earlier in this chapter.)

This method is handy if you wish to construct an entirely new set of attributes for an element and prefer to
start out with a blank slate. Be aware, however, that unless your scripts immediately assign new attributes to
the element, the appearance of the element reverts to its completely unadorned form until you assign new
attributes. This means that even positioned elements find their way back to their source-code order until
you assign a new positioning style. If you simply want to change the value of one or more attributes of an
element, it is faster to use the setAttribute() method or adjust the corresponding properties.

To accomplish a result in NN6+/Moz that simulates that of IE5+’s clearAttributes(), you must iterate
through all attributes of an element and remove those attributes (via the removeAttribute() method)
whose names are other than id and name.

Example
Use The Evaluator (see Chapter 13) to examine the attributes of an element before and after you apply
clearAttributes(). To begin, display the HTML for the table element on the page by entering the fol-
lowing statement in the top text box:

myTable.outerHTML

Notice the attributes associated with the <table> tag. Look at the rendered table to see how attributes such
as border and width affect the display of the table. Now enter the following statement in the top text box
to remove all removable attributes from this element:

myTable.clearAttributes()

First, look at the table. The border is gone, and the table is rendered only as wide as is necessary to display
the content with no cell padding. Finally, view the results of the clearAttributes() method in the
outerHTML of the table again:

myTable.outerHTML

The source-code file has not changed, but the object model in the browser’s memory reflects the changes
you made.

Related Items: attributes property; getAttribute(), setAttribute(), removeAttribute(),
mergeAttributes(), and setAttributeNode() methods

click()
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN2+, Moz+, Safari+

The click() method lets a script perform nearly the same action as clicking an element. Before NN4 and
IE4, the click() method invoked on a button did not trigger the onclick event handler for the object.
This has significant impact if you expect the onclick event handler of a button to function even if a script

275

elementObject.click()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 275

performs the click. For earlier browser versions, you have to invoke the event handler statements directly.
Also, just because a script is clicking a button, not all buttons in all platforms change their appearance in
response. For example, NN4 on the Mac does not change the state of a checkbox clicked remotely.

If you want to script the action of clicking a button, you can safely invoke the resulting event handler func-
tion directly. And if the element is a radio button or checkbox, handle the change of state directly (for
example, set the checked property of a checkbox) rather than expect the browser to take care of it for you.

Example
Use The Evaluator (see Chapter 13) to experiment with the click() method. The page includes various
types of buttons at the bottom. You can click the checkbox, for example, by entering the following state-
ment in the top text box:

document.myForm2.myCheckbox.click()

If you use a recent browser version, you most likely can see the checkbox change states between checked
and unchecked each time you execute the statement.

Related Item: onclick event handler

cloneNode(deepBoolean)
Returns: Node object reference
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The cloneNode() method makes an exact copy of the current node object. This copy does not have a par-
ent node or other relationship with any element after the copy exists (of course, the original node remains
in place). The clone also does not become part of the document’s object model (the node tree) unless you
explicitly insert or append the node somewhere on the page. The copy includes all element attributes,
including the id attribute. Because the value returned by the cloneNode() method is a genuine Node
object, you can operate on it with any Node object methods while it is still in the nondocument object state.

The Boolean parameter of the cloneNode() method controls whether the copy of the node includes all
child nodes (true) or just the node itself (false). For example, if you clone a paragraph element by itself,
the clone consists only of the raw element (equivalent of the tag pair, including attributes in the start tag)
and none of its content. But including child nodes makes sure that all content within that paragraph ele-
ment is part of the copy. This parameter is optional in IE5 (defaulting to false), but it is required in other
W3C-compatible browsers.

Example
Use The Evaluator (see Chapter 13) to clone, rename, and append an element found in The Evaluator’s
source code. Begin by cloning the paragraph element named myP along with all of its content. Enter the
following statement in the top text box:

a = document.getElementById(“myP”).cloneNode(true)

The variable a now holds the clone of the original node, so you can change its id attribute at this point by
entering the following statement:

a.setAttribute(“id”, “Dolly”)

If you want to see the properties of the cloned node, enter a in the bottom text box. The precise listing of
properties you see depends on the browser you’re using; in either case, you should be able to locate the id
property, whose value is now Dolly.

276

Document Objects Reference

elementObject.cloneNode()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 276

As a final step, append this newly named node to the end of the body element by entering the following
statement in the top text box:

document.body.appendChild(a)

You can now scroll down to the bottom of the page and see a duplicate of the content. But because the two
nodes have different id attributes, they cannot confuse scripts that need to address one or the other.

Related Items: Node object (Chapter 14); appendChild(), removeChild(), removeNode(),
replaceChild(), and replaceNode() methods

compareDocumentPosition(nodeRef)
Returns: Integer
Compatibility: WinIE-, MacIE-, NN6+, Moz1.4+, Safari-

This method determines the tree position of one node with respect to another node. More specifically, the
nodeRef object provided as a parameter (Node B) is compared with the object on which the method is
called (Node A). The result is returned from the method as an integer value that can contain one or more of
the comparison masks listed in Table 15-8.

TABLE 15-8

Comparison Return Flags

Integer Value Constant Description

0 Node B and Node A are one and the same.

1 DOCUMENT_POSITION_DISCONNECTED No connection exists between the nodes.

2 DOCUMENT_POSITION_PRECEDING Node B precedes Node A.

4 DOCUMENT_POSITION_FOLLOWING Node B follows Node A.

8 DOCUMENT_POSITION_CONTAINS Node B contains Node A (and therefore
precedes it).

16 DOCUMENT_POSITION_CONTAINED_BY Node B is contained by Node A (and
therefore follows it).

32 DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC The comparison is determined by the
browser.

The integer value returned by the compareDocumentPosition() method is actually a bitmask, which
explains why the values in Table 15-8 are powers of 2. This allows the method to return multiple compari-
son values simply by adding them together. For example, a return value of 20 indicates that Node B is con-
tained by Node A (16) and also that Node B follows Node A (4).

Related Items: contains() method

componentFromPoint(x,y)
Returns: String
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The componentFromPoint() method assists in some event-related tasks. You can use it for a kind of colli-
sion detection (in other words, to determine whether an event occurs inside or outside a particular element).

277

elementObject.componentFromPoint()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 277

If the element has scroll bars, the method can provide additional information about the event, such as which
component of the scroll bar the user activates.

A key aspect of this method is that you invoke it on any element that you want to use as the point of refer-
ence. For example, if you want to find out whether a mouseup event occurs in an element whose ID is
myTable, invoke the method as follows:

var result = document.getElementById(“myTable”).componentFromPoint(
event.clientX, event.clientY);

Parameters passed to the method are x and y coordinates. These coordinates do not have to come from an
event, but the most likely scenario links this method with an event of some kind. Mouse events (other than
onclick) work best.

The value returned by the method is a string that provides details about where the coordinate point is with
respect to the current element. If the coordinate point is inside the element’s rectangle, the returned value is an
empty string. Conversely, if the point is completely outside the element, the returned value is the string
“outside”. For scroll-bar pieces, the list of possible returned values is quite lengthy (as shown in Table 15-9).

TABLE 15-9

Returned Values for componentFromPoint()

Returned String Element Component at Coordinate Point

(empty) Inside the element content area

outside Outside the element content area

handleBottom Resize handle at bottom

handleBottomLeft Resize handle at bottom left

handleBottomRight Resize handle at bottom right

handleLeft Resize handle at left

handleRight Resize handle at right

handleTop Resize handle at top

handleTopLeft Resize handle at top left

handleTopRight Resize handle at top right

scrollbarDown Scroll-bar down arrow

scrollbarHThumb Scroll-bar thumb on horizontal bar

scrollbarLeft Scroll-bar left arrow

scrollbarPageDown Scroll-bar page-down region

scrollbarPageLeft Scroll-bar page-left region

scrollbarPageRight Scroll-bar page-right region

scrollbarPageUp Scroll-bar page-up region

scrollbarRight Scroll-bar right arrow

scrollbarUp Scroll-bar up arrow

scrollbarVThumb Scroll-bar thumb on vertical bar

278

Document Objects Reference

elementObject.componentFromPoint()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 278

You do not have to use this method for most collision or event detection, however. The event object’s
srcElement property returns a reference to whatever object receives the event.

Example
Listing 15-24 demonstrates how the componentFromPoint() method can be used to determine exactly
where a mouse event occurred. As presented, the method is associated with a textarea object that is
specifically sized to display both vertical and horizontal scroll bars. As you click various areas of the
textarea and the rest of the page, the status bar displays information about the location of the event with
the help of the componentFromPoint() method.

The script uses a combination of the event.srcElement property and the componentFromPoint()
method to help you distinguish how you can use each one for different types of event processing. The
srcElement property is used initially as a filter to decide whether the status bar will reveal further process-
ing about the textarea element’s event details.

The onmousedown event handler in the body element triggers all event processing. IE events bubble up the
hierarchy (and no events are canceled in this page), so all mousedown events eventually reach the body ele-
ment. Then the whereInWorld() function can compare each mousedown event from any element against
the text area’s geography.

LISTING 15-24

Using the componentFromPoint() Method

<html>
<head>

<title>componentFromPoint() Method</title>
<script type=”text/javascript”>
function whereInWorld(elem) {

var x = event.clientX;
var y = event.clientY;
var component =

document.getElementById(“myTextarea”).componentFromPoint(x,y);
if (window.event.srcElement == document.getElementById(“myTextarea”)){

if (component == “”) {
status = “mouseDown event occurred inside the element”;

} else {
status = “mouseDown occurred on the element\’s “ + component;

}
} else {

status = “mouseDown occurred “ + component + “ of the element”;
}

}
</script>

</head>
<body onmousedown=”whereInWorld()”>

<h1>componentFromPoint() Method</h1>
<hr />
<p>Tracking the mouseDown event relative to the textarea object. View

results in status bar.</p>

continued

279

elementObject.componentFromPoint()

Generic HTML Element Objects 15

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 279

LISTING 15-24 (continued)

<form>
<textarea name=”myTextarea” wrap=”off” cols=”12” rows=”4”>

This is Line 1
This is Line 2
This is Line 3
This is Line 4
This is Line 5
This is Line 6

</textarea>
</form>

</body>
</html>

Related Item: event object

contains(elementObjectReference)
Returns: Boolean
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The contains() method reports whether the current object contains another known object within its
HTML containment hierarchy. Note that this is not geographical collision detection of overlapping elements,
but the determination of whether one element is nested somewhere within another.

The scope of the contains() method extends as deeply within the current object’s hierarchy as is neces-
sary to locate the object. In essence, the contains() method examines all of the elements that are part of
an element’s all array. Therefore, you can use this method as a shortcut replacement for a for loop that
examines each nested element of a container for the existence of a specific element.

The parameter to the contains() method is a reference to an object. If you have only the element’s ID as a
string to go by, you can use the document.getElementById() method to generate a valid reference to the
nested element.

An element always contains itself.

Example

Using The Evaluator (Chapter 13), see how the contains() method responds to the object combinations
in each of the following statements as you enter them in the top text box:

document.body.contains(document.all.myP)
document.all.myP.contains(document.all.item(“myEM”))
document.all.myEM.contains(document.all.myEM)
document.all.myEM.contains(document.all.myP)

Feel free to test other object combinations within this page.

Related Items: item(), document.getElementById() methods

NOTENOTE

280

Document Objects Reference

elementObject.contains()

Part III

22_069165 ch15pt1.qxp 3/1/07 3:44 PM Page 280

createControlRange(“param”)
Returns: Integer ID
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The createControlRange() method is used to create a control range for a selection of text. Although the
method is implemented for several elements, it is intended solely for the selection object and, therefore,
should be used only on that object.

Related Items: selection object

detachEvent()
(See attachEvent())

dispatchEvent(eventObject)
Returns: Boolean
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The dispatchEvent() method allows a script to fire an event aimed at any object capable of supporting
that event. This is the W3C event model way of generalizing mechanisms that earlier browsers sometimes
mimic with object methods such as click() and focus().

The process of generating one of these events is similar to the way a script generates a new node and inserts
that node somewhere into the DOM. For events, however, the object that is created is an Event object,
which is generated via the document.createEvent() method. An event generated in this manner is sim-
ply a specification about an event. Use properties of an event object to supply specifics about the event,
such as its coordinates or mouse button. Then dispatch the event to a target object by invoking that target
object’s dispatchEvent() method and passing the newly created Event object as the sole parameter.

Interpreting the meaning of the Boolean value that the dispatchEvent() method returns is not straight-
forward. The browser follows the dispatched event through whatever event propagation is in effect for that
object and event type (either bubbling or capture). If any of the event listener functions triggered by this
dispatched event invokes the preventDefault() method, the dispatchEvent() method returns false
to indicate that the event did not trigger the native action of the object; otherwise, the method returns
true. Notice that this returned value indicates nothing about propagation type or how many event listeners
run as a result of dispatching this event.

Although the dispatchEvent() method was implemented in NN6, the browser does not yet
provide a way to generate new events from scratch. And if you attempt to redirect an existing

event to another object via the dispatchEvent() method, the browser is prone to crashing. In other
words, Mozilla-based browsers are much better candidates for scripts that use dispatchEvent().

Example
Listing 15-25 demonstrates how to fire events programmatically using the W3C DOM dispatchEvent()
method. Notice the syntax in the doDispatch() function for creating and initializing a new mouse event,
supported most reliably in Mozilla-based browsers. The behavior is identical to that of Listing 15-26 later in
this chapter, which demonstrates the IE5.5+ equivalent: fireEvent().

CAUTION CAUTION

281

elementObject.dispatchEvent()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 281

LISTING 15-25

Using the dispatchEvent() Method

<html>
<head>

<title></title>
<style type=”text/css”>
#mySPAN {font-style:italic}
</style>
<script type=”text/javascript”>
// assemble a couple event object properties
function getEventProps(evt) {

var msg = “”;
var elem = evt.target;
msg += “event.target.nodeName: “ + elem.nodeName + “\n”;
msg += “event.target.parentNode: “ + elem.parentNode.id + “\n”;
msg += “event button: “ + evt.button;
return msg;

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick(evt) {

var msg = “Click event processed in BODY\n\n”;
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);

}
function pClick(evt) {

var msg = “Click event processed in P\n\n”;
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);

}
function spanClick(evt) {

var msg = “Click event processed in SPAN\n\n”;
msg += getEventProps(evt);
alert(msg);
checkCancelBubble(evt);

}

// cancel event bubbling if checkbox is checked
function checkCancelBubble(evt) {

if (document.controls.bubbleOn.checked) {
evt.stopPropagation();

}
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick;

282

Document Objects Reference

elementObject.dispatchEvent()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 282

document.getElementById(“myP”).onclick = pClick;
document.getElementById(“mySPAN”).onclick = spanClick;

}

// invoke fireEvent() on object whose ID is passed as parameter
function doDispatch(objID, evt) {

// create empty mouse event
var newEvt = document.createEvent(“MouseEvents”);
// initialize as click with button ID 3
newEvt.initMouseEvent(“click”, true, true, window, 0, 0, 0,

0, 0, false, false, false, false, 3, null);
// send event to element passed as param
document.getElementById(objID).dispatchEvent(newEvt);
// don’t let button clicks bubble
evt.stopPropagation();

}
</script>

</head>
<body id=”myBODY” onload=”init()”>

<h1>fireEvent() Method</h1>
<hr />
<p id=”myP”>This is a paragraph (with a nested

SPAN) that receives click events.</p>
<hr />
<p>Control Panel</p>
<form name=”controls”>

<p><input type=”checkbox” name=”bubbleOn”
onclick=”event.stopPropagation()” />Cancel event bubbling.</p>

<p><input type=”button” value=”Fire Click Event on BODY”
onclick=”doDispatch(‘myBODY’, event)” /></p>

<p><input type=”button” value=”Fire Click Event on myP”
onclick=”doDispatch(‘myP’, event)” /></p>

<p><input type=”button” value=”Fire Click Event on mySPAN”
onclick=”doDispatch(‘mySPAN’, event)” /></p>

</form>
</body>

</html>

Related Item: fireEvent() method

doScroll(“scrollAction”)
Returns: Nothing
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The doScroll() method is used to control the scrolling of an element by triggering its scroll bars.
Although a subtle distinction, doScroll() doesn’t move the scroll bars to a specific position; instead, it
simulates a scroll-bar click. The end result is an onscroll event being fired, which is what you would
expect from a simulated scroll.

283

elementObject.doScroll()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 283

The string parameter to doScroll() can be one of the following values to indicate what kind of scrolling is
to take place: scrollbarUp, scrollbarDown, scrollbarLeft, scrollbarRight, scrollbarPageUp,
scrollbarPageDown, scrollbarPageLeft, scrollbarPageRight, scrollbarHThumb, or
scrollbarVThumb.

dragDrop()
Returns: Boolean
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The dragDrop() method initiates a mouse drag-and-drop sequence by triggering an ondragstart event.
The return value is a Boolean that indicates when the user releases the mouse button (true).

fireEvent(“eventType”[, eventObjectRef])
Returns: Boolean
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

Although some objects have methods that emulate physical events (for example, the click() and focus()
methods), WinIE5.5+ generalizes the mechanism by letting a script direct any valid event to any object. The
fireEvent() method is the vehicle.

One required parameter is the event type, formatted as a string. IE event types are coded just like the prop-
erty names for event handlers (for example, onclick, onmouseover, and so on).

A second, optional parameter is a reference to an existing event object. This object can be an event that some
user or system action triggers (meaning that the fireEvent() method is in a function invoked by an event
handler). The existing event can also be an object created by the IE5.5+ document.createEventObject()
method. In either case, the purpose of providing an existing event object is to set the properties of the event
object that the fireEvent() method creates. The event type is defined by the method’s first parameter, but if
you have other properties to set (for example, coordinates or a keyboard key code), those properties are picked
up from the existing object. Here is an example of a sequence that creates a new mousedown event, stuffs some
values into its properties, and then fires the event at an element on the page:

var newEvent = document.createEventObject();
newEvent.clientX = 100;
newEvent.clientY = 30;
newEvent.cancelBubble = false;
newEvent.button = 1;
document.getElementById(“myElement”).fireEvent(“onmousedown”, newEvent);

Events generated by the fireEvent() method are just like regular IE window.event objects, and they have
several important event object properties that the browser presets. It is important that cancelBubble is set
to false and returnValue is set to true— just like a regular user- or system-induced event. This means
that if you want to prevent event bubbling and/or prevent the default action of the event’s source element, the
event handler functions must set these event object properties just like normal event handling in IE.

The fireEvent() method returns a Boolean value that the returnValue property of the event deter-
mines. If the returnValue property is set to false during event handling, the fireEvent() method
returns false. Under normal processing, the method returns true.

The W3C DOM (Level 2) event model includes the dispatchEvent() method to accommodate script-
generated events (and Event object methods to create event objects), which is roughly the W3C equivalent
of the fireEvent() method.

284

Document Objects Reference

elementObject.fireEvent()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 284

Example
Listing 15-26 contains script code that shows how to fire events programmatically using the fireEvent()
method. Three buttons in the example page enable you to direct a click event to each of the three elements
that have event handlers defined for them. The events fired this way are artificial, generated via the
createEventObject() method. For demonstration purposes, the button property of these scripted
events is set to 3. This property value is assigned to the event object that eventually gets directed to an ele-
ment. With event bubbling left on, the events sent via fireEvent() behave just like the physical clicks on
the elements. Similarly, if you disable event bubbling, the first event handler to process the event cancels
bubbling, and no further processing of that event occurs. Notice that event bubbling is canceled within the
event handlers that process the event. To prevent the clicks of the checkbox and action buttons from trig-
gering the body element’s onclick event handlers, event bubbling is turned off for the buttons right away.

LISTING 15-26

Using the fireEvent() Method

<html>
<head>

<title></title>
<style type=”text/css”>
#mySPAN {font-style:italic}
</style>
<script type=”text/javascript”>
// assemble a couple event object properties
function getEventProps() {

var msg = “”;
var elem = event.srcElement;
msg += “event.srcElement.tagName: “ + elem.tagName + “\n”;
msg += “event.srcElement.id: “ + elem.id + “\n”;
msg += “event button: “ + event.button;
return msg;

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick() {

var msg = “Click event processed in BODY\n\n”;
msg += getEventProps();
alert(msg);
checkCancelBubble();

}
function pClick() {

var msg = “Click event processed in P\n\n”;
msg += getEventProps();
alert(msg);
checkCancelBubble();

}
function spanClick() {

var msg = “Click event processed in SPAN\n\n”;
msg += getEventProps();

continued

285

elementObject.fireEvent()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 285

LISTING 15-26 (continued)

alert(msg);
checkCancelBubble();

}

// cancel event bubbling if checkbox is checked
function checkCancelBubble() {

event.cancelBubble = document.controls.bubbleOn.checked;
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick;
document.getElementById(“myP”).onclick = pClick;
document.getElementById(“mySPAN”).onclick = spanClick;

}

// invoke fireEvent() on object whose ID is passed as parameter
function doFire(objID) {

var newEvt = document.createEventObject();
newEvt.button = 3;
document.all(objID).fireEvent(“onclick”, newEvt);
// don’t let button clicks bubble
event.cancelBubble = true;

}
</script>

</head>
<body id=”myBODY” onload=”init()”>

<h1>fireEvent() Method</h1>
<hr />
<p id=”myP”>This is a paragraph (with a nested

SPAN) that receives click events.</p>
<hr />
<p>Control Panel</p>
<form name=”controls”>

<p><input type=”checkbox” name=”bubbleOn”
onclick=”event.cancelBubble=true” />Cancel event bubbling.</p>

<p><input type=”button” value=”Fire Click Event on BODY”
onclick=”doFire(‘myBODY’)” /></p>

<p><input type=”button” value=”Fire Click Event on myP”
onclick=”doFire(‘myP’)” /></p>

<p><input type=”button” value=”Fire Click Event on mySPAN”
onclick=”doFire(‘mySPAN’)” /></p>

</form>
</body>

</html>

Related Item: dispatchEvent() method

286

Document Objects Reference

elementObject.fireEvent()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 286

focus()
(See blur())

getAdjacentText(“position”)
Returns: String
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The getAdjacentText() method enables you to extract copies of plain-text components of an element
object (in other words, without any HTML tag information). The sole parameter is one of four case-insensitive
string constant values that indicate from where, in relation to the current object, the text should be extracted.
The values are

Parameter Value Description

beforeBegin Text immediately in front of the element’s tag, back to the preceding tag

afterBegin Text that begins inside the element tag, up to the next tag (whether it be a nested element
or the element’s end tag)

beforeEnd Text immediately in front of the element’s end tag, back to the preceding tag (whether it be
a nested element or the element’s start tag)

afterEnd Text immediately following the element’s end tag, forward until the next tag

If the current object has no nested elements, both the afterBegin and beforeEnd versions return the
same as the object’s innerText property. When the current object is encased immediately within another
element (for example, a td element inside a tr element), there is no text before the element’s beginning or
after the element’s end, so these values are returned as empty strings.

The strings returned from this method are roughly equivalent to values of text fragment nodes in the W3C
DOM, but IE5+ treats these data pieces as string data types rather than as text node types. W3C DOM
equivalents for the four versions are

document.getElementById(“objName”).previousSibling.nodeValue
document.getElementById(“objName”).firstChild.nodeValue
document.getElementById(“objName”).lastChild.nodeValue
document.getElementById(“objName”).nextSibling.nodeValue

Example
Use The Evaluator (see Chapter 13) to examine all four adjacent text possibilities for the myP and nested
myEM elements in that document. Enter each of the following statements in the top text box, and view the
results:

document.getElementById(“myP”).getAdjacentText(“beforeBegin”)
document.getElementById(“myP”).getAdjacentText(“afterBegin”)
document.getElementById(“myP”).getAdjacentText(“beforeEnd”)
document.getElementById(“myP”).getAdjacentText(“afterEnd”)

The first and last statements return empty strings because the myP element has no text fragments surround-
ing it. The afterBegin version returns the text fragment of the myP element up to, but not including, the
EM element nested inside. The beforeEnd string picks up after the end of the nested EM element and
returns all text to the end of myP.

287

elementObject.getAdjacentText()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 287

Now see what happens with the nested myEM element:

document.getElementById(“myEM”).getAdjacentText(“beforeBegin”)
document.getElementById(“myEM”).getAdjacentText(“afterBegin”)
document.getElementById(“myEM”).getAdjacentText(“beforeEnd”)
document.getElementById(“myEM”).getAdjacentText(“afterEnd”)

Because this element has no nested elements, the afterBegin and beforeEnd strings are identical — the
same value as the innerText property of the element.

Related Items: childNodes, data, firstChild, lastChild, nextSibling, nodeValue, and
previousSibling properties

getAttribute(“attributeName”[, caseSensitivity])
Returns: (See text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The getAttribute() method returns the value assigned to a specific attribute of the current object. You
can use this method as an alternative to retrieving properties of an object, particularly when your script
presents you the attribute name as a string (in contrast to a fully formed reference to an object and its
property). Thus, the following example statements yield the same data:

var mult = document.getElementById(“mySelect”).multiple;
var mult = document.getElementById(“mySelect”).getAttribute(“multiple”);

Returned value types from getAttribute() are either strings (including attribute values assigned as
unquoted numeric values) or Booleans (for example, the multiple property of a select element object).

The W3C DOM Level 2 standard recommends getAttribute() and setAttribute() for
reading and writing element object attribute values, rather than reading and writing those val-

ues by way of their corresponding properties. Although using these methods is certainly advisable for XML
elements, the same DOM standard sends conflicting signals by defining all kinds of properties for HTML
element objects. Browsers, of course, will support access via properties well into the future, so don’t feel
obligated to change your ways just yet.

All browsers that support the getAttribute() method require one parameter, which is a string of the
attribute name. By default, this parameter is not case sensitive. Note that this has impact on custom attrib-
utes that you might assign to HTML or XML elements in your documents. Attribute names are automati-
cally converted to lowercase when they are turned into properties of the object. Therefore, you must avoid
reusing attribute names, even if you use different case letters in the source-code assignments.

IE includes an optional extension to the method in the form of a second parameter that enables you to be
more specific about the case sensitivity of the first parameter. The default value of the second parameter is
false, which means that the first parameter is not case sensitive. A value of true makes the first parameter
case sensitive. This matters only if you use setAttribute() to add a parameter to an existing object and if
the IE version of that method insists on case sensitivity. The default behavior of setAttribute() respects
the case of the attribute name. See also the discussion of the setAttribute() method later in this chapter
with regard to setAttribute()’s influence on the IE attributes property.

NOTENOTE

288

Document Objects Reference

elementObject.getAdjacentText()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 288

Example
Use The Evaluator (see Chapter 13) to experiment with the getAttribute() method for the elements in
the page. You can enter the following sample statements in the top text box to view attribute values:

document.getElementById(“myTable”).getAttribute(“width”)
document.getElementById(“myTable”).getAttribute(“border”)

Related Items: attributes property; document.createAttribute(), setAttribute() methods

getAttributeNode(“attributeName”)
Returns: Attribute node object
Compatibility: WinIE6+, MacIE-, NN6+, Moz+, Safari+

In the W3C DOM, an attribute is an object that inherits all the properties of a Node object (see Chapter 14). As
its name implies, an attribute object represents a name–value pair of an attribute that is explicitly defined
inside an element’s tag. The ability to treat attributes as node objects is far more important when working with
XML than HTML, but it is helpful to understand attribute nodes within the context of the W3C DOM object-
oriented view of a document. It is important that attribute nodes specifically are not recognized as nodes of a
document hierarchy. Therefore, an attribute node is not a child node of the element that defines the attribute.

The nodeness of attributes comes into play when addressing the contents of an object’s attributes prop-
erty. The W3C attributes property builds on the DOM’s formal structure by returning an object known
(internally) as a named node map. Like an array, the named node map has a length property (facilitating
for loop iteration through the map), plus several methods that allow for inserting, removing, reading, or
writing attribute name–value pairs within the node map.

An attribute object inherits all the properties of the Node object. Table 15-10 lists the properties of an attribute
object.

TABLE 15-10

Attribute Object Properties of W3C DOM–Compatible Browsers

attributes

childNodes

firstChild

lastChild

name

nextSibling

nodeName

nodeType

nodeValue

ownerDocument

parentNode

previousSibling

specified

value

289

elementObject.getAttributeNode()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 289

All of this is a long way to explain the W3C DOM getAttributeNode() method, which returns a W3C
DOM attribute object. The sole parameter of the method is a case-insensitive string version of the attribute’s
name. Then you can use any of the properties shown in Table 15-10 to get or set attribute values. Of
course, HTML attributes are generally exposed as properties of HTML elements, so it is usually easier to
read or write the object’s properties directly.

Example
Use The Evaluator (see Chapter 13) to explore the getAttributeNode() method. The Results textarea
element provides several attributes to check out. Because the method returns an object, enter the following
statements in the bottom text box so you can view the properties of the attribute node object returned by
the method:

document.getElementById(“output”).getAttributeNode(“cols”)
document.getElementById(“output”).getAttributeNode(“rows”)
document.getElementById(“output”).getAttributeNode(“wrap”)
document.getElementById(“output”).getAttributeNode(“style”)

All (except the last) statements display a list of properties for each attribute node object. The last statement,
however, returns nothing because the style attribute is not specified for the element.

Related Items: attributes property; getAttribute(), removeAttributeNode(),
setAttributeNode() methods

getAttributeNodeNS(“namespaceURI”, “localName”)
Returns: Attribute node object
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

This method returns a W3C DOM attribute object. The first parameter of the method is a URI string
matching a URI assigned to a label in the document. The second parameter is the local name portion of the
attribute you are getting.

Related Items: attributes, namespaceURI, localName properties; getAttributeNode(),
setAttributeNodeNS() methods

getAttributeNS(“namespaceURI”, “localName”)
Returns: (See text)
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

This method returns the value assigned to a specific attribute of the current object when that attribute’s
name is defined by way of an XML namespace definition within the document. The first parameter of the
method is a URI string matching a URI assigned to a namespace label in a tag defined earlier in the docu-
ment. The second parameter is the local name portion of the attribute whose value you are getting.

Returned value types from getAttributeNS() are either strings (including attribute values assigned as
unquoted numeric values) or Booleans (for example, the multiple property of a select element object).
In the W3C DOM, Netscape, Safari, and Opera, return values are always strings.

Related Items: attributes, namespaceURI, localName properties; getAttribute(),
getAttributeNodeNS(), setAttributeNodeNS() methods

290

Document Objects Reference

elementObject.getAttributeNS()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 290

getBoundingClientRect()
Returns: TextRectangle object
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

IE5+ assigns to every content-holding element a rectangle that describes the space that the element occupies
on the page. This rectangle is called a bounding rectangle, and it is expressed in the WinIE5+ object model as a
TextRectangle object (even when the content is an image or some other kind of object). A TextRectangle
object has four properties (top, left, bottom, and right) that are the pixel coordinates that define the rec-
tangle. The getBoundingClientRect() method returns a TextRectangle object that describes the bound-
ing rectangle of the current object. You can access an individual measure of an object’s bounding rectangle, as
in the following example:

var parTop = document.getElementById(“myP”).getBoundingClientRect().top;

For elements that consist of text, such as paragraphs, the dimensions of individual TextRectangles for
each line of text in the element influence the dimensions of the bounding rectangle. For example, if a para-
graph contains two lines, and the second line extends only halfway across the width of the first line, the
width of the second line’s TextRectangle object is only as wide as the actual text in the second line. But
because the first line extends close to the right margin, the width of the encompassing bounding rectangle is
governed by that wider, first line TextRectangle. Therefore, an element’s bounding rectangle is as wide as
its widest line and as tall as the sum of the height of all TextRectangle objects in the paragraph.

Another method, getClientRects(), enables you to obtain a collection of line-by-line TextRectangle
objects for an element.

Example
Listing 15-27 employs both the getBoundingClientRect() and getClientRects() methods in a
demonstration of how they differ. A set of elements are grouped within a span element named main. The
group consists of two paragraphs and an unordered list.

Two controls enable you to set the position of an underlying highlight rectangle to any line of your choice.
A checkbox enables you to set whether the highlight rectangle should be only as wide as the line or the full
width of the bounding rectangle for the entire span element.

All the code is located in the hilite() function. The select and checkbox elements invoke this function.
Early in the function, the getClientRects() method is invoked for the main element to capture a snap-
shot of all TextRectangles for the entire element. This array comes in handy when the script needs to get
the coordinates of a rectangle for a single line, as chosen in the select element.

Whenever the user chooses a number from the select list, and the value is less than the total number of
TextRectangle objects in clientRects, the function begins calculating the size and location of the
underlying yellow highlighter. When the Full Width checkbox is checked, the left and right coordinates are
obtained from the getBoundingClientRect() method because the entire span element’s rectangle is the
space you’re interested in; otherwise, you pull the left and right properties from the chosen rectangle in
the clientRects array.

Next comes the assignment of location and dimension values to the hiliter object’s style property. The
top and bottom are always pegged to whatever line is selected, so the clientRects array is polled for the
chosen entry’s top and bottom properties. The previously calculated left value is assigned to the hiliter
object’s pixelLeft property, whereas the width is calculated by subtracting the left from the right coor-
dinates. Notice that the top and left coordinates also take into account any vertical or horizontal scrolling
of the entire body of the document. If you resize the window smaller, line wrapping throws off the original
line count. However, an invocation of hilite() from the onresize event handler applies the currently
chosen line number to whatever content falls in that line after resizing.

291

elementObject.getBoundingClientRect()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 291

LISTING 15-27

Using getBoundingClientRect()

<html>
<head>

<title>getClientRects() and getBoundClientRect() Methods</title>
<script type=”text/javascript”>
function hilite() {

var hTop, hLeft, hRight, hBottom, hWidth;
var select = document.forms[0].choice;
var n = parseInt(select.options[select.selectedIndex].value) - 1;
var clientRects = document.getElementById(“main”).getClientRects();
var mainElem = document.getElementById(“main”);
if (n >= 0 && n < clientRects.length) {

if (document.forms[0].fullWidth.checked) {
hLeft = mainElem.getBoundingClientRect().left;
hRight = mainElem.getBoundingClientRect().right;

} else {
hLeft = clientRects[n].left;
hRight = clientRects[n].right;

}
document.getElementById(“hiliter”).style.pixelTop =

clientRects[n].top + document.body.scrollTop;
document.getElementById(“hiliter”).style.pixelBottom =

clientRects[n].bottom;
document.getElementById(“hiliter”).style.pixelLeft =

hLeft + document.body.scrollLeft;
document.getElementById(“hiliter”).style.pixelWidth =

hRight - hLeft;
document.getElementById(“hiliter”).style.visibility = “visible”;

} else if (n > 0) {
alert(“The content does not have that many lines.”);
document.getElementById(“hiliter”).style.visibility = “hidden”;

}
}
</script>

</head>
<body onresize=”hilite()”>

<h1>getClientRects() and getBoundClientRect() Methods</h1>
<hr />
<form>

Choose a line to highlight: <select name=”choice” onchange=”hilite()”>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”4”>4</option>
<option value=”5”>5</option>
<option value=”6”>6</option>
<option value=”7”>7</option>
<option value=”8”>8</option>

292

Document Objects Reference

elementObject.getBoundingClientRect()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 292

<option value=”9”>9</option>
<option value=”10”>10</option>
<option value=”11”>11</option>
<option value=”12”>12</option>
<option value=”13”>13</option>
<option value=”14”>14</option>
<option value=”15”>15</option>

</select>

<input name=”fullWidth” type=”checkbox” onclick=”hilite()” /> Full
Width (bounding rectangle)

</form>

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing

elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation
ullamco:</p>

laboris
nisi
aliquip ex ea commodo

<p>Duis aute irure dolor in reprehenderit involuptate velit esse cillum

dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deseruntmollit anim id est laborum
Et harumd und lookum like Greek to me, dereud facilis est er expedit
distinct.</p>

<div id=”hiliter”
style=”position:absolute; background-color:yellow; z-index:-1;
visibility:hidden”>
</div>

</body>
</html>

Because the z-index style property of the hiliter element is set to -1, the element always appears
beneath the primary content on the page. If the user selects a line number beyond the current number of
lines in the main element, the hiliter element is hidden.

Related Items: getClientRects() method; TextRectangle object (Chapter 36 on the CD-ROM)

getClientRects()
Returns: Array of TextRectangle objects
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The getClientRects() method returns an array of all TextRectangle objects that fall within the current
object the moment the method is invoked. Each TextRectangle object has its own top, left, bottom,
and right coordinate properties. You can then, for example, loop through all objects in this array to calcu-
late the pixel width of each line. If you want to find out the aggregate height and/or maximum width of the
entire collection, you can use the getBoundingClientRect() method as a shortcut.

293

elementObject.getClientRects()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 293

Example
See Listing 15-27, which demonstrates the differences between getClientRects() and
getBoundingClientRect() and shows how you can use the two together.

Related Items: getBoundingClientRect() method; TextRectangle object (Chapter 36 on the CD-ROM)

getElementsByTagName(“tagName”)
Returns: Array of element objects
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The getElementsByTagName() method returns an array of all elements contained by the current object
whose tags match the tag name supplied as the sole parameter to the method. The tag name parameter must
be in the form of a string and is case insensitive. The group of elements returned in the array includes only
those elements that are within the containment scope of the current object. Therefore, if you have two table
objects in a document, and you invoke the getElementsByTagName(“td”) method on one of them, the
list of returned table cell elements is confined to those cells within the current table object. The current ele-
ment is not included in the returned array.

For MacIE5, WinIE6+, and all other supporting browsers, the method accepts a wildcard character (“*”)
for matching descendent elements regardless of tag name. The resulting array of elements is nearly identical
to what IE4+ returns via the document.all collection.

Example
Use The Evaluator (see Chapter 13) to experiment with the getElementsByTagName() method. Enter the
following statements one at a time in the top text box, and study the results:

document.body.getElementsByTagName(“div”)
document.body.getElementsByTagName(“div”).length
document.getElementById(“myTable”).getElementsByTagName(“td”).length

Because the getElementsByTagName() method returns an array of objects, you can use one of those
returned values as a valid element reference:

document.getElementsByTagName(“form”)[0].getElementsByTagName(“input”).length

Related Items: getElementByTagNameNS(), getElementById(), tags() methods

getElementsByTagNameNS(“namespaceURI”, “localName”)
Returns: Array of element objects
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

This method returns an array of all elements contained by the current object (within an XML document) as
specified in the two parameters. The first parameter of the method is a URI string matching a URI assigned
to a label in the document. The second parameter is the local name portion of the attribute whose value you
are getting.

Returned value types from getAttributeNS() are either strings (including attribute values assigned as
unquoted numeric values) or Booleans (for example, the multiple property of a select element object).

Related Items: attributes, namespaceURI, localName properties; getElementsByTagNameNS(),
getElementById(), tags() methods

294

Document Objects Reference

elementObject.getElementsByTagNameNS()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 294

getExpression(“attributeName”)
Returns: String
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The getExpression() method returns the text of the expression that was assigned to an element’s attribute
via the setExpression() method. The returned value is not the value of the expression, but the expression
itself. If you want to find out the current value of the expression (assuming that the variables used are within
the scope of your script), you can use the eval() function on the call to getExpression(). This action
converts the string to a JavaScript expression and returns the evaluated result.

One parameter, a string version of the attribute name, is required.

Example
See Listing 15-32 for the setExpression() method. This listing demonstrates the kinds of values returned
by getExpression().

Related Items: document.recalc(), removeExpression(), setExpression() methods

getFeature(“feature”, “version”)
Returns: Object
Compatibility: WinIE-, MacIE-, NN-, Moz1.7.2+, Safari-

According to the W3C DOM specification, the getFeature() method accepts a scripting feature and
version, and returns an object that implements the APIs for the feature. Examples of possible feature
parameters to this method are Core and Events, which correspond to DOM modules.

As recently as Mozilla 1.8.1 (Firefox 2.0), the getFeature() method returns an object but the object
exposes no API features to the script.

Related Items: implementation.hasFeature() method

getUserData(“key”)
Returns: Object
Compatibility: WinIE-, MacIE-, NN6-, Moz1.7.2+, Safari-

The getUserData() method enables you to access custom user data that has been associated with a node.
A given node can have multiple objects of user data, in which case each one is identified through a text key.
This key is the parameter that you pass into getUserData() to obtain a user data object. As of Mozilla
1.8.1 (Firefox 2.0), the method is only partially implemented and, therefore, still not useful.

hasAttribute(“attributeName”)
Returns: Boolean
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The hasAttribute() method returns true if the current object has an attribute whose name matches the
sole parameter; it returns false otherwise.

Related Items: hasAttributeNS(), hasAttributes() methods

295

elementObject.hasAttribute()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 295

hasAttributeNS(“namespaceURI”, “localName”)
Returns: Boolean
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The hasAttributeNS() method returns true if the current object has an attribute as identified by the two
parameters; it returns false otherwise. The first parameter of the method is a URI string matching a URI
assigned to a label in the document. The second parameter is the local name portion of the attribute whose
value you are getting.

Related Items: attributes, namespaceURI, localName properties; hasAttribute(),
hasAttributes() methods

hasAttributes()
Returns: Boolean
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The hasAttributes() method returns true if the current object has any attributes explicitly assigned
within the tag; it returns false otherwise.

Related Items: hasAttribute(), hasAttributeNS() methods

hasChildNodes()
Returns: Boolean
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The hasChildNodes() method returns true if the current object has child nodes nested within; it returns
false otherwise. A child node is not necessarily the same as a child element, so the following two expres-
sions return true when the current object has at least one child node:

document.getElementById(“myObject”).hasChildNodes()
document.getElementById(“myObject”).childNodes.length > 0

You cannot use the second expression interchangeably with the following statement (which uses the IE-only
children property):

document.getElementById(“myObject”).children.length > 0

You generally use the hasChildNodes() method in a conditional expression to make sure such nodes exist
before performing operations on them:

if (document.getElementById(“myObject”).hasChildNodes() {
statements that apply to child nodes

}

Example
Use The Evaluator (see Chapter 13) to experiment with the hasChildNodes() method. If you enter the
following statement in the top text box

document.getElementById(“myP”).hasChildNodes()

the returned value is true. You can find out how many nodes there are by getting the length of the
childNodes array:

document.getElementById(“myP”).childNodes.length

296

Document Objects Reference

elementObject.hasChildNodes()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 296

This expression reveals a total of three nodes: the two text nodes and the em element between them. Check
out whether the first text node has any children:

document.getElementById(“myP”).childNodes[0].hasChildNodes()

The response is false because text fragments do not have any nested nodes. But check out the em element,
which is the second child node of the myP element:

document.getElementById(“myP”).childNodes[1].hasChildNodes()

The answer is true because the em element has a text fragment node nested within it. Sure enough, the
statement

document.getElementById(“myP”).childNodes[1].childNodes.length

yields a node count of 1. You can also go directly to the em element in your references:

document.getElementById(“myEM”).hasChildNodes()
document.getElementById(“myEM”).childNodes.length

If you want to see the properties of the text fragment node inside the em element, enter the following in the
bottom text box:

document.getElementById(“myEM”).childNodes[0]

You can see that the data and nodeValue properties for the text fragment return the text “all”.

Related Items: childNodes property; appendChild(), removeChild(), replaceChild() methods.

insertAdjacentElement(“location”, elementObject)
Returns: Object
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The insertAdjacentElement() method inserts an element object (coming from a variety of sources) into
a specific position relative to the current object. Both parameters are required. The first must be one of four
possible case-insensitive locations for the insertion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag but before any nested content

beforeEnd Before the end tag but after all other nested content

afterEnd After the end tag

These locations are relative to the current object. The element type of the current object (a block-level or
inline element) has great bearing on how the inserted element is rendered. For example, suppose that you
create a b element (using document.createElement()) and assign some inner text to it. You then use
insertAdjacentElement() in an effort to insert this b element before some text in a p element. Because a
p element is a block-level element, the location beforeBegin places the new b element before the start tag of
the p element. This means, however, that the bold text appears in a text line above the start of the p element

297

elementObject.insertAdjacentElement()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 297

because a <p> tag begins a new block at the left margin of its container (unless instructed otherwise by style
sheets). The resulting HTML looks like the following:

The new element.<p>The original paragraph element.</p>

To make the new b element a part of the p element — but in front of the existing p element’s content — use
the afterBegin location. The resulting HTML looks like the following:

<p>The new element.The original paragraph element.</p>

To complete the demonstration of the four location types, the following is the result of the beforeEnd location:

<p>The original paragraph element. The new element.</p>

And this is the result of the afterEnd location:

<p>The original paragraph element.</p>The new element.

The object to be inserted is a reference to an element object. The object reference can come from any expres-
sion that evaluates to an element object or, more likely, from the result of the document.createElement()
method. Bear in mind that the object generated by document.createElement() initially has no content, and
all attribute values are set to default values. Moreover, the object is passed to insertAdjacentElement() by
reference, which means that there is only one instance of that object. If you attempt to insert that object in two
places with two statements, the object is moved from the first location to the second. If you need to copy an
existing object so that the original is not moved or otherwise disturbed by this method, use the cloneNode()
method to specify the true parameter to capture all nested content of the node.

Example
Use The Evaluator (see Chapter 13) in WinIE5+ to experiment with the insertAdjacentElement()
method. The goal of the experiment is to insert a new h1 element above the myP element.

All actions require you to enter a sequence of statements in the top text box. Begin by storing a new element
in the global variable a:

a = document.createElement(“h1”)

Give the new object some text:

a.innerText = “New Header”

Now insert this element before the start of the myP object:

myP.insertAdjacentElement(“beforeBegin”, a)

Notice that you have not assigned an id property value to the new element. But because the element was
inserted by reference, you can modify the inserted object by changing the object stored in the a variable:

a.style.color = “red”

The inserted element is also part of the document hierarchy, so you can access it through hierarchy refer-
ences such as myP.previousSibling.

The parent element of the newly inserted element is the body. Thus, you can inspect the current state of the
HTML for the rendered page by entering the following statement in the top text box:

document.body.innerHTML

298

Document Objects Reference

elementObject.insertAdjacentElement()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 298

If you scroll down past the first form, you can find the <h1> element that you added along with the style
attribute.

Related Items: document.createElement(), applyElement() methods

insertAdjacentHTML(“location”, “HTMLtext”)
insertAdjacentText(“location”, “text”)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These two methods insert HTML or straight text at a location relative to the current element. They are
intended for use after a page loads, rather than inserting content while the page loads (in which case you
can use document.write() wherever you need evaluated content to appear on the page).

The first parameter must be one of four possible case-insensitive locations for the insertion, shown in the
following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag but before any nested content

beforeEnd Before the end tag but after all other nested content

afterEnd After the end tag

These locations yield the same results as described in the insertAdjacentElement() function discussed
earlier in this chapter.

Whether you use insertAdjacentHTML() or insertAdjacentText() depends on the nature of your
content and what you want the browser to do with it. If the content contains HTML tags that you want the
browser to interpret and render as though it were part of the page source code, use the
insertAdjacentHTML() method. All tags become objects in the document’s object model. But if you want
only to display some text (including HTML tags in their raw form), use insertAdjacentText(). The ren-
dering engine does not interpret any tags included in the string passed as the second parameter. Instead,
these tags are displayed as characters on the page. This distinction is identical to the one between the
innerHTML and innerText properties.

The difference between insertAdjacentHTML() and insertAdjacentElement() is the nature of the
content that you insert. The former enables you to accumulate the HTML as a string, whereas the latter
requires the creation of an element object. Also, the two methods in this section work with IE4+ (including
Mac versions), whereas insertAdjacentElement() requires the newer object model of WinIE5+.

If the HTML you pass as the second parameter of insertAdjacentHTML() contains <script> tags, you
must set the defer attribute in the opening tag. This prevents script statements from executing as you
insert them.

Example
Use The Evaluator (see Chapter 13) to experiment with these two methods. The example here demonstrates
the result of employing both methods in an attempt to add some HTML to the beginning of the myP element.

299

elementObject.insertAdjacentHTML()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 299

Begin by assigning a string of HTML code to the global variable a:

a = “<b id=’myB’>Important News!”

Because this HTML is to go on the same line as the start of the myP paragraph, use the afterBegin param-
eter for the insert method:

myP.insertAdjacentHTML(“afterBegin”, a)

Notice that there is no space after the exclamation mark of the inserted HTML. But to prove that the
inserted HTML is genuinely part of the document’s object model, now you can insert the text of a space
after the b element whose ID is myB:

myB.insertAdjacentText(“afterEnd”, “ “)

Each time you evaluate the preceding statement (by repeatedly clicking the Evaluate button or pressing
Enter with the cursor in the top text box), another space is added.

You should also see what happens when the string to be inserted with insertAdjacentText() contains
HTML tags. Reload The Evaluator, and enter the following two statements in the top text box, evaluating
each one in turn:

a = “<b id=’myB’>Important News!”
myP.insertAdjacentText(“afterBegin”, a)

The HTML is not interpreted but is displayed as plain text. There is no object named myB after executing
this latest insert method.

Related Items: innerText, innerHTML, outerText, outerHTML properties;
insertAdjacentElement(), replaceAdjacentText() methods

insertBefore(newChildNodeObject, referenceChildNode)
Returns: Node object
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The insertBefore() method is the W3C DOM syntax for inserting a new child node into an existing
element. Node references for both parameters must be valid Node objects (including those that
document.createElement() generates).

The behavior of this method might seem counterintuitive at times. If you include the second parameter (a
reference to an existing child node of the current element — optional in IE), the new child node is inserted
before that existing one. But if you omit the second parameter (or its value is null), the new child node is
inserted as the last child of the current element — in which case the method acts the same as the
appendChild() method. The true power of this method is summoned when you specify that second
parameter; from the point of view of a parent element, you can drop a new child into any spot among its
existing children. If an inserted node already exists in the document tree, it will be removed from its previ-
ous position.

Bear in mind that the insertBefore() method works from a parent element. Internet Explorer provides
additional methods, such as insertAdjacentElement(), to operate from the perspective of what will
become a child element.

Example
Listing 15-28 demonstrates how the insertBefore() method can insert child elements (li) inside a parent
(ol) at different locations, depending on the second parameter. A text box enables you to enter your choice

300

Document Objects Reference

elementObject.insertBefore()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 300

of text and/or HTML for insertion at various locations within the ol element. If you don’t specify a position,
the second parameter of insertBefore() is passed as null— meaning that the new child node is added to
the end of the existing children. But choose a spot from the select list where you want to insert the new item.
The value of each select list option is an index of one of the first three child nodes of the ol element.

LISTING 15-28

Using the insertBefore() Method

<html>
<head>

<title>insertBefore() Method</title>
<script type=”text/javascript”>
function doInsert(form) {

if (form.newText) {
var newChild = document.createElement(“LI”);
newChild.innerHTML = form.newText.value;
var choice =

form.itemIndex.options[form.itemIndex.selectedIndex].value;
var insertPoint = (isNaN(choice)) ?

null : document.getElementById(“myUL”).childNodes[choice];
document.getElementById(“myUL”).insertBefore(newChild,

insertPoint);
}

}
</script>

</head>
<body>

<h1>insertBefore() Method</h1>
<hr />
<form onsubmit=”return false”>

<p>Enter text or HTML for a new list item: <input type=”text”
name=”newText” size=”40” value=”” /></p>

<p>Before which existing item? <select name=”itemIndex”>
<option value=”null”>None specified</option>
<option value=”0”>1</option>
<option value=”1”>2</option>
<option value=”2”>3</option>

</select></p>
<input type=”button” value=”Insert Item”
onclick=”doInsert(this.form)” />

</form>
<ol id=”myUL”>

Originally the First Item
Originally the Second Item
Originally the Third Item

</body>

</html>

Related Items: appendChild(), replaceChild(), removeChild(), insertAdjacentElement() methods

301

elementObject.insertBefore()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 301

isDefaultNamespace(“namespaceURI”)
Returns: Boolean
Compatibility: WinIE-, MacIE-, NN6-, Moz1.7.2+, Safari-

This method checks whether the specified namespace matches the default namespace of the current node.

isEqualNode(nodeRef)
isSameNode(nodeRef)
Returns: Integer ID
Compatibility: WinIE-, MacIE-, NN-, Moz1.7.2+, Safari-

When it comes to nodes, there is a distinct difference between a node being equal to another node and a
node being the same as another node. Equality has a very specific meaning with respect to nodes: Two
nodes are considered equal if they have the same values for the attributes, childNodes, localname,
namespaceURI, nodeName, nodeType, nodeValue, and prefix properties. Together, these properties
essentially reflect the content of a node. What they don’t reflect is the relative position of a node within a
document, which means that nodes can be equal and reside in different locations in the node tree. Two
nodes are considered the same if . . . well, they are the same identical node. The isEqualNode() method
checks for node equality, whereas isSameNode() checks whether two nodes are the same. Both methods
expect a node reference as their only parameter.

isSupported(“feature”, “version”)
Returns: Boolean
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The isSupported() method returns true if the current node supports required portions of the specified
W3C DOM module and version; it returns false otherwise. The first parameter accepts any of the following
case-sensitive DOM module name strings: Core, XML, HTML, Views, StyleSheets, CSS, CSS2, Events,
UIEvents, MouseEvents, MutationEvents, HTMLEvents, Range, and Traversal. The second parameter
accepts a string representation of the major and minor DOM module version, such as “2.0” for DOM Level 2.

Example
Use The Evaluator (see Chapter 13) to experiment with the isSupported() method. If you have multiple
versions of NN6 or later and Mozilla, try the following (and others) to see how the support for various
modules has evolved:

document.body.isSupported(“CSS”, “2.0”)
document.body.isSupported(“CSS2”, “2.0”)
document.body.isSupported(“Traversal”, “2.0”)

If you have access to Safari, try the same methods there to see the differences in modules supported
compared with Mozilla-based browsers.

item(index | “index” [, subIndex])
Returns: Object
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The item() method works with most objects that are themselves collections of other objects. In W3C
DOM terminology, these kinds of objects are known as named node lists (for objects such as nodes and

302

Document Objects Reference

elementObjectCollection.item()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 302

attributes) or HTML collections (for objects such as elements of a form). You may call the item() method
with a single numeric parameter that is the index value of the desired object within the collection. If you
know the index number of the item, you can use JavaScript array syntax instead. The following two state-
ments return the same object reference:

document.getElementById(“myTable”).childNodes.item(2)
document.getElementById(“myTable”).childNodes[2]

The method also supports a string of the ID of an object within the collection. (Integer values are required
for the attributes, rules, and TextRectangle objects, however.) Additionally, if the collection has
more than one object with the same ID (never a good idea except when necessary), a second numeric
parameter enables you to select which identically named group you want (using zero-based index values
within that subgroup). This obviously does not apply to collections, such as attributes and rules, which
have no ID associated with them.

The method returns a reference to the object specified by the parameters.

Example
Use The Evaluator (see Chapter 13) to experiment with the item() method. Type the following statements
in the top text box, and view the results for each.

W3C and IE5:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).childNodes.item(0).data
document.getElementById(“myP”).childNodes.item(1).nodeName

W3C, IE4, and IE5:

document.forms[1].elements.item(0).type

In the two examples, both statements return the same string. The first example is helpful when your script
is working with a string version of an object’s name. If your script already knows the object reference, the
second approach is more efficient and compact.

Related Items: All object element properties that return collections (arrays) of other objects

lookupNamespaceURI(“prefix”)
lookupPrefix(“namespaceURI”)
Returns: Namespace or prefix string (see description)
Compatibility: WinIE-, MacIE-, NN-, Moz1.7.2+, Safari-

These two methods use one piece of information to look up the other. The lookupNamespaceURI() method
accepts a prefix as its only parameter and returns a URI string for the node if the prefix matches a previously
defined namespace. Operating in the reverse, the lookupPrefix() method accepts a namespace URI string
and returns a prefix string for the node if the namespace parameter matches a previously defined namespace.

mergeAttributes(“sourceObject”)
Returns: Nothing
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The mergeAttributes() method is a convenient way to propagate attributes in newly created elements
without painstakingly adding attributes one at a time. When you have an object whose attributes can

303

elementObject.mergeAttributes()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 303

function as a prototype for other elements, those attributes (except for the id attribute) can be applied to a
newly created element instantaneously. The default action of this method is not to duplicate the id or name
attributes of the element. However, IE5.5+ introduced an extra Boolean parameter, preserveIDs, that
enables you to duplicate these two attributes by setting the parameter to false (true is the default).

Example
Listing 15-29 demonstrates the usage of mergeAttributes() in the process of replicating the same form
input field while assigning a unique ID to each new field. So that you can see the results as you go, I display
the HTML for each input field in the field.

The doMerge() function begins by generating two new elements: a p element and an input element.
Because these newly created elements have no properties associated with them, a unique ID is assigned to
the input element through the uniqueID property. Attributes from the field in the source code (field1)
are merged into the new input element. Thus, all attributes except name and id are copied to the new ele-
ment. The input element is inserted into the p element, and the p element is appended to the document’s
form element. Finally, the outerHTML of the new element is displayed in its field. Notice that except for the
name and id attributes, all others are copied. This includes style sheet attributes and event handlers. To
prove that the event handler works in the new elements, you can add a space to any one of them and press
Tab to trigger the onchange event handler that changes the content to all-uppercase characters.

LISTING 15-29

Using the mergeAttributes() Method

<html>
<head>

<title>mergeAttributes() Method</title>
<script type=”text/javascript”>
function doMerge(form) {

var newPElem = document.createElement(“p”);
var newInputElem = document.createElement(“input”);
newInputElem.id = newInputElem.uniqueID;
newInputElem.mergeAttributes(form.field1);
newPElem.appendChild(newInputElem);
form.appendChild(newPElem);
newInputElem.value = newInputElem.outerHTML;

}

// called by onChange event handler of fields
function upperMe(field) {

field.value = field.value.toUpperCase();
}
</script>

</head>
<body
onload=”document.expandable.field1.value =

document.expandable.field1.outerHTML”>
<h1>mergeAttributes() Method</h1>
<hr />
<form name=”expandable” onsubmit=”return false”>

304

Document Objects Reference

elementObject.mergeAttributes()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 304

<p><input type=”button” value=”Append Field ‘Clone’”
onclick=”doMerge(this.form)” /></p>

<p><input type=”text” name=”field1” id=”FIELD1” size=”120” value=””
style=”font-size:9pt” onchange=”upperMe(this)” /></p>

</form>
</body>

</html>

Related Items: clearAttributes(), cloneNode(), removeAttributes() methods

normalize()
Returns: Nothing
Compatibility: WinIE6+, MacIE5+, NN7+, Moz+, Safari 1.2+

In the course of appending, inserting, removing, and replacing child nodes of an element, it is conceivable
that two text nodes can end up adjacent to each other. Although this typically has no effect on the rendering
of the content, some XML-centric applications that rely heavily on the document node hierarchy to inter-
pret content properly may not like having two text nodes sitting next to each other. The proper form of a
node hierarchy is for a single text node to be bounded by other node types. The normalize() method
sweeps through the child nodes of the current node object and combines adjacent text nodes into a single
text node. The effect obviously impacts the number of child nodes of an element, but it also cleanses the
nested node hierarchy.

Example
Use The Evaluator (see Chapter 13) to experiment with the normalize() method. The following sequence
adds a text node adjacent to one in the myP element. A subsequent invocation of the normalize() method
removes the division between the adjacent text nodes.

Begin by confirming the number of child nodes of the myP element:

document.getElementById(“myP”).childNodes.length

Three nodes initially inhabit the element. Next, create a text node, and append it as the last child of the myP
element:

a = document.createTextNode(“This means you!”)
document.getElementById(“myP”).appendChild(a)

With the new text now rendered on the page, the number of child nodes increases to four:

document.getElementById(“myP”).childNodes.length

You can see that the last child node of myP is the text node you just created:

document.getElementById(“myP”).lastChild.nodeValue

But by invoking normalize() on myP, all adjacent text nodes are accumulated into single nodes:

document.getElementById(“myP”).normalize()

305

elementObject.normalize()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 305

You can see that the myP element is back to three child nodes, and the last child is a combination of the two
previously distinct, but adjacent, text nodes:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).lastChild.nodeValue

Related Items: document.createTextNode(), appendChild(), insertBefore(), removeChild(),
replaceChild() methods

releaseCapture()
setCapture(containerBoolean)
Returns: Nothing
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

You can instruct a single object on a page to capture all mouse events (onmousedown, onmouseup,
onmousemove, onmouseout, onmouseover, onclick, and ondblclick) via the WinIE-specific
setCapture() method. A primary scenario for mouse event capture is when some content appears on the
page that you wish to leave as the center of user focus — items such as pull-down menus, context menus, or
simulated modal window areas. When such items appear onscreen, you want the effect of blocking all
mouse events except those that apply to the menu or currently visible pseudowindow. When the region
disappears, mouse events can be released so that individual elements (such as buttons and links elsewhere
on the page) respond to mouse events.

Event capture does not block the events. Instead, the events are redirected to the object set to capture all
mouse events. Events bubble up from that point unless explicitly canceled (see Chapter 25). For example,
consider a document that has a <body> tag containing an onclick event handler that governs the entire
document at all times. If you turn on event capture for a div somewhere in the document, the click event
first goes to the div. That div might have an onclick event handler that looks to process click events
when they occur in some of its child elements. If the event handler for the div does not also cancel the
bubbling of that click event, the body element’s onclick event handler eventually receives and processes
the event, even though the div initially captured the event.

Deciding which object should capture events is an important design issue to confront. With event capture
engaged, all mouse events (no matter where they occur) get funneled to the object set to capture the events.
Therefore, if you design an application whose entire interface consists of clicking and dragging positionable
elements, you can set one of those elements (or even the document object) to perform the capturing. For
pop-up regions, however, it is generally more logical and convenient for your coding to assign the capture
mechanism to the primary container of the pop-up content (usually, a positioned div).

The setCapture() method has one optional Boolean parameter. The parameter controls whether mouse
events on child elements within the capturing object are under control of the event capture mechanism. The
default value (true) means that all mouse events targeted at elements within the current object go to the
current object rather than to the original target — the most likely way you will use setCapture() for
things such as pop-up and context menus. But if you specify false as the parameter, mouse events occur-
ring in child elements of the capturing container receive their events directly. From there, regular event bub-
bling upward from the target ensues (see Chapter 25).

You may encounter odd behavior when the region you set up to capture mouse events contains form ele-
ments such as text input fields and select lists. Because these elements require mouse events to gain focus
for interaction, the event capture mechanism inhibits access to these items. To work around this behavior,
you can examine the click event’s srcElement property to see whether the click was on one of these ele-
ments and script the focus of that element (or instruct the user to press the Tab key until the element gets
focus manually).

306

Document Objects Reference

elementObject.releaseCapture()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 306

After an object is set to capture events, your other code must define which events actually do something
and decide whether events should bubble up beyond the capturing element. You need to worry about bub-
bling only if your design includes mouse event handlers in elements higher up the element containment
hierarchy. You may not want those event handlers to fire while event capture is on; in this case, you need to
cancel the bubbling of those events in the capturing object.

If your application design requires that the pop-up area be hidden and event handling be returned to nor-
mal (such as after the user makes a pop-up menu selection), use the releaseCapture() method in con-
junction with hiding the container. Because event capture can be engaged for only one element at a time,
you can release capture by invoking the releaseCapture() method from the container or from the
document object.

Event capture is automatically disengaged when the user performs any of the following actions:

n Gives focus to any other window

n Displays any system modal dialog window (for example, alert window)

n Scrolls the page

n Opens a browser context menu (by right-clicking)

n Tabs to give focus to the Address field in the browser window

Therefore, you may want to set the document object’s onlosecapture event handler to hide any container
that your script displays in concert with event capture.

Also be aware that even though mouse events may be captured to prevent mouse access to the rest of the
page, keyboard events are not captured. Thus, using the event capture mechanism to simulate modal win-
dows is not foolproof: A user can tab to any form element or link in the page and press the spacebar or
Enter key to activate that element.

Event capture, as defined in the W3C DOM, operates differently from WinIE event capture. In the W3C
DOM, you can instruct the browser to substitute event capture of any kind of event for the normal event
bubbling behavior. For example, you can attach an event listener to the body element in such a way that it
sees all click events aimed at elements contained by the body element before the events reach their target
elements. (See Chapter 14 and Chapter 25 for more on the W3C DOM event model and how to integrate it
into cross-browser applications.)

Example
Listing 15-30 demonstrates the usage of setCapture() and releaseCapture() in a quick-and-dirty con-
text menu for WinIE5+. The job of the context menu is to present a list of numbering styles for the ordered
list of items on the page. Whenever the user brings up the context menu atop the ol element, the custom
context menu appears. Event capture is turned on in the process to prevent mouse actions elsewhere on the
page from interrupting the context menu choice. Even a click of the link set up as the title of the list is
inhibited while the context menu is visible. A click anywhere outside the context menu hides the menu.
Clicking a choice in the menu changes the listStyleType property of the ol object and hides the menu.
Whenever the context menu is hidden, event capture is turned off so that clicking the page (such as the
link) works as normal.

For this design, onclick, onmouseover, and onmouseout event handlers are assigned to the div
element that contains the context menu. To trigger the display of the context menu, the ol element has an
oncontextmenu event handler. This handler invokes the showContextMenu() function. In this function,
event capture is assigned to the context menu div object. The div is also positioned at the location of the
click before it is set to be visible. To prevent the system’s regular context menu from also appearing, the
event object’s returnValue property is set to false.

307

elementObject.releaseCapture()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 307

Now that all mouse events on the page go through the contextMenu div object, let’s examine what hap-
pens with different kinds of events triggered by user action. As the user rolls the mouse, a flood of
mouseover and mouseout events fires. The event handlers assigned to the div manage these events. But
notice that the two event handlers, highlight() and unhighlight(), perform action only when the
srcElement property of the event is one of the menu items in the div. Because the page has no other
onmouseover or onmouseout event handlers defined for elements up the containment hierarchy, you do
not have to cancel event bubbling for these events.

When a user clicks the mouse button, different things happen, depending on whether event capture is
enabled. Without event capture, the click event bubbles up from wherever it occurred to the onclick
event handler in the body element. (An alert dialog box displays to let you know when the event reaches
the body.) But with event capture turned on (the context menu is showing), the handleClick() event
handler takes over to apply the desired choice whenever the click is atop one of the context menu items.
For all click events handled by this function, the context menu is hidden, and the click event is canceled
from bubbling up any higher (no alert dialog box appears). This takes place whether the user makes a
choice in the context menu or clicks anywhere else on the page. In the latter case, all you need is for the
context menu to go away as the real context menu does. For added insurance, the onlosecapture event
handler hides the context menu when a user performs any of the actions just listed that cancel capture.

LISTING 15-30

Using setCapture() and releaseCapture()

<html>
<head>

<title></title>
<style type=”text/css”>
#contextMenu {position:absolute; background-color:#cfcfcf;

border-style:solid; border-width:1px;
border-color:#EFEFEF #505050 #505050 #EFEFEF;
padding:3px 10px; font-size:8pt; font-family:Arial, Helvetica;
line-height:150%; visibility:hidden}

.menuItem {color:black}

.menuItemOn {color:white}
ol {list-style-position:inside; font-weight:bold; cursor:nw-resize}
li {font-weight:normal}
</style>
<script type=”text/javascript”>
function showContextMenu() {

contextMenu.setCapture();
contextMenu.style.pixelTop = event.clientY + document.body.scrollTop;
contextMenu.style.pixelLeft = event.clientX +

document.body.scrollLeft;
contextMenu.style.visibility = “visible”;
event.returnValue = false;

}

function revert() {
document.releaseCapture();
hideMenu();

}

308

Document Objects Reference

elementObject.releaseCapture()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 308

function hideMenu() {
contextMenu.style.visibility = “hidden”;

}

function handleClick() {
var elem = window.event.srcElement;
if (elem.id.indexOf(“menuItem”) == 0) {

document.getElementById(“shapesList”).style.listStyleType =
elem.listtype;

}
revert();
event.cancelBubble = true;

}

function highlight() {
var elem = event.srcElement;
if (elem.className == “menuItem”) {

elem.className = “menuItemOn”;
}

}

function unhighlight() {
var elem = event.srcElement
if (elem.className == “menuItemOn”) {

elem.className = “menuItem”;
}

}
</script>

</head>
<body onclick=”alert(‘You reached the document object.’)”>

<ol id=”shapesList” oncontextmenu=”showContextMenu()”>
<li style=”list-style: none”><a href=

“javascript:alert(‘A%20sample%20link.’)”>Three-Dimensional
Shapes

<li value=”1”>Circular Cylinder
Cube
Rectangular Prism
Regular Right Pyramid
Right Circular Cone
Sphere

<div id=”contextMenu” onlosecapture=”hideMenu()” onclick=”handleClick()”
onmouseover=”highlight()” onmouseout=”unhighlight()”>

<span id=”menuItem1” class=”menuItem”
listtype=”upper-alpha”>A,B,C,...

<span id=”menuItem2” class=”menuItem”
listtype=”lower-alpha”>a,b,c,...

<span id=”menuItem3” class=”menuItem”
listtype=”upper-roman”>I,II,III,...

<span id=”menuItem4” class=”menuItem”
listtype=”lower-roman”>i,ii,iii,...

continued

309

elementObject.releaseCapture()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 309

LISTING 15-30 (continued)

<span id=”menuItem5” class=”menuItem”
listtype=”decimal”>1,2,3,...

</div>
</body>

</html>

Related Items: addEventListener(), dispatchEvent(), fireEvent(), removeEventListener()
methods; onlosecapture event; Event object (Chapter 25)

removeAttribute(“attributeName”[, caseSensitivity])
Returns: Boolean (IE), nothing (NN/DOM)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

If you create an attribute with the setAttribute() method, you can eliminate that attribute from the ele-
ment object via the removeAttribute() method. The required parameter is the name of the attribute.
Internet Explorer permits you to set and remove attributes such that the attribute names are case sensitive.
The default behavior of removeAttribute() in IE (the second parameter is a Boolean value) is false.
Therefore, if you supply a value of true for the case-sensitivity parameter in setAttribute(), you should
set the parameter to true in removeAttribute() to ensure a proper balance between created and
removed attributes.

The W3C DOM (NN/Moz/Safari) version of the removeAttribute() method has a single parameter
(a case-insensitive attribute name) and returns no value. The returned value in IE is true if the removal
succeeds and false if it doesn’t succeed (or if the attribute is one that you set in some other manner).

Example
Use The Evaluator (see Chapter 13) to experiment with the removeAttribute() method for the elements
in the page. See the examples for the setAttribute() method later in this chapter, and enter the corre-
sponding removeAttribute() statements in the top text box. Interlace statements using getAttribute()
to verify the presence or absence of each attribute.

Related Items: attributes property; document.createAttribute(), getAttribute(),
setAttribute() methods

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)
Returns: Attribute object
Compatibility: WinIE6+, MacIE-, NN6+, Moz+, Safari+

As discussed in the coverage of the getAttributeNode() method earlier in this chapter, the W3C DOM
treats a name–value attribute pair as an attribute object. An attribute object is a distinct node within a
named node map — a collection of attribute objects belonging to an element. Understanding named node
maps and attribute objects is more useful in an XML environment, where attributes can not only contain
valuable data, but also are not exposed to the DOM as properties you can access via script. Instead of
accessing an object’s properties, you work with the actual attributes.

310

Document Objects Reference

elementObject.removeAttributeNode()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 310

If you want to insert an attribute in the formal W3C methodology, you can use document.
createAttribute() to generate a new attribute object. Subsequent script statements assign values to the
nodeName and nodeValue properties to give the attribute its traditional name–value pair. You can then insert
that new attribute object into the attribute list of an object via the setAttributeNode() method. The sole
parameter is an attribute object, and the return value is a reference to the newly inserted attribute object.

To remove an attribute node from an element using this syntax, employ the removeAttributeNode() method.
Again, the sole parameter is an attribute object. If your script knows only the attribute’s name, you can use
getAttributeNode() to obtain a valid reference to the attribute object. The removeAttributeNode()
method returns a reference to the removed attribute object. That object remains in the browser’s memory, but it
is not part of the document hierarchy. By capturing this removed attribute object in a variable, you have the flex-
ibility to modify and assign it to another object elsewhere in the document.

In practice, you may rarely, if ever, need to address attributes as nodes. Other methods — notably
getAttribute(), removeAttribute(), and setAttribute()— do the job when your scripts have only
the name (as a string) of an attribute belonging to an element.

Example
Use The Evaluator (see Chapter 13) to experiment with the setAttributeNode() and
removeAttributeNode() methods for the p element in the page. The task is to create and add a style
attribute to the p element. Begin by creating a new attribute and storing it temporarily in the global variable a:

a = document.createAttribute(“style”)

Assign a value to the attribute object:

a.nodeValue = “color:red”

Now insert the new attribute into the p element:

document.getElementById(“myP”).setAttributeNode(a)

The paragraph changes color in response to the newly added attribute.

Due to the NN6 bug that won’t allow the method to return a reference to the newly inserted attribute node,
you can artificially obtain such a reference:

b = document.getElementById(“myP”).getAttributeNode(“style”)

Finally, use the reference to the newly added attribute to remove it from the element:

document.getElementById(“myP”).removeAttribute(b)

Upon the removal of the attribute, the paragraph resumes its initial color. See the example for the
setAttribute() method later in this chapter to discover how you can perform this same kind of
operation with setAttribute().

Related Items: attributes property; document.createAttribute(), getAttribute(),
getAttributeNode(), setAttribute() methods

removeAttributeNS(“namespaceURI”, “localName”)
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

This method removes the attribute specified in the two parameters. The first parameter of the method is a
URI string matching a URI assigned to a label in the document. The second parameter is the local name
portion of the attribute whose value you are removing.

311

elementObject.removeAttributeNS()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 311

Related Items: attributes, namespaceURI, localName properties; removeAttribute(),
getAttributeNS(), setAttributeNS() methods

removeBehavior(ID)
Returns: Boolean
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The removeBehavior() method detaches a behavior from an object. It assumes that the behavior was added
to the object via the addBehavior() method. The return value of the addBehavior() method is a unique
identifier for that particular behavior. This identifier is the required parameter for the removeBehavior()
method. Thus, you can add two behaviors to an object and remove just one of them if you so desire. If the
removal succeeds, the removeBehavior() method returns true; otherwise, it returns false.

Example
See Listing 15-19a and Listing 15-19b earlier in this chapter for examples of how to use addBehavior()
and removeBehavior().

Related Item: addBehavior() method

removeChild(nodeObject)
Returns: Node object reference
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The removeChild() method erases a child element from the current element. Content associated with the
child element is no longer visible on the page, and the object is no longer part of the document object hierarchy.

As destructive as that sounds, the specifications for the deleted object are not necessarily lost to the ether.
The removeChild() method returns a reference to the removed node. By assigning this value to a variable,
you can hold on to that object specification for insertion later in the session. You are free to use this value as
a parameter to such methods as appendChild(), replaceChild(), swapNode(), and insertBefore().

Remember that removeChild() is invoked from the point of view of a parent element. If you simply want
to remove an element, you can do so more directly (in WinIE5+ only) with the removeNode() method.
The IE removeNode() method also allows a node to remove itself, which isn’t possible via the
removeChild() method.

Example
You can see an example of removeChild() as part of Listing 15-21 earlier in this chapter.

Related Items: appendChild(), replaceChild(), removeNode() methods

removeEventListener()
(See addEventListener())

removeExpression(“propertyName”)
Returns: Boolean
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

If you assign an expression to an object property (including an object’s style object) via the
setExpression() method, you can remove it under script control with the removeExpression()
method. The sole parameter is the name of the property in string form. Property names are case sensitive.

312

Document Objects Reference

elementObject.removeExpression()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 312

The method returns true if the removal succeeds; otherwise, false is returned. Be aware that removing an
expression does not alter the value that is currently assigned to the property. In other words, you can use
setExpression() to set a property’s value and then remove the expression so that no further changes are
made when the document recalculates expressions. If this is your goal, however, you are probably better
served by simply setting the property directly via scripting.

Example
You can experiment with all three expression methods in The Evaluator (Chapter 13). The following
sequence adds an expression to a style sheet property of the myP element on the page and then removes it.

To begin, enter the number 24 in the bottom one-line text box in The Evaluator (but don’t press Enter or
click the List Properties button). This is the value used in the expression to govern the fontSize property
of the myP object. Next, assign an expression to the myP object’s style object by entering the following
statement in the top text box:

myP.style.setExpression(“fontSize”,”document.forms[0].inspector.value”,”JScript”)

Now you can enter different font sizes in the bottom text box and have the values immediately applied to
the fontSize property. (Keyboard events in the text box automatically trigger the recalculation.) The
default unit is px, but you can also append other units (such as pt) to the value in the text box to see how
different measurement units influence the same numeric value.

Before proceeding to the next step, enter a value other than 16 (the default fontSize value). Finally, enter
the following statement in the top text box to disconnect the expression from the property:

myP.style.removeExpression(“fontSize”)

Notice that although you can no longer adjust the font size from the bottom text box, the most recent value
assigned to it sticks to the element. To prove it, enter the following statement in the top text box to see the
current value:

myP.style.fontSize

Related Items: document.recalc(), getExpression(), setExpression() methods

removeNode(removeChildrenFlag)
Returns: Node object reference
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

You can use the removeNode() method to delete the current node from an element hierarchy in WinIE5+.
The sole parameter is a Boolean value that directs the method to remove only itself (without its child nodes)
or the node and all of its children (value of true). The method returns a reference to the node object
removed. This removed object is no longer accessible to the DOM. But the returned value contains all
properties of the object as it existed before you removed it (including properties such as outerHTML and
explicitly set style sheet rules). Thus, you can use this value as a parameter to insert the node elsewhere in
the document.

Although the W3C DOM does not have a removeNode() method, the cross-browser method whose behavior
most closely resembles removeNode() is the removeChild() method. The scope of the removeChild()
method is one level up the object hierarchy from the object you use for the removeNode() method.

313

elementObject.removeNode()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 313

Example
Examine Listing 15-21 for the appendChild() method to understand the difference between
removeChild() and removeNode(). In the restore() function, you can replace this statement

mainObj.removeChild(oneChild);

in IE5+ with

oneChild.removeNode(true);

The difference is subtle, but it is important to understand. See Listing 15-31 later in this chapter for another
example of the removeNode() method.

Related Items: Node object; appendChild(), cloneChild(), removeChild(), replaceChild(),
replaceNode() methods

replaceAdjacentText(“location”, “text”)
Returns: String
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The replaceAdjacentText() method enables you to replace one chunk of document text with another in
a specific position relative to the current object. Be aware that this method works only for plain text and not
HTML tags. The returned value is the string of the text that you replace.

Both parameters are required. The first must be one of four possible case-insensitive locations for the inser-
tion, shown in the following table:

Location Description

beforeBegin Before the current element’s start tag

afterBegin After the start tag but before any nested content

beforeEnd Before the end tag but after all other nested content

afterEnd After the end tag

This method is best used with inline (rather than block) elements when specifying the beforeBegin and
afterEnd parameters. For example, if you attempt to use replaceAdjacentText() with beforeBegin
on the second of two consecutive paragraph elements, the replacement text is inserted into the end of the
first paragraph. You can think of the replaceAdjacentText() method in terms of text fragment nodes.
The method replaces the text fragment node (given any one of the four position parameters) with new text.
Replacing the text of a simple element with either the afterBegin or beforeEnd locations is the same as
assigning that text to the object’s innerText property.

Example
Use The Evaluator (see Chapter 13) to experiment with the replaceAdjacentText() method. Enter each
of the following statements in the top text box, and watch the results in the myP element (and its nested
myEM element) below the solid rule:

document.getElementById(“myEM”).replaceAdjacentText(“afterBegin”, “twenty”)

314

Document Objects Reference

elementObject.replaceAdjacentText()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 314

Notice that the myEM element’s new text picks up the behavior of the element. In the meantime, the replaced
text (all) is returned by the method and displayed in the Results box:

document.getElementById(“myEM”).replaceAdjacentText(“beforeBegin”, “We need “)

All characters of the text fragment, including spaces, are replaced. Therefore, you may need to supply a
trailing space, as shown here, if the fragment you replace has a space:

document.getElementById(“myP”).replaceAdjacentText(“beforeEnd”, “ good people.”)

This is another way to replace the text fragment following the myEM element, but it is also relative to the
surrounding myP element. If you now attempt to replace text after the end of the myP block-level element

document.getElementById(“myP”).replaceAdjacentText(“afterEnd”, “Hooray!”)

the text fragment is inserted after the end of the myP element’s tag set. The fragment is just kind of floating
in the DOM as an unlabeled text node.

Related Items: innerText, outerText properties; getAdjacentText(), insertAdjacentHTML(),
insertAdjacentText() methods

replaceChild(newNodeObject, oldNodeObject)
Returns: Node object reference
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The replaceChild() method enables you to swap an existing child node object for a new node object.
Parameters for the replaceChild() method are node object references, and they must be in the order of
the new object followed by the object you want to replace. The old object must be an immediate child node
of the parent used to invoke the method, and the new object must also be a legal child element within the
document containment hierarchy.

The method returns a reference to the child object that you replaced with the new object. This reference can
be used as a parameter to any of the node-oriented insertion or replacement methods.

Remember that replaceChild() is invoked from the point of view of a parent element. If you simply want
to change an element, you can do so more directly in WinIE5+ with the swapNode() or replaceNode()
method.

Example
You can see an example of replaceChild() as part of Listing 15-21 (for the appendChild property) ear-
lier in this chapter.

Related Items: appendChild(), removeChild(), replaceNode(), swapNode() methods

replaceNode(“newNodeObject”)
Returns: Node object reference
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The replaceNode() method is related to the replaceChild() method, but you invoke this method on
the actual node you want to replace (instead of the object’s parent). The sole parameter is a reference to a
valid node object, which you can generate via the document.createElement() method or copy from an
existing node. The value returned from the method is a reference to the object that you replace. Thus, you
can preserve a copy of the replaced node by storing the results in a variable for use later.

315

elementObject.replaceNode()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 315

If the node you replace contains other nodes, the replaceNode() method removes all contained nodes of
the original from the document. Therefore, if you want to change a wrapper node but want to maintain the
original children, your script must capture the children and put them back into the new node as shown in
the following example.

Example
Listing 15-31 demonstrates three node-related methods: removeNode(), replaceNode(), and swapNode().
These methods work in WinIE5+ only.

The page rendered from Listing 15-31 begins with a ul type list of four items. Four buttons control various
aspects of the node structure of this list element. The first button invokes the replace() function, which
changes the ul type to ol. To do this, the function must temporarily tuck away all child nodes of the origi-
nal ul element so that they can be added back into the new ol element. At the same time, the old ul node
is stored in a global variable (oldNode) for restoration in another function.

To replace the ul node with an ol, the replace() function creates a new, empty ol element and assigns
the myOL ID to it. Next, the children (li elements) are stored en masse as an array in the variable innards.
The child nodes are then inserted into the empty ol element, using the insertBefore() method. Notice
that as each child element from the innards array is inserted into the ol element, the child element is
removed from the innards array. That’s why the loop to insert the child nodes is a while loop that con-
stantly inserts the first item of the innards array to the new element. Finally, the replaceNode() method
puts the new node in the old node’s place, and the old node (just the ul element) is stored in oldNode.

The restore() function operates in the inverse direction of the replace() function. The same juggling of
nested child nodes is required.

The third button invokes the swap() function, whose script exchanges the first and last nodes. The
swapNode() method, like the others in this discussion, operates from the point of view of the node.
Therefore, the method is attached to one of the swapped nodes, and the other node is specified as a param-
eter. Because of the nature of the ol element, the number sequence remains fixed, but the text of the li
node swaps.

To demonstrate the removeNode() method, the fourth function removes the last child node of the list.
Each call to removeNode() passes the true parameter to guarantee that the text nodes nested inside each
li node are also removed. Experiment with this method by setting the parameter to false (the default).
Notice how the parent–child relationship changes when you remove the li node.

LISTING 15-31

Using Node-Related Methods

<html>
<head>

<title>removeNode(), replaceNode(), and swapNode() Methods</title>
<script type=”text/javascript”>
// store original node between changes
var oldNode;

// replace UL node with OL
function replace() {

if (document.getElementById(“myUL”)) {
var newNode = document.createElement(“OL”);
newNode.id = “myOL”;

316

Document Objects Reference

elementObject.replaceNode()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 316

var innards = document.getElementById(“myUL”).children;
while (innards.length > 0) {

newNode.insertBefore(innards[0]);
}
oldNode = document.getElementById(“myUL”).replaceNode(newNode);

}
}

// restore OL to UL
function restore() {

if (document.getElementById(“myOL”) && oldNode) {
var innards = document.getElementById(“myOL”).children;
while (innards.length > 0) {

oldNode.insertBefore(innards[0]);
}
document.getElementById(“myOL”).replaceNode(oldNode);

}
}

// swap first and last nodes
function swap() {

if (document.getElementById(“myUL”)) {
document.getElementById(“myUL”).firstChild.swapNode(

document.getElementById(“myUL”).lastChild);
}
if (document.getElementById(“myOL”)) {

document.getElementById(“myOL”).firstChild.swapNode(
document.getElementById(“myOL”).lastChild);

}
}

// remove last node
function remove() {

if (document.getElementById(“myUL”)) {
document.getElementById(“myUL”).lastChild.removeNode(true);

}
if (document.getElementById(“myOL”)) {

document.getElementById(“myOL”).lastChild.removeNode(true);
}

}
</script>

</head>
<body>

<h1>Node Methods</h1>
<hr />
Here is a list of items:
<ul id=”myUL”>

First Item
Second Item
Third Item
Fourth Item

continued

317

elementObject.replaceNode()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 317

LISTING 15-31 (continued)

<form>
<input type=”button” value=”Change to OL List”
onclick=”replace()” /> <input type=”button”
value=”Restore LI List” onclick=”restore()” /> <input
type=”button” value=”Swap First/Last” onclick=”swap()” />
<input type=”button” value=”Remove Last” onclick=”remove()” />

</form>
</body>

</html>

You can accomplish the same functionality shown in Listing 15-31 in a cross-browser fashion using the
W3C DOM. In place of the removeNode() and replaceNode() methods, use removeChild() and
replaceChild() methods to shift the point of view (and object references) to the parent of the ul and ol
objects: the document.body. Also, you need to change the document.all references to
document.getElementById().

Related Items: removeChild(), removeNode(), replaceChild(), swapNode() methods

scrollIntoView(topAlignFlag)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN7+, Moz+, Safari 2.02

The scrollIntoView() method scrolls the page (vertically and/or horizontally as needed) such that the
current object is visible within the window or frame that contains it. A single parameter, a Boolean value,
controls the location of the element within the viewable space. A value of true (the default) causes the ele-
ment to be displayed so that its top is aligned with the top of the window or frame (provided that the docu-
ment beneath it is long enough to allow this amount of scrolling). But a value of false causes the bottom
of the element to align with the bottom of the viewable area. In most cases, you want the former so that the
beginning of a page section is at the top of the viewable area. But if you don’t want a user to see content
below a certain element when you jump to the new view, use the false parameter.

For form elements, you must use the typical form element reference (document.formName.elementName
.scrollIntoView()) unless you also specify an ID attribute for the element (document
.getElementById(“elementID”).scrollIntoView()).

Example
Use The Evaluator (see Chapter 13) to experiment with the scrollIntoView() method. Resize the
browser window height so that you can see only the top text box and the Results text area. Enter each of the
following statements in the top text box, and see where the myP element comes into view:

myP.scrollIntoView()
myP.scrollIntoView(false)

Expand the height of the browser window until you can see part of the table lower on the page. If you enter

myTable.scrollIntoView(false)

in the top text box, the page scrolls to bring the bottom of the table to the bottom of the window. But if you
use the default parameter (true or empty)

myTable.scrollIntoView()

318

Document Objects Reference

elementObject.scrollIntoView()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 318

the page scrolls as far as it can in an effort to align the top of the element as closely as possible to the top of
the window. The page cannot scroll beyond its normal scrolling maximum (although if the element is a posi-
tioned element, you can use dynamic positioning to place it wherever you want — including off the page).
Also, if you shrink the window and try to scroll the top of the table to the top of the window, be aware that
the table element contains a caption element, so the caption is flush with the top of the window.

Related Items: window.scroll(), window.scrollBy(), window.scrollTo() methods

setActive()
Returns: Nothing
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The setActive() method lets a script designate an element object as the active element. However,
unlike in the focus() method, the window does not scroll the active element into view. Any onFocus
event handler defined for the element fires when setActive() is invoked without the browser’s giving
the element focus.

Example
Use The Evaluator (see Chapter 13) to compare the setActive() and focus() methods. With the page
scrolled to the top and the window sized so that you cannot see the sample checkbox near the bottom of
the page, enter the following statement in the top text box:

document.forms[1].myCheckbox.setActive()

Scroll down to see that the checkbox has operational focus (press the spacebar to see). Now scroll back to
the top, and enter the following:

document.forms[1].myCheckbox.focus()

This time, the checkbox gets focus, and the page automatically scrolls the object into view.

Related Item: focus() method

setAttribute(“attributeName”, value[, caseSensitivity])
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The setAttribute() method assigns a new value to an existing attribute of the current object or inserts
an entirely new attribute name–value pair among the attributes of the current object. This method repre-
sents an alternative syntax to setting a property of the object directly.

The W3C DOM Level 2 standard recommends getAttribute() and setAttribute() for
reading and writing element object attribute values, rather than reading and writing those val-

ues by way of their corresponding properties. Although using these methods is certainly advisable for XML
elements, the same DOM standard sends conflicting signals by defining all kinds of properties for HTML
element objects. Browsers, of course, will support access via properties well into the future, so don’t feel
obligated to change your ways just yet.

The first two parameters of setAttribute() are required. The first is the name of the attribute. The default
behavior of this method respects the case of the attribute name. Therefore, if you use setAttribute() to
adjust the value of an existing attribute in default mode, the first parameter must match the case of the attrib-
ute as known by the object model for the current document. Remember that all names of all attributes
assigned as inline source-code attributes are automatically converted to lowercase letters.

NOTENOTE

319

elementObject.setAttribute()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 319

A value you assign to the attribute is the second parameter. For cross-browser compatibility, the value
should be either a string or Boolean data type.

IE provides an optional third parameter to control the case-sensitivity issue for the attribute name. The
default value (true) has a different impact on your object depending on whether you use setAttribute()
to assign a new attribute or reassign an existing one. In the former case, the third parameter as true means
that the attribute name assigned to the object observes the case of the first parameter. In the latter case, the
third parameter as true means that the attribute isn’t reassigned unless the first parameter matches the case
of the attribute currently associated with the object. Instead, a new attribute with a different case sequence
is created.

Attempting to manage the case sensitivity of newly created attributes is fraught with peril, especially if you
try to reuse names but with different case sequences. I strongly recommend using default case-sensitivity
controls for setAttribute() and getAttribute().

See also the W3C DOM facilities for treating attributes as node objects in the discussions of the
getAttributeNode() and removeAttributeNode() methods earlier in this chapter.

Example
Use The Evaluator (see Chapter 13) to experiment with the setAttribute() method for the elements in
the page. Setting attributes can have immediate impact on the layout of the page (just as setting an object’s
properties can). Enter the following sample statements in the top text box to view attribute values.

document.getElementById(“myTable”).setAttribute(“width”, “80%”)
document.getElementById(“myTable”).setAttribute(“border”, “5”)

Related Items: attributes property; document.createAttribute(), getAttribute(),
getAttributeNode(), removeAttribute(), removeAttributeNode(), setAttributeNode() methods

setAttributeNode()
(See removeAttributeNode())

setAttributeNodeNS(“attributeNode”)
Returns: Attribute object
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

This method inserts or replaces an attribute in the current element. The sole parameter is an attribute
object, and the return value is a reference to the newly inserted attribute object. When the method is
invoked, the browser looks for a pairing of local name and namespace URI between the nodes. If there is a
match, the node replaces the matched node; otherwise, the node is inserted.

Related Items: attributes, namespaceURI, localName properties; removeAttributeNS(),
getAttributeNS(), and setAttributeNS() methods

setAttributeNS(“namespaceURI”, “qualifiedName”, “value”)
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

This method inserts or replaces an attribute in the current element, as specified in the three parameters. The
first parameter of the method is a URI string matching a URI assigned to a label in the document. The sec-
ond parameter is the local name portion of the attribute whose value you are getting. If a match is found
among these parameters, the value in the third parameter is assigned to the existing attribute; otherwise, the
value is inserted as a new attribute.

320

Document Objects Reference

elementObject.setAttributeNS()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 320

Related Items: attributes, namespaceURI, localName properties; removeAttributeNS(),
getAttributeNS(), and setAttributeNodeNS() methods

setCapture(containerBoolean)
(See releaseCapture())

setExpression(“propertyName”, “expression”,[“language”])
Returns: Nothing
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Use the setExpression() method to assign the result of an executable expression to the value of an ele-
ment object property. This method can assign values to both HTML element objects and style objects that
belong to them.

The setExpression() method is a scripted way of assigning expressions to attributes. But you can also
assign expressions directly to style sheet definitions in the HTML tag of an element using the expres-
sion() syntax, as in the following example:

<p style=”width:expression(document.body.style.width * 0.75)”>

The setExpression() method requires three parameters. The first parameter is the name of the property
(in string form) to which you assign the expression. Property names are case sensitive. The second parame-
ter is a string form of the expression to be evaluated to supply a value for the property. Expressions can refer
to global variables or properties of other objects in the same document (provided that the property is any-
thing other than an array). An expression may also contain math operators.

Pay close attention to the data type of the evaluated value of the expression. The value must be a valid data
type for the property. For example, the URL of the body background image must be a string. But for
numeric values, you can generally use number and string types interchangeably because the values are con-
verted to the proper type for the property. Even for expressions that evaluate to numbers, encase the expres-
sion inside quotes. It may not be necessary in all cases, but if you get into the habit of using quotes, you’ll
have fewer problems for strings or complex expressions that require them.

You are not limited to using JavaScript as the language for the expression because you can also specify the
scripting language of the expression in the optional third parameter. Acceptable parameter values for the
language are

JScript
JavaScript
VBScript

For all intents and purposes, JScript and JavaScript are the same. Both languages are ECMA-262 compati-
ble. JScript is the default value for the language parameter.

One reason to use setExpression() for dynamic properties is to let the property always respond to the cur-
rent conditions on the page. For example, if you set a property that is dependent on the current width of the
body, you want a recalculation that is applied to the property if the user resizes the window. The browser auto-
matically responds to many events and updates any dynamic properties. In essence, the browser recalculates
the expressions and applies the new values to the property. Keyboard events in particular trigger this kind of
automatic recalculation for you. But if your scripts perform actions on their own (in other words, not triggered
by events), your scripts need to force the recalculation of the expressions. The document.recalc() method
takes care of this, but you must invoke it to force the recalculation of dynamic properties in these cases.

321

elementObject.setExpression()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 321

Example
Listing 15-32 shows the setExpression(), recalc(), and getExpression() methods at work in a
DHTML-based clock. Figure 15-1 shows the clock. As time clicks by, the bars for hours, minutes, and sec-
onds adjust their widths to reflect the current time. At the same time, the innerHTML of span elements to
the right of each bar display the current numeric value for the bar.

The dynamically calculated values in this example are based on the creation of a new date object over and
over again to get the current time from the client computer clock. It is from the date object (stored in the
variable called now) that the hour, minute, and second values are retrieved. Some other calculations are
involved so that a value for one of these time components is converted to a pixel value for the width of the
bars. The bars are divided into 24 (for the hours) and 60 (for the minutes and seconds) parts, so the scale
for the two types differs. For the 60-increment bars in this application, each increment is set to 5 pixels
(stored in shortWidth); the 24-increment bars are 2.5 times the shortWidth.

As the document loads, the three span elements for the colored bars are given no width, which means that
they assume the default width of zero. But after the page loads, the onload event handler invokes the
init() function, which sets the initial values for each bar’s width and the text (innerHTML) of the three
labeled spans. After these initial values are set, the init() function invokes the updateClock() function.

In the updateClock() function, a new date object is created for the current instant. The
document.recalc() method is called, instructing the browser to recalculate the expressions that were set
in the init() function and assign the new values to the properties. To keep the clock ticking, the
setTimeout() method is set to invoke this same updateClock() function in 1 second.

To see what the getExpression() method does, you can click the button on the page. It simply displays
the returned value for one of the attributes that you assign using setExpression().

LISTING 15-32

Dynamic Properties

<html>
<head>

<title>getExpression(), setExpression(), and recalc() Methods</title>
<style type=”text/css”>
th {text-align:right}
span {vertical-align:bottom}
</style>
<script type=”text/javascript”>
var now = new Date();
var shortWidth = 5;
var multiple = 2.5;

function init() {
with (document.all) {

hoursBlock.style.setExpression(“width”,”now.getHours() *
shortWidth * multiple”,”jscript”);

hoursLabel.setExpression(“innerHTML”,”now.getHours()”,”jscript”);
minutesBlock.style.setExpression(“width”,”now.getMinutes() *

shortWidth”,”jscript”);
minutesLabel.setExpression(“innerHTML”,”now.getMinutes()”,

322

Document Objects Reference

elementObject.setExpression()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 322

“jscript”);
secondsBlock.style.setExpression(“width”,”now.getSeconds() *

shortWidth”,”jscript”);
secondsLabel.setExpression(“innerHTML”,”now.getSeconds()”,

“jscript”);
}

updateClock();
}

function updateClock() {
now = new Date();
document.recalc();
setTimeout(“updateClock()”,1000);

}

function showExpr() {
alert(“Expression for the \’Hours\’ innerHTML property is:\r\n” +

document.getElementById(“hoursLabel”).getExpression(“innerHTML”) +
“.”); }

</script>
</head>
<body onload=”init()”>

<h1>getExpression(), setExpression(), recalc() Methods</h1>
<hr />
<p>This clock uses Dynamic Properties to calculate bar width and time

numbers:</p>
<table border=”0”>

<tr>
<th>Hours:</th>
<td>

 </td>
</tr>
<tr>

<th>Minutes:</th>
<td>

 </td>
</tr>
<tr>

<th>Seconds:</th>
<td>

 </td>
</tr>

</table>
<hr />
<form>

<input type=”button” value=”Show ‘Hours’ number innerHTML Expression”
onclick=”showExpr()” />

</form>
</body>

</html>

323

elementObject.setExpression()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 323

FIGURE 15-1

A bar-graph clock created with dynamic expressions.

Related Items: document.recalc(), removeExpression(), setExpression() methods

setUserData(“key”, dataObj, dataHandler)
Returns: Object
Compatibility: WinIE-, MacIE-, NN-, Moz1.7.2+, Safari-

The setUserData() method is designed to allow for the addition of user data to a node. This user data
comes in the form of an object and is associated with a node through a string key. By requiring a key for an
object of user data, the setUserData() method allows you to set multiple pieces of data (objects) on a sin-
gle node. The last parameter to the method is an event handler function reference that is called whenever
the data object is cloned, imported, deleted, renamed, or adopted.

Although some support for the setUserData() method was added in Moz1.7.2, the method still isn’t sup-
ported to the degree that you can actually use it, as of Moz1.8.1.

swapNode(otherNodeObject)
Returns: Node object reference
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

324

Document Objects Reference

elementObject.swapNode()

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 324

The swapNode() method exchanges the positions of two nodes within an element hierarchy. Contents of
both nodes are preserved in their entirety during the exchange. The single parameter must be a valid node
object (perhaps created with document.createElement() or copied from an existing node). A return
value is a reference to the object whose swapNode() method was invoked.

Example
See Listing 15-31 (the replaceNode() method) for an example of the swapNode() method in action.

Related Items: removeChild(), removeNode(), replaceChild(), replaceNode() methods

tags(“tagName”)
Returns: Array of element objects
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The tags() method does not belong to every element, but it is a method of every collection of objects (such
as all, forms, and elements). The method is best thought of as a kind of filter for the elements that belong
to the current collection. For example, to get an array of all p elements inside a document, use this expression:

document.all.tags(“P”)

You must pass a parameter string consisting of the tag name you wish to extract from the collection. The tag
name is case insensitive.

The return value is an array of references to the objects within the current collection whose tags match
the parameter. If there are no matches, the returned array has a length of zero. If you need cross-browser
compatibility, use the getElementsByTagName() method described earlier in this chapter, and pass a
wildcard value of “*”.

Example
Use The Evaluator (see Chapter 13) to experiment with the tags() method. Enter the following statements
one at a time in the top text box, and study the results:

document.all.tags(“div”)
document.all.tags(“div”).length
myTable.all.tags(“td”).length

Because the tags() method returns an array of objects, you can use one of those returned values as a valid
element reference:

document.all.tags(“form”)[1].elements.tags(“input”).length

Related Item: getElementsByTagName() method

toString(“param”)
Returns: String
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The toString() method returns a string representation of the element object, which unfortunately can
mean different things to different browsers. Don’t expect entirely consistent results across browsers, espe-
cially when you consider that IE simply returns a generic “[object]” string.

325

elementObject.toString()

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 325

urns(“behaviorURN”)
Returns: Array of element objects
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The urns() method does not belong to every element, but it is a method of every collection of objects. You
must pass a parameter string consisting of the URN (Uniform Resource Name) of a behavior resource (most
typically .htc) assigned to one or more elements of the collection. The parameter does not include the
extension of the filename. If there is no matching behavior URN for the specified parameter, the urns()
method returns an array of zero length. This method is related to the behaviorUrns property, which con-
tains an array of behavior URNs assigned to a single element object.

Example
In case the urns() method is reconnected in the future, you can add a button and function to Listing
15-19b that reveals whether the makeHot.htc behavior is attached to the myP element. Such a function
looks like this:

function behaviorAttached() {
if (document.all.urns(“makeHot”)) {

alert(“There is at least one element set to \’makeHot\’.”);
}

}

Related Item: behaviorUrns property

Event handlers
onactivate
ondeactivate
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onactivate and ondeactivate event handlers are similar to the onfocus and onblur event han-
dlers, respectively, as well as to the IE5.5+ onfocusin and onfocusout events. Starting with IE5.5+, it is
possible to manage the activation of an element and the focus of an element separately. The onactivate
and ondeactivate events correspond to the activation of an element, whereas onfocusin and
onfocusout deal with focus. In many cases, activation and focus go hand in hand, but not always.

If an element receives activation, the onactivate event fires for that element just before the activation takes
hold; conversely, just before the element loses activation, events fire in the sequence onbeforedeactivate,
ondeactivate, onblur. Only elements that by their nature can accept activation (for example, links and
form input controls) or that have a tabindex attribute set can become the active element (and, therefore, fire
these events).

WinIE5.5+ maintains the original onfocus and onblur event handlers. But because the behaviors are so
close to those of the onactivate and ondeactivate events, I don’t recommend mixing the old and new
event handler names in your coding style. If you script exclusively for WinIE5.5+, which is rather likely in
this day and age, you can use the newer terminology throughout. And if you truly want to track the focus of
an element, consider using onfocusin and onfocusout instead.

326

Document Objects Reference

elementObject.onactivate

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 326

Example
You can modify Listing 15-34 later in this chapter by substituting onactivate for onfocus and
ondeactivate for onblur.

Use The Evaluator (see Chapter 13) to experiment with the onbeforedeactivate event handler. To begin,
set the myP element so it can accept focus:

myP.tabIndex = 1

If you repeatedly press the Tab key, the myP paragraph will eventually receive focus — indicated by the dot-
ted rectangle around it. To see how you can prevent the element from losing focus, assign an anonymous
function to the onbeforedeactivate event handler, as shown in the following statement:

myP.onbeforedeactivate = new Function(“event.returnValue=false”)

Now you can press Tab all you like or click other focusable elements all you like, and the myP element will
not lose focus until you reload the page (which clears away the event handler). Please do not do this on
your pages unless you want to infuriate and alienate your site visitors.

Related Items: onblur, onfocus, onfocusin, onfocusout event handlers

onafterupdate
onbeforeupdate
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

The onafterupdate and onbeforeupdate event handlers fire on a bound data object in IE whenever the
data in the object is being updated. The onbeforeupdate event is fired just before the update occurs,
whereas onafterupdate is fired after the data has been successfully updated.

onbeforecopy
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari1.3+

The onbeforecopy event handler fires before the actual copy action takes place whenever the user initiates
a content copy action via the Edit menu (including the Ctrl+C keyboard shortcut) or the right-click context
menu. If the user accesses the Copy command via the Edit or context menu, the onbeforecopy event fires
before either menu displays. In practice, the event may fire twice even though you expect it only once. Just
because the onbeforecopy event fires, it does not guarantee that a user will complete the copy operation
(for example, the context menu may close before the user makes a selection).

Unlike paste-related events, the onbeforecopy event handler does not work with form input elements.
Just about any other HTML element is fair game, however.

Example
You can use the onbeforecopy event handler to preprocess information prior to an actual copy action. In
Listing 15-33, the function invoked by the second paragraph element’s onbeforecopy event handler
selects the entire paragraph so that the user can select any character(s) in the paragraph to copy the entire
paragraph into the clipboard. You can paste the results into the text area to verify the operation. By assign-
ing the paragraph selection to the onbeforecopy event handler, the page notifies the user about what the
copy operation will entail prior to making the menu choice. Had the operation been deferred to the oncopy
event handler, the selection would have been made after the user chose Copy from the menu.

327

elementObject.onbeforecopy

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 327

LISTING 15-33

The onbeforecopy Event Handler

<html>
<head>

<title>onbeforecopy Event Handler</title>
<script type=”text/javascript”>
function selectWhole() {

var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;

}
</script>

</head>
<body>

<h1>onbeforecopy Event Handler</h1>
<hr />
<p>Select one or more characters in the following paragraph. Then execute

a Copy command via Edit or context menu.</p>
<p id=”myP” onbeforecopy=”selectWhole()”>Lorem ipsum dolor sit amet,

consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</p>

<form>
<p>Paste results here:

<textarea name=”output” cols=”60” rows=”5”>
</textarea></p>

</form>
</body>

</html>

Related Items: onbeforecut, oncopy event handlers

onbeforecut
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari 1.3+

The onbeforecut event handler fires before the actual cut action takes place whenever the user initiates a
content cut via the Edit menu (including the Ctrl+X keyboard shortcut) or the right-click context menu. If
the user accesses the Cut command via the Edit or context menu, the onbeforecut event fires before
either menu displays. In practice, the event may fire twice even though you expect it only once. Just
because the onbeforecut event fires, it does not guarantee that a user will complete the cut operation (for
example, the context menu may close before the user makes a selection). If you add the onbeforecut
event handler to an HTML element, the context menu usually disables the Cut menu item. But assigning a
JavaScript call to this event handler brings the Cut menu item to life.

328

Document Objects Reference

elementObject.onbeforecut

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 328

Example
You can use the onbeforecut event handler to preprocess information prior to an actual cut action. You can
try this by editing a copy of Listing 15-33, changing the onbeforecopy event handler to onbeforecut.
Notice that in its original form, the example does not activate the Cut item in either the context or Edit menu
when you select some text in the second paragraph. But by assigning a function to the onbeforecut event
handler, the menu item is active, and the entire paragraph is selected from the function that is invoked.

Related Items: onbeforecopy, oncut event handlers

onbeforedeactivate
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

(See onactivate event handler)

onbeforeeditfocus
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onbeforeeditfocus event handler is triggered whenever you edit an element on a page in an envi-
ronment such as Microsoft’s DHTML Editing ActiveX control or with the editable page content feature of
IE5.5+. This discussion focuses on the latter scenario because it is entirely within the scope of client-side
JavaScript. The onbeforeeditfocus event fires just before the element receives its focus. (There may be
no onscreen feedback that editing is turned on unless you script it yourself.) The event fires each time a
user clicks the element, even if the element just received edit focus elsewhere in the same element.

Example
Use The Evaluator (see Chapter 13) to explore the onbeforeeditfocus in WinIE5.5+. In the following
sequence, you assign an anonymous function to the onbeforeeditfocus event handler of the myP ele-
ment. The function turns the text color of the element to red when the event handler fires:

myP.onbeforeeditfocus = new Function(“myP.style.color=’red’”)

Now turn on content editing for the myP element:

myP.contentEditable = true

Now if you click inside the myP element on the page to edit its content, the text turns red before you begin
editing. In a page scripted for this kind of user interface, you would include some control that turns off
editing and changes the color to normal.

Related Items: document.designMode, contentEditable, isContentEditable properties

onbeforepaste
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari 1.3+

Like onbeforecopy and onbeforecut, the onbeforepaste event occurs just prior to the display of either
the context or menu-bar Edit menu when the current object is selected (or has a selection within it). The
primary value of this event comes when you use scripts to control the copy-and-paste process of a complex
object. Such an object may have multiple kinds of data associated with it, but your script captures only one
of the data types. Or you may want to put some related data about the copied item (for example, the id
property of the element) into the clipboard. By using the onbeforepaste event handler to set the
event.returnValue property to false, you guarantee that the pasted item is enabled in the context or

329

elementObject.onbeforepaste

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 329

Edit menu (provided that the clipboard is holding some content). A handler invoked by onpaste should
then apply the specific data subset from the clipboard to the currently selected item.

Example
See Listing 15-44 for the onpaste event handler (later in this chapter) to see how the onbeforepaste and
onpaste event handlers work together.

Related Items: oncopy, oncut, onpaste event handlers

onbeforeupdate
(See onafterupdate)

onblur
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The onblur event fires when an element that has focus is about to lose focus because some other element is
about to receive focus. For example, a text input element fires the onblur event when a user tabs from that
element to the next one inside a form. The onblur event of the first element fires before the onfocus event
of the next element.

The availability of the onblur event has expanded with succeeding generations of script-capable browsers.
In the earlier versions, blur and focus were largely confined to text-oriented input elements (including the
select element). These are safe to use with all scriptable browser versions. The window object received the
onblur event handler starting with NN3 and IE4. IE4 also extended the event handler to more form
elements, predominantly on the Windows operating system because that OS has a user interface clue (the
dotted rectangle) when items such as buttons and links receive focus (so that you may act upon them by
pressing the spacebar). For IE5+, the onblur event handler is available to virtually every HTML element.
For most of those elements, however, blur and focus are not possible unless you assign a value to the
tabindex attribute of the element’s tag. For example, if you assign tabindex=”1” inside a <p> tag, the
user can bring focus to that paragraph (highlighted with the dotted rectangle in Windows) by clicking the
paragraph or pressing the Tab key until that item receives focus in sequence.

If you plan to use the onblur event handler on window or text-oriented input elements, be aware that
there might be some unexpected and undesirable consequences of scripting for the event. For example, in
IE, a window object that has focus loses focus (and triggers the onblur event) if the user brings focus to any
element on the page (or even clicks a blank area on the page). Similarly, the interaction between onblur,
onfocus, and the alert() dialog box can be problematic with text input elements. This is why I generally
recommend using the onchange event handler to trigger form validation routines. If you should employ
both the onblur and onchange event handler for the same element, the onchange event fires before
onblur. For more details about using this event handler for data validation, see Chapter 43 on the
CD-ROM.

WinIE5.5+ added the ondeactivate event handler, which fires immediately before the onblur event
handler. Both the onblur and ondeactivate events can be blocked if the onbeforedeactivate
event handler function sets event.returnValue to false.

Example
More often than not, a page author uses the onblur event handler to exert extreme control over the user,
such as preventing a user from exiting a text box unless that user types something in the box. This is not a
web-friendly practice, and it is one that I discourage because there are intelligent ways to ensure that a field

330

Document Objects Reference

elementObject.onblur

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 330

has something typed into it before a form is submitted (see Chapter 43 on the CD-ROM). Listing 15-34
simply demonstrates the impact of the tabindex attribute in a WinIE5 element with respect to the onblur
and onfocus events. Notice that as you press the Tab key, only the second paragraph issues the events,
even though all three paragraphs have event handlers assigned to them.

LISTING 15-34

onblur and onfocus Event Handlers

<html>
<head>

<title>onblur and onblur Event Handlers</title>
<script type=”text/javascript”>
function showBlur() {

var id = event.srcElement.id;
alert(“Element \”” + id + “\” has blurred.”);

}

function showFocus() {
var id = event.srcElement.id;
alert(“Element \”” + id + “\” has received focus.”);

}
</script>

</head>
<body>

<h1 id=”H1” tabindex=”2”>onblur and onblur Event Handlers</h1>
<hr />
<p id=”P1” onblur=”showBlur()” onfocus=”showFocus()”>Lorem ipsum dolor

sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.</p>

<p id=”P2” tabindex=”1” onblur=”showBlur()” onfocus=”showFocus()”>Bis
nostrud exercitation ullam mmodo consequet. Duis aute involuptate
velit esse cillum dolore eu fugiat nulla pariatur. At vver eos et
accusam dignissum qui blandit est praesent luptatum delenit
aigueexcepteur sint occae.</p>

<p id=”P3” onblur=”showBlur()” onfocus=”showFocus()”>Unte af phen
neigepheings atoot Prexs eis phat eit sakem eit vory gast te Plok
peish ba useing phen roxas. Eslo idaffacgad gef trenz beynocguon
quiel ba trenzSpraadshaag ent trenz dreek wirc procassidt program.</p>

</body>
</html>

Related Items: blur(), focus() methods; ondeactivate, onbeforedeactivate, onfocus,
onactivate event handlers

331

elementObject.onblur

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 331

oncellchange
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The oncellchange event handler is part of the data binding of IE and fires when data changes in the data
provider, which is usually a bound control. When responding to this event, you can analyze the dataFld
property to find out which field in the recordset has changed.

onclick
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The onclick event fires when a user presses down (with the primary mouse button) and releases the
button with the pointer atop the element (both the down and up strokes must be within the rectangle of
the same element). The event also fires with non-mouse-click equivalents in operating systems such as
Windows. For example, you can use the keyboard to give focus to a clickable object and then press the
spacebar or Enter key to perform the same action as clicking the element. In IE, if the element object
supports the click() method, the onclick event fires with the invocation of that method (notice that
this does not apply to Navigator or other browsers).

The onclick event is closely related to other mouse events. The other related events are onmousedown,
onmouseup, and ondoubleclick. The onmousedown event fires when the user makes contact with the
mouse switch on the downstroke of a click action. Next comes the onmouseup event (when the contact
breaks). Only then does the onclick event fire — provided that the onmousedown and onmouseup events
have fired in the same object. See the discussions on the onmousedown and onmouseup events later in this
chapter for examples of their usage.

Interaction with the ondblclick event is simple: The onclick event fires (after the first click), followed by
the ondblclick event (after the second click). See the discussion of the ondblclick event handler later in
this chapter for more about the interaction of these two event handlers.

When used with objects that have intrinsic actions when users click them (namely, links and areas), the
onclick event handler can perform all of the actions — including navigating to the destination normally
assigned to the href attribute of the element. For example, to be compatible with all scriptable browsers,
you can make an image clickable if you surround its tag with an <a> link tag. This lets the onclick event
of that tag substitute for the missing onclick event handler of earlier tags. If you assign an onclick
event handler without special protection, the event handler will execute, and the intrinsic action of the
element will be carried out. Therefore, you need to block the intrinsic action. To accomplish this, the event
handler must evaluate to the statement return false. You can do this in two ways. The first is to append a
return false statement to the script statement assigned to the event handler:

<img...>

As an alternative, you can let the function invoked by the event handler supply the false part of the
return false statement, as shown in the following sequence:

function yourFunction() {
[statements that do something here]
return false;

}
...
<img...>

332

Document Objects Reference

elementObject.onclick

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 332

Either methodology is acceptable. A third option is to not use the onclick event handler at all but assign a
javascript: pseudo-URL to the href attribute (see the Link object in Chapter 19).

The event model in IE4+ provides one more way to prevent the intrinsic action of an object from firing
when a user clicks it. If the onclick event handler function sets the returnValue property of the event
object to false, the intrinsic action is canceled. Simply include the following statement in the function
invoked by the event handler:

event.returnValue = false;

The event model of the W3C DOM has a different approach to canceling the default action. In the event
handler function for an event, invoke the eventObj.cancelDefault() method.

A common mistake made by scripting beginners is to use a submit type input button as a button intended
to perform some script action rather than submitting a form. The typical scenario is an input element of
type submit assigned an onclick event handler to perform some local action. The submit input button
has an intrinsic behavior, just like links and areas. Although you can block the intrinsic behavior, as just
described, you should use an input element of type button.

If you are experiencing difficulty with an implementation of the onclick event handler (such as trying to find
out which mouse button was used for the click), it may be that the operating system or default browser behav-
ior is getting in the way of your scripting. But you can usually get what you need via the onmousedown event
handler. (The onmouseup event may not fire when you use the secondary mouse button to click an object.)
Use the onclick event handler whenever possible to capture user clicks, because this event behaves most like
users are accustomed to in their daily computing work. But fall back on onmousedown in an emergency.

Example
The onclick event handler is one of the simplest to grasp and use. Listing 15-35 demonstrates its interac-
tion with the ondblclick event handler and shows you how to prevent a link’s intrinsic action from acti-
vating when combined with click events. As you click and/or double-click the link, the status bar displays
a message associated with each event. Notice that if you double-click, the click event fires first, with the
first message immediately replaced by the second. For demonstration purposes, I show both backward-
compatible ways of canceling the link’s intrinsic action. In practice, decide on one style and stick with it.

LISTING 15-35

Using onclick and ondblclick Event Handlers

<html>
<head>

<title>onclick and ondblclick Event Handlers</title>
<script type=”text/javascript”>
var timeout;
function clearOutput() {

document.getElementById(“clickType”).innerHTML = “”;
}
function showClick() {

document.getElementById(“clickType”).innerHTML = “single”;
clearTimeout(timeout);

continued

333

elementObject.onclick

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 333

334

Document Objects Reference

elementObject.oncontextmenu

Part III

LISTING 15-35 (continued)

timeout = setTimeout(“clearOutput()”, 3000);
}

function showDblClick() {
document.getElementById(“clickType”).innerHTML = “double”;
clearTimeout(timeout);
timeout = setTimeout(“clearOutput()”, 3000);

}
</script>

</head>
<body>

<h1>onclick and ondblclick Event Handlers</h1>
<hr />
<a href=”#” onclick=”showClick();return false”
ondblclick=”return showDblClick()”>A sample link.
(Click type:)

</body>
</html>

Related Items: click() method; oncontextmenu, ondblclick, onmousedown, onmouseup event
handlers

oncontextmenu
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari-

The oncontextmenu event fires when the user clicks an object with the secondary (usually the right)
mouse button. The only click-related events that fire with the secondary button are onmousedown and
oncontextmenu.

To block the intrinsic application menu display of the oncontextmenu event, use any of the three event
cancellation methodologies available in WinIE5+ (as just described in the onclick event handler descrip-
tion: two variations of evaluating the event handler to return false; assigning false to the
event.returnValue property). It is not uncommon to wish to block the context menu from appearing so
that users are somewhat inhibited from downloading copies of images or viewing the source code of a
frame. Be aware, however, that if a user turns Active Scripting off in WinIE5+, the event handler cannot pre-
vent the context menu from appearing.

Another possibility for this event is to trigger the display of a custom context menu constructed with other
DHTML facilities. In this case, you must also disable the intrinsic context menu so that both menus do not
display at the same time.

Example
See Listing 15-30 earlier in this chapter for an example of using the oncontextmenu event handler with a
custom context menu.

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 334

Related Items: releaseCapture(), setCapture() methods

oncontrolselect
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The oncontrolselect event fires just before a user makes a selection on an editable element while the
page is in edit mode. It’s important to note that it is the element itself that is selected to trigger this event,
not the content within the element.

Related Items: onresizeend, onresizestart event handlers

oncopy
oncut
Compatibility: WinIE5+, MacIE4+, NN-, Moz-, Safari1.3+

The oncopy and oncut events fire immediately after the user or script initiates a copy or cut edit action on
the current object. Each event is preceded by its associated before event, which fires before any Edit or con-
text menu appears (or before the copy or cut action, if initiated by keyboard shortcut).

Use these event handlers to provide edit functionality to elements that don’t normally allow copying or cut-
ting. In such circumstances, you need to enable the Copy or Cut menu items in the context or Edit menu
by setting the event.returnValue for the onbeforecopy or onbeforecut event handlers to false.
Then your oncopy or oncut event handlers must manually stuff a value into the clipboard by way of the
setdata() method of the clipboardData object. If you use the setdata() method in your oncopy or
oncut event handler, you must also set the event.returnValue property to false in the handler func-
tion to prevent the default copy or cut action from wiping out your clipboard contents.

Because you are in charge of what data is stored in the clipboard, you are not limited to a direct copy of the
data. For example, you might wish to store the value of the src property of an image object so that the user
can paste it elsewhere on the page.

In the case of the oncut event handler, your script is also responsible for cutting the element or selected
content from the page. To eliminate all of the content of an element, you can set the element’s innerHTML
or innerText property to an empty string. For a selection, use the selection.createRange() method
to generate a TextRange object whose contents you can manipulate through the TextRange object’s
methods.

Example
Listing 15-36 shows both the onbeforecut and oncut event handlers in action (as well as onbeforepaste
and onpaste). Notice that the handleCut() function not only stuffs the selected word into the
clipboardData object, but also erases the selected text from the table cell element from where it came. If
you replace the onbeforecut and oncut event handlers with onbeforecopy and oncopy (and change
handleCut() to not eliminate the inner text of the event source element), the operation works with copy
and paste instead of cut and paste. I demonstrate this later in the chapter in Listing 15-44.

335

elementObject.oncopy

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 335

LISTING 15-36

Cutting and Pasting under Script Control

<html>
<head>

<title>onbeforecut and oncut Event Handlers</title>
<style type=”text/css”>
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
<script type=”text/javascript”>
function selectWhole() {

var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;

}

function handleCut() {
var rng = document.selection.createRange();
clipboardData.setData(“Text”,rng.text);
var elem = event.srcElement;
elem.innerText = “”;
event.returnValue = false;

}

function handlePaste() {
var elem = window.event.srcElement;
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”);
}
event.returnValue = false;

}

function handleBeforePaste() {
var elem = window.event.srcElement;
if (elem.className == “blanks”) {

event.returnValue = false;
}

}
</script>

</head>
<body>

<h1>onbeforecut and oncut Event Handlers</h1>
<hr />
<p>Your goal is to cut and paste one noun and one adjective from the

following table into the blanks of the sentence. Select a word from
the table and use the Edit or context menu to cut it from the table.
Select one or more spaces of the blanks in the sentence and choose
Paste to replace the blank with the clipboard contents.</p>

336

Document Objects Reference

elementObject.oncopy

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 336

<table cellpadding=”5” onbeforecut=”selectWhole()” oncut=”handleCut()”>
<tr>

<th>Nouns</th>
<th>Adjectives</th>

</tr>
<tr>

<td>truck</td>
<td>round</td>

</tr>
<tr>

<td>doll</td>
<td>red</td>

</tr>
<tr>

<td>ball</td>
<td>pretty</td>

</tr>
</table>
<p id=”myP” onbeforepaste=”handleBeforePaste()” onpaste=”handlePaste()”>

Pat said, “Oh my, the <span id=”blank1”
class=”blanks”> is so !”</p>

<button onclick=”location.reload()”>Reset</button>
</body>

</html>

Related Items: onbeforecopy, onbeforecut, onbeforepaste, and onpaste event handlers

ondataavailable
ondatasetchanged
ondatasetcomplete
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

These three events are part of the data binding of IE and are fired to help reflect the state of data that is being
transmitted. The ondataavailable event fires when data is transmitted from the data source, whereas the
ondatasetcomplete event indicates that the recordset has completely downloaded from the data source.
The ondatasetchanged event is fired when the recordset of a data source has somehow changed.

ondblclick
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The ondblclick event fires after the second click of a double-click sequence. The timing between clicks
depends on the client’s mouse control panel settings. The onclick event also fires, but only after the first of
the two clicks.

In general, it is rarely a good design to have an element perform one task when the mouse is single-clicked
and a different task if double-clicked. With the event sequence employed in modern browsers, this isn’t prac-
tical anyway (the onclick event always fires, even when the user double-clicks). But it is not uncommon to
have the mouse down action perform some helper action. You see this in most icon-based file systems: If you
click a file icon, it is highlighted at mouse down to select the item; you can double-click the item to launch it.
In either case, one event’s action does not impede the other nor confuse the user.

337

elementObject.ondblclick

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 337

Example
See Listing 15-35 (for the onclick event handler) to see the ondblclick event in action.

Related Items: onclick, onmousedown, onmouseup event handlers

ondrag, ondragend, ondragstart
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari 1.3+

The ondrag event fires after the ondragstart event and continues firing repeatedly while the user drags a
selection or object onscreen. Unlike the onmousemove event, which fires only as the cursor moves
onscreen, the ondrag event continues to fire even when the cursor is stationary. In the WinIE5+/Safari 1.3+,
users can drag objects to other browser windows or other applications. The event fires while the dragging
extends beyond the browser window.

Because the event fires regardless of what is underneath the dragged object, you can use it in a game or
training environment in which the user has only a fixed amount of time to complete a dragging operation
(for example, matching similar pairs of objects). If the browser accommodates downloadable cursors, the
ondrag event could cycle the cursor through a series of cursor versions to resemble an animated cursor.

Understanding the sequence of drag-related events during a user drag operation can be helpful if your
scripts need to micromanage the actions (usually not necessary for basic drag-and-drop operations).
Consider the drag-and-drop operation shown in Figure 15-2.

FIGURE 15-2

A typical drag-and-drop operation.

338

Document Objects Reference

elementObject.ondrag

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 338

It helps to imagine that the cells of the table with draggable content are named like spreadsheet cells: truck
is cell A1; round is B1; doll is A2; and so on. During the drag operation, many objects are the targets of a
variety of drag-related events. Table 15-11 lists the event sequence and the event targets.

TABLE 15-11

Events and Their Targets During a Typical Drag-and-Drop Operation

Event Target Discussion

ondragstart cell A1 The very first event that fires during a drag-and-drop operation.

ondrag cell A1 Fires continually on this target throughout the entire operation. Other
events get interspersed, however.

ondragenter cell A1 Even though the cursor hasn’t moved from cell A1 yet, the ondragenter
event fires upon first movement within the source element.

ondragover cell A1 Fires continually on whatever element the cursor rests on at that instant.
If the user simply holds the mouse button down and does not move the
cursor during a drag, the ondrag and ondragover events fire
continually, alternating between the two.

(repetition) cell A1 ondrag and ondragover events fire alternately while the cursor
remains atop cell A1.

ondragenter table The table element, represented by the border and/or cell padding,
receives the ondragenter event when the cursor touches its space.

ondragleave cell A1 Notice that the ondragleave event fires after the ondragenter event
fires on another element.

ondrag cell A1 Still firing away.

ondragover table The source element for this event shifts to the table because that’s what the
cursor is over at this instant. If the cursor doesn’t move from this spot, the
ondrag (cell A1) and ondragover (table) events continue to fire in turn.

ondragenter cell B1 The drag is progressing from the table border space to cell B1.

ondragleave table The table element receives the ondragleave event when the cursor
exits its space.

ondrag cell A1 The ondrag event continues to fire on the cell A1 object.

ondragover cell B1 The cursor is atop cell B1 now, so the ondragover event fires for that
object. Fires multiple times (depending on the speed of the computer and
the user’s drag action), alternating with the previous ondrag event.

More of the same as the cursor progresses from cell B1 through the
table border again to cell B2, the table again, cell B3, and the
outermost edge of the table.

ondragenter body Dragging is free of the table and is floating free on the bare body
element.

ondragleave table Yes, you just left the table.

ondrag cell A1 Still alive and receiving this event.

continued

339

elementObject.ondrag

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 339

TABLE 15-11 (continued)

Event Target Discussion

ondragover body That’s where the cursor is now. Fires multiple times (depending on the
speed of the computer and the user’s drag action), alternating with the
previous ondrag event.

ondragenter blank1 The cursor reaches the span element whose ID is blank1, where the
empty underline is.

ondragleave body Just left the body for the blank.

ondrag cell A1 Still kicking.

ondragover blank1 That’s where the cursor is now. Fires multiple times (depending on the
speed of the computer and the user’s drag action), alternating with the
previous ondrag event.

ondrop blank1 The span element gets the notification of a recent drop.

ondragend cell A1 The original source element gets the final word that dragging is complete.
This event fires even if the drag does not succeed because the drag does
not end on a drop target.

In practice, some of the events shown in Table 15-11 may not fire. Much has to do with how many event han-
dlers you trap that need to execute scripts along the way. The other major factor is the physical speed at which
the user performs the drag-and-drop operation (which interacts with the CPU processing speed). The kinds of
events that are most likely to be skipped are the ondragenter and ondragleave events, and perhaps some
ondragover events if the user flies over an object before its ondragover event has a chance to fire.

Despite this uncertainty about drag-related event reliability, you can count on several important ones to fire
all the time. The ondragstart, ondrop (if over a drop target), and ondragend events — as well some
interstitial ondrag events — will definitely fire in the course of dragging onscreen. All but ondrop direct
their events to the source element, whereas ondrop fires on the target.

Example
Listing 15-37 shows several drag-related event handlers in action. The page resembles the example in
Listing 15-36, but the scripting behind the page is quite different. In this example, the user is encouraged to
select individual words from the Nouns and Adjectives columns and drag them to the blanks of the sen-
tence. To beef up the demonstration, Listing 15-37 shows you how to pass the equivalent of array data from
a drag source to a drag target. At the same time, the user has a fixed amount of time (2 seconds) to com-
plete each drag operation.

The ondragstart and ondrag event handlers are placed in the <body> tag because those events bubble
up from any element that the user tries to drag. The scripts invoked by these event handlers filter the events
so that the desired action is triggered only by the hot elements inside the table. This approach to event han-
dlers prevents you from having to duplicate event handlers for each table cell.

The ondragstart event handler invokes setupDrag(). This function cancels the ondragstart event
except when the target element (the one about to be dragged) is one of the td elements inside the table. To
make this application smarter about what kind of word is dragged to which blank, it passes not only the
word’s text, but also some extra information about the word. This lets another event handler verify that a
noun has been dragged to the first blank, whereas an adjective has been dragged to the second blank. To help
with this effort, class names are assigned to the td elements to distinguish the words from the Nouns column

340

Document Objects Reference

elementObject.ondrag

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 340

from the words of the Adjectives column. The setupDrag() function generates an array consisting of the
innerText of the event’s source element plus the element’s class name. But the event.dataTransfer
object cannot store array data types, so the Array.join() method converts the array to a string with a colon
separating the entries. This string, then, is stuffed into the event.dataTransfer object. The object is
instructed to render the cursor display during the drag-and-drop operation so that when the cursor is atop a
drop target, the cursor is the copy style. Finally, the setupDrag() function is the first to execute in the drag
operation, so a timer is set to the current clock time to time the drag operation.

The ondrag event handler (in the body) captures the ondrag events that are generated by whichever table
cell element is the source element for the action. Each time the event fires (which is a lot during the action),
the timeIt() function is invoked to compare the current time against the reference time (global timer) set
when the drag starts. If the time exceeds 2 seconds (2,000 milliseconds), an alert dialog box notifies the
user. To close the alert dialog box, the user must unclick the mouse button to end the drag operation.

To turn the blank span elements into drop targets, their ondragenter, ondragover, and ondrop event
handlers must set event.returnValue to false; also, the event.dataTransfer.dropEffect property
should be set to the desired effect (copy, in this case). These event handlers are placed in the p element that
contains the two span elements, again for simplicity. Notice, however, that the cancelDefault() func-
tions do their work only if the target element is one of the span elements whose ID begins with blank.

As the user releases the mouse button, the ondrop event handler invokes the handleDrop() function. This
function retrieves the string data from event.dataTransfer and restores it to an array data type (using
the String.split() method). A little bit of testing makes sure that the word type (noun or adjective) is
associated with the desired blank. If so, the source element’s text is set to the drop target’s innerText prop-
erty; otherwise, an error message is assembled to help the user know what went wrong.

LISTING 15-37

Using Drag-Related Event Handlers

<html>
<head>

<title>Dragging Event Handlers</title>
<style type=”text/css”>
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
<script type=”text/javascript”>
var timer;

function setupDrag() {
if (event.srcElement.tagName != “TD”) {

// don’t allow dragging for any other elements
event.returnValue = false;

} else {
// setup array of data to be passed to drop target
var passedData = [event.srcElement.innerText,

event.srcElement.className];
// store it as a string

continued

341

elementObject.ondrag

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 341

LISTING 15-37 (continued)

event.dataTransfer.setData(“Text”, passedData.join(“:”));
event.dataTransfer.effectAllowed = “copy”;
timer = new Date();

}
}

function timeIt() {
if (event.srcElement.tagName == “TD” && timer) {

if ((new Date()) - timer > 2000) {
alert(“Sorry, time is up. Try again.”);
timer = 0;

}
}

}

function handleDrop() {
var elem = event.srcElement;
var passedData = event.dataTransfer.getData(“Text”);
var errMsg = “”;
if (passedData) {

// reconvert passed string to an array
passedData = passedData.split(“:”);
if (elem.id == “blank1”) {

if (passedData[1] == “noun”) {
event.dataTransfer.dropEffect = “copy”;
event.srcElement.innerText = passedData[0];

} else {
errMsg = “You can’t put an adjective into the noun

placeholder.”;
}

} else if (elem.id == “blank2”) {
if (passedData[1] == “adjective”) {

event.dataTransfer.dropEffect = “copy”;
event.srcElement.innerText = passedData[0];

} else {
errMsg = “You can’t put a noun into the adjective

placeholder.”;
}

}
if (errMsg) {

alert(errMsg);
}

}
}

function cancelDefault() {
if (event.srcElement.id.indexOf(“blank”) == 0) {

event.dataTransfer.dropEffect = “copy”;
event.returnValue = false;

}
}

342

Document Objects Reference

elementObject.ondrag

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 342

</script>
</head>
<body ondragstart=”setupDrag()” ondrag=”timeIt()”>

<h1>Dragging Event Handlers</h1>
<hr />
<p>Your goal is to drag one noun and one adjective from the following

table into the blanks of the sentence. Select a word from the table
and drag it to the desired blank. When you release the mouse, the word
will appear in the blank. You have two seconds to complete each
blank.</p>

<table cellpadding=”5”>
<tr>

<th>Nouns</th>
<th>Adjectives</th>

</tr>
<tr>

<td class=”noun”>truck</td>
<td class=”adjective”>round</td>

</tr>
<tr>

<td class=”noun”>doll</td>
<td class=”adjective”>red</td>

</tr>
<tr>

<td class=”noun”>ball</td>
<td class=”adjective”>pretty</td>

</tr>
</table>
<p id=”myP” ondragenter=”cancelDefault()” ondragover=”cancelDefault()”

ondrop=”handleDrop()”>Pat said, “Oh my, the <span id=”blank1”
class=”blanks”> is so !”</p>

<button onclick=”location.reload()”>Reset</button>
</body>

</html>

One event handler not shown in Listing 15-37 is ondragend. You can use this event to display the elapsed
time for each successful drag operation. Because the event fires on the drag source element, you can imple-
ment it in the <body> tag and filter events similar to the way the ondragstart or ondrag event handlers
filter events for the td element.

Related Items: event.dataTransfer object; ondragenter, ondragleave, ondragover, ondrop event
handlers

ondragenter
ondragleave
ondragover
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari 1.3+

These events fire during a drag operation. When the cursor enters the rectangular space of an element on
the page, the ondragenter event fires on that element. Immediately thereafter, the ondragleave event

343

elementObject.ondragenter

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 343

fires on the element from which the cursor came. Although this may seem to occur out of sequence from
the physical action, the events always fire in this order. Depending on the speed of the client computer’s
CPU and the speed of the user’s dragging action, one or the other of these events may not fire — especially if
the physical action outstrips the computer’s capability to fire the events in time.

The ondragover event fires continually while a dragged cursor is atop an element. In the course of dragging
from one point on the page to another, the ondragover event target changes with the element beneath the
cursor. If no other drag-related events are firing (the mouse button is still down in the drag operation, but the
cursor is not moving), the ondrag and ondragover events fire continually, alternating between the two.

You should have the ondragover event handler of a drop target element set the event.returnValue
property to false. See the discussion of the ondrag event handler earlier in this chapter for more details
on the sequence of drag-related events.

Example
Listing 15-38 shows the ondragenter and ondragleave event handlers in use. The simple page displays
(via the status bar) the time of entry to one element of the page. When the dragged cursor leaves the ele-
ment, the ondragleave event handler hides the status-bar message. No drop target is defined for this page,
so when you drag the item, the cursor remains the no-drop cursor.

LISTING 15-38

Using ondragenter and ondragleave Event Handlers

<html>
<head>

<title>ondragenter and ondragleave Event Handlers</title>
<script type=”text/javascript”>
function showEnter() {

status = “Entered at: “ + new Date();
event.returnValue = false;

}
function clearMsg() {

status = “”;
event.returnValue = false;

}
</script>

</head>
<body>

<h1 ondragenter=”showEnter()” ondragleave=”clearMsg()”>
ondragenter and ondragleave Event Handlers</h1>
<hr />
<p>Select any character(s) from this paragraph, and slowly drag it around

the page. When the dragging action enters the large header above, the
status bar displays when the onDragEnter event handler fires. When you
leave the header, the message is cleared via the onDragLeave event
handler.</p>

</body>
</html>

Related Items: ondrag, ondragend, ondragstart, ondrop event handlers

344

Document Objects Reference

elementObject.ondragenter

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 344

ondragstart
(See ondrag)

ondrop
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari 1.3+

The ondrop event fires on the drop target element as soon as the user releases the mouse button at the end
of a drag-and-drop operation. For IE, Microsoft recommends that you denote a drop target by applying the
ondragenter, ondragover, and ondrop event handlers to the target element. In each of those event han-
dlers, you should set the dataTransfer.dropEffect to the transfer effect you wish to portray in the
drag-and-drop operation (signified by a different cursor for each type). These settings should match the
dataTransfer.effectAllowed property that is usually set in the ondragstart event handler. Each
of the three drop-related handlers should also override the default event behavior by setting the
event.returnValue property to false. See the discussion of the ondrag event handler earlier in this
chapter for more details on the sequence of drag-related events.

Example
See Listing 15-37 of the ondrag event handler to see how to apply the ondrop event handler in a typical
drag-and-drop scenario.

Related Items: event.dataTransfer object; ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart event handlers

onerrorupdate
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

The onerrorupdate event handler is part of the data binding of IE and fires when an error occurs while
updating the data in the data source object.

onfilterchange
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The onfilterchange event fires whenever an object’s visual filter switches to a new state or a transition
completes (a transition may be extended over time). Only objects that accommodate filters and transitions
in IE (primarily block elements and form controls) receive the event.

A common usage of the onfilterchange event is to trigger the next transition within a sequence of transi-
tion activities. This may include an infinite loop transition, for which the object receiving the event toggles
between two transition states. If you don’t want to get into a loop of that kind, place the different sets of
content in their own positionable elements, and use the onfilterchange event handler in one to trigger
the transition in the other.

Example
Listing 15-39 demonstrates how the onfilterchange event handler can trigger a second transition effect after
another one completes. The onload event handler triggers the first effect. Although the onfilterchange event
handler works with most of the same objects in IE4 as IE5, the filter object transition properties are not reflected
in a convenient form. The syntax shown in Listing 15-39 uses the more modern ActiveX filter control found in
IE5.5+ (described in Chapter 26).

345

elementObject.onfilterchange

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 345

LISTING 15-39

Using the onFilterChange Event Handler

<html>
<head>

<title>onfilterchange Event Handler</title>
<script type=”text/javascript”>
function init() {

image1.filters[0].apply();
image2.filters[0].apply();
start();

}

function start() {
image1.style.visibility = “hidden”;
image1.filters[0].play();

}

function finish() {
// verify that first transition is done (optional)
if (image1.filters[0].status == 0) {

image2.style.visibility = “visible”;
image2.filters[0].play();

}
}
</script>

</head>
<body onload=”init()”>

<h1>onfilterchange Event Handler</h1>
<hr />
<p>The completion of the first transition (“circle-in”) triggers the

second (“circle-out”). <button onclick=”location.reload()”>Play It
Again</button></p>

<div id=”image1”
style=”visibility:visible; position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’in’)” onfilterchange=”finish()”>

</div>
<div id=”image2”
style=”visibility:hidden; position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’out’)”>

</div>

</body>
</html>

Related Item: filter object

346

Document Objects Reference

elementObject.onfilterchange

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 346

onfocus
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The onfocus event fires when an element receives focus, usually following some other object’s losing focus.
(The element losing focus receives the onblur event before the current object receives the onfocus event.)
For example, a text input element fires the onfocus event when a user tabs to that element while navigat-
ing through a form via the keyboard. Clicking an element also gives that element focus, as does making the
browser the frontmost application on the client desktop.

The availability of the onfocus event has expanded with succeeding generations of script-capable browsers.
In earlier versions, blur and focus were largely confined to text-oriented input elements such as the select
element. The window object received the onfocus event handler starting with NN3 and IE4. IE4 also
extended the event handler to more form elements, predominantly on the Windows operating system
because that OS has a user interface clue (the dotted rectangle) when items such as buttons and links
receive focus (so that users may act on them by pressing the spacebar). For IE5+, the onfocus event han-
dler is available to virtually every HTML element. For most of those elements, however, you cannot use blur
and focus unless you assign a value to the tabindex attribute of the element’s tag. For example, if you
assign tabindex=”1” inside a <p> tag, the user can bring focus to that paragraph (highlighted with the
dotted rectangle in Windows) by clicking the paragraph or pressing the Tab key until that item receives
focus in sequence.

WinIE5.5 adds the onfocusin event handler, which fires immediately before the onfocus event handler.
You can use one or the other, but there is little need to include both event handlers for the same object
unless you wish to block an item temporarily from receiving focus. To prevent an object from receiving
focus in IE5.5+, include an event.returnValue=false statement in the onfocusin event handler for the
same object. In other browsers, you can usually get away with assigning onfocus=”this.blur()” as an
event handler for elements such as form controls. However, this is not a foolproof way to prevent a user
from changing a control’s setting. Unfortunately, there are few reliable alternatives short of disabling the
control.

Example
See Listing 15-34 earlier in this chapter for an example of the onfocus and onblur event handlers.

Related Items: onactivate, onblur, ondeactivate, onfocusin, onfocusout event handlers

onfocusin
onfocusout
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The onfocusin and onfocusout events fire to indicate that an element is about to receive focus or has just
lost focus. These events are closely related to onactivate and ondeactivate except that in IE5.5+ activa-
tion and focus can be distinguished from each other. For example, if you set an element as the active ele-
ment through setActive(), the element becomes active, but it does not gain the input focus. However, if
you set the focus of an element with a call to focus(), the element is activated and gains input focus.

Related Items: onactivate, onblur, ondeactivate, onfocus event handlers

347

elementObject.onfocusin

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 347

onhelp
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

The onhelp event handler fires in Windows whenever an element of the document has focus and the user
presses the F1 function key on a Windows PC. As of MacIE5, the event fires only on the window (in other
words, event handler specified in the <body> tag) and does so via the dedicated Help key on a Mac keyboard.
Browser Help menu choices do not activate this event. To prevent the browser’s Help window from appearing,
the event handler must evaluate to return false (for IE4+) or set the event.returnValue property to
false (IE5+). Because the event handler can be associated with individual elements of a document in the
Windows version, you can create a context-sensitive help system. However, if the focus is in the Address field
of the browser window, you cannot intercept the event. Instead, the browser’s Help window appears.

Example
Listing 15-40 is a rudimentary example of a context-sensitive help system that displays help messages tai-
lored to the kind of text input required by different text boxes. When the user gives focus to either of the
text boxes, a small legend appears to remind the user that help is available by a press of the F1 help key.
MacIE5 provides only generic help.

LISTING 15-40

Creating Context-Sensitive Help

<html>
<head>

<title>onhelp Event Handler</title>
<script type=”text/javascript”>
function showNameHelp() {

alert(“Enter your first and last names.”);
event.cancelBubble = true;
return false;

}
function showYOBHelp() {

alert(“Enter the four-digit year of your birth. For example: 1972”);
event.cancelBubble = true;
return false;

}
function showGenericHelp() {

alert(“All fields are required.”);
event.cancelBubble = true;
return false;

}
function showLegend() {

document.getElementById(“legend”).style.visibility = “visible”;
}
function hideLegend() {

document.getElementById(“legend”).style.visibility = “hidden”;
}
function init() {

var msg = “”;
if (navigator.userAgent.indexOf(“Mac”) != -1) {

msg = “Press \’help\’ key for help.”;

348

Document Objects Reference

elementObject.onhelp

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 348

} else if (navigator.userAgent.indexOf(“Win”) != -1) {
msg = “Press F1 for help.”;

}
document.getElementById(“legend”).style.visibility = “hidden”;
document.getElementById(“legend”).innerHTML = msg;

}
</script>

</head>
<body onload=”init()” onhelp=”return showGenericHelp()”>

<h1>onhelp Event Handler</h1>
<hr />
<p id=”legend” style=”visibility:hidden; font-size:10px”> </p>
<form>

Name: <input type=”text” name=”name” size=”30” onfocus=”showLegend()”
onblur=”hideLegend()” onhelp=”return showNameHelp()” />

Year of Birth: <input type=”text” name=”YOB” size=”30”
onfocus=”showLegend()” onblur=”hideLegend()”
onhelp=”return showYOBHelp()” />

</form>
</body>

</html>

Related Items: window.showHelp(), window.showModalDialog() methods

onkeydown
onkeypress
onkeyup
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

When someone presses and releases a keyboard key, a sequence of three events fires in quick succession.
The onkeydown event fires when the key makes its first contact. This is followed immediately by the
onkeypress event. When contact is broken by the key release, the onkeyup event fires. If you hold a
character key down until it begins autorepeating, the onkeydown and onkeypress events fire with each
repetition of the character.

The sequence of events can be crucial in some keyboard event handling. Consider the scenario that wants
the focus of a series of text boxes to advance automatically after the user enters a fixed number of characters
(for example, date, month, and two-digit year). By the time the onkeyup event fires, the character associ-
ated with the key-press action is already added to the box and you can accurately determine the length of
text in the box, as shown in this simple example:

<html>
<head>
<script type=”text/javascript”>
function jumpNext(fromFld, toFld) {

if (fromFld.value.length == 2) {
document.forms[0].elements[toFld].focus();
document.forms[0].elements[toFld].select();

}

349

elementObject.onkeydown

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 349

}
</script>
</head>
<body>
<form>
Month: <input name=”month” type=”text” size=”3” value=””

onkeyup=”jumpNext(this, day)” maxlength=”2” />
Day: <input name =”day” type=”text” size=”3” value=””

onkeyup =”jumpNext(this, year)” maxlength=”2” />
Year: <input name=”year” type=”text” size=”3” value=””

onkeyup =”jumpNext(this, month)” maxlength=”2” />
</form>
</body>
</html>

These three events do not fire for all keys of the typical PC keyboard on all browser versions that support
keyboard events. The only keys that you can rely on supporting the events in all browsers shown in the pre-
ceding compatibility chart are the alphanumeric keys represented by ASCII values, including the spacebar
and Enter (Return on the Mac), but excluding all function keys, arrow keys, and other navigation keys.
Modifier keys, such as Shift, Ctrl (PC), Alt (PC), Command (Mac), and Option (Mac), generate some events
on their own (depending on browser and version). However, functions invoked by other key events can
always inspect the pressed states of these modifier keys.

The onkeydown event handler works in Mozilla-based browsers only starting with Mozilla 1.4
(and Netscape 7.1).

Scripting keyboard events almost always entails examining which key is pressed so that some processing or
validation can be performed on that key press. This is where the situation gets very complex if you are writ-
ing for cross-browser implementation. In some cases, even writing just for Internet Explorer gets tricky
because nonalphanumeric keys generate only the onkeydown and onkeyup events.

In fact, to comprehend keyboard events fully, you need to make a distinction between key codes and character
codes. Every PC keyboard key has a key code associated with it. This key code is always the same regardless
of what other keys you press at the same time. Only the alphanumeric keys (letters, numbers, spacebar, and
so on), however, generate character codes. The code represents the typed character produced by that key. The
value might change if you press a modifier key. For example, if you press the A key by itself, it generates a
lowercase a character (character code 97); if you also hold down the Shift key, that same key produces an
uppercase A character (character code 65). The key code for that key (65 for Western-language keyboards)
remains the same no matter what.

That brings us, then, to where these different codes are made available to scripts. In all cases, the code
information is conveyed as one or two properties of the browser’s event object. IE’s event object has only
one such property: keyCode. It contains key codes for onkeydown and onkeyup events but character codes
for onkeypress events. The NN6+/Moz event object, on the other hand, contains two separate properties:
charCode and keyCode. You can find more details and examples about these event object properties in
Chapter 25.

The bottom-line script consideration is to use either onkeydown or onkeyup event handlers when you want
to look for nonalphanumeric key events (for example, function keys, arrow and page-navigation keys, and

CAUTION CAUTION

350

Document Objects Reference

elementObject.onkeydown

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 350

so on). To process characters as they appear in text boxes, use the onkeypress event handler. You can
experiment with these events and codes in Listing 15-41 as well as in examples from Chapter 25.

Common keyboard event tasks
WinIE4+ enables you to modify the character that a user who is editing a text box enters. The onkeypress
event handler can modify the event.keyCode property and allow the event to continue (in other words,
don’t evaluate to return false or set the event.returnValue property to false). The following IE
function (invoked by an onkeypress event handler) makes sure that text entered in a text box is all
uppercase, even if you type it as lowercase:

function assureUpper() {
if (event.keyCode >= 97 && event.keyCode <= 122) {

event.keyCode = event.keyCode – 32;
}

}

Doing this might confuse (or frustrate) users, so think carefully before implementing such a plan.

To prevent a key press from becoming a typed character in a text box, the onkeypress event handler pre-
vents the default action of the event. For example, the following HTML page shows how to inspect a text
box’s entry for numbers only:

<html>
<head>
<title>Keyboard Capture</title>
<script type=”text/javascript”>
function checkIt(evt) {

var charCode = (evt.charCode) ? evt.charCode : ((
evt.which) ? evt.which : evt.keyCode);

if (charCode > 31 && (charCode < 48 || charCode > 57)) {
alert(“Please make sure entries are numbers only.”);
return false;

}
return true;

}
</script>
</head>

<body>
<form>
Enter any positive integer: <input type=”text” name=”numeric”

onkeypress=”return checkIt(event)”>
</form>
</body>
</html>

Whenever a user enters a non-number, the user receives a warning, and the character is not appended to
the text box’s text.

351

elementObject.onkeydown

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 351

Keyboard events also enable you to script the submission of a form when a user presses the Enter (Return
on the Mac) key within a text box. The ASCII value of the Enter/Return key is 13. Therefore, you can
examine each key press in a text box and submit the form whenever value 13 arrives, as shown in the fol-
lowing function:

function checkForEnter(evt) {
evt = (evt) ? evt : event;
var charCode = (evt.charCode) ? evt.charCode : ((

evt.which) ? evt.which : evt.keyCode);
if (charCode == 13) {

document.forms[0].submit();
return false;

}
return true;

}

By assigning the checkForEnter() function to each box’s onkeypress event handler, you suddenly add
some extra power to a typical HTML form.

You can intercept Ctrl+keyboard combinations (letters only) in HTML pages most effectively in Internet
Explorer, but only if the browser itself does not use the combination. In other words, you cannot redirect
Ctrl+key combinations that the browser uses for its own control. The onkeypress keyCode value for
Ctrl+key combinations ranges from 1 through 26 for letters A through Z (except for those used by the
browser, in which case no keyboard event fires).

Example
Listing 15-41 is a working laboratory that you can use to better understand the way keyboard event codes
and modifier keys work in IE5+ and W3C browsers. The actual code of the listing is less important than
watching the page while you use it. For every key or key combination that you press, the page shows the
keyCode value for the onkeydown, onkeypress, and onkeyup events. If you hold down one or more
modifier keys while performing the key press, the modifier-key name is highlighted for each of the three
events. Note that when run in NN6+/Moz, the keyCode value is not the character code (which doesn’t
show up in this example for NN6+/Moz). Also, you may need to click the NN6+/Moz page for the
document object to recognize the keyboard events.

The best way to watch what goes on during keyboard events is to press and hold a key to see the key codes
for the onkeydown and onkeypress events. Then release the key to see the code for the onkeyup event.
Notice, for instance, that if you press the A key without any modifier key, the onkeydown event key code is
65 (A), but the onkeypress key code in IE (and the charCode property in NN6+/Moz) is 97 (a). If you
then repeat the exercise but hold the Shift key down, all three events generate the 65 (A) key code (and the
Shift modifier labels are highlighted). Releasing the Shift key causes the onkeyup event to show the key
code for the Shift key.

In another experiment, press any of the four arrow keys. No key code is passed for the onkeypress event
because those keys don’t generate those events. They do, however, generate onkeydown and onkeyup
events.

352

Document Objects Reference

elementObject.onkeydown

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 352

LISTING 15-41

Keyboard Event Handler Laboratory

<html>
<head>

<title>Keyboard Event Handler Lab</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function init() {

document.onkeydown = showKeyDown;
document.onkeyup = showKeyUp;
document.onkeypress = showKeyPress;

}

function showKeyDown(evt) {
evt = (evt) ? evt : window.event;
document.getElementById(“pressKeyCode”).innerHTML = 0;
document.getElementById(“upKeyCode”).innerHTML = 0;
document.getElementById(“pressCharCode”).innerHTML = 0;
document.getElementById(“upCharCode”).innerHTML = 0;
restoreModifiers(“”);
restoreModifiers(“Down”);
restoreModifiers(“Up”);
document.getElementById(“downKeyCode”).innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById(“downCharCode”).innerHTML = evt.charCode;
}
showModifiers(“Down”, evt);

}

function showKeyUp(evt) {
evt = (evt) ? evt : window.event;
document.getElementById(“upKeyCode”).innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById(“upCharCode”).innerHTML = evt.charCode;
}
showModifiers(“Up”, evt);
return false;

}

function showKeyPress(evt) {
evt = (evt) ? evt : window.event;
document.getElementById(“pressKeyCode”).innerHTML = evt.keyCode;
if (evt.charCode) {

document.getElementById(“pressCharCode”).innerHTML = evt.charCode;
}

continued

353

elementObject.onkeydown

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 353

LISTING 15-41 (continued)

showModifiers(“”, evt);
return false;

}

function showModifiers(ext, evt) {
restoreModifiers(ext);
if (evt.shiftKey) {

document.getElementById(“shift” + ext).style.backgroundColor =
“#ff0000”;

}
if (evt.ctrlKey) {

document.getElementById(“ctrl” + ext).style.backgroundColor =
“#00ff00”;

}
if (evt.altKey) {

document.getElementById(“alt” + ext).style.backgroundColor =
“#0000ff”;

}
}

function restoreModifiers(ext) {
document.getElementById(“shift” + ext).style.backgroundColor =

“#ffffff”;
document.getElementById(“ctrl” + ext).style.backgroundColor =

“#ffffff”;
document.getElementById(“alt” + ext).style.backgroundColor =

“#ffffff”;
}
</script>

</head>
<body onload=”init()”>

<h1>Keyboard Event Handler Lab</h1>
<hr />
<form>

<table border=”2” cellpadding=”2”>
<tr>

<th></th>
<th>onKeyDown</th>
<th>onKeyPress</th>
<th>onKeyUp</th>

</tr>
<tr>

<th>Key Codes</th>
<td id=”downKeyCode”>0</td>
<td id=”pressKeyCode”>0</td>
<td id=”upKeyCode”>0</td>

</tr>
<tr>

<th>Char Codes (IE5/Mac; NN6)</th>
<td id=”downCharCode”>0</td>

354

Document Objects Reference

elementObject.onkeydown

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 354

<td id=”pressCharCode”>0</td>
<td id=”upCharCode”>0</td>

</tr>
<tr>

<th rowspan=”3”>Modifier Keys</th>
<td>Shift</td>
<td>Shift</td>
<td>Shift</td>

</tr>
<tr>

<td>Ctrl</td>
<td>Ctrl</td>
<td>Ctrl</td>

</tr>
<tr>

<td>Alt</td>
<td>Alt</td>
<td>Alt</td>

</tr>
</table>

</form>
</body>

</html>

Spend some time with this lab, and try all kinds of keys and key combinations until you understand the
way the events and key codes work.

Related Item: String.fromCharCode() method

onlayoutcomplete
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onlayoutcomplete event handler fires when a print or print-preview layout operation completes on
the current layout rectangle (LayoutRect object). This event is primarily used as the basis for overflowing
content from one page to another during printing. In response to the onlayoutcomplete event, the
contentOverflow property can be inspected to determine whether page content has indeed overflowed
the current layout rectangle.

onlosecapture
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onlosecapture event handler fires whenever an object that has event capture turned on no longer has
that capture. Event capture is automatically disengaged when the user performs any of the following
actions:

n Gives focus to any other window

n Displays any system modal dialog box (for example, alert window)

n Scrolls the page

355

elementObject.onlosecapture

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 355

n Opens a browser context menu (right-clicking)

n Tabs to give focus to the Address field in the browser window

A function associated with the onlosecapture event handler should perform any cleanup of the environ-
ment due to an object’s no longer capturing mouse events.

Example
See Listing 15-30 earlier in this chapter for an example of how to use onlosecapture with an event-
capturing scenario for displaying a context menu. The onlosecapture event handler hides the context
menu when the user performs any action that causes the menu to lose mouse capture.

Related Items: releaseCapture(), setCapture() methods

onmousedown
onmouseup
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The onmousedown event handler fires when the user presses any button on a mouse. The onmouseup event
handler fires when the user releases the mouse button, provided that the object receiving the event also received
an onmousedown event. When a user performs a typical click of the mouse button atop an object, mouse events
occur in the following sequence: onmousedown, onmouseup, and onclick. But if the user presses the mouse
atop an object and then slides the cursor away from the object, only the onmousedown event fires.

These events enable authors and designers to add more applicationlike behavior to images that act as action
or icon buttons. If you notice the way most buttons work, the appearance of the button changes while you
press the mouse button and reverts to its original style when you release the mouse button (or you drag the
cursor out of the button). These events enable you to emulate that behavior.

The event object created with every mouse button action has a property that reveals which mouse button
the user pressed. NN4’s event model called that property the which property. IE4+ and NN6+/Moz call it
the button property (but with different values for the buttons). It is most reliable to test for the mouse but-
ton number on either the onmousedown or onmouseup event rather than on onclick. The onclick event
object does not always contain the button information.

Example
To demonstrate a likely scenario of changing button images in response to rolling atop an image, pressing down
on it, releasing the mouse button, and rolling away from the image, Listing 15-42 presents a pair of small navi-
gation buttons (left- and right-arrow buttons). Images are preloaded into the browser cache as the page loads so
that response to the user is instantaneous the first time the user calls upon new versions of the images.

LISTING 15-42

Using onmousedown and onmouseup Event Handlers

<html>
<head>

<title>onmousedown and onmouseup Event Handlers</title>
<script type=”text/javascript”>
var RightNormImg = new Image(16,16);
var RightUpImg = new Image(16,16);

356

Document Objects Reference

elementObject.onmousedown

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 356

var RightDownImg = new Image(16,16);
var LeftNormImg = new Image(16,16);
var LeftUpImg = new Image(16,16);
var LeftDownImg = new Image(16,16);

RightNormImg.src = “RightNorm.gif”;
RightUpImg.src = “RightUp.gif”;
RightDownImg.src = “RightDown.gif”;
LeftNormImg.src = “LeftNorm.gif”;
LeftUpImg.src = “LeftUp.gif”;
LeftDownImg.src = “LeftDown.gif”;

function setImage(imgName, type) {
var imgFile = eval(imgName + type + “Img.src”);
document.images[imgName].src = imgFile;
return false;

}
</script>

</head>
<body>

<h1>onmousedown and onmouseup Event Handlers</h1>
<hr />
<p>Roll atop and click on the buttons to see how the link event handlers

swap images:</p>
<center>

<img alt=”image”
name=”Left” src=”LeftNorm.gif” height=”16” width=”16”
border=”0” onmouseover=”return setImage(‘Left’,’Up’)”
onmousedown=”return setImage(‘Left’,’Down’)”
onmouseup=”return setImage(‘Left’,’Up’)”
onmouseout=”return setImage(‘Left’,’Norm’)” /> <img
alt=”image” name=”Right” src=”RightNorm.gif” height=”16” width=”16”
border=”0” onmouseover=”return setImage(‘Right’,’Up’)”
onmousedown=”return setImage(‘Right’,’Down’)”
onmouseup=”return setImage(‘Right’,’Up’)”
onmouseout=”return setImage(‘Right’,’Norm’)” />

</center>
</body>

</html>

Related Item: onclick event handler

onmouseenter
onmouseleave
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

WinIE5.5 introduced the onmouseenter and onmouseleave event handlers. Both event handlers operate
just like the onmouseover and onmouseout event handlers, respectively. Microsoft simply offers an alterna-
tive terminology. The old and new events continue to fire in IE5.5+. The old ones fire just before the new

357

elementObject.onmouseenter

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 357

ones for each act of moving the cursor atop, and exiting from atop, the object. If you are scripting exclu-
sively for IE5.5+, you should use the new terminology; otherwise, stay with the older versions.

Example
You can modify Listing 15-43 with the IE5.5 syntax by substituting onmouseenter for onmouseover and
onmouseleave for onmouseout. The effect is the same.

Related Items: onmouseover, onmouseout event handlers

onmousemove
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The onmousemove event handler fires whenever the cursor is atop the current object and the mouse is
moved, even by a single pixel. You do not have to press the mouse button for the event to fire, although the
event is most commonly used in element dragging — especially in NN/Mozilla, where no ondrag event
handler is available.

Even though the granularity of this event can be at the pixel level, you should not use the number of event
firings as a measurement device. Depending on the speed of cursor motion and the performance of the
client computer, the event may not fire at every pixel location.

In IE4+ and W3C DOM-compatible browsers, you can assign the onmousemove event handler to any ele-
ment (although you can drag only with positioned elements). When designing a page that encourages users
to drag multiple items on a page, it is most common to assign the onmousemove event handler to the
document object and let all such events bubble up to the document for processing.

Example
See Chapter 40 and Chapter 56 on the CD-ROM for examples of using mouse events to control element
dragging on a page.

Related Items: ondrag, onmousedown, onmouseup event handlers

onmouseout
onmouseover
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The onmouseover event fires for an object whenever the cursor rolls into the rectangular space of the
object on the screen. The onmouseout event handler fires when you move the cursor outside the object’s
rectangle. These events most commonly display explanatory text about an object in the window’s status bar
and effect image swapping (so-called mouse rollovers). Use the onmouseover event handler to change the
state to a highlighted version; use the onmouseout event handler to restore the image or status bar to its
normal setting.

Although these two events have been in object models of scriptable browsers since the beginning, they were
not available to most objects in earlier browsers. IE4+ and W3C DOM-compatible browsers provide support
for these events on every element that occupies space onscreen. IE5.5+ includes an additional pair of event
handlers — onmouseenter and onmouseleave— that duplicates the onmouseover and onmouseout
events but with different terminology. The old event handlers fire just before the new versions.

The onmouseout event handler commonly fails to fire if the event is associated with an ele-
ment that is near a frame or window edge and the user moves the cursor quickly outside the

current frame.

NOTENOTE

358

Document Objects Reference

elementObject.onmouseout

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 358

Example
Listing 15-43 uses the U.S. Pledge of Allegiance with four links to demonstrate how to use the onmouseover
and onmouseout event handlers. Notice that for each link, the handler runs a general-purpose function that
sets the window’s status message. The function returns a true value, which the event handler call evaluates
to replicate the required return true statement needed for setting the status bar. In one status message, I
supply a URL in parentheses to let you evaluate how helpful you think it is for users.

LISTING 15-43

Using onmouseover and onmouseout Event Handlers

<html>
<head>

<title>onmouseover and onmouseout Event Handlers</title>
<script type=”text/javascript”>
function setStatus(msg) {

status = msg;
return true;

}

// destination of all link HREFs
function emulate() {

alert(“Not going there in this demo.”);
}
</script>

</head>
<body>

<h1>onmouseover and onmouseout Event Handlers</h1>
<hr />
<h1>Pledge of Allegiance</h1>
<hr />
I pledge <a href=”javascript:emulate()”
onmouseover=”return setStatus(‘View dictionary definition’)”
onmouseout=”return setStatus(‘’)”>allegiance to the <a
href=”javascript:emulate()”
onmouseover=”return setStatus(‘Learn about the U.S. flag
(http://lcweb.loc.gov)’)”
onmouseout=”return setStatus(‘’)”>flag of the <a
href=”javascript:emulate()”
onmouseover=”return setStatus(‘View info about the U.S. government’)”
onmouseout=”return setStatus(‘’)”>United States of America, and to
the Republic for which it stands, one nation <a
href=”javascript:emulate()”
onmouseover=”return setStatus(‘Read about the history of this phrase in
the Pledge’)”
onmouseout=”return setStatus(‘’)”>under God, indivisible, with
liberty and justice for all.

</body>
</html>

Related Items: onmouseenter, onmouseleave, onmousemove event handlers

359

elementObject.onmouseout

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 359

onmousewheel
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The onmousewheel event handler fires in response to the user’s rotating the mouse wheel. It’s not too sur-
prising that this event is IE-specific, given that wheeled mice are for the most part unique to Wintel PCs.
When responding to the onmousewheel event, you can check the wheelDelta property to find out how
far the mouse wheel has been rotated. The wheelDelta property expresses mouse wheel rotations in multi-
ples of 120, with positive values indicating a rotation away from the user and negative values corresponding
to a rotation toward the user.

Related Items: onmousemove event handler

onmove
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

Not to be confused with onmousemove, the onmove event has nothing to do with the mouse. Instead, the
onmove event is fired whenever a positionable element is moved. For example, if a div element is created as
an absolutely positioned moveable element, you can track its movement by responding to the onmove
event. The offsetLeft and offsetTop properties can be used within this event handler to determine the
exact location of the element as it is moving.

Related Items: onmoveend, onmovestart event handlers

onmoveend
onmovestart
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onmovestart and onmoveend event handlers fire in response to a positionable element’s being moved
on a page. More specifically, the onmovestart event is triggered when an element first starts moving and
the onmoveend event fires when the element stops moving. In between the onmovestart and onmoveend
events firing, multiple onmove events may be sent out to indicate the movement of the element.

Related Items: onmove event handler

onpaste
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari 1.3+

The onpaste event fires immediately after the user or script initiates a paste edit action on the current
object. The event is preceded by the onbeforepaste event, which fires prior to any edit or context menu
that appears (or before the paste action if initiated by keyboard shortcut).

Use this event handler to provide edit functionality to elements that don’t normally allow pasting. In such
circumstances, you need to enable the Paste menu item in the context or Edit menu by setting the
event.returnValue for the onbeforepaste event handler to false. Then your onpaste event handler
must manually retrieve data from the clipboard (by way of the getData() method of the clipboardData
object) and handle the insertion into the current object.

Because you are in charge of what data is stored in the clipboard, you are not limited to a direct copy of the
data. For example, you might wish to store the value of the src property of an image object so that you can
paste it elsewhere on the page.

360

Document Objects Reference

elementObject.onpaste

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 360

Example
Listing 15-44 demonstrates how to use the onbeforepaste and onpaste event handlers (in conjunction
with onbeforecopy and oncopy) to let scripts control the data-transfer process during a copy-and-paste
user operation. A table contains words to be copied (one column of nouns, one column of adjectives) and
then pasted into blanks in a paragraph. The onbeforecopy and oncopy event handlers are assigned to the
table element because the events from the td elements bubble up to the table container and there is less
HTML code to contend with.

Inside the paragraph, two span elements contain underscored blanks. To paste text into the blanks, the user
must first select at least one character of the blanks. (See Listing 15-37, which gives a drag-and-drop ver-
sion of this application.) The onbeforepaste event handler in the paragraph (which gets the event as it
bubbles up from either span) sets the event.returnValue property to false, thus allowing the Paste
item to appear in the context and Edit menus (not a normal occurrence in HTML body content).

At paste time, the innerHTML property of the target span is set to the text data stored in the clipboard. The
event.returnValue property is set to false here as well to prevent normal system pasting from interfer-
ing with the controlled version.

LISTING 15-44

Using onbeforepaste and onpaste Event Handlers

<html>
<head>

<title>onbeforepaste and onpaste Event Handlers</title>
<style type=”text/css”>
td {text-align:center}
th {text-decoration:underline}
.blanks {text-decoration:underline}
</style>
<script type=”text/javascript”>
function selectWhole() {

var obj = window.event.srcElement;
var range = document.body.createTextRange();
range.moveToElementText(obj);
range.select();
event.returnValue = false;

}
function handleCopy() {

var rng = document.selection.createRange();
clipboardData.setData(“Text”,rng.text);
event.returnValue = false;

}

function handlePaste() {
var elem = window.event.srcElement;
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”);
}
event.returnValue = false;

}

continued

361

elementObject.onpaste

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 361

LISTING 15-44 (continued)

function handleBeforePaste() {
var elem = window.event.srcElement;
if (elem.className == “blanks”) {

event.returnValue = false;
}

}
</script>

</head>
<body>

<h1>onbeforepaste and onpaste Event Handlers</h1>
<hr />
<p>Your goal is to copy and paste one noun and one adjective from the

following table into the blanks of the sentence. Select a word from
the table and copy it to the clipboard. Select one or more spaces of
the blanks in the sentence and choose Paste to replace the blank with
the clipboard contents.</p>

<table cellpadding=”5” onbeforecopy=”selectWhole()”
oncopy=”handleCopy()”>

<tr>
<th>Nouns</th>
<th>Adjectives</th>

</tr>
<tr>

<td>truck</td>
<td>round</td>

</tr>
<tr>

<td>doll</td>
<td>red</td>

</tr>
<tr>

<td>ball</td>
<td>pretty</td>

</tr>
</table>
<p id=”myP” onbeforepaste=”handleBeforePaste()” onpaste=”handlePaste()”>

Pat said, “Oh my, the <span id=”blank1”
class=”blanks”> is so !”</p>

<button onclick=”location.reload()”>Reset</button>
</body>

</html>

Related Items: oncopy, oncut, onbeforepaste event handlers

362

Document Objects Reference

elementObject.onpaste

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 362

onpropertychange
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onpropertychange event fires in WinIE5+ whenever a script modifies an object’s property. This
includes changes to the properties of an object’s style. Changing properties by way of the setAttribute()
method also triggers this event.

A script can inspect the nature of the property change because the event.propertyName property con-
tains the name (as a string) of the property that was just changed. In the case of a change to an object’s
style object, the event.propertyName value begins with “style.” as in style.backgroundcolor.

You can use this event handler to localize any object-specific postprocessing of changes to an object’s prop-
erties. Rather than include the postprocessing statements inside the function that makes the changes, you
can make that function generalized (perhaps to modify properties of multiple objects).

Example
Listing 15-45 shows how you can respond programmatically to an object’s properties being changed. The
page generated by the listing contains four radio buttons that alter the innerHTML and style.color
properties of a paragraph. The paragraph’s onpropertychange event handler invokes the showChange()
function, which extracts information about the event and displays the data in the status bar of the window.
Notice that the property name includes style. when you modify the style sheet property.

LISTING 15-45

Using the onPropertyChange Property

<html>
<head>

<title>onpropertychange Event Handler</title>
<script type=”text/javascript”>
function normalText() {

myP.innerText = “This is a sample paragraph.”;
}
function shortText() {

myP.innerText = “Short stuff.”;
}
function normalColor() {

myP.style.color = “black”;
}
function hotColor() {

myP.style.color = “red”;
}
function showChange() {

var objID = event.srcElement.id;
var propName = event.propertyName;
var newValue = eval(objID + “.” + propName);
status = “The “ + propName + “ property of the “ + objID;
status += “ object has changed to \”” + newValue + “\”.”;

}
</script>

</head>

continued

363

elementObject.onpropertychange

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 363

LISTING 15-45 (continued)

<body>
<h1>onpropertychange Event Handler</h1>
<hr />
<p id=”myP” onpropertychange=”showChange()”>This is a sample
paragraph.</p>
<form>

Text: <input type=”radio” name=”btn1” checked=”checked”
onclick=”normalText()” />Normal <input type=”radio” name=”btn1”
onclick=”shortText()” />Short

Color: <input type=”radio” name=”btn2” checked=”checked”
onclick=”normalColor()” />Black <input type=”radio” name=”btn2”
onclick=”hotColor()” />Red

</form>
</body>

</html>

Related Items: style property; setAttribute() method

onreadystatechange
Compatibility: WinIE4+, MacIE-, NN7+, Moz1.0.1+, Safari 1.2+

The onreadystatechange event handler fires whenever the ready state of an object changes. See details
about these states in the discussion of the readyState property earlier in this chapter (and notice the lim-
its for IE4). The change of state does not guarantee that an object is in fact ready for script statements to
access its properties. Always check the readyState property of the object in any script that the
onreadystatechange event handler invokes.

This event fires for objects that are capable of loading data: applet, document, frame, frameset, iframe,
img, link, object, script, and XML objects. The event doesn’t fire for other types of objects unless a
Microsoft DHTML behavior is associated with the object. The onreadystatechange event does not bubble;
neither can you cancel it.

Related Item: readyState property

onresize
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The onresize event handler fires whenever an object is resized in response to a variety of user or scripted
actions. Most elements include this event handler, provided that the object has dimensional style attributes
(for example, height, width, or position) assigned to it.

In IE4+ and NN6+/Moz, the onresize event does not bubble. Resizing the browser window or frame does
not cause the window’s onload event handler to fire.

364

Document Objects Reference

elementObject.onresize

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 364

Example
If you want to capture the user’s resizing of the browser window (or frame), you can assign a function to the
onresize event handler either via script

window.onresize = handleResize;

or by an HTML attribute of the body element:

<body onresize=”handleResize()”>

Related Item: window.resize() method

onresizeend
onresizestart
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onresizeend and onresizestart event handlers fire only on a resizable object in Windows edit mode.

Related Item: oncontrolselect event handler

onrowenter
onrowexit
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The onrowenter and onrowexit events fire in response to changes in the current row of recordset data in
IE data binding. More specifically, onrowenter is triggered when the data for the current row of data has
changed and new data is available on the data source object. The onrowexit event is triggered when the
current row is changing, meaning that another row of data is being selected; the event is fired just before the
row changes.

Related Item: onrowsdelete, onrowsinserted event handlers

onrowsdelete
onrowsinserted
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onrowsdelete event fires when one or more rows of data are about to be deleted from the recordset in
IE data binding. Conversely, the onrowsinserted event is triggered when one or more rows of data have
been inserted into the recordset.

Related Item: onrowenter, onrowexit event handlers

onscroll
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The onscroll event handler fires whenever the scroll box within a scroll bar of an element is repositioned.
In simpler terms, when the user clicks and drags the scroll box with the mouse, the onscroll event is
fired. That’s not the only action that triggers the event, however. An onscroll event is also fired in

365

elementObject.onscroll

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 365

response to the user’s clicking the scroll arrow, clicking the scroll bar, or pressing any of the following keys:
Home, End, Space, Page Up, or Page Down. A call to the doScroll() method also triggers the event, as
does the user’s holding down the Up Arrow or Down Arrow key.

Related Item: doScroll() method

onselectstart
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1.3+

The onselectstart event handler fires when a user begins to select content on the page. Selected content
can be inline text, images, or text within an editable text box. If the user selects more than one object, the
event fires in the first object affected by the selection.

Example
Use the page from Listing 15-46 to see how the onselectstart event handler works when a user selects
across multiple elements on a page. As the user begins a selection anywhere on the page, the ID of the
object receiving the event appears in the status bar. Notice that the event doesn’t fire until you actually
make a selection. When no other element is under the cursor, the body element fires the event.

LISTING 15-46

Using the onselectstart Event Handler

<html>
<head>

<title>onselectstart Event Handler</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function showObj() {

var objID = event.srcElement.id;
status = “Selection started with object: “ + objID;

}
</script>

</head>
<body id=”myBody” onselectstart=”showObj()”>

<h1 id=”myH1”>
onselectstart Event Handler

</h1>
<hr id=”myHR” />
<p id=”myP”>This is a sample paragraph.</p>
<table border=”1”>

<tr id=”row1”>
<th id=”header1”>Column A</th>
<th id=”header2”>Column B</th>
<th id=”header3”>Column C</th>

</tr>
<tr id=”row2”>

<td id=”cellA2”>text</td>

366

Document Objects Reference

elementObject.onscroll

Part III

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 366

<td id=”cellB2”>text</td>
<td id=”cellC2”>text</td>

</tr>
<tr id=”row3”>

<td id=”cellA3”>text</td>
<td id=”cellB3”>text</td>
<td id=”cellC3”>text</td>

</tr>
</table>

</body>
</html>

Related Item: onselect event handler for a variety of objects

367

elementObject.onselectstart

Generic HTML Element Objects 15

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 367

23_069165 ch15pt2.qxp 3/1/07 3:45 PM Page 368

Aquick look at the basic document object model diagram in Chapter 14
(see Figure 14-1) reveals that the window object is the outermost, most
global container of all document-related objects that you script with

JavaScript. All HTML and JavaScript activity takes place inside a window. That
window may be a standard Windows, Mac, or XWindows application-style win-
dow, complete with scroll bars, toolbars, and other chrome; you can also gener-
ate windows that have only some of a typical window’s chrome. A frame is also a
window, even though a frame doesn’t have many accoutrements beyond scroll
bars. The window object is where everything begins in JavaScript references to
objects. Modern browsers treat the frameset as a special kind of window object,
so it is also covered in this chapter.

Of all the objects associated with browser scripting, the window and window-
related objects have by far the most object-specific terminology associated with
them. This necessitates a rather long chapter to keep the discussion in one place.
Use the running footers as a navigational aid through this substantial collection
of information.

Window Terminology
The window object is often a source of confusion when you first learn about the
document object model. A number of synonyms for window objects muck up the
works: top, self, parent, and frame. Aggravating the situation is the fact that
these terms are also properties of a window object. Under some conditions, a
window is its own parent, but if you define a frameset with two frames, you have
only one parent among a total of three window objects. It doesn’t take long before
the whole subject can make your head hurt.

If you do not use frames in your web applications, all these headaches never
appear. But if frames are part of your design plan, you should get to know how
frames affect the object model.

369

IN THIS CHAPTER
Scripting communication among
multiple frames

Creating and managing new
windows

Controlling the size, position,
and appearance of the browser
window

Details of window, frame,
frameset, and iframe objects

Window and Frame Objects

24_069165 ch16.qxp 3/1/07 3:45 PM Page 369

Frames
The application of frames has become a religious issue among web designers: Some swear by them; others
swear at them. I believe there can be compelling reasons to use frames at times. For example, if you have a
document that requires considerable scrolling to get through, you may want to maintain a static set of navi-
gation controls visible at all times. By placing those controls — be they links or image maps — in a separate
frame, you have made the controls available for immediate access, regardless of the scrolled condition of the
main document.

Creating frames
The task of defining frames in a document remains the same whether or not you’re using JavaScript. The
simplest framesetting document consists of tags that are devoted to setting up the frameset, as follows:

<html>
<head>
<title>My Frameset</title>
</head>
<frameset>

<frame name=”Frame1” src=”document1.html”>
<frame name=”Frame2” src=”document2.html”>

</frameset>
</html>

The preceding HTML document, which the user never sees, defines the frameset for the entire browser win-
dow. Each frame must have a URL reference (specified by the src attribute) for a document to load into
that frame. For scripting purposes, assigning a name to each frame with the name attribute greatly simplifies
scripting frame content.

The frame object model
Perhaps the key to successful frame scripting is understanding that the object model in the browser’s mem-
ory at any given instant is determined by the HTML tags in the currently loaded documents. All canned
object model graphics in this book, such as Figure 16-1, do not reflect the precise object model for your
document or document set.

FIGURE 16-1

The simplest window–document relationship.

Window

Document

370

Document Objects ReferencePart III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 370

For a single, frameless document, the object model starts with just one window object, which contains one
document, as shown in Figure 16-1. In this simple structure, the window object is the starting point for all
references to any loaded object. Because the window is always there — it must be there for a document to
load into — a reference to any object in the document can omit a reference to the current window.

In a simple two-framed frameset model (see Figure 16-2), the browser treats the container of the initial,
framesetting document as the parent window. The only visible evidence that the document exists is that the
framesetting document’s title appears in the browser window title bar.

FIGURE 16-2

The parent and frames are part of the object model.

Each <frame> tag inside the <frameset> tag set creates another window object into which a document is
loaded. Each of those frames, then, has a document object associated with it. From the point of view of a
given document, it has a single window container, just as in the model shown in Figure 16-1. And although
the parent object is not visible to the user, it remains in the object model in memory. The presence of the
parent often makes it a convenient repository for variable data that needs to be shared by multiple child
frames or that must persist between loading of different documents inside a child frame.

In even more complex arrangements, as shown in Figure 16-3, a child frame itself may load a framesetting
document. In this situation, the difference between the parent and top objects starts to come into focus.
The top window is the only one in common with all frames in Figure 16-3. As you see in a moment, when
frames need to communicate with other frames (and their documents), you must fashion references to the
distant object via the window object that they all have in common.

Top
Parent

Top
Parent

Document Document

Top
Parent

<FRAMESET>

<FRAME> <FRAME>

371

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 371

FIGURE 16-3

Three generations of window objects.

Referencing frames
The purpose of an object reference is to help JavaScript locate the desired object in the object model cur-
rently held in memory. A reference is a road map for the browser to follow so that it can track down, say, the
value of a particular text field in a particular document. Therefore, when you construct a reference, think
about where the script appears in the object model and how the reference can help the browser determine
where it should go to find the distant object. In a two-generation scenario, such as the one shown in Figure
16-2, three intergenerational references are possible:

n Parent-to-child

n Child-to-parent

n Child-to-child

Assuming that you need to access an object, function, or variable in the relative’s frame, the following are
the corresponding reference structures: frameName.objFuncVarName, parent.objFuncVarName. and
parent.frameName.objFuncVarName.

The rule is this: Whenever a reference must point to another frame, begin the reference with the window
object that the two destinations have in common. To demonstrate that rule on the complex model in Figure
16-3, if the left child frame’s document needs to reference the document at the bottom right of the map, the
reference structure is

top.frameName.frameName.document. ...

Follow the map from the top window object down through two frames to the final document. JavaScript has
to take this route, so your reference must help it along.

Top
Parent

Child
Frame

Document
Child

Frame
Child

Frame

Document

Child Frame
Parent

<FRAMESET>

<FRAME>

<FRAME> <FRAME>

<FRAMESET>
<FRAME>

Document

372

Document Objects ReferencePart III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 372

Top versus parent
After seeing the previous object maps and reference examples, you may be wondering, Why not use top as
the leading object in all transframe references? From an object model point of view, you’ll have no problem
doing that: A parent in a two-generation scenario is also the top window. What you can’t count on, how-
ever, is your framesetting document’s always being the top window object in someone’s browser. Take the
instance where a web site loads other web sites into one of its frames. At that instant, the top window
object belongs to someone else. If you always specify top in references intended just for your parent win-
dow, your references won’t work and will probably lead to script errors for the user. My advice, then, is to
use parent in references whenever you mean one generation above the current document.

Preventing framing
You can use your knowledge of top and parent references to prevent your pages from being displayed
inside another web site’s frameset. Your top-level document must check whether it is loaded into its own
top or parent window. When a document is in its own top window, a reference to the top property of the
current window is equal to a reference to the current window (the window synonym self seems most
grammatically fitting here). If the two values are not equal, you can script your document to reload itself as
a top-level document. When it is critical that your document be a top-level document, include the script in
Listing 16-1 in the Head portion of your document:

LISTING 16-1

Prevention from Getting Framed

<script type=”text/javascript”>
if (top != self) {

top.location = location;
}
</script>

Your document may appear momentarily inside the other site’s frameset, but then the slate is wiped clean,
and your top-level document rules the browser window.

Ensuring framing
When you design a web application around a frameset, you may want to make sure that a page always loads
the complete frameset. Consider the possibility that a visitor adds only one of your frames to a bookmarks
list. On the next visit, only the bookmarked page appears in the browser without your frameset, which may
contain valuable navigation aids to the site.

A script can make sure that a page always loads into its frameset by comparing the URLs of the top and
self windows. If the URLs are the same, it means that the page needs to load the frameset. Listing 16-2
shows the simplest version of this technique, which loads a fixed frameset. For a more complete implemen-
tation that passes a parameter to the frameset so that it opens a specific page in one of the frames, see the
location.search property in Chapter 17.

373

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 373

LISTING 16-2

Forcing a Frameset to Load

<script type=”text/javascript”>
if (top.location.href == window.location.href) {

top.location.href = “ myFrameset.html”;
}
</script>

Switching from frames to frameless
Some sites load themselves in a frameset by default and offer users the option of getting rid of the frames.
Modern browsers let you modify a frameset’s cols or rows properties on the fly to simulate adding or
removing frames from the current view (see the frameset element object later in this chapter). Legacy
browsers, on the other hand, don’t allow you to change the makeup of a frameset dynamically after it has
loaded, but you can load the content page of the frameset into the main window. The workaround for older
browsers is to include a button or link whose action loads that document into the top window object:

top.location.href = “mainBody.html”;

A switch back to the frame version entails nothing more complicated than loading the framesetting docu-
ment.

Inheritance versus containment
Scripters who have experience in object-oriented programming environments probably expect frames to
inherit properties, methods, functions, and variables defined in a parent object. That’s not the case with
scriptable browsers. You can, however, still access those parent items when you make a call to the item with a
complete reference to the parent. For example, if you want to define a deferred function in the framesetting
parent document that all frames can share, the scripts in the frames refer to that function with this reference:

parent.myFunc()

You can pass arguments to such functions and expect returned values.

Frame synchronization
A pesky problem for some scripters’ plans is that including immediate scripts in the framesetting document
is dangerous. Such scripts tend to rely on the presence of documents in the frames being created by this
framesetting document. But if the frames have not yet been created, and their documents have not yet
loaded, the immediate scripts will likely crash and burn.

One way to guard against this problem is to trigger all such scripts from the frameset’s onload event han-
dler. In theory, this handler won’t trigger until all documents have successfully loaded into the child frames
defined by the frameset. At the same time, be careful with onload event handlers in the documents going
into a frameset’s frames. If one of those scripts relies on the presence of a document in another frame (one of
its brothers or sisters), you’re doomed to eventual failure. Anything coming from a slow network or server
to a slow modem can get in the way of other documents loading into frames in the ideal order.

374

Document Objects ReferencePart III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 374

One way to work around these problems is to create a Boolean variable in the parent document to act as a
flag for the successful loading of subsidiary frames. When a document loads into a frame, its onload event
handler can set that flag to true to indicate that the document has loaded. Any script that relies on a page
being loaded should use an if construction to test the value of that flag before proceeding.

It is best to construct the code so that the parent’s onload event handler triggers all the scripts that you
want to run after loading. You should also test your pages thoroughly for any residual effects that may
accrue if someone resizes a window or clicks Reload.

Blank frames
Often, you may find it desirable to create a frame in a frameset but not put any document in it until the user
has interacted with various controls or other user interface elements in other frames. Most modern browsers
have a somewhat empty document in one of their internal URLs (about:blank). However, this URL is not
guaranteed to be available on all browsers. If you need a blank frame, let your framesetting document write
a generic HTML document to the frame directly from the src attribute for the frame, as shown in the skele-
tal code in Listing 16-3. Loading an empty HTML document requires no additional transactions.

LISTING 16-3

Creating a Blank Frame

<html>
<head>
<script type=”text/javascript”>
<!--
function blank() {

return “<html></html>”;
}
//-->
</script>
</head>
<frameset>

<frame name=”Frame1” src=”someURL.html”>
<frame name=”Frame2” src=”javascript:parent.blank()”>

</frameset>
</html>

Viewing frame source code
Studying other scripters’ work is a major learning tool for JavaScript (or any programming language). With
most scriptable browsers, you can easily view the source code for any frame, including those frames whose
content is generated entirely or in part by JavaScript. Click the desired frame to activate it (a subtle border
may appear just inside the frame on some browser versions, but don’t be alarmed if the border doesn’t
appear). Then select Frame Source (or equivalent) from the View menu (or right-click submenu). You can
also print or save a selected frame.

375

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 375

Frames versus frame element objects
With the expansion of object models that expose every HTML element to scripting, a terminology conflict
comes into play. Everything that you have read about frames thus far in the chapter refers to the original
object model, where a frame is just another kind of window with a slightly different referencing approach.
That still holds true, even in the latest browsers.

But when the object model also exposes HTML elements, the notion of the frame element object is some-
what distinct from the frame object of the original model. The frame element object represents an object
whose properties are dominated by the attributes you set inside the <frame> tag. This provides access to
settings, such as the frame border and scrollability — the kinds of properties that are not exposed to the
original frame object.

References to the frame and frame element objects are also different. You’ve seen plenty of examples of how
to reference an old-fashioned frame earlier in this chapter. But access to a frame element object is either via
the element’s id attribute or through the child node relationship of the enclosing frameset element (you
cannot use the parentNode property to back your way out of the current document to the frame element
that encloses the document). The way I prefer is to assign an id attribute to <frame> tags and access the
frame element object by way of the document object that lives in the parent (or top) of the frameset hierar-
chy. Therefore, to access the frameBorder property of a frame element object from a script living in any
frame of a frameset, the syntax is

parent.document.all.frame1ID.frameBorder

or (for IE5+/Moz/W3C)

parent.document.getElementById(“frame1ID”).frameBorder

When the reference goes through the frame element object, you can still reach the document object in that
frame via the element object’s contentWindow or contentDocument properties (see the frame element
object later in this chapter).

window Object

Properties Methods Event Handlers

appCore addEventListener()† onabort††

clientInformation alert() onafterprint

clipboardData attachEvent()† onbeforeprint

closed back() onbeforeunload

Components[] blur()† onblur†

content clearInterval() onchange††

controllers[] clearTimeout() onclick††

crypto close() onclose††

defaultStatus confirm() onerror

dialogArguments createPopup() onfocus†

dialogHeight detachEvent()† onhelp

376

Document Objects Reference

window

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 376

Properties Methods Event Handlers

dialogLeft dispatchEvent()† onkeydown††

dialogTop dump() onkeypress††

dialogWidth execScript() onkeyup††

directories find() onload

document fireEvent()† onmousedown††

event focus()† onmousemove††

external forward() onmouseout††

frameElement geckoActiveXObject() onmouseover††

frames[] getComputedStyle() onmouseup††

fullScreen getSelection() onmove

history home() onreset††

innerHeight moveBy() onresize

innerWidth moveTo() onscroll

length navigate() onselect††

location open() onsubmit††

locationbar openDialog() onunload

menubar print()

name prompt()

navigator removeEventListener()†

netscape resizeBy()

offscreenBuffering resizeTo()

opener scroll()

outerHeight scrollBy()

outerWidth scrollByLines()

pageXOffset scrollByPages()

pageYOffset scrollTo()

parent setActive()†

personalbar setInterval()

pkcs11 setTimeout()

prompter showHelp()

returnValue showModalDialog()

screen showModelessDialog()

screenLeft sizeToContent()

screenTop stop()

screenX

screenY

377

window

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 377

Properties Methods Event Handlers

scrollbars

scrollMaxX

scrollMaxY

scrollX

scrollY

self

sidebar

status

statusbar

toolbar

top

window

†See Chapter 15.

††To handle captured or bubbled events of other objects in IE4+ and W3C DOM browsers.

Syntax
Creating a window:

var windowObject = window.open([parameters]);

Accessing window properties or methods:

window.property | method([parameters])

self.property | method([parameters])

windowObject.property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
The window object has the unique position of being at the top of the object hierarchy, encompassing even
the almighty document object. This exalted position gives the window object a number of properties and
behaviors unlike those of any other object.

Chief among its unique characteristics is that because everything takes place in a window, you can usually
omit the window object from object references. You’ve seen this behavior in previous chapters when I
invoked document methods, such as document.write(). The complete reference is window.document
.write(). But because the activity was taking place in the window that held the document running the
script, that window was assumed to be part of the reference. For single-frame windows, this concept is
simple enough to grasp.

As previously stated, among the list of properties for the window object is one called self. This property is
synonymous with the window object itself (which is why it shows up in hierarchy diagrams as an object).
Having a property of an object that is the same name as the object may sound confusing, but this situation

378

Document Objects Reference

window

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 378

is not that uncommon in object-oriented environments. I discuss the reasons why you may want to use the
self property as the window’s object reference in the self property description that follows.

As indicated earlier in the syntax definition, you don’t always have to create a window object specifically in
JavaScript code. After you start your browser, it usually opens a window. That window is a valid window
object, even if the window is blank. Therefore, after a user loads your page into the browser, the window
object part of that document is automatically created for your script to access as it pleases.

One conceptual trap to avoid is believing that a window object’s event handler or custom property assign-
ments outlive the document whose scripts make the assignments. Except for some obvious physical proper-
ties of a window, each new document that loads into the window starts with a clean slate of window
properties and event handlers.

Your script’s control over an existing (already open) window’s user interface elements varies widely with the
browser and browser version for which your application is intended. Before the version 4 browsers, the
only change you could make to an open window was to the status line at the bottom of the browser win-
dow. Version 4 browsers added the ability to control such properties as the size, location, and (with signed
scripts in Navigator and Mozilla) the presence of chrome elements (toolbars and scroll bars, for example) on
the fly. Many of these properties can be changed beyond specific safe limits only if you cryptographically
sign the scripts (see Chapter 46 on the CD-ROM) and/or the user grants permission for your scripts to
make those modifications.

Window properties are far more flexible on all browsers when your scripts generate a new window (with
the window.open() method): You can influence the size, toolbar, or other view options of a window.
Recent browser versions provide even more options for new windows, including the position of the window
and whether the window should even display a title bar. Again, if an option can conceivably be used to
deceive a user (for example, silently hiding one window that monitors activity in another window), signed
scripts and/or user permission are necessary.

The window object is also the level at which a script asks the browser to display any of three styles of dialog
boxes (a plain alert dialog box, an OK/Cancel confirmation dialog box, or a prompt for user text entry).
Although dialog boxes are extremely helpful for cobbling together debugging tools for your own use (see
Chapter 45 on the CD-ROM), they can be very disruptive to visitors who navigate through web sites.
Because most JavaScript dialog boxes are modal (that is, you cannot do anything else in the browser until
you dismiss the dialog box), use them sparingly, if at all. Remember that some users may create macros on
their computers to visit sites unattended. Should such an automated access of your site encounter a modal
dialog box, it is trapped on your page until a human intervenes.

All dialog boxes generated by JavaScript identify themselves as being generated by JavaScript. This is prima-
rily a security feature to prevent deceitful scripts from creating system- or application-style dialog boxes that
convince visitors to enter private information. It should also discourage dialog box usage in web-page
design. And that’s good, because dialog boxes tend to annoy users.

With the exception of the IE- and Safari-specific modal and IE-specific modeless dialog boxes (see the
window.showModalDialog() and window.showModeless() methods), JavaScript dialog boxes are not
particularly flexible in letting you fill them with text or graphic elements beyond the basics. In fact, you
can’t even change the text of the dialog-box buttons or add a button. With Dynamic HTML (DHTML)-
capable browsers, you can use positioned div or iframe elements to simulate dialog-box behavior in a
cross-browser way.

With respect to the W3C DOM, the window is outside the scope of the standard through DOM Level 2. The
closest that the standard comes to acknowledging a window at all is the document.defaultView property,
which evaluates to the window object in today’s browsers (predominantly Mozilla). But the formal DOM
standard specifies no properties or methods for this view object.

379

window

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 379

Properties
appCore
Components[]
content
controllers[]
prompter
sidebar
Values: (See text) Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

NN6+/Mozilla provides scriptable access to numerous services that are part of the xpconnect package (xp
stands for cross-platform), which is part of the larger NPAPI (Netscape Plugin Application Programming
Interface). The xpconnect services allow scripts to work with COM objects and the mozilla.org XUL (XML-
based User Interface Language) facilities — lengthy subjects that extend well beyond the scope of this book.
You can begin to explore this subject within the context of Mozilla-based browsers and scripting at
http://www.mozilla.org/scriptable/.

clientInformation
Value: navigator object Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1.2+

In an effort to provide scriptable access to browser-level properties while avoiding reference to the Navigator
browser brand, Microsoft created the clientInformation property. Its value is identical to that of the
navigator object — an object name that is also available in IE. Although Safari 1.2 adopted usage of the
clientInformation property, you should use the navigator object for cross-browser applications. (See
Chapter 39 on the CD-ROM.)

Related Item: navigator object

clipboardData
Value: Object Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Use the clipboardData object to transfer data for such actions as cutting, copying, and pasting under
script control. The object contains data of one or more data types associated with a transfer operation. Use
this property only when editing processes via the Edit menu (or keyboard equivalents) or context menu
controlled by script — typically in concert with edit-related event handlers.

Working with the clipboardData object requires knowing about its three methods, shown in Table 16-1.
Familiarity with the edit-related event handlers (before and after versions of cut, copy, and paste) is also
helpful (see Chapter 15).

380

Document Objects Reference

windowObject.clipboardData

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 380

TABLE 16-1

window.clipboardData Object Methods

Method Returns Description

clearData([format]) Nothing Removes data from the clipboard. If no format parameter is supplied,
all data is cleared. Data formats can be one or more of the following
strings: Text, URL, File, HTML, Image.

getData(format) String Retrieves data of the specified format from the clipboard. The format
is one of the following strings: Text, URL, File, HTML, Image. The
clipboard is not emptied when you get the data so that the data can
be retrieved in several sequential operations.

setData(format, data) Boolean Stores string data in the clipboard. The format is one of the following
strings: Text, URL, File, HTML, Image. For nontext data formats, the
data must be a string that specifies the path or URL to the content.
Returns true if the transfer to the clipboard is successful.

You cannot use the clipboardData object to transfer data between pages that originate from different
domains or arrive via different protocols (http versus https).

Example
See Listing 15-36 and Listing 15-44 in Chapter 15 to see how the clipboardData object is used with a
variety of edit-related event handlers.

Related Items: event.dataTransfer property; onbeforecopy, onBeforeCut, onbeforepaste,
oncopy, oncut, onpaste event handlers

closed
Value: Boolean Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

When you create a subwindow with the window.open() method, you may need to access object properties
from that subwindow, such as setting the value of a text field. Access to the subwindow is via the window
object reference that is returned by the window.open() method, as in the following code fragment:

var newWind = window.open(“someURL.html”,”subWind”);
...
newWind.document.entryForm.ZIP.value = “00000”;

In this example, the newWind variable is not linked live to the window but is only a reference to that win-
dow. If the user should close the window, the newWind variable still contains the reference to the now-miss-
ing window. Thus, any script reference to an object in that missing window will likely cause a script error.
What you need to know before accessing items in a subwindow is whether the window is still open.

The closed property returns true if the window object has been closed either by script or by the user. Any
time you have a script statement that can be triggered after the user has an opportunity to close the window,
test for the closed property before executing that statement.

381

windowObject.closed

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 381

Example
In Listing 16-4, I have created a basic window-opening and -closing example. The script begins by initializ-
ing a global variable, newWind, which is used to hold the object reference to the second window. This value
needs to be global so that other functions can reference the window for tasks, such as closing.

For this example, the new window contains some HTML code written dynamically to it, rather than loading
an existing HTML file into it. Therefore, the URL parameter of the window.open() method is left as an
empty string. Next comes a brief delay to allow Internet Explorer (especially versions 3 and 4) to catch up
with opening the window so that content can be written to it. The delay (using the setTimeout() method
described later in this chapter) invokes the finishNewWindow() function, which uses the global newWind
variable to reference the window for writing. The document.close() method closes writing to the docu-
ment — a different kind of close from a window close. A separate function, closeWindow(), is responsible
for closing the subwindow.

As a final test, an if condition looks at two conditions: (1) whether the window object has ever been initial-
ized with a value other than null (in case you click the window-closing button before ever having created
the new window) and (2) whether the window’s closed property is null or false. If either condition is
true, the close() method is sent to the second window.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

LISTING 16-4

Checking Before Closing a Window

<html>
<head>

<title>window.closed Property</title>
<script type=”text/javascript”>
// initialize global var for new window object
// so it can be accessed by all functions on the page
var newWind;

// make the new window and put some stuff in it
function newWindow() {

newWind = window.open(“”,”subwindow”,”height=200,width=200”);
setTimeout(“finishNewWindow()”, 100);

}
function finishNewWindow() {

var output = “”;
output += “<html><body><h1>A Sub-window</h1>”;
output += “<form><input type=’button’ value=’Close Main Window’”;
output +=”onclick=’window.opener.close()’></form></body></html>”;
newWind.document.write(output);
newWind.document.close();

}

NOTENOTE

382

Document Objects Reference

windowObject.closed

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 382

// close subwindow, including ugly workaround for IE3
function closeWindow() {

if (newWind && !newWind.closed) {
newWind.close();

}
}
</script>

</head>
<body>

<form>
<input type=”button” value=”Open Window”
onclick=”newWindow()” />

<input type=”button” value=”Close it if Still Open”
onclick=”closeWindow()” />

</form>
</body>

</html>

To complete the example of the window opening and closing, notice that the subwindow is given a button
whose onclick event handler closes the main window. In modern browsers, the user is presented with an
alert asking to confirm the closure of the main browser window.

Related Items: window.open(), window.close() methods

Components
(See appCore)

controllers
(See appCore)

crypto
pkcs11
Values: Object references Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The crypto and pkcs11 properties return references to browser objects that are relevant to internal public-
key cryptography mechanisms. These subjects are beyond the scope of this book, but you can read more
about Netscape’s efforts on this front at http://www.mozilla.org/projects/security/.

defaultStatus
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

After a document is loaded into a window or frame, the status bar’s message field can display a string that is
visible any time the mouse pointer is not atop an object that takes precedence over the status bar (such as a
link object or an image map). The window.defaultStatus property is normally an empty string, but you
can set this property at any time. Any setting of this property will be temporarily overridden when a user
moves the mouse pointer atop a link object (see window.status property for information about customiz-
ing this temporary status-bar message).

383

windowObject.defaultStatus

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 383

Probably the most common time to set the window.defaultStatus property is when a document loads
into a window. You can do this as an immediate script statement that executes from the Head or Body por-
tion of the document or as part of a document’s onload event handler.

Example
Unless you plan to change the default status-bar text while a user spends time at your web page, the best
time to set the property is when the document loads. In Listing 16-5, notice that I also read this property to
reset the status bar in an onmouseout event handler. Setting the status property to empty also resets the
status bar to the defaultStatus setting.

LISTING 16-5

Setting the Default Status Message

<html>
<head>

<title>window.defaultStatus property</title>
<script type=”text/javascript”>
window.defaultStatus = “Welcome to my Web site.”;
</script>

</head>
<body>

<a href=”http://www.microsoft.com”
onmouseover=”window.status = ‘Visit Microsoft\’s Home page.’;return true”
onmouseout=”window.status = ‘’;return true”>Microsoft
<p><a href=”http://mozilla.org”
onmouseover=”window.status = ‘Visit Mozilla\’s Home page.’;return true”
onmouseout=”window.status = window.defaultStatus;return
true”>Mozilla</p>

</body>
</html>

If you need to display single or double quotes in the status bar (as in the second link in Listing 16-5), use
escape characters (\’ and \”) as part of the strings being assigned to these properties.

Related Item: window.status property

dialogArguments
Value: Varies Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The dialogArguments property is available only in a window that is generated by the IE-specific
showModalDialog() or showModelessDialog() method. Those methods allow a parameter to be passed
to the dialog-box window, and the dialogArguments property lets scripts inside the dialog -ox window’s
scripts access that parameter value. The value can be in the form of a string, number, or JavaScript array
(convenient for passing multiple values).

384

Document Objects Reference

windowObject.dialogArguments

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 384

Example
See Listing 16-36 for the window.showModalDialog() method to see how arguments can be passed to a
dialog box and retrieved via the dialogArguments property.

Related Items: window.showModalDialog(), window.showModelessDialog() methods

dialogHeight
dialogWidth
Value: String Read/Write
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

Scripts in a document located inside an IE-specific modal or modeless dialog box (generated by
showModalDialog() or showModelessDialog()) can read or modify the height and width of the dialog-
box window via the dialogHeight and dialogWidth properties. Scripts can access these properties from
the main window only for modeless dialog boxes, which remain visible while the user can control the main
window contents.

Values for these properties are strings and include the unit of measure, the pixel (px).

Example
Dialog boxes sometimes provide a button or icon that reveals more details or more complex settings for
advanced users. You can create a function that handles the toggle between two sizes. The following function
assumes that the document in the dialog box has a button whose label also toggles between Show Details
and Hide Details. The button’s onclick event handler invokes the function as toggleDetails(this):

function toggleDetails(btn) {
if (dialogHeight == “200px”) {

dialogHeight = “350px”;
btn.value = “Hide Details”;

} else {
dialogHeight = “200px”;
btn.value = “Show Details”;

}
}

In practice, you also have to toggle the display style sheet property of the extra material between none
and block to make sure that the dialog box does not display scroll bars in the smaller dialog-box version.

Related Items: window.dialogLeft, window.dialogTop properties

dialogLeft
dialogTop
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Scripts in a document located inside an IE-specific modal or modeless dialog box (generated by
showModalDialog() or showModelessDialog()) can read or modify the left and top coordinates of the
dialog-box window via the dialogLeft and dialogTop properties. Scripts can access these properties
from the main window only for modeless dialog boxes, which remain visible while the user can control the
main window contents.

385

windowObject.dialogLeft

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 385

Values for these properties are strings and include the unit of measure, the pixel (px). If you attempt to
change these values so that any part of the dialog-box window would be outside the video monitor, the
browser overrides the settings to keep the entire window visible.

Example
Although usually not a good idea because of the potentially jarring effect on a user, you can reposition a dia-
log-box window that has been resized by script (or by the user if you let the dialog box be resizable). The
following statements in a dialog-box window document’s script re-center the dialog-box window:

dialogLeft = (screen.availWidth/2) - (parseInt(dialogWidth)/2) + “px”;
dialogHeight = (screen.availHeight/2) - (parseInt(dialogHeight)/2) + “px”;

Note that the parseInt() functions are used to read the numeric portion of the dialogWidth and
dialogHeight properties so that the values can be used for arithmetic.

Related Items: window.dialogHeight, window.dialogTopWidth properties

directories
locationbar
menubar
personalbar
scrollbars
statusbar
toolbar
Value: Object Read/Write (with signed scripts)
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari-

Beyond the rectangle of the content region of a window (where your documents appear), the Netscape
browser window displays an amalgam of bars and other features known collectively as chrome. All browsers
can elect to remove these chrome items when creating a new window (as part of the third parameter of the
window.open() method), but until signed scripts were available in Navigator 4, these items could not be
turned on and off in the main browser window or any existing window.

Navigator 4 promoted these elements to first-class objects contained by the window object. Navigator 6
added one more feature, called the directories bar — a framelike device that can be opened or hidden from
the left edge of the browser window. At the same time, however, NN6+/Mozilla browsers no longer permit
hiding and showing the browser window’s scroll bars. Chrome objects have but one property: visible.
Reading this Boolean value (possible without signed scripts) lets you inspect the visitor’s browser window
for the elements currently engaged.

Changing the visibility of these items on the fly alters the relationship between the inner and outer dimen-
sions of the browser window. If you must size carefully a window to display content, you should adjust the
chrome elements before sizing the window. Before you start changing chrome visibility before the eyes of
your page visitors, weigh the decision carefully. Experienced users have fine-tuned the look of their browser
windows to just the way they like them. If you mess with that look, you may anger your visitors.
Fortunately, changes you make to a chrome element’s visibility are not stored to the user’s preferences.
However, the changes you make survive an unloading of the page. If you change the settings, be sure that
you first save the initial settings and restore them with an onunload event handler.

386

Document Objects Reference

windowObject.directories

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 386

The Macintosh menu bar is not part of the browser’s window chrome. Therefore, its visibility
cannot be adjusted from a script.

Example
In Listing 16-6, you can experiment with the look of a browser window with any of the chrome elements
turned on and off. To run this script, you must either sign the scripts or turn on codebase principals (see
Chapter 46 on the CD-ROM). Java must also be enabled to use the signed script statements.

As the page loads, it stores the current state of each chrome element. One button for each chrome element
triggers the toggleBar() function. This function inverts the visible property for the chrome object passed
as a parameter to the function. Finally, the Restore button returns visibility to their original settings. Notice
that the restore() function is also called by the onunload event handler for the document.

LISTING 16-6

Controlling Window Chrome

<html>
<head>

<title>Bars Bars Bars</title>
<script type=”text/javascript”>
// store original outer dimensions as page loads
var originalLocationbar = window.locationbar.visible;
var originalMenubar = window.menubar.visible;
var originalPersonalbar = window.personalbar.visible;
var originalScrollbars = window.scrollbars.visible;
var originalStatusbar = window.statusbar.visible;
var originalToolbar = window.toolbar.visible;

// generic function to set inner dimensions
function toggleBar(bar) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

bar.visible = !bar.visible;
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalBrowserWrite”);
}
// restore settings
function restore() {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

window.locationbar.visible = originalLocationbar;
window.menubar.visible = originalMenubar;
window.personalbar.visible = originalPersonalbar;
window.scrollbars.visible = originalScrollbars;
window.statusbar.visible = originalStatusbar;
window.toolbar.visible = originalToolbar;
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalBrowserWrite”);
}

continued

TIPTIP

387

windowObject.directories

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 387

LISTING 16-6 (continued)

</script>
</head>
<body onunload=”restore()”>

<form>
Toggle Window Bars

<input type=”button” value=”Location Bar”
onclick=”toggleBar(window.locationbar)” />

<input type=”button” value=”Menu Bar”
onclick=”toggleBar(window.menubar)” />

<input type=”button” value=”Personal Bar”
onclick=”toggleBar(window.personalbar)” />

<input type=”button” value=”Scrollbars”
onclick=”toggleBar(window.scrollbars)” />

<input type=”button” value=”Status Bar”
onclick=”toggleBar(window.statusbar)” />

<input type=”button” value=”Tool Bar”
onclick=”toggleBar(window.toolbar)” />

<hr />
<input type=”button” value=”Restore Original Settings”
onclick=”restore()” />

</form>
</body>

</html>

Related Item: window.open() method

document
Value: Object Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

I list the document property here primarily for completeness. Each window object contains a single document
object. The value of the document property is the document object, which is not a displayable value. Instead,
you use the document property as you build references to properties and methods of the document and to
other objects contained by the document, such as a form and its elements. To load a different document
into a window, use the location object (see Chapter 17). The document object is described in detail in
Chapter 18.

Related Item: document object

event
Value: Object Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1+

IE4+ and Safari treat the event object as a property of the window object. Navigator 4+ and the W3C DOM
(as well as Safari here, too) pass an instance of the Event object as an argument to event handler functions.
The connection with the window object is relatively inconsequential because all action involving the event
object occurs in event handler functions. The only difference is that the object can be treated as a more
global object when one event handler function invokes another. Instead of having to pass the event object

388

Document Objects Reference

windowObject.event

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 388

parameter to the next function, functions can access the event object directly (with or without the win-
dow. prefix in the reference).

For complete details about the event object in all browsers, see Chapter 25.

Related Item: event object

external
Value: Object Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The external property is useful only when the browser window is a component in another application.
The property provides a gateway between the current browser window and the application that acts as a
host to the browser window component.

With WinIE4+ acting as a component to the host operating system, the external property can be used to
access several methods that influence behaviors outside the browser. Perhaps the three most useful methods
to regular web-page scripters are AddDesktopComponent(), AddFavorite(), and NavigateAndFind().
The first two methods display the same kind of alert dialog box that users get after making these choices
from the browser or desktop menus, so that you won’t be able to sneak your web site onto desktops or
Favorites listings without the visitor’s approval. Table 16-2 describes the parameters for these three methods.

TABLE 16-2

Popular window.external Object Methods

Method Description

AddDesktopComponent(“URL”, “type”[, Adds a web site or image to the Active Desktop (if turned on in
left, top, width, height]) the user’s copy of Windows). The type parameter value is either

website or image. Dimensional parameters (optional) are all
integer values.

AddFavorite(“URL”[, “title”]) Adds the specified URL to the user’s Favorites list. The optional
title string parameter is how the URL should be listed in the menu
(if missing, the URL appears in the list).

NavigateAndFind(“URL”, “findString”, Navigates to the URL in the first parameter and opens the page in
“target”) the target frame (an empty string opens in the current frame). The

findString is text to be searched for on that page and
highlighted when the page loads.

Example
The first example asks the user whether it is OK to add a web site to the Active Desktop. If Active Desktop
is not enabled, the user is given the choice of enabling it at this point:

external.AddDesktopComponent(“http://www.nytimes.com”,”website”, 200, 100,
400, 400);

In the next example, the user is asked to approve the addition of a URL to the Favorites list. The user can
follow the normal procedure for filing the item in a folder in the list:

external.AddFavorite(“http://www.dannyg.com/update11.html”,
“JSBible 6 Support Center”);

389

windowObject.external

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 389

The final example assumes that a user makes a choice from a select list of items. The onchange event
handler of the select list invokes the following function to navigate to a fictitious page and locate listings
for a chosen sports team on the page:

function locate(list) {
var choice = list.options[list.selectedIndex].value;
external.NavigateAndFind(“http://www.collegesports.net/scores.html”,

choice, “scores”);
}

frameElement
Values: frame or iframe object reference Read-Only
Compatibility: WinIE5.5+, MacIE-, NN7+, Moz1.0.1+, Safari 1.2+

If the current window exists as a result of a <frame> or <iframe> tag, the window’s frameElement prop-
erty returns a reference to the hosting element. As is made clear in the discussion about the frame element
object later in this chapter, a reference to a frame or iframe element object provides access to the proper-
ties that echo the attributes of the HTML element object. For a window that is not part of a frameset, the
frameElement property returns null.

The convenience of this property becomes apparent when a single document is loaded into multiple frame-
sets. A script in the document can still refer to the containing frame element, even when the ID of the ele-
ment changes from one frameset to another. The frameset element is also accessible via the
parentElement property of the frameElement property:

var frameSetObj = self.frameElement.parentElement;

A reference to the frameset element opens possibilities of adjusting frame sizes.

Related Items: frame, iframe objects

frames
Value: Array Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

In a multiframe window, the top or parent window contains any number of separate frames, each of which
acts as a full-fledged window object. The frames property (note the plural use of the word as a property
name) plays a role when a statement must reference an object located in a different frame. For example, if a
button in one frame is scripted to load a document in another frame, the button’s event handler must be
able to tell JavaScript precisely where to display the new HTML document. The frames property assists in
that task.

To use the frames property to communicate from one frame to another, it should be part of a reference that
begins with the parent or top property. This lets JavaScript make the proper journey through the hierar-
chy of all currently loaded objects to reach the desired object. To find out how many frames are currently
active in a window, use this expression:

parent.frames.length

390

Document Objects Reference

windowObject.frames

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 390

This expression returns a number indicating how many frames the parent window defines. This value does
not, however, count further nested frames, should a third generation of frame be defined in the environ-
ment. In other words, no single property exists that you can use to determine the total number of frames in
the browser window if multiple generations of frames are present.

The browser stores information about all visible frames in a numbered (indexed) array, with the first frame
(that is, the topmost <frame> tag defined in the framesetting document) as number 0:

parent.frames[0]

Therefore, if the window shows three frames (whose indexes are frames[0], frames[1], and frames[2],
respectively), the reference for retrieving the title property of the document in the second frame is

parent.frames[1].document.title

This reference is a road map that starts at the parent window and extends to the second frame’s document
and its title property. Other than the number of frames defined in a parent window and each frame’s name
(top.frames[i].name), no values from the frame definitions are directly available from the frame object via
scripting until you get to IE4 and NN6/Moz/W3C (see the frame element object later in this chapter). In
these browsers, individual frame element objects have several properties that reveal <frame> tag attributes.

Using index values for frame references is not always the safest tactic, however, because your frameset
design may change over time, in which case the index values will also change. Instead, you should take
advantage of the name attribute of the <frame> tag, and assign a unique, descriptive name to each frame. A
value you assign to the name attribute is also the name that you use for target attributes of links to force a
linked page to load in a frame other than the one containing the link. You can use a frame’s name as an
alternative to the indexed reference. For example, in Listing 16-7, two frames are assigned distinctive
names. To access the title of a document in the JustAKid2 frame, the complete object reference is

parent.JustAKid2.document.title

with the frame name (case sensitive) substituting for the frames[1] array reference. Or, in keeping with
JavaScript flexibility, you can use the object name in the array index position:

parent.frames[“JustAKid2”].document.title

The supreme advantage to using frame names in references is that no matter how the frameset structure
may change over time, a reference to a named frame will always find that frame even though its index value
(that is, position in the frameset) may change.

Example
Listing 16-7 and Listing 16-8 demonstrate how JavaScript treats values of frame references from objects
inside a frame. The same document is loaded into each frame. A script in that document extracts informa-
tion about the current frame and the entire frameset. Figure 16-4 shows the results after loading the HTML
document in Listing 16-7.

391

windowObject.frames

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 391

LISTING 16-7

Framesetting Document for Listing 16-8

<html>
<head>

<title>window.frames property</title>
</head>
<frameset cols=”50%,50%”>

<frame name=”JustAKid1” src=”lst16-08.htm” />
<frame name=”JustAKid2” src=”lst16-08.htm” />

</frameset>
</html>

A call to determine the number (length) of frames returns 0 from the point of view of the current frame
referenced. That’s because each frame here is a window that has no nested frames within it. But add the
parent property to the reference, and the scope zooms out to take into account all frames generated by
the parent window’s document.

LISTING 16-8

Showing Various Window Properties

<html>
<head>

<title>Window Revealer II</title>
<script type=”text/javascript”>
function gatherWindowData() {

var msg = “”;
msg += “<p>From the point of view of this frame:
”;
msg += “window.frames.length: “ + window.frames.length + “
”;
msg += “window.name: “ + window.name + “</p>”;
msg += “<p>From the point of view of the framesetting

document:
”;
msg += “parent.frames.length: “ + parent.frames.length + “
”;
msg += “parent.frames[0].name: “ + parent.frames[0].name + “</p>”;
return msg;

}
</script>

</head>
<body>

<script type=”text/javascript”>
document.write(gatherWindowData());
</script>

</body>
</html>

392

Document Objects Reference

windowObject.frames

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 392

FIGURE 16-4

Property readouts from both frames loaded from Listing 16-7.

The last statement in the example shows how to use the array syntax (brackets) to refer to a specific frame.
All array indexes start with 0 for the first entry. Because the document asks for the name of the first frame
(parent.frames[0]), the response is JustAKid1 for both frames.

Related Items: frame, frameset objects; window.parent, window.top properties

fullScreen
Values: Boolean Read-Only
Compatibility: WinIE-, MacIE-, NN7.1+, Moz1.4+, Safari-

The intent of the fullScreen property is to indicate whether the browser is in full-screen mode, which can be
set in Mozilla browsers through the Full Screen command in the View menu. Unfortunately, the property isn’t
reliable (as of Mozilla 1.8.1) and always returns false regardless of the browser’s actual full-screen setting.

history
Value: Object Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

(See the discussion of the history object in Chapter 17.)

393

windowObject.history

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 393

innerHeight
innerWidth
outerHeight
outerWidth
Value: Integer Read/Write (see text)
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari+

NN4+/Moz/Safari let scripts adjust the height and width of any window, including the main browser win-
dow, by setting properties. This adjustment can be helpful when your page shows itself best with the
browser window sized to a particular height and width. Rather than relying on the user to size the browser
window for optimum viewing of your page, you can dictate the size of the window (although the user can
always resize the main window manually). And because you can examine the operating system of the visitor
via the navigator object (see Chapter 39 on the CD-ROM), you can size a window to adjust for the differ-
ences in font and form element rendering on different platforms.

Supporting browsers provide two different points of reference for measuring the height and width of a win-
dow: inner and outer. Both are measured in pixels. The inner measurements are that of the active document
area of a window (sometimes known as a window’s content region). If the optimum display of your docu-
ment depends on the document display area being a certain number of pixels high and/or wide, the
innerHeight and innerWidth properties are the ones to set.

By contrast, the outer measurements are of the outside boundary of the entire window, including whatever
chrome is showing in the window: scroll bars, status bar, and so on. Setting the outerHeight and
outerWidth is generally done in concert with a reading of screen object properties (see Chapter 39 on the
CD-ROM). Perhaps the most common use of the outer properties is to set the browser window to fill the
available screen area of the visitor’s monitor.

A more efficient way of modifying both outer dimensions of a window is with the window.resizeTo()
method, which is also available in IE4+. The method takes pixel width and height (as integer values) as
parameters, thus accomplishing a window resizing in one statement. Be aware that resizing a window does
not adjust the location of a window. Therefore, just because you set the outer dimensions of a window to
the available space returned by the screen object doesn’t mean that the window will suddenly fill the avail-
able space on the monitor. Application of the window.moveTo() method is necessary to ensure that the
top-left corner of the window is at screen coordinates 0,0.

Despite the freedom that these properties afford the page author, Netscape and Mozilla-based browsers have
built in a minimum size limitation for scripts that are not cryptographically signed. You cannot set these
properties such that the outer height and width of the window is smaller than 100 pixels on a side. This
limitation is to prevent an unsigned script from setting up a small or nearly invisible window that monitors
activity in other windows. With signed scripts, however, windows can be made smaller than 100 × 100 pix-
els with the user’s permission. IE4+ maintains a smaller minimum size to prevent resizing a window to zero
size.

Users may dislike your scripts messing with their browser window sizes and positions.
NN7+/Moz/Safari do not allow scripts to resize windows unless the script is signed.

Example
In Listing 16-9, several buttons let you see the results of setting the innerHeight, innerWidth,
outerHeight, and outerWidth properties. Safari ignores scripted adjustments to these properties,
whereas Mozilla users can set preferences that prevent scripts from moving and resizing windows.

CAUTION CAUTION

394

Document Objects Reference

windowObject.innerHeight

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 394

LISTING 16-9

Setting Window Height and Width

<html>
<head>

<title>Window Sizer</title>
<script type=”text/javascript”>
// store original outer dimensions as page loads
var originalWidth = window.outerWidth;
var originalHeight = window.outerHeight;
// generic function to set inner dimensions
function setInner(width, height) {

window.innerWidth = width;
window.innerHeight = height;

}
// generic function to set outer dimensions
function setOuter(width, height) {

window.outerWidth = width;
window.outerHeight = height;

}
// restore window to original dimensions
function restore() {

window.outerWidth = originalWidth;
window.outerHeight = originalHeight;

}
</script>

</head>
<body>

<form>
Setting Inner Sizes

<input type=”button” value=”600 Pixels Square”
onclick=”setInner(600,600)” />

<input type=”button” value=”300 Pixels Square”
onclick=”setInner(300,300)” />

<input type=”button” value=”Available Screen Space”
onclick=”setInner(screen.availWidth, screen.availHeight)” />

<hr />
Setting Outer Sizes

<input type=”button” value=”600 Pixels Square”
onclick=”setOuter(600,600)” />

<input type=”button” value=”300 Pixels Square”
onclick=”setOuter(300,300)” />

<input type=”button” value=”Available Screen Space”
onclick=”setOuter(screen.availWidth, screen.availHeight)” />

<hr />
<input type=”button” value=”Cinch up for Win95”
onclick=”setInner(273,304)” />

<input type=”button” value=”Cinch up for Mac”
onclick=”setInner(273,304)” />

continued

395

windowObject.innerHeight

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 395

LISTING 16-9 (continued)

<input type=”button” value=”Restore Original”
onclick=”restore()” />

</form>
</body>

</html>

Related Items: window.resizeTo(), window.moveTo() methods; screen object; navigator object

location
Value: Object Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

(See the discussion of the location object in Chapter 17.)

locationbar
(See directories)

name
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

All window objects can have names assigned to them. Names are particularly useful for working with
frames, because a good naming scheme for a multiframe environment can help you determine precisely
which frame you’re working with in references coming from other frames.

The main browser window, however, has no name attached to it by default. Its value is an empty string.
There aren’t many reasons to assign a name to the window, because JavaScript and HTML provide plenty of
other ways to refer to the window object (the top property, the _top constant for target attributes, and
the opener property from subwindows).

If you want to attach a name to the main window, you can do so by setting the window.name property at
any time. But be aware that because this is one window property whose life extends beyond the loading and
unloading of any given document, chances are that your scripts would use the reference in only one docu-
ment or frameset. Unless you restore the default empty string, your programmed window name will be
present for any other document that loads later. My suggestion in this regard is to assign a name in a win-
dow’s or frameset’s onload event handler and then reset it to empty in a corresponding onunload event
handler:

<body onload=”self.name = ‘Main’” onunload=”self.name = ‘’”>

You can see an example of this application in Listing 16-15, where setting a parent window name is helpful
for learning the relationships among parent and child windows.

Related Items: top property; window.open(), window.sizeToContent() methods

396

Document Objects Reference

windowObject.name

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 396

navigator
Value: Object Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Although the navigator object appears as a property of the window object only in modern browsers, the
navigator object has been around since the very beginning (see Chapter 39 on the CD-ROM). In previous
browsers, the navigator object was referenced as a stand-alone object. And because you can omit any ref-
erence to the window object for a window object’s properties, you can use the same windowless reference
syntax for compatibility across all scriptable browsers (at least for the navigator object properties that
exist across all browsers). That’s the way I recommend referring to the navigator object.

Example
This book is littered with examples of using the navigator object, primarily for performing browser detec-
tion. You can find examples of specific navigator object properties in Chapter 39 on the CD-ROM.

Related Item: navigator object

netscape
Value: Object Read-Only
Compatibility: WinIE-, MacIE-, NN3+, Moz+, Safari-

Given its name, you might think that the netscape property somehow works in tandem with the navigator
property, but this is not the case. The netscape property is unique to NN/Moz browsers and provides
access to functionality that is specific to the Netscape family of browsers, such as the privilege manager.

Example
The netscape property is commonly used as a means of accessing the NN/Moz-specific
PrivilegeManager object to enable or disable security privileges. Following is an example of how this
access is carried out:

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);

offscreenBuffering
Value: Boolean or string Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 1.2+

IE4+/Safari 1.2+ by default initially render a page in a buffer (a chunk of memory) before it is blasted to the
video screen. You can control this behavior explicitly by modifying the window.offscreenBuffering
property.

The default value of the property is the string auto. You can also assign Boolean true or false to the
property to override the normal automatic handling of this behavior.

Example
If you want to turn off buffering for an entire page, include the following statement at the beginning of your
script statements:

window.offscreenBuffering = false;

397

windowObject.offscreenBuffering

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 397

onerror
Value: Function Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari-

The onerror property is an exception to the rule of this book to not describe event handlers as properties
within object reference sections. The reason is that the onerror event brings along some special properties
that are useful to control by setting the event handler property in scripts.

Modern browsers (IE5+, NN4+, and W3C) are designed to prevent script errors from being intrusive if a
user encounters a script error while loading or interacting with a page. Even so, even the subtle hints about
problems (messages or icons in the status bar) can be confusing for users who have no idea what JavaScript
is. JavaScript lets you turn off the display of script error windows or messages as someone executes a script
on your page. The question is: When should you turn off these messages?

Script errors generally mean that something is wrong with your script. The error may be the result of a cod-
ing mistake or, conceivably, a bug in JavaScript (perhaps on a platform version of the browser that you
haven’t been able to test). If such errors occur, often, the script won’t continue to do what you intended.
Hiding the script error from yourself during development would be foolhardy, because you’d never know
whether unseen errors are lurking in your code. It can be equally dangerous to turn off error dialog boxes
for users who may believe that the page is operating normally when in fact it’s not. Some data values may
not be calculated or displayed correctly.

That said, I can see some limited instances of when you may want to keep such dialog-box windows from
appearing. For example, if you know for a fact that a platform-specific bug trips the error message without
harming the execution of the script, you may want to prevent that error alert dialog box from appearing in
the files posted to your web site. You should do this only after extensive testing to ensure that the script
ultimately behaves correctly, even with the bug or error.

IE fires the onerror event handler only for runtime errors. This means that if you have a syn-
tactical error in your script that trips the browser as the page loads, the onerror event doesn’t

fire, and you cannot trap that error message. Moreover, if the user has the IE script debugger installed, any
code you use to prevent browser error messages from appearing will not work.

When the browser starts, the window.onerror property is <undefined>. In this state, all errors are
reported via the normal JavaScript error window or message. To turn off error alerts, set the
window.onerror property to invoke a function that does absolutely nothing:

function doNothing() { return true; }
window.onerror = doNothing;

To restore the error messages, reload the page.

You can, however, also assign a custom function to the window.onerror property. This function then han-
dles errors in a more friendly way under your script control. Whenever error messages are turned on (the
default behavior), a script error (or Java applet or class exception) invokes the function assigned to the
onerror property, passing three parameters:

n Error message

n URL of document causing the error

n Line number of the error

NOTENOTE

398

Document Objects Reference

windowObject.onerror

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 398

You can essentially trap for all errors and handle them with your own interface (or no user notification at
all). The last statement of this function must be return true if you do not want the JavaScript script error
message to appear.

If you are using the NPAPI to communicate with a Java applet directly from your scripts, you can use the
same scheme to handle any exception that Java may throw. A Java exception is not necessarily a mistake
kind of error: Some methods assume that the Java code will trap for exceptions to handle special cases (for
example, reacting to a user’s denial of access when prompted by a signed script dialog box). See Chapter 44
on the CD-ROM for an example of trapping for a specific Java exception. Also, see Chapter 32 for JavaScript
exception handling introduced for W3C DOM–compatible browsers.

Example
In Listing 16-10, one button triggers a script that contains an error. I’ve added an error handling function to
process the error so that it opens a separate window and fills in a textarea form element (see Figure
16-5). A Submit button is also provided to mail the bug information to a support center e-mail address —
an example of how to handle the occurrence of a bug in your scripts.

LISTING 16-10

Controlling Script Errors

<html>
<head>

<title>Error Dialog Control</title>
<script type=”text/javascript”>
// function with invalid variable value
function goWrong() {

var x = fred;
}
// turn off error dialogs
function errOff() {

window.onerror = doNothing;
}
// turn on error dialogs with hard reload
function errOn() {

window.onerror = handleError;
}

// assign default error handler
window.onerror = handleError;

// error handler when errors are turned off...prevents error dialog
function doNothing() { return true; }

function handleError(msg, URL, lineNum) {
var errWind = window.open(“”,”errors”,”height=270,width=400”);
var wintxt = “<html><body bgcolor=red>”;
wintxt += “An error has occurred on this page. Please report it to

Tech Support.”;

continued

399

windowObject.onerror

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 399

LISTING 16-10 (continued)

wintxt += “<form method=POST enctype=’text/plain’
action=mailTo:support4@dannyg.com >”;

wintxt += “<textarea name=’errMsg’ cols=45 rows=8 wrap=VIRTUAL>”;
wintxt += “Error: “ + msg + “\n”;
wintxt += “URL: “ + URL + “\n”;
wintxt += “Line: “ + lineNum + “\n”;
wintxt += “Client: “ + navigator.userAgent + “\n”;
wintxt += “---\n”;
wintxt += “Please describe what you were doing when the error

occurred:”;
wintxt += “</textarea>
”;
wintxt += “<input type=SUBMIT value=’Send Error Report’>”;
wintxt += “<input type=button value=’Close’ onclick=’self.close()’>”;
wintxt += “</form></body></html>”;
errWind.document.write(wintxt);
errWind.document.close();
return true;

}
</script>

</head>
<body>

<form name=”myform”>
<input type=”button” value=”Cause an Error” onclick=”goWrong()” />
<p><input type=”button” value=”Turn Off Error Dialogs”

onclick=”errOff()” /> <input type=”button”
value=”Turn On Error Dialogs” onclick=”errOn()” /></p>

</form>
</body>

</html>

FIGURE 16-5

An example of a self-reporting error window.

400

Document Objects Reference

windowObject.onerror

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 400

I provide a button that performs a hard reload, which in turn resets the window.onerror property to its
default value. With error dialog boxes turned off, the error handling function does not run.

Related Items: location.reload() method; JavaScript exception handling (Chapter 32); debugging
scripts (Chapter 45 on the CD-ROM)

opener
Value: Window object reference Read/Write
Compatibility: WinIE3+, MacIE3+, NN3+, Moz+, Safari+

Many scripters make the mistake of thinking that a new browser window created with the window.open()
method has a child–parent relationship similar to the one that frames have with their parents. That’s not the
case at all. New browser windows, when created, have a very slim link to the window from whence they
came: via the opener property. The purpose of the opener property is to provide scripts in the new win-
dow with a valid reference back to the original window. For example, the original window may contain
some variable values or general-purpose functions that a new window at this web site wants to use. The
original window may also have form elements whose settings are of value to the new window or that get set
by user interaction in the new window.

Because the value of the opener property is a reference to a genuine window object, you can begin refer-
ences with the property name. Or you may use the more complete window.opener or self.opener refer-
ence. But then the reference must include some object or property of that original window, such as a
window method or a reference to something contained by that window’s document.

If a subwindow opens yet another subwindow, the chain is still valid, albeit one step longer. The third win-
dow can reach the main window with a reference that begins

opener.opener....

It’s a good idea for the third window to store in a global variable the value of opener.opener while the
page loads. Thus, if the user closes the second window, the variable can be used to start a reference to the
main window.

When a script that generates a new window is within a frame, the opener property of the subwindow
points to that frame. Therefore, if the subwindow needs to communicate with the main window’s parent or
another frame in the main window, you have to very carefully build a reference to that distant object. For
example, if the subwindow needs to get the checked property of a checkbox in a sister frame of the one
that created the subwindow, the reference is

opener.parent.sisterFrameName.document.formName.checkboxName.checked

It is a long way to go, indeed, but building such a reference is always a case of mapping out the path from
where the script is to where the destination is, step by step.

Example
To demonstrate the importance of the opener property, take a look at how a new window can define itself
from settings in the main window (see Listing 16-11). The doNew() function generates a small subwindow
and loads the file in Listing 16-12 into the window. Notice the initial conditional statements in doNew() to
make sure that if the new window already exists, it comes to the front by invoking the new window’s
focus() method. You can see the results in Figure 16-6.

401

windowObject.opener

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 401

LISTING 16-11

Contents of a Main Window Document That Generates a Second Window

<html>
<head>

<title>Master of all Windows</title>
<script type=”text/javascript”>
var myWind;
function doNew() {

if (!myWind || myWind.closed) {
myWind = window.open(“lst16-12.htm”, “subWindow”,

“height=200,width=350,resizable”);
} else {

// bring existing subwindow to the front
myWind.focus();

}
}
</script>

</head>
<body>

<form name=”input”>
Select a color for a new window: <input type=”radio” name=”color”
value=”red” checked=”checked” />Red <input type=”radio” name=”color”
value=”yellow” />Yellow <input type=”radio” name=”color”
value=”blue” />Blue <input type=”button” name=”storage”
value=”Make a Window” onclick=”doNew()” />
<hr />
This field will be filled from an entry in another window: <input
type=”text” name=”entry” size=”25” />

</form>
</body>

</html>

LISTING 16-12

References to the opener Property

<html>
<head>

<title>New Window on the Block</title>
<script type=”text/javascript”>
function getColor() {

// shorten the reference
colorButtons = self.opener.document.forms[0].color;

402

Document Objects Reference

windowObject.opener

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 402

// see which radio button is checked
for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[i].value;

}
}
return “white”;

}
</script>
<script type=”text/javascript”>
document.write(“<body bgcolor=’” + getColor() + “‘>”)
</script>

</head>
<body>

<h1>This is a new window.</h1>
<form>

<input type=”button” value=”Who’s in the Main window?”
onclick=”alert(self.opener.document.title)” />
<p>Type text here for the main window: <input type=”text” size=”25”

onchange=”self.opener.document.forms[0].entry.value = this.value”
/></p>

</form>
</body>

</html>

In the getColor() function, the multiple references to the radio-button array can be very long. To simplify
the references, the getColor() function starts by assigning the radio-button array to a variable I arbitrarily
call colorButtons. That shorthand now stands in for lengthy references as I loop through the radio but-
tons to determine which button is checked and retrieve its value property.

A button in the second window simply fetches the title of the opener window’s document. Even if another
document loads in the main window in the meantime, the opener reference still points to the main win-
dow: Its document object, however, will change.

Finally, the second window contains a text input object. Enter any text there that you like and then either
tab or click out of the field. The onchange event handler updates the field in the opener’s document (pro-
vided that the document is still loaded).

Related Items: window.open(), window.focus() methods

403

windowObject.opener

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 403

FIGURE 16-6

The main window and subwindows, inextricably linked via the window.opener property.

outerHeight
outerWidth
(See innerHeight and innerWidth earlier in this chapter)

pageXOffset
pageYOffset
Value: Integer Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari+

The top-left corner of the content (inner) region of the browser window is an important geographical point
for scrolling documents. When a document is scrolled all the way to the top and flush left in the window
(or when a document is small enough to fill the browser window without displaying scroll bars), the docu-
ment’s location is said to be 0,0, meaning zero pixels from the top and zero pixels from the left. If you were
to scroll the document, some other coordinate point of the document would be under that top-left corner.
That measure is called the page offset, and the pageXOffset and pageYOffset properties let you read the
pixel value of the document at the inner window’s top-left corner: pageXOffset is the horizontal offset,
and pageYOffset is the vertical offset.

404

Document Objects Reference

windowObject.pageXOffset

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 404

The value of these measures becomes clear if you design navigation buttons in your pages to carefully con-
trol paging of content being displayed in the window. For example, you might have a two-frame page in
which one of the frames features navigation controls and the other displays the primary content. The navi-
gation controls take the place of scroll bars, which, for aesthetic reasons, are turned off in the display frame.
Scripts connected to the simulated scrolling buttons can determine the pageYOffset value of the docu-
ment and then use the window.scrollTo() method to position the document precisely to the next logical
division in the document for viewing.

IE has corresponding values as body object properties: body.scrollLeft and body.scrollTop (see
Chapter 18).

Related Items: window.innerHeight, window.innerWidth, body.scrollLeft, body.scrollTop
properties; window.scrollBy(), window.scrollTo() methods

parent
Value: Window object reference Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The parent property (and the top property, discussed later in this section) comes into play primarily when
a document is to be displayed as part of a multiframe window. The HTML documents that users see in the
frames of a multiframe browser window are distinct from the document that specifies the frameset for the
entire window. That document, though still in the browser’s memory (and appearing as the URL in the loca-
tion field of the browser), is not otherwise visible to the user (except in source view).

If scripts in your visible documents need to reference objects or properties of the frameset window, you can
reference those frameset window items with the parent property. (Do not, however, expand the reference
by preceding it with the window object, as in window.parent.propertyName, because this causes prob-
lems in early browsers.) In a way, the parent property seems to violate the object hierarchy because from a
single frame’s document, the property points to a level seemingly higher in precedence. If you didn’t specify
the parent property or instead specified the self property from one of these framed documents, the
object reference is to the frame only rather than to the outermost framesetting window object.

A nontraditional but perfectly legal way to use the parent object is as a means of storing temporary vari-
ables. Thus, you could set up a holding area for individual variable values or even an array of data. Then
these values can be shared among all documents loaded into the frames, including when documents change
inside the frames. You have to be careful, however, when storing data in the parent on the fly (that is, in
response to user action in the frames). Variables can revert to their default values (that is, the values set by
the parent’s own script) if the user resizes the window in early browsers.

A child window can also call a function defined in the parent window. The reference for such a function is

parent.functionName([parameters])

At first glance, it may seem as though the parent and top properties point to the same framesetting
window object. In an environment consisting of one frameset window and its immediate children, that’s
true. But if one of the child windows was itself another framesetting window, you wind up with three gener-
ations of windows. From the point of view of the youngest child (for example, a window defined by the sec-
ond frameset), the parent property points to its immediate parent, whereas the top property points to the
first framesetting window in this chain.

On the other hand, a new window created via the window.open() method has no parent–child relation-
ship to the original window. The new window’s top and parent point to that new window. You can read
more about these relationships in the “Frames” section earlier in this chapter.

405

windowObject.parent

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 405

Example
To demonstrate how various window object properties refer to window levels in a multiframe environment,
use your browser to load the Listing 16-13 document. It in turn sets each of two equal-size frames to the
same document: Listing 16-14. This document extracts the values of several window properties, plus the
document.title properties of two different window references.

LISTING 16-13

Framesetting Document for Listing 16-14

<html>
<head>

<title>The Parent Property Example</title>
<script type=”text/javascript”>
self.name = “Framesetter”;
</script>

</head>
<frameset cols=”50%,50%” onunload=”self.name = ‘’”>

<frame name=”JustAKid1” src=”lst16-14.htm” />
<frame name=”JustAKid2” src=”lst16-14.htm” />

</frameset>
</html>

LISTING 16-14

Revealing Various Window-Related Properties

<html>
<head>

<title>Window Revealer II</title>
<script type=”text/javascript”>
function gatherWindowData() {

var msg = “”;
msg = msg + “top name: “ + top.name + “
”;
msg = msg + “parent name: “ + parent.name + “
”;
msg = msg + “parent.document.title: “ + parent.document.title +

“
”;
msg = msg + “window name: “ + window.name + “
”;
msg = msg + “self name: “ + self.name + “
”;
msg = msg + “self.document.title: “ + self.document.title;
return msg;

}
</script>

</head>
<body>

<script type=”text/javascript”>
document.write(gatherWindowData());

406

Document Objects Reference

windowObject.parent

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 406

</script>
</body>

</html>

In the two frames (see Figure 16-7), the references to the window and self object names return the name
assigned to the frame by the frameset definition (JustAKid1 for the left frame, JustAKid2 for the right
frame). In other words, from each frame’s point of view, the window object is its own frame. References to
self.document.title refer only to the document loaded into that window frame. But references to the
top and parent windows (which are one and the same in this example) show that those object properties are
shared between both frames.

FIGURE 16-7

Parent and top properties being shared by both frames.

A couple of other fine points are worth highlighting. First, the name of the framesetting window is set as
Listing 16-13 loads, rather than in response to an onload event handler in the <frameset> tag. The reason
for this is that the name must be set in time for the documents loading in the frames to get that value. If I
had waited until the frameset’s onload event handler, the name wouldn’t be set until after the frame docu-
ments had loaded. Second, I restore the parent window’s name to an empty string when the framesetting
document unloads. This is to prevent future pages from getting confused about the window name.

Related Items: window.frames, window.self, window.top properties

407

windowObject.parent

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 407

personalbar
(See directories)

returnValue
Value: Any data type Read/Write
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

Scripts use the returnValue property in a document that loads into the IE-specific modal dialog box. A
modal dialog box is generated via the showModalDialog() method, which returns whatever data has been
assigned to the returnValue property of the dialog-box window before it closes. This is possible because
script processing in the main window freezes while the modal dialog box is visible. As the dialog box closes,
a value can be returned to the main window’s script right where the modal dialog box was invoked, and the
main window’s script resumes executing statements.

Example
See Listing 16-36 for the showModalDialog() method for an example of how to get data back from a dia-
log box in IE.

Related Item: showModalDialog() method

screen
Value: screen object Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Although the screen object appears as a property of the window object in modern browsers, the screen
object is also available in NN4 (see Chapter 39 on the CD-ROM), but as a stand-alone object. Because you
can omit any reference to the window object for a window object’s properties, the same windowless refer-
ence syntax can be used for compatibility with legacy browsers that support the screen object.

Example
See Chapter 39 on the CD-ROM for examples of using the screen object to determine the video-monitor
characteristics of the computer running the browser.

Related Item: screen object

screenLeft
screenTop
Value: Integer Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari 1.2+

WinIE5+ provides the screenLeft and screenTop properties of the window object to let you read the
pixel position (relative to the top-left 0,0 coordinate of the video monitor) of what Microsoft calls the client
area of the browser window. The client area excludes most window chrome, such as the title bar, address
bar, and the window-sizing bar. Therefore, when the WinIE5+ browser window is maximized (meaning that
no sizing bars are exposed), the screenLeft property of the window is 0, whereas the screenTop prop-
erty varies depending on the combination of toolbars the user has elected to display. For nonmaximized
windows, if the window has been positioned so that the top and/or left parts of the client area are out of
view, their property values will be negative integers.

408

Document Objects Reference

windowObject.screenLeft

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 408

These two properties are read-only. You can position the browser window via the window.moveTo() and
window.moveBy() methods, but these methods position the top-left corner of the entire browser window,
not the client area. IE browsers through version 7 do not provide properties for the position of the entire
browser window.

Example
Use The Evaluator (Chapter 13) to experiment with the screenLeft and screenTop properties. Start with
the browser window maximized (if you are using Windows). Enter the following property name in the top
text box:

window.screenLeft

Click the Evaluate button to see the current setting. Unmaximize the window, and drag it around the
screen. Each time you finish dragging, click the Evaluate button again to see the current value. Do the same
for window.screenTop.

Related Items: window.moveTo(), window.moveBy() methods

screenX
screenY
Value: Integer Read/Write
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari 1.2+

NN6+/Moz/Safari provide the screenX and screenY properties to read the position of the outer boundary
of the browser window relative to the top-left coordinates (0,0) of the video monitor. The browser window
includes the 4-pixels-wide window-sizing bars that surround Win32 windows. Therefore, when the
WinNN6+ browser window is maximized, the value for both screenX and screenY is -4. NN/Moz/W3C
do not provide the equivalent measures of the browser window client area as found in the screenLeft and
screenTop properties of IE5+. You can, however, find out whether various toolbars are visible in the
browser window (see window.directories).

Although you can assign a value to either property, current versions of supporting browsers do not adjust
the window position in response if the user has set the preference that prevents window movement and
resizing. Moving and resizing windows by script is considered by many web surfers to be unacceptable
behavior.

Example
Use The Evaluator (Chapter 13) to experiment with the screenX and screenY properties. Start with the
browser window maximized (if you are using Windows). Enter the following property name in the top text
box:

window.screenY

Click the Evaluate button to see the current setting. Unmaximize the window, and drag it around the
screen. Each time you finish dragging, click the Evaluate button again to see the current value. Do the same
for window.screenY.

Related Items: window.moveTo(), window.moveBy() methods

409

windowObject.screenX

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 409

scrollbars
(See directories)

scrollMaxX
scrollMaxY
Value: Integer Read/Write
Compatibility: WinIE-, MacIE-, NN7.1+, Moz1.4+, Safari-

The NN7.1+/Moz1.4+ scrollMaxX and scrollMaxY properties let you determine the maximum horizon-
tal and vertical scrolling extents of a window. Scrolling is possible only if the window displays scroll bars
along the desired axis. Values are pixel integers.

Related Items: scrollX, scrollY properties

scrollX
scrollY
Value: Integer Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The NN6+/Mozilla/Safari scrollX and scrollY properties let you determine the horizontal and vertical
scrolling of a window. Scrolling is possible only if the window displays scroll bars along the desired axis.
Values are pixel integers.

Although the IE DOM does not provide similar properties for the window, the same information can be
derived from the body.scrollLeft and body.scrollTop properties.

Example
Use The Evaluator (Chapter 13) to experiment with the scrollX and scrollY properties. Enter the fol-
lowing property in the top text box:

window.scrollY

Now manually scroll the page down so that you can still see the Evaluate button. Click the button to see
how far the window has scrolled along the y-axis.

Related Items: body.scrollLeft, body.scrollTop properties

self
Value: Window object reference Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Just as the window object reference is optional, so is the self property when the object reference points to
the same window as the one containing the reference. In what may seem to be an unusual construction, the
self property represents the same object as the window. For instance, to obtain the title of the document in
a single-frame window, you can use any of the following three constructions:

window.document.title
self.document.title
document.title

410

Document Objects Reference

windowObject.self

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 410

Although self is a property of a window, you should not combine the references within a single-frame
window script (for example, don’t begin a reference with window.self, which has been known to cause
numerous scripting problems). Specifying the self property, though optional for single-frame windows,
can help make an object reference crystal clear to someone reading your code (and to you, for that matter).
Multiple-frame windows are where you need to pay particular attention to this property.

JavaScript is pretty smart about references to a statement’s own window. Therefore, you can generally omit
the self part of a reference to a same-window document element. But when you intend to display a docu-
ment in a multiframe window, complete references (including the self prefix) to an object make it much
easier on anyone who reads or debugs your code to track who is doing what to whom. You are free to
retrieve the self property of any window. The value that comes back is a window object reference.

Example
Listing 16-15 uses the same operations as Listing 16-5 but substitutes the self property for all window
object references. The application of this reference is entirely optional, but it can be helpful for reading and
debugging scripts if the HTML document is to appear in one frame of a multiframe window — especially if
other JavaScript code in this document refers to documents in other frames. The self reference helps any-
one reading the code know precisely which frame was being addressed.

LISTING 16-15

Using the self Property

<html>
<head>

<title>self Property</title>
<script type=”text/javascript”>
self.defaultStatus = “Welcome to my Web site.”;
</script>

</head>
<body>

<a href=”http://www.microsoft.com”
onmouseover=”self.status = ‘Visit Microsoft\’s Home page.’;return true;”
onmouseout=”self.status = ‘’;return true;”>Microsoft
<p><a href=”http://mozilla.org”

onmouseover=”self.status = ‘Visit Mozilla\’s Home page.’;return
true;”

onmouseout=”self.status = self.defaultStatus;return
true;”>Mozilla</p>

</body>
</html>

Related Items: window.frames, window.parent, window.top properties

411

windowObject.self

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 411

sidebar
(See appCore)

status
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

At the bottom of the browser window is a status bar. Part of that bar includes an area that normally dis-
closes the document loading progress or the URL of a link that the mouse is pointing to at any given
instant. You can control the temporary content of that field by assigning a text string to the window object’s
status property. You should adjust the status property only in response to events that have a temporary
effect, such as a link or image map area object’s onmouseover event handler. When the status property is
set in this situation, it overrides any other setting in the status bar. If the user then moves the mouse pointer
away from the object that changes the status bar, the bar returns to its default setting (which may be empty
on some pages). To prevent link spoofing, however, not all modern browsers display scripted status-bar text
associated with links.

Use this window property as a friendlier alternative to displaying the URL of a link as a user rolls the mouse
around the page. For example, if you’d rather use the status bar to explain the nature of the destination of a
link, put that text into the status bar in response to the onmouseover event handler. But be aware that
experienced web surfers like to see URLs down there. Therefore, consider creating a hybrid message for the
status bar that includes a friendly description followed by the URL in parentheses. In multiframe environ-
ments, you can set the window.status property without having to worry about referencing the individual
frame.

Example
In Listing 16-16, the status property is set in a handler embedded in the onmouseover attribute of two
HTML link tags. Notice that the handler requires a return true statement (or any expression that evalu-
ates to return true) as the last statement of the handler. This statement is required; otherwise, the status
message will not display in all browsers.

LISTING 16-16

Links with Custom Status-Bar Messages

<html>
<head>

<title>window.status Property</title>
</head>
<body>

<a href=”http://www.dannyg.com”
onmouseover=”window.status = ‘Go to my Home page. (www.dannyg.com)’;
return true;”>Home
<p><a href=”http://mozilla.org”
onmouseover=”window.status = ‘Visit Mozilla Home page. (mozilla.org)’;
return true;”>Mozilla</p>

</body>
</html>

412

Document Objects Reference

windowObject.status

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 412

As a safeguard against platform-specific anomalies that affect the behavior of onmouseover event handlers
and the window.status property, you should also include an onmouseout event handler for links and
client-side image map area objects. Such onmouseout event handlers should set the status property to an
empty string. This setting ensures that the status-bar message returns to the defaultStatus setting when
the pointer rolls away from these objects. If you want to write a generalizable function that handles all win-
dow status changes, you can do so, but word the onmouseover attribute carefully so that the event handler
evaluates to return true. Listing 16-17 shows such an alternative.

LISTING 16-17

Handling Status Message Changes

<html>
<head>

<title>Generalizable window.status Property</title>
<script type=”text/javascript”>
function showStatus(msg) {

window.status = msg;
return true;

}
</script>

</head>
<body>

<a href=”http://www.example.com”
onmouseover=”return showStatus(‘Go to my Home page.’)”
onmouseout=”return showStatus(‘’)”>Home
<p><a href=”http://mozilla.org”
onmouseover=”return showStatus(‘Visit Mozilla Home page.’)”
onmouseout=”return showStatus(‘’)”>Mozilla</p>

</body>
</html>

Notice how the event handlers return the results of the showStatus() method to the event handler, allow-
ing the entire handler to evaluate to return true.

One final example of setting the status bar (shown in Listing 16-18) also demonstrates how to create a sim-
ple scrolling banner in the status bar.

LISTING 16-18

Creating a Scrolling Banner

<html>
<head>

<title>Message Scroller</title>
<script type=”text/javascript”>
var msg = “Welcome to my world...”;
var delay = 150;

continued

413

windowObject.status

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 413

LISTING 16-18 (continued)

var timerId;
var maxCount = 0;
var currCount = 1;

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {

maxCount = 3 * msg.length;
}
window.status = msg;
// keep track of how many characters have scrolled
currCount++;
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1);
// test whether we’ve reached maximum character count
if (currCount >= maxCount) {

timerID = 0; // zero out the timer
window.status = “”; // clear the status bar
return; // break out of function

} else {
// recursive call to this function
timerId = setTimeout(“scrollMsg()”, delay);

}
}
</script>

</head>
<body onload=”scrollMsg()”>
</body>

</html>

Because the status bar is being set by a stand-alone function (rather than by an onmouseover event han-
dler), you do not have to append a return true statement to set the status property. The scrollMsg()
function uses more advanced JavaScript concepts, such as the window.setTimeout() method (covered
later in this chapter) and string methods (covered in Chapter 28). To speed the pace at which the words
scroll across the status bar, reduce the value of delay.

Many web surfers (me included) don’t care for these scrollers that run forever in the status bar. Rolling the
mouse over links disturbs the banner display. Use scrolling bars sparingly or design them to run only a few
times after the document loads.

Setting the status property with onmouseover event handlers has had a checkered career
along various implementations in Navigator. A script that sets the status bar is always in competi-

tion against the browser itself, which uses the status bar to report loading progress. When a hot area on a page
is at the edge of a frame, many times the onmouseout event fails to fire, preventing the status bar from clear-
ing itself. Be sure to torture-test any such implementations before declaring your page ready for public access.

Related Items: window.defaultStatus property; onmouseover, onmouseout event handlers; link
object

TIPTIP

414

Document Objects Reference

windowObject.status

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 414

statusbar
toolbar
(See locationbar)

top
Value: Window object reference Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The window object’s top property refers to the topmost window in a frameset object hierarchy. For a single-
frame window, the reference is to the same object as the window itself (including the self and parent
properties), so do not include window as part of the reference. In a multiframe window, the top window is
the one that defines the first frameset (in case of nested framesets). Users don’t ever really see the top win-
dow in a multiframe environment, but the browser stores it as an object in its memory. The reason is that
the top window has the road map to the other frames (if one frame should need to reference an object in a
different frame), and its children frames can call upon it. Such a reference looks like this”

top.functionName([parameters])

For more about the distinction between the top and parent properties, see the in-depth discussion about
scripting frames at the beginning of this chapter. See also the example of the parent property for listings
that demonstrate the values of the top property.

Related Items: window.frames, window.self, window.parent properties

window
Value: Window object Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Listing the window property as a separate property may be more confusing than helpful. The window prop-
erty is the same object as the window object. You do not need to use a reference that begins with
window.window. Although the window object is assumed for many references, you can use window as part
of a reference to items in the same window or frame as the script statement that makes that reference. You
should not, however, use window as a part of a reference involving items higher up in the hierarchy (top or
parent).

Methods
alert(“message”)
Returns: Nothing
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

An alert dialog box is a modal window that presents a message to the user with a single OK button to dis-
miss the dialog box. As long as the alert dialog box is showing, no other application or window can be
made active. The user must dismiss the dialog box before proceeding with any more work in the browser.

The single parameter to the alert() method can be a value of any data type, including representations of
some unusual data types whose values you don’t normally work with in JavaScript (such as complete
objects). This makes the alert dialog box a handy tool for debugging JavaScript scripts. Any time you want
to monitor the value of an expression, use that expression as the parameter to a temporary alert()
method in your code. The script proceeds to that point and then stops to show you the value. (See Chapter
45 on the CD-ROM for more tips on debugging scripts.)

415

windowObject.alert()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 415

What is often disturbing to application designers is that all JavaScript-created modal dialog boxes (via the
alert(), confirm(), and prompt() methods) identify themselves as being generated by JavaScript or the
browser. The purpose of this identification is to act as a security precaution against unscrupulous scripters
who might try to spoof system or browser alert dialog boxes, inviting a user to reveal passwords or other
private information. These identifying words cannot be overwritten or eliminated by your scripts. You can
simulate a modal dialog-box window in a cross-browser fashion with regular browser windows, but it is not
as robust as a genuine modal window, which you can create in IE4+ via the window.showModalDialog()
method.

Because the alert() method is of a global nature (that is, no particular frame in a multiframe environment
derives any benefit from laying claim to the alert dialog box), a common practice is to omit all window
object references from the statement that calls the method. Restrict the use of alert dialog boxes in your
HTML documents and site designs. The modality of the windows is disruptive to the flow of a user’s naviga-
tion around your pages. Communicate with users via forms or by writing to separate document window
frames. Of course, alert boxes can still be very handy as a quick debugging aid.

Example
The parameter for the example in Listing 16-19 is a concatenated string. It joins two fixed strings and the
value of the browser’s navigator.appName property. Loading this document causes the alert dialog box to
appear, as shown in several configurations in Figure 16-8. The JavaScript Alert: line cannot be deleted from
the dialog box in earlier browsers; neither can the title bar be changed in later browsers.

LISTING 16-19

Displaying an Alert Dialog Box

<html>
<head>

<title>window.alert() Method</title>
</head>
<body>

<script type=”text/javascript”>
alert(“You are running the “ + navigator.appName + “ browser.”)
</script>

</body>
</html>

416

Document Objects Reference

windowObject.alert()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 416

FIGURE 16-8

Results of the alert() method in Listing 16-19 in Firefox and Internet Explorer.

Related Items: window.confirm(), window.prompt() methods

back()
forward()
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari-

The purpose of the window.back() and window.forward() methods that began in NN4 is to offer a
scripted version of the global back and forward navigation buttons while allowing the history object to
control navigation strictly within a particular window or frame — as it should. These window methods did
not catch on in IE (and the window object is out of the scope of the W3C DOM Level 2), so you are better
off staying with the history object’s methods for navigating browser history. For more information about
version compatibility and about back and forward navigation, see the history object in Chapter 17.

Related Items: history.back(), history.forward(), history.go() methods

clearInterval(intervalIDnumber)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Use the window.clearInterval() method to turn off an interval loop action started with the
window.setInterval() method. The parameter is the ID number returned by the setInterval()
method. A common application for the JavaScript interval mechanism is animation of an object on a page.
If you have multiple intervals running, each has its own ID value in memory. You can turn off any interval
by its ID value. As soon as an interval loop stops, your script cannot resume that interval: It must start a
new one, which generates a new ID value.

Example
See Listing 16-33 and Listing 16-34 later in this chapter for an example of how setInterval() and
clearInterval() are used together on a page.

Related Items: window.setInterval(), window.setTimeout(), window.clearTimeout() methods

417

windowObject.clearInterval()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 417

clearTimeout(timeoutIDnumber)
Returns: Nothing
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Use the window.clearTimeout() method in concert with the window.setTimeout() method, as described
later in this chapter, when you want your script to cancel a timer that is waiting to run its expression. The param-
eter for this method is the ID number that the window.setTimeout() method returns when the timer starts
ticking. The clearTimeout() method cancels the specified timeout. A good practice is to check your code for
instances where user action may negate the need for a running timer — and to stop that timer before it goes off.

Example
The page in Listing 16-20 features one text box and two buttons (see Figure 16-9). One button starts a
countdown timer coded to last 1 minute (easily modifiable for other durations); the other button interrupts
the timer at any time while it is running. When the minute is up, an alert dialog box lets you know.

LISTING 16-20

A Countdown Timer

<html>
<head>

<title>Count Down Timer</title>
<script type=”text/javascript”>
var running = false;
var endTime = null;
var timerID = null;

function startTimer() {
running = true;
now = new Date();
now = now.getTime();
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1);
showCountDown();

}

function showCountDown() {
var now = new Date();
now = now.getTime();
if (endTime - now <= 0) {

stopTimer();
alert(“Time is up. Put down your pencils.”);

} else {
var delta = new Date(endTime - now);
var theMin = delta.getMinutes();
var theSec = delta.getSeconds();
var theTime = theMin;
theTime += ((theSec < 10) ? “:0” : “:”) + theSec;
document.forms[0].timerDisplay.value = theTime;
if (running) {

timerID = setTimeout(“showCountDown()”,1000);
}

418

Document Objects Reference

windowObject.clearTimeout()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 418

}
}

function stopTimer() {
clearTimeout(timerID);
running = false;
document.forms[0].timerDisplay.value = “0:00”;

}
</script>

</head>
<body>

<form>
<input type=”button” name=”startTime” value=”Start 1 min. Timer”
onclick=”startTimer()” /> <input type=”button” name=”clearTime”
value=”Clear Timer” onclick=”stopTimer()” />
<p><input type=”text” name=”timerDisplay” value=”” /></p>

</form>
</body>

</html>

Notice that the script establishes three variables with global scope in the window: running, endTime, and
timerID. These values are needed inside multiple functions, so they are initialized outside the functions.

FIGURE 16-9

The countdown timer page as it displays the time remaining.

419

windowObject.clearTimeout()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 419

In the startTimer() function, you switch the running flag on, meaning that the timer should be going.
Using some date functions (see Chapter 30), you extract the current time in milliseconds and add the num-
ber of milliseconds for the next minute (the extra multiplication by 1 is the place where you can change the
amount to the desired number of minutes). With the end time stored in a global variable, the function now
calls another function that compares the current and end times and displays the difference in the text box.

Early in the showCountDown() function, check to see whether the timer has wound down. If so, you stop
the timer and alert the user. Otherwise, the function continues to calculate the difference between the two
times and formats the time in mm:ss format. As long as the running flag is set to true, the function sets
the 1-second timeout timer before repeating itself. To stop the timer before it has run out (in the
stopTimer() function), the most important step is to cancel the timeout running inside the browser. The
clearTimeout() method uses the global timerID value to do that. Then the function turns off the run-
ning switch and zeros out the display.

When you run the timer, you may occasionally notice that the time skips a second. It’s not cheating. It just
takes slightly more than 1 second to wait for the timeout and then finish the calculations for the next sec-
ond’s display. What you’re seeing is the display catching up with the real time left.

Related Item: window.setTimeout() method

close()
Returns: Nothing
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The window.close() method closes the browser window referenced by the window object. Most likely,
you will use this method to close subwindows created from a main document window. If the call to close
the window comes from a window other than the new subwindow, the original window object must main-
tain a record of the subwindow object. You accomplish this by storing the value returned from the win-
dow.open() method in a global variable that will be available to other objects later (for example, a variable
not initialized inside a function). If, on the other hand, an object inside the new subwindow calls the win-
dow.close() method, the window or self reference is sufficient.

Be sure to include a window as part of the reference to this method. Failure to do so may cause JavaScript to
regard the statement as a document.close() method, which has different behavior (see Chapter 18). Only
the window.close() method can close the window via a script. Closing a window, of course, forces the
window to trigger an onunload event handler before the window disappears from view, but after you’ve
initiated the window.close() method, you cannot stop it from completing its task. Moreover, onunload
event handlers that attempt to execute time-consuming processes (such as submitting a form in the closing
window) may not complete because the window can easily close before the process completes — a behavior
that has no workaround (with the exception of the onbeforeunload event handler in IE4+).

While I’m on the subject of closing windows, a special case exists when a subwindow tries to close the main
window (via a statement such as self.opener.close()) when the main window has more than one entry
in its session history. As a safety precaution against scripts closing windows they did not create, modern
browsers ask the user whether he or she wants the main window to close (via a browser-generated dialog
box). This security precaution cannot be overridden except in NN4+/Moz via a signed script when the user
grants permission to control the browser (see Chapter 46 on the CD-ROM).

Example
See Listing 16-4 (for the window.closed property), which provides a cross-platform example of applying
the window.close() method across multiple windows.

Related Items: window.open(), document.close() methods

420

Document Objects Reference

windowObject.close()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 420

confirm(“message”)
Returns: Boolean
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A confirm dialog box presents a message in a modal dialog box along with OK and Cancel buttons. Such a
dialog box can be used to ask a question of the user, usually prior to a script’s performing actions that will
not be undoable. Querying a user about proceeding with typical web navigation in response to user interac-
tion on a form element is generally a disruptive waste of the user’s time and attention. But for operations
that may reveal a user’s identity or send form data to a server, a JavaScript confirm dialog box may make a
great deal of sense. Users can also accidentally click buttons, so you should provide avenues for backing out
of an operation before it executes.

Because this dialog box returns a Boolean value (OK = true; Cancel = false), you can use this method as a
comparison expression or as an assignment expression. In a comparison expression, you nest the method
within any other statement where a Boolean value is required. For example:

if (confirm(“Are you sure?”)) {
alert(“OK”);

} else {
alert(“Not OK”);

}

Here, the returned value of the confirm dialog box provides the desired Boolean value type for the
if...else construction (see Chapter 32).

This method can also appear on the right side of an assignment expression, as in:

var adult = confirm(“You certify that you are over 18 years old?”);
if (adult) {

//statements for adults
} else {

//statements for children
}

You cannot specify other alert icons or labels for the two buttons in JavaScript confirm dialog-box windows.

The example in Listing 16-21 shows the user interface part of how you can use a confirm dialog box to
query a user before clearing a table full of user-entered data. The line in the title bar, as shown in Figure
16-10, cannot be removed from the dialog box.

LISTING 16-21

The Confirm Dialog Box

<html>
<head>

<title>window.confirm() Method</title>
<script type=”text/javascript”>
function clearTable() {

if (confirm(“Are you sure you want to empty the table?”)) {
alert(“Emptying the table...”); // for demo purposes
//statements that actually empty the fields

continued

421

windowObject.confirm()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 421

LISTING 16-21 (continued)

}
}
</script>

</head>
<body>

<form>
<!-- other statements that display and populate a large table -->
<input type=”button” name=”clear” value=”Reset Table”
onclick=”clearTable()” />

</form>
</body>

</html>

FIGURE 16-10

A JavaScript confirm dialog box in Internet Explorer.

Related Items: window.alert(), window.prompt(), form.submit() methods

createPopup()
Returns: Pop-up object reference
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

An IE pop-up window is a chromeless rectangular space that overlaps the current window. Unlike the dia-
log boxes generated by the showModalDialog() and showModelessDialog() methods, the pop-up win-
dow’s entire content must be explicitly controlled by script. That also goes for the size and location of the
window. Generating the window via the createPopup() method simply creates the object in memory
without displaying it. You can then use the reference to the pop-up window that is returned by the method
to position the window, populate its content, and make it visible. See details in the description of the popup
object later in this chapter.

Example
See Listing 16-46 later in this chapter for an example of the createPopup() method.

Related Item: popup object

422

Document Objects Reference

windowObject.createPopup()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 422

dump(“message”)
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN7.1+, Moz1.4+, Safari-

The window.dump() method is a debugging/diagnostic method that you can use to output a string of text
to standard output, which is typically the operating system’s console window. The dump() method provides
a less intrusive alternative to displaying debugging messages via the alert() method.

execScript(“exprList”[, language])
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific window.execScript() method executes one or more script statements that are passed as
string expressions. The first parameter is a string version of one or more script statements (multiple state-
ments must be separated by semicolons). The second, optional parameter is the language interpreter the
browser should use to execute the script statement. Acceptable values for the language are JavaScript,
JScript, VBS, and VBScript. The default value is JScript, so you can omit the second parameter when
supplying expressions in JavaScript.

Unlike the JavaScript core language eval() function (which also executes string versions of JavaScript
statements), the execScript() method returns no values. Even so, the method operates within the global
variable space of the window holding the current document. For example, if a document’s script declares a
global variable as follows

var myVar;

the execScript() method can read or write to that variable:

window.execScript(“myVar = 10; myVar += 5”);

After this statement runs, the global variable myVar has a value of 15.

Example
Use The Evaluator (Chapter 13) to experiment with the execScript() method. The Evaluator has prede-
clared global variables for the lowercase letters a through z. Enter each of the following statements in the
top text box, and observe the results for each.

a

When first loaded, the variable is declared but assigned no value, so it is undefined:

window.execScript(“a = 5”)

The method returns no value, so the mechanism inside The Evaluator says that the statement is undefined:

a

The variable is now 5.

window.execScript(“b = a * 50”)
b

The b global variable has a value of 250. Continue exploring with additional script statements. Use semi-
colons to separate multiple statements within the string parameter.

Related Item: eval() function

423

windowObject.execScript()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 423

find([“searchString” [, matchCaseBoolean,
searchUpBoolean]])
Returns: Boolean value for non-dialog-box searches
Compatibility: WinIE-, MacIE-, NN4+, Moz1.0.1+, Safari-

The window.find() method introduced in NN4 mimics the powers of the browser’s Find dialog box,
accessible from the Find button in the toolbar. This method was deactivated in NN6 but reactivated in
NN7/Moz1.0.1.

If you specify no parameters, the browser’s Find dialog box appears, just as though the user had clicked the
Find button in the toolbar. With no parameters, this function does not return a value.

You can specify a search string as a parameter to the function. The search is based on simple string match-
ing and is not in any way connected with the regular-expression kind of search (see Chapter 42 on the
CD-ROM). If the search finds a match, the browser scrolls to that matching word and highlights the word,
just as though it were using the browser’s own Find dialog box. The function also returns a Boolean true
after a match is found. If no match is found in the document, or no more matches occur in the current
search direction (the default direction is from top to bottom), the function returns false.

Two optional Boolean parameters to the scripted find action let you specify whether the search should be
case sensitive and whether the search direction should be upward from the bottom of the document. These
choices are identical to the ones that appear in the NN4+’s Find dialog box. Default behavior is case insensi-
tive and searches from top to bottom.

Some modern browsers such as Firefox have evolved to forego the Find dialog box in favor of an integrated
find feature that appears at the bottom of the browser window. This approach to find can be applied to the
entire page at the same time, in which case all of the text matches are highlighted.

IE4+ also has a scripted text search facility, but it is implemented in an entirely different way (using the
TextRange object described in Chapter 36 on the CD-ROM). The visual behavior also differs in that it does
not highlight and scroll to a matching string in the text.

Example
A simple call to the window.find() method looks as follows:

var success = window.find(“contract”);

And if you want the search to be case sensitive, add at least one of the two optional parameters:

success = window.find(matchString,caseSensitive,backward);

In many ways, the window.find() method is a remnant of NN4. Refer to discussions of the TextRange and
Range objects in Chapter 36 on the CD-ROM for more modern implementations of body-text searching.

Related Items: TextRange, Range objects (Chapter 36 on the CD-ROM)

forward()
(See window.back())

424

Document Objects Reference

windowObject.forward()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 424

geckoActiveXObject(“progID”)
Returns: WMP control object
Compatibility: WinIE-, MacIE-, NN7.1+, Moz1.4+, Safari-

One interesting result of the NN/IE browser wars is Microsoft’s victory in establishing Windows Media
Player as the PC media player of choice. Because WMP is implemented as an ActiveX control, NN/Moz
browsers were somewhat left out in the cold in terms of scriptability. The
window.geckoActiveXObject() method was added to Moz1.4 browsers to give them the capability of
accessing WMP as an ActiveX control. Although the name of the method suggests generic support for
ActiveX controls, it currently enables you to open only the WMP control.

The only parameter to geckoActiveXObject() is a programmatic ID, which for WMP is currently
MediaPlayer.MediaPlayer.1. So to grab a WMP control reference for media playback using the
geckoActiveXObject() method, use code such as this:

var player = new GeckoActiveXObject(“MediaPlayer.MediaPlayer.1”);

getComputedStyle(elementNodeRef, “pseudoElementName”)
Returns: CSS style object
Compatibility: WinIE-, MacIE-, NN-, Moz+, Safari-

The window.getComputedStyle() method enables you to access the cascading style sheet (CSS) style
object associated with a given element. You specify an element node reference as the first parameter to the
method, along with the optional name of a specific pseudoelement to which the style applies. I say optional
because you can pass an empty string as the second parameter to obtain a style object with no pseudoele-
ment implications.

Although the getComputedStyle() method is defined (and works) for the window object, the W3C DOM
prefers document.defaultView.getComputedStyle() as the standard means of accessing a style object
for an element. It’s the same method ultimately being called; the access of it is what differs.

getSelection()
Returns: Selection object
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

This method takes the place of the deprecated method of the same name that appeared in the document
object. The method offers a scripted way of capturing the text selected by a user in a page, which is a com-
mon task involving the selection and copying of body text in a document for pasting into other application
documents. The window.getSelection() method returns the string of text selected by the user. If noth-
ing is selected, an empty string is the result. Returned values consist only of the visible text on the page and
not the underlying HTML or style of the text.

The WinIE4+ equivalent involves the document.selection property, which returns an IE selection
object. To derive the text from this object, you must create a TextRange object from it and then inspect the
text property:

var selectedText = document.selection.createRange().text;

425

windowObject.getSelection()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 425

Example
The document in Listing 16-22 provides a cross-browser (but not MacIE5) solution to capturing text that a
user selects in the page. Selected text is displayed in the text area. The script uses browser detection and
branching to account for the differences in event handling between Mozilla and Internet Explorer.

LISTING 16-22

Retrieving Selected Text

<html>
<head>

<title>Getting Selected Text</title>
<script type=”text/javascript”>
document.onmouseup = showSelection;

function showSelection() {
if (window.getSelection) {

document.forms[0].selectedText.value = window.getSelection();
} else if (document.selection) {

document.forms[0].selectedText.value =
document.selection.createRange().text;

event.cancelBubble = true;
}

}
</script>

</head>
<body>

<h1>Getting Selected Text</h1>
<hr />
<p>Select some text and see how JavaScript can capture the selection:</p>
<h2>ARTICLE I</h2>
<p>Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of grievances.</p>

<form>
<textarea name=”selectedText” rows=”3” cols=”40” wrap=”virtual”>
</textarea>

</form>
</body>

</html>

Related Item: document.selection property

426

Document Objects Reference

windowObject.getSelection()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 426

home()
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari-

Like many of the window methods originally introduced in Navigator 4, the window.home() method pro-
vides an NN-specific scripted way of replicating the action of a toolbar button: the Home button. The action
navigates the browser to whatever URL is set in the browser preferences for home-page location. You cannot
control the default home page of a visitor’s browser.

Related Items: window.back(), window.forward() methods; window.toolbar property

moveBy(deltaX,deltaY)
moveTo(x,y)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Version 4 browsers introduced the capability of allowing JavaScript to adjust the location of a browser win-
dow onscreen. This applies to the main window or any subwindow generated by script. NN/Moz regard the
possibility of a window moved out of screen view as a potential security hole, so signed scripts are needed
in NN4+/Moz to move a window offscreen.

You can move a window to an absolute position onscreen or adjust it along the horizontal and/or vertical
axis by any number of pixels, irrespective of the absolute pixel position. The coordinate space for the x
(horizontal) and y (vertical) position is the entire screen, with the top-left corner representing 0,0. The
point of the window you set with the moveBy() and moveTo() methods is the top-left corner of the outer
edge of the browser window. Therefore, when you move the window to point 0,0, that sets the window
flush with the top-left corner of the screen. This may not be the equivalent of a truly maximized window for
all browsers and operating systems, however, because a maximized window’s coordinates may be negative
by a handful of pixels.

The difference between the moveTo() and moveBy() methods is that one is an absolute move, whereas the
other is relative with respect to the current window position. Parameters you specify for moveTo() are the
precise horizontal and vertical pixel counts onscreen where you want the top-left corner of the window to
appear. By contrast, the parameters for moveBy() indicate how far to adjust the window location in either
direction. If you want to move the window 25 pixels to the right, you must still include both parameters,
but the y value will be zero:

window.moveBy(25,0);

To move to the left, the first parameter must be a negative number.

Example
Several examples of using the window.moveTo() and window.moveBy() methods are shown in Listing 16-23.
The page presents four buttons, each of which performs a different kind of browser-window movement.

427

windowObject.moveBy()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 427

LISTING 16-23

Window Boogie

<html>
<head>

<title>Window Gymnastics</title>
<script type=”text/javascript”>
// wait in onload for page to load and settle in IE
function init() {

// fill missing IE properties
if (!window.outerWidth) {

window.outerWidth = document.body.clientWidth;
window.outerHeight = document.body.clientHeight + 30;

}
}

// function to run when window captures a click event
function moveOffScreen() {

// branch for NN security
if (window.netscape) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserWrite”);

}
var maxX = screen.width;
var maxY = screen.height;
window.moveTo(maxX+1, maxY+1);
setTimeout(“window.moveTo(0,0)”,500);
if (window.netscape) {

netscape.security.PrivilegeManager.disablePrivilege(
“UniversalBrowserWrite”);

}
}

// moves window in a circular motion
function revolve() {

var winX = (screen.availWidth - window.outerWidth) / 2;
var winY = 50;
window.resizeTo(400,300);
window.moveTo(winX, winY);

for (var i = 1; i < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5;
winY += Math.sin(i * (Math.PI/18)) * 5;
window.moveTo(winX, winY);

}
}

// moves window in a horizontal zig-zag pattern
function zigzag() {

window.resizeTo(400,300);

428

Document Objects Reference

windowObject.moveBy()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 428

window.moveTo(0,80);
var incrementX = 2;
var incrementY = 2;
var floor = screen.availHeight - window.outerHeight;
var rightEdge = screen.availWidth - window.outerWidth;
for (var i = 0; i < rightEdge; i += 2) {

window.moveBy(incrementX, incrementY);
if (i%60 == 0) {

incrementY = -incrementY;
}

}
}

// resizes window to occupy all available screen real estate
function maximize() {

window.moveTo(0,0);
window.resizeTo(screen.availWidth, screen.availHeight);

}
</script>

</head>
<body onload=”init()”>

<form name=”buttons”>
Window Gymnastics

<input name=”offscreen” type=”button”
value=”Disappear a Second” onclick=”moveOffScreen()” />

<input name=”circles” type=”button” value=”Circular Motion”
onclick=”revolve()” />

<input name=”bouncer” type=”button” value=”Zig Zag”
onclick=”zigzag()” />

<input name=”expander” type=”button” value=”Maximize”
onclick=”maximize()” />

</form>

</body>
</html>

To run successfully in NN/Moz, the first button requires that you have codebase principals turned on (see
Chapter 46 on the CD-ROM) to take advantage of what would normally be a signed script. The
moveOffScreen() function momentarily moves the window entirely out of view. Notice how the script
determines the size of the screen before deciding where to move the window. After the journey offscreen,
the window comes back into view at the top-left corner of the screen.

If using the web sometimes seems like going around in circles, the second function, revolve(), should feel
just right. After reducing the size of the window and positioning it near the top center of the screen, the
script uses a bit of math to position the window along 36 places around a perfect circle (at 10-degree incre-
ments). This is an example of how to control a window’s position dynamically based on math calculations.
IE complicates the job a bit by not providing properties that reveal the outside dimensions of the browser
window.

429

windowObject.moveBy()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 429

To demonstrate the moveBy() method, the third function, zigzag(), uses a for loop to increment the
coordinate points to make the window travel in a sawtooth pattern across the screen. The x coordinate con-
tinues to increment linearly until the window is at the edge of the screen (also calculated on the fly to
accommodate monitors of any size). The y coordinate must increase and decrease as that parameter changes
direction at various times across the screen.

In the fourth function, you see some practical code (finally) that demonstrates how best to simulate maxi-
mizing the browser window to fill the entire available screen space on the visitor’s monitor.

Related Items: window.outerHeight, window.outerWidth properties; window.resizeBy(),
window.resizeTo() methods

navigate(“URL”)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The window.navigate() method is an IE-specific method that lets you load a new document into a win-
dow or frame. This method’s action is the same as assigning a URL to the location.href property — a
property that is available on all scriptable browsers. If your audience is entirely IE-based, this method is
safe. Otherwise, I recommend the location.href property as the best navigation approach.

Example
Supply any valid URL as the parameter to the method, as in:

window.navigate(“http://www.dannyg.com”);

Related Item: location object

open(“URL”, “windowName” [,
“windowFeatures”][,replaceFlag])
Returns: A window object representing the newly created window; null if method fails
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

With the window.open() method, a script provides a web-site designer an immense range of options for
the way a second or third web browser window looks on the user’s computer screen. Moreover, most of this
control can work with all JavaScript-enabled browsers without the need for signed scripts. Because the
interface elements of a new window are easier to envision, I cover those aspects of the window.open()
method parameters first.

Setting new window features
The optional windowFeatures parameter is one string consisting of a comma-separated list of assignment
expressions (behaving something like HTML tag attributes). Important: For the best browser compatibility,
do not put spaces after the commas. If you omit the third parameter, JavaScript creates the same type of
new window you get from the New Web Browser menu choice in the File menu. But you can control which
window elements appear in the new window with the third parameter. Remember this important rule: If
you specify even one of the method’s original set of third parameter values, all other features are turned off
unless the parameters specify the features to be switched on. Table 16-3 lists the attributes that you can
control for a newly created window in all browsers. Except where noted, all Boolean values default to yes if
you do not specify the third parameter.

430

Document Objects Reference

windowObject.open()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 430

TABLE 16-3

window.open() Method Attributes Controllable via Script

Attribute Browsers Description

alwaysLowered3 NN4+/Moz+ (Boolean) Always behind other browser windows

alwaysRaised3 NN4+/Moz+ (Boolean) Always in front of other browser windows

channelMode IE4+ (Boolean) Theater mode with channel band (default is no)

chrome NN7.2+/Moz1.7+ (Boolean) Browser user interface features

close NN4+/Moz+ (Boolean) System close command icon and menu item at
top of window

copyhistory NN2+, IE3+ (Boolean) Duplicates Go menu history for new window

dependent NN4+/Moz+ (Boolean) Subwindow closes if the opener window closes

directories NN2+/Moz+, IE3+ (Boolean) What’s New and other buttons in the row

fullscreen IE4+ (Boolean) No title bar or menus (default is no)

height NN2+/Moz+, IE3+ (Integer) Content region height in pixels

hotkeys NN4+/Moz+ (Boolean) If true, disables menu shortcuts (except Quit and
Security Info) when menu bar is turned off

innerHeight4 NN4+/Moz+ (Integer) Content region height; same as old height
property

innerWidth4 NN4+/Moz+ (Integer) Content region width; same as old width property

left NN6+/Moz+, IE4+ (Integer) Horizontal position of top-left corner onscreen

location NN2+/Moz+, IE3+ (Boolean) Field displaying the current URL

menubar1 NN2+/Moz+, IE3+ (Boolean) Menu bar at top of window

minimizable NN7.1+/Moz1.2+ (Boolean) Minimize command icon at top of window

modal NN7.1+/Moz1.2+ (Boolean) Modality of window, as in preventing access to
the main window until the opened window is closed

outerHeight4 NN4+/Moz+ (Integer) Visible window height

outerWidth4 NN4+/Moz+ (Integer) Visible window width

personalBar NN4+/Moz+ (Boolean) Mozilla-specific version of the directories
attribute

resizable2 NN2+/Moz+, IE3+ (Boolean) Interface elements that allow resizing by
dragging

screenX4 NN4+/Moz+ (Integer) Horizontal position of top-left corner onscreen

screenY4 NN4+/Moz+ (Integer) Vertical position of top-left corner onscreen

scrollbars NN2+/Moz+, IE3+ (Boolean) Displays scroll bars if document is larger than
window

status NN2+/Moz+, IE3+ (Boolean) Status bar at bottom of window

continued

431

windowObject.open()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 431

TABLE 16-3 (continued)

Attribute Browsers Description

titlebar3 NN4+/Moz+ (Boolean) Title bar and all other border elements

toolbar NN2+/Moz+, IE3+ (Boolean) Back, Forward, and other buttons in the row

top NN6+/Moz+, IE4+ (Integer) Vertical position of top-left corner onscreen

width NN2+/Moz+, IE3+ (Integer) Content region width in pixels

z-lock3 NN4+/Moz+ (Boolean) Window layer is fixed below browser windows

1 Not on Macintosh because the menu bar is not in the browser window; when off in MacNN4, displays an abbreviated Mac
menu bar.

2 Macintosh windows are always resizable.

3 Requires a signed script.

4 Requires a signed script to size or position a window beyond safe threshold.

Boolean values are handled a bit differently than you might expect. The value for true can be yes, 1, or
just the feature name by itself; for false, use a value of no or 0. If you omit any Boolean attributes, they are
rendered as false. Therefore, if you want to create a new window that shows only the toolbar and status
bar and is resizable, the method looks like this:

window.open(“newURL”,”NewWindow”, “toolbar,status,resizable”);

A new window that does not specify the height and width is set to the default size of the browser window
that the browser creates from a File menu’s New Web Browser command. In other words, a new window
does not automatically inherit the size of the window making the window.open() method call. A new win-
dow created via a script is positioned somewhat arbitrarily unless you use the window positioning attributes
available in modern browsers. Notice that the position attributes are different for each browser (screenX
and screenY for NN/Moz; left and top for IE). You can include both sets of attributes in a single parame-
ter string because the browser ignores attributes that it doesn’t recognize.

Invoking window.open() via a window’s onload and onunload event handlers has led to
severe abuse in the form of unwanted pop-up advertising windows. Browsers that include pop-

up blockers (such as IE6+ and Mozilla-based browsers) prevent the method from being invoked by these
event handlers. With more browsers and users employing pop-up blockers every day, you should not even
think about blasting pop-up ads to web surfers.

Netscape/Mozilla-only signed scripts
Many NN/Moz-specific attributes are deemed to be security risks and thus require signed scripts and the
user’s permission before they are recognized. If the user fails to grant permission, the secure parameter is
ignored.

To apply signed scripts to opening a new window with the secure window features, you must enable
UniversalBrowserWrite privileges as you do for other signed scripts (see Chapter 46 on the CD-ROM).
A code fragment that generates an alwaysRaised style window follows:

<script type=”text/javaScript” archive=”myJar.jar” id=”1”>
function newRaisedWindow() {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”);
var newWindow = window.open(“”,””,”height=100,width=300,alwaysRaised=yes”);
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”);

NOTENOTE

432

Document Objects Reference

windowObject.open()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 432

var newContent = “<html><body> “On top of spaghetti!””;
newContent += “<form><center><input type=’button’ value=’OK’”;
newContent += “onclick=’self.close()’></center></form></body></html>”;
newWindow.document.write(newContent);
newWindow.document.close();

}
</script>

You can experiment with the look and behavior of new windows with any combination of attributes with
the help of the script in Listing 16-24. This page presents a table of all NN-specific new window Boolean
attributes and creates a new 300 × 300 pixel window based on your choices. This page assumes that if you
are using NN/Moz, you have codebase principals turned on for signed scripts (see Chapter 46 on the
CD-ROM).

Be careful with turning off the title bar and hotkeys. With the title bar off, the content appears to float in
space because absolutely no borders are displayed. With hotkeys still turned on, you can use Ctrl+W to
close this borderless window (except on the Mac, for which the hotkeys are always disabled with the title
bar off). This is how you can turn a computer into a kiosk by sizing a window to the screen’s dimensions
and setting the window options to “titlebar=no,hotkeys=no,alwaysRaised=yes”.

LISTING 16-24

New Window Laboratory

<html>
<head>

<title>window.open() Options</title>
<script type=”text/javascript”>
function makeNewWind(form) {

if (window.netscape) {
netscape.security.PrivilegeManager.enablePrivilege(

“UniversalBrowserWrite”);
}
var attr = “width=300,height=300”;
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “checkbox”) {
attr += “,” + form.elements[i].name + “=”;
attr += (form.elements[i].checked) ? “yes” : “no”;

}
}
var newWind = window.open(“bofright.htm”,”subwindow”,attr);
if (window.netscape) {

netscape.security.PrivilegeManager.revertPrivilege(“CanvasAccess”);
}

}
</script>

</head>
<body>

Select new window options:
<form>

<table border=”2”>

continued

433

windowObject.open()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 433

LISTING 16-24 (continued)

<tr>
<td colspan=”2” bgcolor=”yellow” align=”middle”>
All Browsers Features:</td>

</tr>
<tr>

<td><input type=”checkbox” name=”toolbar” />toolbar</td>
<td><input type=”checkbox” name=”location” />location</td>

</tr>
<tr>

<td><input type=”checkbox” name=”directories” />directories</td>
<td><input type=”checkbox” name=”status” />status</td>

</tr>
<tr>

<td><input type=”checkbox” name=”menubar” />menubar</td>
<td><input type=”checkbox” name=”scrollbars” />scrollbars</td>

</tr>
<tr>

<td><input type=”checkbox” name=”resizable” />resizable</td>
<td><input type=”checkbox” name=”copyhistory” />copyhistory</td>

</tr>
<tr>

<td colspan=”2” bgcolor=”yellow” align=”middle”>
Communicator Features:</td>

</tr>
<tr>

<td><input type=”checkbox” name=”alwaysLowered” />
alwaysLowered</td>
<td><input type=”checkbox” name=”alwaysRaised” />
alwaysRaised</td>

</tr>
<tr>

<td><input type=”checkbox” name=”dependent” />dependent</td>
<td><input type=”checkbox” name=”hotkeys” checked=”checked” />
hotkeys</td>

</tr>
<tr>

<td><input type=”checkbox” name=”titlebar” checked=”checked” />
titlebar</td>
<td><input type=”checkbox” name=”z-lock” />z-lock</td>

</tr>
<tr>

<td colspan=”2” align=”middle”><input type=”button”
name=”forAll” value=”Make New Window”
onclick=”makeNewWind(this.form)” /></td>

</tr>
</table>

</form>

</body>
</html>

434

Document Objects Reference

windowObject.open()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 434

Specifying a window name
Getting back to the other parameters of window.open(), the second parameter is the name for the new
window. Don’t confuse this parameter with the document’s title, which normally would be set by whatever
HTML text determines the content of the window. A window name must be the same style of one-word
identifier that you use for other object names and variables. This name is also an entirely different entity
from the window object that the open() method returns. You don’t use the name in your scripts. At most,
the name can be used for target attributes of links and forms.

Loading content into a new window
A script generally populates a window with one of two kinds of information:

n An existing HTML document whose URL is known beforehand

n An HTML page created on the fly

To create a new window that displays an existing HTML document, supply the URL as the first parameter of
the window.open() method. If your page is having difficulty loading a URL into a new page, try specifying
the complete URL of the target document (instead of just the filename).

Leaving the first parameter as an empty string forces the window to open with a blank document, ready to
have HTML written to it by your script (or loaded separately by another statement that sets that window’s
location to a specific URL). If you plan to write the content of the window on the fly, assemble your HTML
content as one long string value and then use the document.write() method to post that content to the
new window. If you plan to append no further writing to the page, also include a document.close()
method at the end to tell the browser that you’re finished with the layout (so that the Layout:Complete or
Done message appears in the status bar, if your new window has one).

A call to the window.open() method returns a reference to the new window’s object if the window opens
successfully. This value is vitally important if your script needs to address elements of that new window
(such as when writing to its document).

To allow other functions in your script to reference the subwindow, you should assign the result of a
window.open() method to a global variable. Before writing to the new window the first time, test the vari-
able to make sure that it is not a null value; the window may have failed to open because of low memory,
for instance. If everything is OK, you can use that variable as the beginning of a reference to any property or
object within the new window. For example:

var newWindow
...
function createNewWindow() {

newWindow = window.open(“”,””);
if (newWindow != null) {

newWindow.document.write(“<html><head><title>Hi!</title></head>”);
}

}

That global variable reference continues to be available for another function that perhaps closes the subwin-
dow (via the close() method).

When scripts in the subwindow need to communicate with objects and scripts in the originating window,
you must make sure that the subwindow has an opener property if the level of JavaScript in the visitor’s
browser doesn’t automatically supply one. See the discussion about the window.opener property earlier in
this chapter.

435

windowObject.open()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 435

Invoking multiple window.open() methods with the same window name parameter (the second parame-
ter) does not create additional copies of that window in Netscape browsers (although it does in Internet
Explorer). JavaScript prevents you from creating two windows with the same name. Also be aware that a
window.open() method does not bring an existing window of that name to the front of the window layers:
Use window.focus() for that.

Internet Explorer idiosyncrasies
Creating subwindows in IE can be complicated at times by undesirable behavior by the browser. One of the
most common problems occurs when you attempt to use document.write() to put content into a newly
created window. IE, including some of the latest versions, fails to complete the window opening job before
the script statement that uses document.write() executes. This causes a script error because the reference
to the subwindow is not yet valid. To work around this, you should put the HTML assembly and document
.write() statements in a separate function that gets invoked via a setTimeout() method after the win-
dow is created. You can see an example of this in Listing 16-25.

Another problem that affects IE is the occasional security violation (access denied) warning when a script
attempts to access a subwindow. This problem goes away when the page that includes the script for opening
and accessing the subwindow is served from an HTTP server rather than accessed from a local hard disk.

Example
The page rendered by Listing 16-25 displays a single button that generates a new window of a specific size
that has only the status bar turned on. The script here shows all the elements necessary to create a new win-
dow that has all the right stuff on most platforms. The new window object reference is assigned to a global
variable, newWindow. Before a new window is generated, the script looks to see whether the window has
never been generated before (in which case newWindow would be null) or, for newer browsers, the win-
dow is closed. If either condition is true, the window is created with the open() method. Otherwise, the
existing window is brought forward with the focus() method.

Due to the timing problem that afflicts all IE generations, the HTML assembly and writing to the new win-
dow are separated into their own function, which is invoked after a 50-millisecond delay (other browsers go
along for the ride even if they could accommodate the assembly and writing without the delay). To build
the string that is eventually written to the document, I use the += (add-by-value) operator, which appends
the string on the right side of the operator to the string stored in the variable on the left side. In this exam-
ple, the new window is handed an <h1>-level line of text to display.

LISTING 16-25

Creating a New Window

<html>
<head>

<title>New Window</title>
<script type=”text/javascript”>
var newWindow;

function makeNewWindow() {
if (!newWindow || newWindow.closed) {

newWindow = window.open(“”,””,”status,height=200,width=300”);
// force small delay for IE to catch up

436

Document Objects Reference

windowObject.open()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 436

setTimeout(“writeToWindow()”, 50);
} else {

// window’s already open; bring to front
newWindow.focus();

}
}

function writeToWindow() {
// assemble content for new window
var newContent = “<html><head><title>One Sub Window<\/title><\/head>”;
newContent += “<body><h1>This window is brand new.<\/h1>”;
newContent += “<\/body><\/html>”;
// write HTML to new window document
newWindow.document.write(newContent);
newWindow.document.close(); // close layout stream

}
</script>

</head>
<body>

<form>
<input type=”button” name=”newOne” value=”Create New Window”
onclick=”makeNewWindow()” />

</form>
</body>

</html>

The window.open() method can potentially create problems in browsers such as IE7 and FF2 that support
tabbed browsing where multiple pages are opened as different tabs within the same browser instance. The
default response to window.open() is to open a new tab for the new window, as opposed to a new browser
window, which can be a problem if the script is truly expecting a completely new browser window.

Related Items: window.close(), window.blur(), window.focus(), window.openDialog() methods;
window.closed property

openDialog(“URL”, “windowName” [, “windowFeatures”][,
arg1][, arg2]...)
Returns: A window object representing the newly created dialog box (window); null if method fails
Compatibility: WinIE-, MacIE-, NN7+, Moz1.0.1+, Safari-

The window.openDialog() method is a Mozilla-specific method that serves as a XUL counterpart to the
window.open() method. XUL is Mozilla’s XML-based user interface description language that is used
throughout the Mozilla application suite. The openDialog() method offers a few extra window features,
along with the ability to pass a varying number of arguments, which can be handy when creating custom
windows.

The parameters to the openDialog() method are similar to those found in the open() method, except for
the optional arg1, arg2, and so on. One notable difference is the addition of the all window feature,
which is used to show (all=yes) or hide (all=no) all window features except chrome, dialog, and
modal; these excluded features can still be shown or hidden individually.

Related Item: window.open() method

437

windowObject.openDialog()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 437

print()
Returns: Nothing
Compatibility: WinIE5+, MacIE5+, NN4+, Moz+, Safari-

The print() method provides a scripted way of sending the window or a frame from a frameset to the
printer. In all cases, the Print dialog box appears for the user to make the typical printer choices when
printing manually. This prevents a rogue print() command from tying up a printer without the user’s per-
mission.

WinIE5 introduced some print-specific event handlers that are triggered by scripted printing as well as
manual printing. The events begin to fire after the user has accepted the Print dialog box. An onbe-
foreprint event handler can be used to show content that might be hidden from view but should appear
in the printout. After the content has been sent to the print spooler, the onafterprint event can restore
the page.

Example
Listing 16-26 is a frameset that loads Listing 16-27 into the top frame and a copy of the Bill of Rights into
the bottom frame.

LISTING 16-26

Print Example Frameset

<html>
<head>

<title>window.print() method</title>
</head>
<frameset rows=”25%,75%”>

<frame name=”controls” src=”lst16-27.htm” />
<frame name=”display” src=”bofright.htm” />

</frameset>
</html>

Two buttons in the top control panel (see Listing 16-27) let you print the whole frameset (in those browsers
and OSes that support it) or just the bottom frame. To print the entire frameset, the reference includes the
parent window; to print the bottom frame, the reference is directed at the parent.display frame.

LISTING 16-27

Printing Control

<html>
<head>

<title>Print()</title>
</head>
<body>

<form>
<input type=”button” name=”printWhole” value=”Print Entire Frameset”

438

Document Objects Reference

windowObject.print()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 438

onclick=”parent.print()” />
<p><input type=”button” name=”printFrame”

value=”Print Bottom Frame Only”
onclick=”parent.display.print()” /></p>

</form>
</body>

</html>

If you don’t like some facet of the printed output, blame the browser’s print engine, not JavaScript. The
print() method merely invokes the browser’s regular printing routines.

Related Items: window.back(), window.forward(), window.home(), window.find() methods

prompt(“message”, “defaultReply”)
Returns: String of text entered by user or null
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The third kind of dialog box that JavaScript can display includes a message from the script author, a field
for user entry, and two buttons (OK and Cancel). The script writer can supply a prewritten answer so that a
user confronted with a prompt dialog box can click OK (or press Enter) to accept that answer without fur-
ther typing. Supplying both parameters to the window.prompt() method is important. Even if you don’t
want to supply a default answer, enter an empty string as the second parameter:

prompt(“What is your postal code?”,””);

If you omit the second parameter, JavaScript inserts the string undefined into the dialog box’s field. This
string is disconcerting to most web-page visitors.

The value returned by this method is a string in the dialog box’s field when the user clicks the OK button. If
you’re asking the user to enter a number, remember that the value returned by this method is a string. You
may need to perform data-type conversion with the parseInt() or parseFloat() function (see Chapter
35) to use the returned values in math calculations.

When the user clicks the prompt dialog box’s OK button without entering any text in a blank field, the
returned value is an empty string (“”). Clicking the Cancel button, however, makes the method return a
null value. Therefore, the scripter must test for the type of returned value to make sure that the user
entered some data that can be processed later in the script, as in:

var entry = prompt(“Enter a number between 1 and 10:”,””);
if (entry != null) {

//statements to execute with the value
}

This script excerpt assigns the results of the prompt dialog box to a variable and executes the nested state-
ments if the returned value of the dialog box is not null (if the user clicked the OK button). The rest of the
statements then include data validation to make sure that the entry is a number within the desired range
(see Chapter 43 on the CD-ROM).

It may be tempting to use the prompt dialog box as a handy user input device. But as with the other
JavaScript dialog boxes, the modality of the prompt dialog box is disruptive to the user’s flow through a
document and can also trap automated macros that some users activate to capture web sites. In forms,
HTML fields are better user interface elements for attracting user text entry. Perhaps the safest way to use a
prompt dialog box is to have it appear when a user clicks a button element on a page — and then only if the

439

windowObject.prompt()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 439

information you require of the user can be provided in a single prompt dialog box. Presenting a sequence of
prompt dialog boxes is downright annoying to users.

Example
The function that receives values from the prompt dialog box in Listing 16-28 (see the dialog box in Figure
16-11) does some data-entry validation (but certainly not enough for a commercial site). The function first
checks to make sure that the returned value is neither null (Cancel) nor an empty string (the user clicked
OK without entering any values). See Chapter 43 on the CD-ROM for more about data-entry validation.

LISTING 16-28

The Prompt Dialog Box

<html>
<head>

<title>window.prompt() Method</title>
<script type=”text/javascript”>
function populateTable() {

var howMany = prompt(“Fill in table for how many factors?”,””);
if (howMany != null && howMany != “”) {

alert(“Filling the table for “ + howMany); // for demo
//statements that validate the entry and
//actually populate the fields of the table

}
}
</script>

</head>
<body>

<form>
<!-- other statements that display and populate a large table -->
<input type=”button” name=”fill” value=”Fill Table...”
onclick=”populateTable()” />

</form>
</body>

</html>

FIGURE 16-11

The prompt dialog box from Listing 16-28 displayed in Internet Explorer.

Notice one important user interface element in Listing 16-28. Because clicking the button leads to a dialog
box that requires more information from the user, the button’s label ends in an ellipsis (or, rather, three peri-

440

Document Objects Reference

windowObject.prompt()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 440

ods acting as an ellipsis character). The ellipsis is a common courtesy to let users know that a user interface
element leads to a dialog box of some sort. Consistent with stand-alone applications, the user should be able
to cancel out of that dialog box and return to the same screen state that existed before the button was clicked.

Related Items: window.alert(), window.confirm() methods

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN4, Moz-, Safari 1+

Starting with version 4 browsers, scripts can control the size of the current browser window on the fly (no
longer available in Mozilla-based browsers). Although you can set the individual inner and (in NN4) outer
width and height properties of a window, the resizeBy() and resizeTo() methods let you adjust both
axis measurements in one statement. In both instances, all adjustments affect the bottom-right corner of the
window. To move the top-left corner, use the window.moveBy() or window.moveTo() methods.

Each resize method requires a different kind of parameter. The resizeBy() method adjusts the window by
a certain number of pixels along one or both axes. Therefore, it is not concerned with the specific size of the
window beforehand — only by how much each axis is to change. For example, to increase the current win-
dow size by 100 pixels horizontally and 50 pixels vertically, the statement is

window.resizeBy(100, 50);

Both parameters are required, but if you want to adjust the size in only one direction, set the other to zero.
You may also shrink the window by using negative values for either or both parameters.

You find a greater need for the resizeTo() method, especially when you know that on a particular platform,
the window needs adjustment to a specific width and height to best accommodate that platform’s display of
form elements. Parameters for the resizeTo() method are the actual pixel width and height of the outer
dimension of the window — the same as NN4’s window.outerWidth and window.outerHeight properties.

To resize the window so that it occupies all screen real estate (except for the Windows taskbar and
Macintosh menu bar), use the screen object properties that calculate the available screen space:

window.resizeBy(screen.availWidth, screen.availHeight);

This action, however, is not precisely the same in Windows as maximizing the window. To achieve that same
effect, you must move the window to coordinates -4, -4 and add 8 to the two parameters of resizeBy():

window.moveTo(-4,-4);
window.resizeTo(screen.availWidth + 8, screen.availHeight + 8);

This hides the window’s own 4-pixels-wide border, as occurs during OS-induced window maximizing. See
also the screen object discussion (see Chapter 38 on the CD-ROM) for more OS-specific details.

On some platforms, the dimensions are applied to the inner width and height rather than outer. If a specific
outer size is necessary, use the NN-specific window.outerHeight and window.outerWidth properties
instead.

Navigator 4 imposes some security restrictions for maximum and minimum size for a window. For both
methods, you are limited to the viewable area of the screen and visible minimums unless the page uses
signed scripts (see Chapter 46 on the CD-ROM). With signed scripts and the user’s permission, for exam-
ple, you can adjust windows beyond the available screen borders.

441

windowObject.resizeBy()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 441

Example
You can experiment with the resize methods with the page in Listing 16-29. Two parts of a form let you
enter values for each method. The one for window.resize() also lets you enter several repetitions to bet-
ter see the impact of the values. Enter zero and negative values to see how those affect the method. Also test
the limits of different browsers.

LISTING 16-29

Window Resize Methods

<html>
<head>

<title>Window Resize Methods</title>
<script type=”text/javascript”>
function doResizeBy(form) {

var x = parseInt(form.resizeByX.value);
var y = parseInt(form.resizeByY.value);
var count = parseInt(form.count.value);
for (var i = 0; i < count; i++) {

window.resizeBy(x, y);
}

}
function doResizeTo(form) {

var x = parseInt(form.resizeToX.value);
var y = parseInt(form.resizeToY.value);
window.resizeTo(x, y);

}
</script>

</head>
<body>

<form>
Enter the x and y increment, plus how many times the window should
be resized by these increments:

Horiz:<input type=”text” name=”resizeByX” size=”4” /> Vert:<input
type=”text” name=”resizeByY” size=”4” /> How Many:<input type=”text”
name=”count” size=”4” /> <input type=”button” name=”ResizeBy”
value=”Show resizeBy()” onclick=”doResizeBy(this.form)” />
<hr />
Enter the desired width and height of the current window:

Width:<input type=”text” name=”resizeToX” size=”4” /> Height:<input
type=”text” name=”resizeToY” size=”4” /> <input type=”button”
name=”ResizeTo” value=”Show resizeTo()”
onclick=”doResizeTo(this.form)” />

</form>
</body>

</html>

Related Items: window.outerHeight, window.outerWidth properties; window.moveTo(),
window.sizeToContent() methods

442

Document Objects Reference

windowObject.resizeBy()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 442

scroll(horizontalCoord, verticalCoord)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The window.scroll() method was introduced in NN3 and has been implemented in all scriptable
browsers since then. But in the meantime, the method has been replaced by the window.scrollTo()
method, which is in more syntactic alliance with many other window methods.

The window.scroll() method takes two parameters: the horizontal (x) and vertical (y) coordinates of the
document that is to be positioned at the top-left corner of the window or frame. You must realize that the
window and document have two similar, but independent, coordinate schemes. From the window’s point of
view, the top-left pixel (of the content area) is point 0,0. All documents also have a 0,0 point: the very top
left of the document. The window’s 0,0 point doesn’t move, but the document’s 0,0 point can move — via
manual or scripted scrolling. Although scroll() is a window method, it seems to behave more like a doc-
ument method, as the document appears to reposition itself within the window. Conversely, you can also
think of the window moving to bring its 0,0 point to the designated coordinate of the document.

Although you can set values beyond the maximum size of the document or to negative values, the results
vary from platform to platform. For the moment, the best usage of the window.scroll() method is as a
means of adjusting the scroll to the very top of a document (window.scroll(0,0)) when you want the
user to be at a base location in the document. For vertical scrolling within a text-heavy document, an HTML
anchor may be a better alternative for now (though it doesn’t readjust horizontal scrolling).

Related Items: window.scrollBy(), window.scrollTo() methods

scrollBy(deltaX,deltaY)
scrollTo(x,y)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Modern browsers provide a related pair of window scrolling methods. The window.scrollTo() method is
the newer version of the window.scroll() method. The two work identically to position a specific coordi-
nate point of a document at the top-left corner of the inner window region.

By contrast, the window.scrollBy() method allows for relative positioning of the document. Parameter
values indicate by how many pixels the document should scroll in the window (horizontally and verti-
cally). Negative numbers are allowed if you want to scroll to the left and/or up. The scrollBy() method
comes in handy if you elect to hide the scroll bars of a window or frame and offer other types of scrolling

443

windowObject.scrollBy()

Window and Frame Objects 16

Unwanted User Scrolling

Wheeled mice have become increasingly popular on Windows-compatible personal computers. These
mice include a scroll wheel that is activated by pressing down on the wheel and spinning the wheel. Be

aware that even if your page design loads into frames or new windows that intentionally lack scroll bars, the
page will be scrollable via this wheel if the document or its background image is larger than the window or
frame. Users may not even be aware that they have scrolled the page (because there are no scroll-bar visual
clues). If this affects your design, you may need to build in a routine (via setTimeout()) that periodically sets
the scroll of the window to 0,0.

24_069165 ch16.qxp 3/1/07 3:45 PM Page 443

controls for your users. For example, to scroll down one entire screen of a long document, you can use the
window.innerHeight (in NN/Moz) or document.body.clientHeight (in IE) properties to determine
what the offset from the current position would be:

// assign IE body clientHeight to window.innerHeight
if (document.body && document.body.clientHeight) {

window.innerHeight = document.body.clientHeight;
}
window.scrollBy(0, window.innerHeight);

To scroll up, use a negative value for the second parameter:

window.scrollBy(0, -window.innerHeight);

The window scroll methods are not the ones to use to produce the scrolling effect of a positioned element.
That kind of animation is accomplished by adjusting style position properties (see Chapter 40 on the
CD-ROM).

Example
To work with the scrollTo() method, you can use Listing 16-30, Listing 16-31, and Listing 16-32. The
code in Listing 16-34 includes a control panel frame (see Listing 16-32) that provides input to experiment
with the scrollBy() method.

LISTING 16-30

Frameset for ScrollBy Controller

<html>
<head>

<title>
window.scrollBy() Method

</title>
</head>
<frameset rows=”50%,50%”>

<frame src=”lst16-31.htm” name=”display” />
<frame src=”lst16-32.htm” name=”control” />

</frameset>
</html>

LISTING 16-31

The Image to Be Scrolled

<html>
<head>

<title>
Arch

</title>
</head>
<body>

444

Document Objects Reference

windowObject.scrollBy()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 444

<h1>
A Picture is Worth...

</h1>
<hr />
<center>

<table border=”3”>
<caption align=”bottom”>

A Splendid Arch
</caption>
<tr>

<td>

</td>
</tr>

</table>
</center>

</body>
</html>

Notice in Listing 16-32 that all references to window properties and methods are directed to the display
frame. String values retrieved from text fields are converted to numbers with the parseInt() global function.

LISTING 16-32

ScrollBy Controller

<html>
<head>

<title>
ScrollBy Controller

</title>

<script type=”text/javascript”>
function page(direction) {

var pixFrame = parent.display;
var deltaY = (pixFrame.innerHeight) ?

pixFrame.innerHeight : pixFrame.document.body.scrollHeight;
if (direction == “up”) {

deltaY = -deltaY;
}
parent.display.scrollBy(0, deltaY);

}
function customScroll(form) {

parent.display.scrollBy(parseInt(form.x.value),
parseInt(form.y.value));

}
</script>

</head>
<body>

continued

445

windowObject.scrollBy()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 445

LISTING 16-32 (continued)

ScrollBy Controller
<form name=”custom”>

Enter an Horizontal increment <input type=”text” name=”x” value=”0”
size=”4” /> and Vertical <input type=”text” name=”y” value=”0”
size=”4” /> value.

Then <input type=”button” value=”click to scrollBy()”
onclick=”customScroll(this.form)” />
<hr />
<input type=”button” value=”PageDown” onclick=”page(‘down’)” /> <input
type=”button” value=”PageUp” onclick=”page(‘up’)” />

</form>
</body>

</html>

Related Items: window.pageXOffset, window.pageYOffset properties; window.scroll() method

scrollByLines(intervalCount)
scrollByPages(intervalCount)
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The window.scrollByLines() and window.scrollByPages() methods scroll the document by a speci-
fied number of lines or pages, respectively. You can think of these methods as the script equivalents to click-
ing the arrow (scrollByLines()) and page (scrollByPages()) regions of the browser’s vertical scroll
bar. The argument to each method determines how many lines or pages to scroll, with positive values
resulting in a downward scroll and negative values resulting in upward scrolling.

setInterval(“expr”, msecDelay [, language])
setInterval(funcRef, msecDelay [, funcarg1, ..., funcargn])
Returns: Interval ID integer
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

It is important to understand the distinction between the setInterval() and setTimeout() methods.
Before the setInterval() method was part of JavaScript, authors replicated the behavior with
setTimeout(), but the task often required reworking scripts a bit.

Use setInterval() when your script needs to call a function or execute some expression repeatedly with
a fixed time delay between calls to that function or expression. The delay is not at all like a wait state in
some languages: Other processing does not halt while the delay is in effect. Typical applications include ani-
mation by moving an object around the page under controlled speed (instead of letting the JavaScript inter-
preter whiz the object through its path at CPU-dependent speeds). In a kiosk application, you can use
setInterval() to advance slides that appear in other frames or as layers, perhaps changing the view every
10 seconds. Clock displays and countdown timers would also be suitable use of this method (even though
you see examples in this book that use the old-fashioned setTimeout() way to perform timer and clock
functions).

446

Document Objects Reference

windowObject.setInterval()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 446

By contrast, setTimeout() is best suited for those times when you need to carry out a function or expres-
sion one time in the future — even if that future is only a second or two away. In other words,
setTimeout() gives you a one-shot timer, whereas setInterval() gives you a recurring timer. See the
discussion of the setTimeout() method later in this chapter for details on this application.

Although the primary functionality of the setInterval() method is the same in all browsers, NN/Moz
and IE offer some extra possibilities depending on the way you use parameters to the method. For simple
invocations of this method, the same parameters work in all browsers that support the method. First, I
address the parameters that all browsers have in common.

The first parameter of the setInterval() method is the name of the function or expression to run after
the interval elapses. This item must be a quoted string. If the parameter is a function, no function argu-
ments are allowed inside the function’s parentheses unless the arguments are literal strings (but see the next
section, “Passing function parameters”).

The second parameter of this method is the number of milliseconds (1,000 per second) that JavaScript
should use as the interval between invocations of the function or expression. Even though the measure is in
extremely small units, don’t rely on 100 percent accuracy of the intervals. Various other internal processing
delays may throw off the timing just a bit.

Just as with setTimeout(), setInterval() returns an integer value that is the ID for the interval process.
That ID value lets you turn off the process with the clearInterval() method. That method takes the ID
value as its sole parameter. This mechanism allows for the setting of multiple interval processes running and
gives your scripts the power to stop individual processes at any time without interrupting the others.

IE4+ uses the optional third parameter to specify the scripting language of the statement or function being
invoked in the first parameter. As long as you are scripting exclusively in JavaScript (the same as JScript),
there is no need to include this parameter.

Passing function parameters
NN4+/Moz provides a mechanism for easily passing evaluated parameters to a function invoked by
setInterval(). To use this mechanism, the first parameter of setInterval() must not be a string, but a
reference to the function (no trailing parentheses). The second parameter remains the amount of delay. But
beginning with the third parameter, you can include evaluated function arguments as a comma-delimited list:

intervalID = setInterval(cycleAnimation, 500, “figure1”);

The function definition receives those parameters in the same form as any function:

function cycleAnimation(elemID) {...}

For use with a wider range of browsers, you can also cobble together the ability to pass parameters to a
function invoked by setInterval(). Because the call to the other function is a string expression, you can
use computed values as part of the strings via string concatenation. For example, if a function uses event
handling to find the element that a user clicked (to initiate some animation sequence), that element’s ID,
referenced by a variable, can be passed to the function invoked by setInterval():

function findAndCycle() {
var elemID;
// statements here that examine the event info
// and extract the ID of the clicked element,
// assigning that ID to the elemID variable
intervalID = setInterval(“cycleAnimation(“ + elemID + “)”, 500);

}

447

windowObject.setInterval()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 447

If you need to pass ever-changing parameters with each invocation of the function from setInterval(),
look instead to using setTimeout() at the end of a function to invoke that same function again.

Example
The demonstration of the setInterval() method entails a two-framed environment. The framesetting
document is shown in Listing 16-33.

LISTING 16-33

SetInterval() Demonstration Frameset

<html>
<head>

<title>setInterval() Method</title>
</head>
<frameset rows=”50%,50%”>

<frame src=”lst16-34.htm” name=”control” />
<frame src=”bofright.htm” name=”display” />

</frameset>
</html>

In the top frame is a control panel with several buttons that control the automatic scrolling of the Bill of
Rights text document in the bottom frame. Listing 16-34 shows the control-panel document. Many func-
tions here control the interval, scrolling jump size, and direction, and they demonstrate several aspects of
applying setInterval().

Notice that in the beginning the script establishes several global variables. Three of them are parameters that
control the scrolling; the last one is for the ID value returned by the setInterval() method. The script
needs that value to be a global value so that a separate function can halt the scrolling with the
clearInterval() method.

All scrolling is performed by the autoScroll() function. For the sake of simplicity, all controlling parame-
ters are global variables. In this application, placement of those values in global variables helps the page
restart autoscrolling with the same parameters as it had when it last ran.

LISTING 16-34

SetInterval() Control Panel

<html>
<head>

<title>ScrollBy Controller</title>
<script type=”text/javascript”>
var scrollSpeed = 500;
var scrollJump = 1;
var scrollDirection = “down”;
var intervalID;

448

Document Objects Reference

windowObject.setInterval()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 448

function autoScroll() {
if (scrollDirection == “down”) {

scrollJump = Math.abs(scrollJump);
} else if (scrollDirection == “up” && scrollJump > 0) {

scrollJump = -scrollJump;
}
parent.display.scrollBy(0, scrollJump);
if (parent.display.pageYOffset <= 0) {

clearInterval(intervalID);
}

}

function reduceInterval() {
stopScroll();
scrollSpeed -= 200;
startScroll();

}
function increaseInterval() {

stopScroll();
scrollSpeed += 200;
startScroll();

}
function reduceJump() {

scrollJump -= 2;
}
function increaseJump() {

scrollJump += 2;
}
function swapDirection() {

scrollDirection = (scrollDirection == “down”) ? “up” : “down”;
}
function startScroll() {

parent.display.scrollBy(0, scrollJump);
if (intervalID) {

clearInterval(intervalID);
}
intervalID = setInterval(“autoScroll()”,scrollSpeed);

}
function stopScroll() {

clearInterval(intervalID);
}
</script>

</head>
<body onload=”startScroll()”>

AutoScroll by setInterval() Controller
<form name=”custom”>

<input type=”button” value=”Start Scrolling”
onclick=”startScroll()” /> <input type=”button” value=”Stop Scrolling”
onclick=”stopScroll()” />
<p><input type=”button” value=”Shorter Time Interval”

onclick=”reduceInterval()” /> <input type=”button”

continued

449

windowObject.setInterval()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 449

LISTING 16-34 (continued)

value=”Longer Time Interval” onclick=”increaseInterval()” /></p>
<p><input type=”button” value=”Bigger Scroll Jumps”

onclick=”increaseJump()” /> <input type=”button”
value=”Smaller Scroll Jumps” onclick=”reduceJump()” /></p>

<p><input type=”button” value=”Change Direction”
onclick=”swapDirection()” /></p>

</form>
</body>

</html>

The setInterval() method is invoked inside the startScroll() function. This function initially burps
the page by one scrollJump interval so that the test in autoScroll() for the page being scrolled all the
way to the top doesn’t halt a page from scrolling before it gets started. Notice, too, that the function checks
for the existence of an interval ID. If one is there, it is cleared before the new one is set. This is crucial
within the design of the example page, because repeated clicking of the Start Scrolling button triggers multi-
ple interval timers inside the browser. Only the most recent one’s ID would be stored in intervalID,
allowing no way to clear the older ones. But this little side trip makes sure that only one interval timer is
running. One of the global variables, scrollSpeed, is used to fill the delay parameter for setInterval().
To change this value on the fly, the script must stop the current interval process, change the scrollSpeed
value, and start a new process.

The intensely repetitive nature of this application is nicely handled by the setInterval() method.

Related Items: window.clearInterval(), window.setTimeout() methods

setTimeout(“expr”, msecDelay [, language])
setTimeout(functionRef, msecDelay [, funcarg1, ...,
funcargn])
Returns: ID value for use with window.clearTimeout() method
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The name of this method may be misleading, especially if you have done other kinds of programming
involving timeouts. In JavaScript, a timeout is an amount of time (in milliseconds) before a stated expression
evaluates. A timeout is not a wait or script delay, but a way to tell JavaScript to hold off executing a state-
ment or function for a desired amount of time. Other statements following the one containing
setTimeout() execute immediately.

Suppose that you have a web page designed to enable users to interact with a variety of buttons or fields
within a time limit (this is a web page running at a freestanding kiosk). You can turn on the timeout of the
window so that if no interaction occurs with specific buttons or fields lower in the document after, say, 2
minutes (120,000 milliseconds), the window reverts to the top of the document or to a help screen. To tell
the window to switch off the timeout after a user does navigate within the allotted time, you need to have
any button that the user interacts with call the other side of a setTimeout() method — the
clearTimeout() method — to cancel the current timer. (The clearTimeout() method is explained ear-
lier in this chapter.) Multiple timers can run concurrently and are completely independent of one another.

450

Document Objects Reference

windowObject.setTimeout()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 450

Although the primary functionality of the setTimeout() method is the same in all browsers, NN/Moz and
IE offer some extra possibilities depending on the way you use parameters to the method. For simple invo-
cations of this method, the same parameters work in all browsers that support the method. I first address
the parameters that all browsers have in common.

The expression that comprises the first parameter of the method window.setTimeout() is a quoted string
that can contain either a call to any function or method or a stand-alone JavaScript statement. The expres-
sion evaluates after the time limit expires.

Understanding that this timeout does not halt script execution is very important. In fact, if you use a
setTimeout() method in the middle of a script, the succeeding statements in the script execute immedi-
ately; after the delay time, the expression in the setTimeout() method executes. Therefore, I’ve found that
the best way to design a timeout in a script is to plug it in as the last statement of a function: Let all other
statements execute and then let the setTimeout() method appear to halt further execution until the timer
goes off. In truth, however, although the timeout is holding, the user is not prevented from performing
other tasks. And after a timeout timer is ticking, you cannot adjust its time. Instead, clear the timeout and
start a new one.

If you need to use setTimeout() as a delay inside a function, break the function into two parts, using the
setTimeout() method as a bridge between the two functions. You can see an example of this in Listing
16-25, where IE needs a little delay to finish opening a new window before content can be written for it. If
it weren’t for the required delay, the HTML assembly and writing would have been accomplished in the
same function that opens the new window.

It is not uncommon for a setTimeout() method to invoke the very function in which it lives. For exam-
ple, if you have written a Java applet to perform some extra work for your page, and you need to connect to
it via the NPAPI, your scripts must wait for the applet to load and carry out its initializations. Although an
onload event handler in the document ensures that the applet object is visible to scripts, it doesn’t know
whether the applet has finished its initializations. A JavaScript function that inspects the applet for a clue
might need to poll the applet every 500 milliseconds until the applet sets some internal value indicating
that all is ready, as shown here:

var t;
function autoReport() {

if (!document.myApplet.done) {
t = setTimeout(“autoReport()”,500);

} else {
clearTimeout(t);
// more statements using applet data //

}
}

JavaScript provides no built-in equivalent for a wait command. The worst alternative is to devise a looping
function of your own to trap script execution for a fixed amount of time. Unfortunately, this approach pre-
vents other processes from being carried out, so you should consider reworking your code to rely on a
setTimeout() method instead.

NN4+/Moz provides a mechanism for passing parameters to functions invoked by setTimeout(). See the
section “Passing function parameters” in the discussion of window.setInterval() for details on this topic
and on passing parameters in other browser versions.

451

windowObject.setTimeout()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 451

As a note to experienced programmers, neither setInterval() nor setTimeout() spawns new threads in
which to run its invoked scripts. When the timer expires and invokes a function, the process gets at the end
of the queue of any pending script processing in the JavaScript execution thread.

Example
When you load the HTML page in Listing 16-35, it triggers the updateTime() function, which displays the
time (in hh:mm am/pm format) in the status bar. Instead of showing the seconds incrementing one by one
(which may be distracting to someone trying to read the page), this function alternates the last character of
the display between an asterisk and nothing, like a visual heartbeat.

LISTING 16-35

Display the Current Time

<html>
<head>

<title>Status Bar Clock</title>
<script type=”text/javascript”>
var flasher = false;
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {

var now = new Date();
var theHour = now.getHours();
var theMin = now.getMinutes();
var theTime = “” + ((theHour > 12) ? theHour - 12 : theHour);
theTime += ((theMin < 10) ? “:0” : “:”) + theMin;
theTime += (theHour >= 12) ? “ pm” : “ am”;
theTime += ((flasher) ? “ “ : “*”);
flasher = !flasher;
window.status = theTime;
// recursively call this function every second to keep timer going
timerID = setTimeout(“updateTime()”,1000);

}
</script>

</head>
<body onload=”updateTime()”>
</body>

</html>

In this function, the setTimeout() method works in the following way: When the current time (including
the flasher status) appears in the status bar, the function waits approximately 1 second (1,000 milliseconds)
before calling the same function again. You don’t have to clear the timerID value in this application
because JavaScript does it for you every time the 1,000 milliseconds elapse.

A logical question to ask is whether this application should be using setInterval() instead of
setTimeout(). This is a case in which either one does the job. Using setInterval() here would require
that the interval process start outside the updateTime() function, because you need only one process run-

452

Document Objects Reference

windowObject.setTimeout()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 452

ning that repeatedly calls updateTime(). It would be a cleaner implementation instead of the tons of time-
out processes spawned by Listing 16-35. On the other hand, the application would not run in legacy
browsers, as Listing 16-35 does. That’s likely not a problem at this point in time, but the example remains a
decent example of the setTimeout() function.

To demonstrate passing parameters, you can modify the updateTime() function to add the number of
times it gets invoked to the display in the status bar. For that to work, the function must have a parameter
variable so that it can catch a new value each time it is invoked by setTimeout()’s expression. For all
browsers, the function would be modified as follows (unchanged lines are represented by the ellipsis):

function updateTime(i) {
...
window.status = theTime + “ (“ + i + “)”;
// pass updated counter value with next call to this function
timerID = setTimeout(“updateTime(“ + i+1 + “)”,1000);

}

If you were running this exclusively in NN4+/Moz, you could use its more convenient way of passing
parameters to the function:

timerID = setTimeout(updateTime,1000, i+1);

In either case, the onload event handler would also have to be modified to get the ball rolling with an ini-
tial parameter:

onload = “updateTime(0)”;

Related Items: window.clearTimeout(), window.setInterval(), window.clearInterval()
methods

showHelp(“URL”,[“contextID”])
Returns: Nothing
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The IE-specific showHelp() method lets a script open a Winhelp window with a particular .hlp file. This
method is specific to Win32 operating systems.

If your Winhelp file has context identifiers specified in various places, you can pass the ID as an optional
second parameter. This lets the call to showHelp() navigate to a particular area of the .hlp file that applies
to a specific element on the page.

See the Microsoft Visual Studio authoring environment for details on building Winhelp files.

showModalDialog(“URL”[, arguments][, features])
showModelessDialog(“URL”[, arguments][, features])
Returns: returnValue (modal) or window object (modeless)
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari 2.01+

IE4+ and Safari 2.01+ provide methods for opening a modal dialog-box window, which always stays in
front of the main browser window while making the main window inaccessible to the user. In WinIE5,
Microsoft added the modeless type of dialog box, which also stays in front but allows user access to what-
ever can be seen in the main window. You can load any HTML page or image that you like into the dialog-

453

windowObject.showModalDialog()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 453

box window by providing a URL as the first parameter. Optional parameters let you pass data to a dialog
box and give you considerable control over the look of the window. A similar type of dialog-box window is
available in NN/Moz via the window.openDialog() method.

The windows generated by both methods are (almost) full-fledged window objects with some extra proper-
ties that are useful for what these windows are intended to do. Perhaps the most important property is the
window.dialogArgument property. This property lets a script read the data that is passed to the window
via the second parameter of both showModalDialog() and showModelessDialog(). Passed data can be
in any valid JavaScript data type, including objects and arrays.

Displaying a modal dialog box has some ramifications for scripts. In particular, script execution in the main
window halts at the statement that invokes the showModalDialog() method as long as the modal dialog
box remains visible. Scripts are free to run in the dialog-box window during this time. The instant the user
closes the dialog box, execution resumes in the main window. A call to show a modeless dialog box, on the
other hand, does not halt processing because scripts in the main page or dialog-box window are allowed to
communicate live with the other window.

Retrieving dialog-box data
To send data back to the main window’s script from a modal dialog-box window, a script in the dialog-box
window can set the window.returnValue property to any JavaScript value. It is this value that gets
assigned to the variable receiving the returned value from the setModelDialog() method, as shown in the
following example:

var specifications = window.showModalDialog(“preferences.html”);

The makeup and content of the returned data are in the hands of your scripts. No data is automatically
returned for you.

Because a modeless dialog box coexists with your live main page window, returning data is not as straightfor-
ward as for a modal dialog box. The second parameter of the showModelessDialog() method takes on a
special task that isn’t exactly the same as passing parameters to the dialog box. Instead, if you define a global
variable or a function in the main window’s script, pass a reference to that variable or function as the second
parameter to display the modeless dialog box. A script in the modeless dialog box can then point to that ref-
erence as the way to send data back to the main window before the dialog box closes (or when a user clicks
something, such as an Apply button). This mechanism even allows for passing data back to a function in the
main window. For example, say that the main window has a function defined as the following:

function receivePrefsDialogData(a, b, c) {
// statements to process incoming values //

}

Then pass a reference to this function when opening the window:

dlog = showModelessDialog(“prefs.html”, receivePrefsDialogData);

A script statement in the dialog-box window’s document can pick up that reference so that other statements
can use it, such as a function for an Apply button’s onclick event handler:

var returnFunc = window.dialogArguments;
...
function apply(form) {

returnFunc(form.color.value, form.style.value, form.size.value);
}

454

Document Objects Reference

windowObject.showModalDialog()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 454

Although this approach seems to block ways of getting parameters to the dialog box when it opens, you can
always reference the dialog box in the main window’s script and set form or variable values directly:

dlog = showModelessDialog(“prefs.html”, receivePrefsDialogData);
dlog.document.forms[0].userName.value = GetCookie(“userName”);

Be aware that a dialog-box window opened with either of these methods does not maintain a connection to
the originating window via the opener property. The opener property for both dialog-box types is unde-
fined.

Dialog-box window features
Both methods provide an optional third property that lets you specify visible features of the dialog-box win-
dow. Omitting the property sets all features to their default values. All parameters are to be contained by a
single string, and each parameter’s name–value pair is in the form of CSS attribute:value syntax. Table
16-4 lists all of the window features available for the two window styles. If you are designing for backward
compatibility with IE4, you are restricted to the modal dialog box and a subset of features, as noted in the
table. All values listed as Boolean take only the following four values: yes, no, 1, and 0.

TABLE 16-4

IE Dialog-Box Window Features

Feature Type Default Description

center Boolean yes Whether to center dialog box (overridden by dialogLeft
and/or dialogTop).

dialogHeight Length Varies Outer height of the dialog-box window. IE4 default length
unit is em; IE5+/Safari is pixel (px).

dialogLeft Integer Varies Pixel offset of dialog box from left edge of screen.

dialogTop Integer Varies Pixel offset of dialog box from top edge of screen.

dialogWidth Length Varies Outer width of the dialog-box window. IE4 default length
unit is em; IE5+/Safari is pixel (px).

edge String raised | sunken Border style.

help Boolean yes Display Help icon in title bar.

resizable Boolean no Dialog box is resizable (IE5+/Safari only).

status Boolean Varies Display status bar at window bottom (IE5+/Safari only).
Default is yes for untrusted dialog box, no for trusted
dialog box.

The CSS-type of syntax for these features lets you string multiple features together by separating each pair
with a semicolon within the string. For example:

var dlogData = showModalDialog(“prefs.html”, defaultData,
“dialogHeight:300px; dialogWidth:460px; help:no”);

Although they are not explicitly listed among the window features, scroll bars are normally displayed in the
window if the content exceeds the size assigned or available to the dialog box. If you don’t want scroll bars
to appear, have your dialog-box document’s script set the document.body.scroll property to false as
the page opens.

455

windowObject.showModalDialog()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 455

Dialog-box cautions
A potential user problem to watch for is that typically, a dialog-box window does not open until the HTML
file for the dialog box has loaded. Therefore, if there is substantial delay before a complex document loads,
the user does not see any action indicating that something is happening. You may want to experiment with
setting the cursor style sheet property and restoring it when the dialog box’s document loads.

Example
To demonstrate the two styles of dialog boxes, I have implemented the same functionality (setting some ses-
sion visual preferences) for both modal and modeless dialog boxes. This tactic shows you how to pass data
back and forth between the main page and both styles of dialog-box windows.

The first example demonstrates how to use a modal dialog box. In the process, data is passed into the dia-
log-box window, and values are returned. Listing 16-36 is the HTML and scripting for the main page. A
button’s onclick event handler invokes a function that opens the modal dialog box. The dialog box’s docu-
ment (see Listing 16-37) contains several form elements for entering a user name and selecting a few color
styles for the main page. Data from the dialog box is fashioned into an array to be sent back to the main
window. That array is initially assigned to a local variable, prefs, as the dialog box closes. If the user can-
cels the dialog box, the returned value is an empty string, so nothing more in getPrefsData() executes.
But when the user clicks OK, the array comes back. Each of the array items is read and assigned to its
respective form value or style property. These values are also preserved in the global currPrefs array. This
allows the settings to be sent to the modal dialog box (as the second parameter to showModalDialog())
the next time the dialog box is opened.

LISTING 16-36

Main Page for showModalDialog()

<html>
<head>

<title>window.setModalDialog() Method</title>
<script type=”text/javascript”>
var currPrefs = new Array();

function getPrefsData() {
var prefs = showModalDialog(“lst16-40.htm”, currPrefs,

“dialogWidth:400px; dialogHeight:300px”);
if (prefs) {

if (prefs[“name”]) {
document.all.firstName.innerText = prefs[“name”];
currPrefs[“name”] = prefs[“name”];

}
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”];
currPrefs[“bgColor”] = prefs[“bgColor”];

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”];
currPrefs[“textColor”] = prefs[“textColor”];

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”];

456

Document Objects Reference

windowObject.showModalDialog()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 456

currPrefs[“h1Size”] = prefs[“h1Size”];
}

}
}
function init() {

document.all.firstName.innerText = “friend”;
}
</script>

</head>
<body bgcolor=”#EEEEEE” style=”margin:20px” onload=”init()”>

<h1>window.setModalDialog() Method</h1>
<hr />
<h2 id=”welcomeHeader”>Welcome, !</h2>
<hr />
<p>Use this button to set style preferences for this page: <button

id=”prefsButton” onclick=”getPrefsData()”>Preferences</button></p>
</body>

</html>

The dialog box’s document, shown in Listing 16-37, is responsible for reading the incoming data (and set-
ting the form elements accordingly) and assembling form data for return to the main window’s script.
Notice when you load the example that the title element of the dialog box’s document appears in the dia-
log-box window’s title bar.

When the page loads into the dialog-box window, the init() function examines the
window.dialogArguments property. If it has any data, the data is used to preset the form elements to mir-
ror the current settings of the main page. A utility function, setSelected(), preselects the option of a
select element to match the current settings.

Buttons at the bottom of the page are explicitly positioned to be at the bottom-right corner of the window.
Each button invokes a function to do what is needed to close the dialog box. In the case of the OK button,
the handleOK() function sets the window.returnValue property to the data that comes back from the
getFormData() function. This latter function reads the form element values and packages them in an array
using the form elements’ names as array indices. This helps keep everything straight back in the main win-
dow’s script, which uses the index names, and therefore is not dependent upon the precise sequence of the
form elements in the dialog-box window.

LISTING 16-37

Document for the Modal Dialog Box

<html>
<head>

<title>User Preferences</title>
<script type=”text/javascript”>
// Close the dialog
function closeme() {

window.close();
}

continued

457

windowObject.showModalDialog()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 457

LISTING 16-37 (continued)

// Handle click of OK button
function handleOK() {

window.returnValue = getFormData();
closeme();

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”;
closeme();

}

// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs;
var returnedData = new Array();
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value;

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] = form.elements[i].

options[form.elements[i].selectedIndex].value;
} else if (form.elements[i].type == “radio”) {

returnedData[form.elements[i].name] = form.elements[i].value;
} else if (form.elements[i].type == “checkbox”) {

returnedData[form.elements[i].name] = form.elements[i].value;
} else

continue;
}
return returnedData;

}

// Initialize by setting form elements from passed data
function init() {

if (window.dialogArguments) {
var args = window.dialogArguments;
var form = document.prefs;
if (args[“name”]) {

form.name.value = args[“name”];
}
if (args[“bgColor”]) {

setSelected(form.bgColor, args[“bgColor”]);
}
if (args[“textColor”]) {

setSelected(form.textColor, args[“textColor”]);
}
if (args[“h1Size”]) {

setSelected(form.h1Size, args[“h1Size”]);
}

458

Document Objects Reference

windowObject.showModalDialog()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 458

}
}

// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i;
break;

}
}
return;

}

// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK();

}
}
</script>

</head>
<body bgcolor=”#EEEEEE” onload=”init()”>

<h2>Web Site Preferences</h2>
<hr />
<form name=”prefs” onsubmit=”return false”>

<table>
<tr>

<td>Enter your first name:<input name=”name” type=”text”
value=”” size=”20” onkeydown=”checkEnter()” /></td>

</tr>
<tr>

<td>Select a background color: <select name=”bgColor”>
<option value=”beige”>Beige</option>
<option value=”antiquewhite”>Antique White</option>
<option value=”goldenrod”>Goldenrod</option>
<option value=”lime”>Lime</option>
<option value=”powderblue”>Powder Blue</option>
<option value=”slategray”>Slate Gray</option>

</select></td>
</tr>
<tr>

<td>Select a text color: <select name=”textColor”>
<option value=”black”>Black</option>
<option value=”white”>White</option>
<option value=”navy”>Navy Blue</option>
<option value=”darkorange”>Dark Orange</option>
<option value=”seagreen”>Sea Green</option>
<option value=”teal”>Teal</option>

</select></td>

continued

459

windowObject.showModalDialog()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 459

LISTING 16-37 (continued)

</tr>
<tr>

<td>Select “Welcome” heading font point size: <select
name=”h1Size”>

<option value=”12”>12</option>
<option value=”14”>14</option>
<option value=”18”>18</option>
<option value=”24”>24</option>
<option value=”32”>32</option>
<option value=”48”>48</option>

</select></td>
</tr>

</table>
</form>
<div style=”position:absolute; left:200px; top:220px”>

<button style=”width:80px”
onclick=”handleOK()”>OK</button> <button
style=”width:80px” onclick=”handleCancel()”>Cancel</button>

</div>
</body>

</html>

One last convenience feature of the dialog-box window is the onkeypress event handler in the text box.
The function it invokes looks for the Enter key. If that key is pressed while the box has focus, the same
handleOK() function is invoked, as though the user had clicked the OK button. This feature makes the
dialog box behave as though the OK button is an automatic default, just as in real dialog boxes.

You should observe several important structural changes that were made to turn the modal approach into a
modeless one. Listing 16-38 shows the version of the main window modified for use with a modeless dialog
box. Another global variable, prefsDlog, is initialized to eventually store the reference to the modeless
window returned by the showModelessWindow() method. The variable gets used to invoke the init()
function inside the modeless dialog box, but also as conditions in an if construction surrounding the gen-
eration of the dialog box. The reason this is needed is to prevent multiple instances of the dialog box from
being created (the button is still alive while the modeless window is showing). The dialog box won’t be cre-
ated again as long as there is a value in prefsDlog and the dialog-box window has not been closed (pick-
ing up the window.closed property of the dialog-box window).

The showModelessDialog() method’s second parameter is a reference to the function in the main win-
dow that updates the main document. As you see in a moment, that function is invoked from the dialog
box when the user clicks the OK or Apply button.

LISTING 16-38

Main Page for showModelessDialog()

<html>
<head>

<title>window.setModelessDialog() Method</title>
<script type=”text/javascript”>

460

Document Objects Reference

windowObject.showModalDialog()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 460

var currPrefs = new Array();
var prefsDlog;
function getPrefsData() {

if (!prefsDlog || prefsDlog.closed) {
prefsDlog = showModelessDialog(“lst16-42.htm”, setPrefs,

“dialogWidth:400px; dialogHeight:300px”);
prefsDlog.init(currPrefs);

}
}

function setPrefs(prefs) {
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”];
currPrefs[“bgColor”] = prefs[“bgColor”];

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”];
currPrefs[“textColor”] = prefs[“textColor”];

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”];
currPrefs[“h1Size”] = prefs[“h1Size”];

}
if (prefs[“name”]) {

document.all.firstName.innerText = prefs[“name”];
currPrefs[“name”] = prefs[“name”];

}
}

function init() {
document.all.firstName.innerText = “friend”;

}
</script>

</head>
<body bgcolor=”#EEEEEE” style=”margin:20px” onload=”init()”>

<h1>window.setModelessDialog() Method</h1>
<hr />
<h2 id=”welcomeHeader”>Welcome, !</h2>
<hr />
<p>Use this button to set style preferences for this page: <button

id=”prefsButton” onclick=”getPrefsData()”>Preferences</button></p>
</body>

</html>

Changes to the dialog-box window document for a modeless version (see Listing 16-39) are rather limited.
A new button is added to the bottom of the screen for an Apply button. As in many dialog-box windows
you see in Microsoft products, the Apply button lets current settings in dialog boxes be applied to the cur-
rent document but without closing the dialog box. This approach makes experimenting with settings easier.

The Apply button invokes a handleApply() function, which works the same as handleOK() except that
the dialog box is not closed. But these two functions communicate back to the main window differently
from a modal dialog box. The main window’s processing function is passed as the second parameter of

461

windowObject.showModalDialog()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 461

showModelessDialog() and is available as the window.dialogArguments property in the dialog-box
window’s script. That function reference is assigned to a local variable in both functions, and the remote
function is invoked, passing the results of the getFormData() function as parameter values back to the
main window.

LISTING 16-39

Document for the Modeless Dialog Box

<html>
<head>

<title>User Preferences</title>
<script type=”text/javascript”>
// Close the dialog
function closeme() {

window.close();
}

// Handle click of OK button
function handleOK() {

var returnFunc = window.dialogArguments;
returnFunc(getFormData());
closeme();

}

// Handle click of Apply button
function handleApply() {

var returnFunc = window.dialogArguments;
returnFunc(getFormData());

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”;
closeme();

}

// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs;
var returnedData = new Array();
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value;

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] = form.elements[i].

options[form.elements[i].selectedIndex].value;
} else if (form.elements[i].type == “radio”) {

returnedData[form.elements[i].name] = form.elements[i].value;
} else if (form.elements[i].type == “checkbox”) {

462

Document Objects Reference

windowObject.showModalDialog()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 462

returnedData[form.elements[i].name] = form.elements[i].value;
} else

continue;
}
return returnedData;

}

// Initialize by setting form elements from passed data
function init(currPrefs) {

if (currPrefs) {
var form = document.prefs;
if (currPrefs[“name”]) {

form.name.value = currPrefs[“name”];
}
if (currPrefs[“bgColor”]) {

setSelected(form.bgColor, currPrefs[“bgColor”]);
}
if (currPrefs[“textColor”]) {

setSelected(form.textColor, currPrefs[“textColor”]);
}
if (currPrefs[“h1Size”]) {

setSelected(form.h1Size, currPrefs[“h1Size”]);
}

}
}

// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i;
break;

}
}
return;

}

// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK();

}
}
</script>

</head>
<body bgcolor=”#EEEEEE” onload=”init()”>

<h2>Web Site Preferences</h2>
<hr />
<form name=”prefs” onsubmit=”return false”>

<table>

continued

463

windowObject.showModalDialog()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 463

LISTING 16-39 (continued)

<tr>
<td>Enter your first name:<input name=”name” type=”text”

value=”” size=”20” onkeydown=”checkEnter()” /></td>
</tr>
<tr>

<td>Select a background color: <select name=”bgColor”>
<option value=”beige”>Beige</option>
<option value=”antiquewhite”>Antique White</option>
<option value=”goldenrod”>Goldenrod</option>
<option value=”lime”>Lime</option>
<option value=”powderblue”>Powder Blue</option>
<option value=”slategray”>Slate Gray</option>

</select></td>
</tr>
<tr>

<td>Select a text color: <select name=”textColor”>
<option value=”black”>Black</option>
<option value=”white”>White</option>
<option value=”navy”>Navy Blue</option>
<option value=”darkorange”>Dark Orange</option>
<option value=”seagreen”>Sea Green</option>
<option value=”teal”>Teal</option>

</select></td>
</tr>
<tr>

<td>Select “Welcome” heading font point size: <select
name=”h1Size”>

<option value=”12”>12</option>
<option value=”14”>14</option>
<option value=”18”>18</option>
<option value=”24”>24</option>
<option value=”32”>32</option>
<option value=”48”>48</option>

</select></td>
</tr>

</table>
</form>
<div style=”position:absolute; left:120px; top:220px”>

<button style=”width:80px”
onclick=”handleOK()”>OK</button> <button
style=”width:80px”
onclick=”handleCancel()”>Cancel</button> <button
style=”width:80px” onclick=”handleApply()”>Apply</button>

</div>
</body>

</html>

464

Document Objects Reference

windowObject.showModalDialog()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 464

The biggest design challenge you probably face with respect to these windows is deciding between a modal
and modeless dialog-box style. Some designers insist that modality has no place in a graphical user inter-
face; others say that there are times when you need to focus the user on a very specific task before any fur-
ther processing can take place. That’s where a modal dialog box makes perfect sense.

Related Item: window.open() method

sizeToContent()
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The NN6+/Moz window.sizeToContent() method can be a valuable aid in making sure that a window
(especially a subwindow) is sized for the optimum display of the window’s content. But you must also be
cautious with this method, or it will do more harm than good.

Invoking the sizeToContent() method resizes the window so that all content is visible. Concerns about
variations in OS-specific rendering become a thing of the past. Naturally, you should perform this action
only on a window whose content at the most occupies a space smaller than the smallest video monitor run-
ning your code (typically 640 × 480 pixels, but conceivably much smaller for future versions of the browser
used on handheld computers).

You can get the user in trouble, however, if you invoke the method twice on the same window that contains
the resizing script. This action can cause the window to expand to a size that may exceed the pixel size of
the user’s video monitor. Successive invocations fail to cinch up the window’s size to its content again.
Multiple invocations are safe, however, on subwindows when the resizing script statement is in the main
window.

Example
Use The Evaluator (Chapter 13) in NN6+/Moz to try the sizeToContent() method. Assuming that you
are running The Evaluator from the Chap13 directory on the CD-ROM (or the directory copied as is to your
hard disk), you can open a subwindow with one of the other files in the directory and then size the subwin-
dow. Enter the following statements in the top text box:

a = window.open(“lst13-02.htm”,””)
a.sizeToContent()

The resized subwindow is at the minimum recommended width for a browser window and at a height tall
enough to display the little bit of content in the document.

As with any method that changes the size of the browser window, problems arise in browsers such as
Firefox 2 that support tabbed browsing where multiple pages are opened as different tabs within the same
browser instance. In a tabbed browser, it is impossible to resize the window of one page without altering all
others. It’s certainly still possible to open multiple browser instances to resolve this problem, but the default
response to window.open() is to open a new tab, not a new browser window.

Related Item: window.resizeTo() method

465

windowObject.sizeToContent()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 465

stop()
Returns: Nothing
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari-

The NN/Moz-specific stop() method offers a scripted equivalent of clicking the Stop button in the toolbar. The
availability of this method allows you to create your own toolbar on your page and hide the toolbar (in the main
window with signed scripts or in a subwindow). For example, if you have an image representing the Stop
button in your page, you can surround it with a link whose action stops loading, as in the following:

A script cannot stop its own document from loading, but it can stop loading of another frame or window.
Similarly, if the current document dynamically loads a new image or a multimedia MIME type file as a sepa-
rate action, the stop() method can halt that process. Even though the stop() method is a window
method, it is not tied to any specific window or frame: Stop means stop.

Related Items: window.back(), window.find(), window.forward(), window.home(),
window.print() methods

Event handlers
onafterprint
onbeforeprint
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Each of these event handlers fires after the user has clicked the OK button in IE’s Print dialog box. This goes
for printing that is invoked manually (via menus and browser shortcut buttons) and the window.print()
method.

Although printing is usually WYSIWYG, it is conceivable that you may want the printed version of a docu-
ment to display more or less of the document than is showing at that instant. For example, you may have a
special copyright notice that you want printed at the end of a page whenever it goes to the printer. In that
case, the element with that content can have its display style sheet property set to none when the page
loads. Before the document is sent to the printer, a script needs to adjust that style property to display the
element as a block item; after printing, have your script revert the setting to none.

Immediately after the user clicks the OK button in the Print dialog box, the onbeforeprint event handler
fires. As soon as the page(s) is sent to the printer or spooler, the onafterprint event handler fires.

Example
The following script fragment assumes that the page includes a div element whose style sheet includes a
setting of display:none as the page loads. Somewhere in the Head, the print-related event handlers are set
as properties:

function showPrintCopyright() {
document.all.printCopyright.style.display = “block”;

}
function hidePrintCopyright() {

document.all.printCopyright.style.display = “none”;
}
window.onbeforeprint = showPrintCopyright;
window.onafterprint = hidePrintCopyright;

466

Document Objects Reference

windowObject.onafterprint

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 466

onbeforeunload
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

Any user or scripted action that normally forces the current page to be unloaded or replaced causes the
onbeforeunload event handler to fire. Unlike the onunload event handler, however, onbeforeunload is
a bit better behaved when it comes to allowing complex scripts to finish before the actual unloading takes
place. Moreover, you can assign a string value to the event.returnValue property in the event handler
function. That string becomes part of a message in an alert window that gives the user a chance to stay on
the page. If the user agrees to stay, the page does not unload, and any action that caused the potential
replacement is canceled.

Example
The simple page in Listing 16-40 shows you how to give the user a chance to stay on the page.

LISTING 16-40

Using the onbeforeunload Event Handler

<html>
<head>

<title>onbeforeunload Event Handler</title>
<script type=”text/javascript”>
function verifyClose() {

event.returnValue =
“We really like you and hope you will stay longer.”;

}

window.onbeforeunload = verifyClose;
</script>

</head>
<body>

<h1>onbeforeunload Event Handler</h1>
<hr />
<p>Use this button to navigate to the previous page: <button id=”go”

onclick=”history.back()”>Go Back</button></p>
</body>

</html>

Related Item: onunload event handler

onerror
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

(See the discussion of the window.onerror property earlier in this chapter.)

467

windowObject.onerror

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 467

onhelp
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The generic onhelp event handler is discussed in Chapter 15, but it also fires when the user activates the
context-sensitive help within a modal or modeless dialog box. In the latter case, a user can click the Help
icon in the dialog box’s title bar, at which time the cursor changes to a question mark. The user can then
click any element in the window. At that second click, the onhelp event handler fires, and the event object
contains information about the element clicked (the event.srcElement is a reference to the specific ele-
ment), allowing a script to supply help about that element.

To prevent the browser’s built-in help window from appearing, the event handler must evaluate to return
false (IE4+) or set the event.returnValue property to false (IE5+).

Example
The following script fragment can be used to provide context-sensitive help within a dialog box. Help
messages for only two form elements are shown here, but in a real application, you could easily add
more messages.

function showHelp() {
switch (event.srcElement.name) {

case “bgColor” :
alert(“Choose a color for the main window\’s background.”);
break;

case “name” :
alert(“Enter your first name for a friendly greeting.”);
break;

default :
alert(“Make preference settings for the main page styles.”);

}
event.returnValue = false;

}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction cases are based on the name
properties of the form elements. For other kinds of pages, the id properties may be more appropriate.

Related Items: event object (Chapter 25); switch construction (Chapter 32)

onload
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The onload event handler fires in the current window at the end of the document loading process (after all
text and image elements have been transferred from the source file server to the browser, and after all plug-
ins and Java applets have loaded and started running). At that point, the browser’s memory contains all the
objects and script components in the document that the browser can possibly know about.

The onload handler is an attribute of a <body> tag for a single-frame document or of the <frameset> tag
for the top window of a multiple-frame document. When the handler is an attribute of a <frameset> tag,
the event triggers only after all frames defined by that frameset have completely loaded.

468

Document Objects Reference

windowObject.onload

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 468

Use either of the following scenarios to insert an onload handler into a document:

<html>
<head>
</head>
<body [other attributes] onload=”statementOrFunction”>

[body content]
</body>

</html>

<html>
<head>
</head>
<frameset [other attributes] onload=”statementOrFunction”>

<frame [frame specification attributes] />
</frameset>

</html>

This handler has a special capability when it’s part of a frameset definition: The handler won’t fire until the
onload event handlers of all child frames in the frameset have fired. Therefore, if some initialization scripts
depend on components existing in other frames, trigger them from the frameset’s onload event handler.
This brings up a good general rule of thumb for writing JavaScript: Scripts that execute during a document’s
loading should contribute to the process of generating the document and its objects. To act immediately on
those objects, design additional functions that are called by the onload event handler for that window.

The type of operations suited for an onload event handler are those that can run quickly and without user
intervention. Users shouldn’t be penalized by having to wait for considerable postloading activity to finish
before they can interact with your pages. At no time should you present a modal dialog box as part of an
onload handler. Users who design macros on their machines to visit sites unattended may get hung up on a
page that automatically displays an alert, confirm, or prompt dialog box. On the other hand, an operation
such as setting the window.defaultStatus property is a perfect candidate for an onload event handler,
as are initializing event handlers as properties of element objects in the page.

Browsers equipped with pop-up window blockers ignore all window.open() method calls in
onload event handler functions.

Related Items: onunload event handler; window.defaultStatus property

onresize
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari-

If a user resizes a window, the action causes the onresize event handler to fire for the window object.
When you assign a function to the event (for example, window.onresize = handleResizes), the
NN/Moz event object conveys width and height properties that reveal the outer width and height of the
entire window. A window resize should not reload the document such that an onload event handler fires
(although some early Navigator versions did fire the extra event).

Related Item: event object (Chapter 25)

NOTENOTE

469

windowObject.onresize

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 469

onscroll
Compatibility: WinIE4+, MacIE4+, NN7+, Moz+, Safari 1.3+

The onscroll event handler fires for the body element object as the result of manual scrolling of the docu-
ment (via scroll bars or navigation keyboard keys) and scripted scrolling via the doScroll() method, via
the scrollIntoView() method, or by adjusting the scrollTop and/or scrollLeft properties of the
body element object. For manual scrolling and scrolling by doScroll(), the event seems to fire twice in
succession. Moreover, the event.srcElement property is null even when the body element is handling
the onscroll event handler.

Example
Listing 16-41 is a highly artificial demonstration of what can be a useful tool for some page designs.
Consider a document that occupies a window or frame but that you don’t want scrolled even by accident
with one of the mouse wheels that are popular with Wintel PCs. If scrolling of the content would destroy
the appearance or value of the content, you want to make sure that the page always zips back to the top.
The onscroll event handler in Listing 16-41 does just that. Notice that the event handler is set as a prop-
erty of the window object.

LISTING 16-41

Preventing a Page from Scrolling

<html>
<head>

<title>onscroll Event Handler</title>
<script type=”text/javascript”>
window.onscroll = zipBack;
function zipBack() {

window.scroll(0,0);
}
</script>

</head>
<body>

<h1>onscroll Event Handler</h1>
<hr />
This page always zips back to the top if you try to scroll it.
<p><iframe frameborder=”0” scrolling=”no” height=”1000”

src=”bofright.htm”></iframe></p>
</body>

</html>

Related Items: scrollBy(), scrollByLines(), scrollByPages() methods

onunload
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

An unload event reaches the current window just before a document is cleared from view. The most com-
mon ways windows are cleared are when new HTML documents are loaded into them or when a script
begins writing new HTML on the fly for the window or frame.

470

Document Objects Reference

windowObject.onunload

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 470

Limit the extent of the onunload event handler to quick operations that do not inhibit the transition from
one document to another. Do not invoke any methods that display dialog boxes. You specify onunload
event handlers in the same places in an HTML document as the onload handlers: as a <body> tag attribute
for a single-frame window or as a <frameset> tag attribute for a multiframe window. Both onload and
onunload event handlers can appear in the same <body> or <frameset> tag without causing problems.
The onunload event handler merely stays safely tucked away in the browser’s memory, waiting for the
unload event to arrive for processing as the document gets ready to clear the window.

Let me pass along one caution about the onunload event handler: Even though the event fires before the
document goes away, don’t burden the event handler with time-consuming tasks, such as generating new
objects or submitting a form. The document will probably go away before the function completes, leaving
the function looking for objects and values that no longer exist. The best defense is to keep your onunload
event handler processing to a minimum.

Browsers equipped with pop-up window blockers ignore all window.open() method calls in
onunload event handler functions.

Related Item: onload event handler

frame Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

allowTransparency

borderColor

contentDocument

contentWindow

frameBorder

height

longDesc

marginHeight

marginWidth

name

noResize

scrolling

src

width

NOTENOTE

471

frame

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 471

Syntax
Accessing properties or methods of a frame element object from a frameset:

(IE4+) document.all.frameID. property | method([parameters])
(IE5+/W3C) document.getElementById(“frameID”). property | method([parameters])

Accessing properties or methods of a frame element from a frame document:

(IE4+) parent.document.all.frameID. property | method([parameters])
(IE5+/W3C) parent.document.getElementById(“frameID”). property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

About this object
As noted in the opening section of this chapter, a frame element object is distinct from the frame object
that acts as a window object in a document hierarchy. The frame element object is available to scripts only
when all HTML elements are exposed in the object model, as in IE4+, NN6+, Mozilla, and Safari.

Because the frame element object is an HTML element, it shares the properties, methods, and event han-
dlers of all HTML elements, as described in Chapter 15. By and large, you access the frame element object
to set or modify an attribute value in the <frame> tag. If so, you simplify matters if you assign an identifier
to the id attribute of the tag. Your tag still needs a name attribute if your scripts refer to frames through the
original object model (a parent.frameName reference). Although there is no law against using the same
identifier for both name and id attributes, using different names to prevent potential conflict with refer-
ences in browsers that recognize both attributes is best.

To modify the dimensions of a frame, you must go the frameset element object that defines the cols and
rows attributes for the frameset. These properties can be modified on the fly in modern browsers.

Properties
allowTransparency
Value: Boolean Read/Write
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The allowTransparency property indicates whether the frame’s background is transparent. This property
applies primarily to the iframe object, because framesets don’t have background colors or images to show
through a transparent frame.

borderColor
Value: Hexadecimal triplet or color name string Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

If a frame displays a border (as determined by the frameborder attribute of the frame element or border
attribute of the frameset element), it can have a color set separately from the rest of the frames. The initial
color (if different from the rest of the frameset) is usually set by the bordercolor attribute of the <frame>
tag. After that, scripts can modify settings as needed.

472

Document Objects Reference

frame.borderColor

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 472

Modifying a single frame’s border can be risky at times, depending on your color combinations. In practice,
different browsers appear to follow different rules when it comes to negotiating conflicts or defining just
how far a single frame’s border extends into the border space. Color changes to individual frame borders do
not always render. Verify your designs on as many browsers and operating system variations as you can to
test your combinations.

Example
Although you may experience problems changing the color of a single frame border, the W3C DOM syntax
would look like the following if the script were inside the framesetting document:

document.getElementById(“contentsFrame”).borderColor = “red”;

The IE-only version would be

document.all[“contentsFrame”].borderColor = “red”;

These examples assume that the frame name arrives to a script function as a string. If the script is executing
in one of the frames of the frameset, add a reference to parent in the preceding statements.

Related Items: frame.frameBorder, frameset.frameBorder properties

contentDocument
Value: document object reference Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The contentDocument property of a frame element object is nothing more than a reference to the docu-
ment contained by that frame. This property bridges the gap between the frame element object and the
frame object. Both of these objects contain the same document object, but from a scripting point of view,
references most typically use the frame object to reach the document inside a frame, whereas the frame ele-
ment is used to access properties equated with the frame tag’s attributes. But if your script finds that it has a
reference to the frame element object, you can use the contentDocument property to get a valid reference
to the document and, therefore, any other content of the frame.

Example
A framesetting document script might be using the ID of a frame element to read or adjust one of the ele-
ment properties and then need to perform some action on the content of the page through its document
object. You can get the reference to the document object via a statement such as the following:

var doc = document.getElementById(“Frame3”).contentDocument;

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value;

Related Items: contentWindow property; document object

contentWindow
Value: document object reference Read-Only
Compatibility: WinIE5.5+, MacIE-, NN7+, Moz1.0.1+, Safari-

The contentWindow property of a frame element object is simply a reference to the window generated by
that frame. This property provides access to the frame’s window, which can then be used to reach the docu-
ment inside the frame.

473

frame.contentDocument

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 473

Example
You can get the reference to the window object associated with a frame via a statement such as the following:

var win = document.getElementById(“Frame3”).contentWindow;

Related Item: window object

frameBorder
Value: yes | no | 1 | 0 as strings Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The frameBorder property offers scripted access to a frame element object’s frameborder attribute set-
ting. IE does not respond well to modifying this property after the page has loaded.

Values for the frameBorder property are strings that substitute for Boolean values. Value yes or 1 means
that the border is (supposed to be) turned on; no or 0 turns off the border.

Example
The default value for the frameBorder property is yes. You can use this setting to create a toggle script
(which, unfortunately, does not change the appearance in IE). The W3C-compatible version looks like the
following:

function toggleFrameScroll(frameID) {
var theFrame = document.getElementById(frameID);
if (theFrame.frameBorder == “yes”) {

theFrame.frameBorder = “no”;
} else {

theFrame.frameBorder = “yes”;
}

}

Related Items: frameset.frameBorder properties.

height
width
Value: Integer Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

IE4+ lets you retrieve the height and width of a frame element object. These values are not necessarily the
same as document.body.clientHeight and document.body.clientWidth, because the frame dimen-
sions include chrome associated with the frame, such as scroll bars. These values are read-only. If you need
to modify the dimensions of a frame, do so via the frameset element object’s rows and/or cols properties.
Reading integer values for a frame’s height and width properties is much easier than trying to parse the
rows and cols string properties.

Example
The following fragment assumes a frameset defined with two frames set up as two columns within the
frameset. The statements here live in the framesetting document. They retrieve the current width of the left

474

Document Objects Reference

frame.height

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 474

frame and increase the width of that frame by 10 percent. Syntax shown here is for the W3C DOM but can
easily be adapted to IE-only terminology.

var frameWidth = document.getElementById(“leftFrame”).width;
document.getElementById(“mainFrameset”).cols =

(Math.round(frameWidth * 1.1)) + “,*”;

Notice that the numeric value of the existing frame width is first increased by 10 percent and then concate-
nated to the rest of the string property assigned to the frameset’s cols property. The asterisk after the
comma means that the browser should figure out the remaining width and assign it to the right frame.

Related Item: frameset object

longDesc
Value: URL string Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The longDesc property is the scripted equivalent of the longdesc attribute of the <frame> tag. This
HTML 4 attribute is intended to provide browsers a URL to a document that contains a long description of
the element. Future browsers can use this feature to provide information about the frame for visually
impaired site visitors.

marginHeight
marginWidth
Value: Integer Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

Browsers tend to insert content within a frame automatically by adding a margin between the content and
the edge of the frame. These values are represented by the marginHeight (top and bottom edges) and
marginWidth (left and right edges) properties. Although the properties are not read-only, changing the val-
ues after the frameset has loaded does not alter the appearance of the document in the frame. If you need to
alter the margin(s) of a document inside a frame, adjust the document.body.style margin properties.

Also be aware that although the default values of these properties are empty (meaning when no marginheight
or marginwidth attributes are set for the <frame> tag), margins are built into the page. The precise pixel
count of those margins varies with operating system.

Related Item: style object (Chapter 26)

name
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The name property is the identifier associated with the frame for use as a frame reference. Scripts can refer-
ence the frame through the name property (for example, top.frames[“myFrame”]), which is typically
assigned via the name attribute.

475

frame.name

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 475

noResize
Value: Boolean Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

Web designers commonly fix their framesets so that users cannot resize the frames (by dragging any divider
border between frames). The noResize property lets you read and adjust that behavior of a frame after the
page has loaded. For example, during some part of the interaction with a user on a page, you may allow the
user to modify the frame size manually while in a certain mode. Or you may grant the user one chance to
resize the frame. When the onresize event handler fires, a script sets the noResize property of the frame
element to false. If you turn off resizing for a frame, all edges of the frame become nonresizable, regardless
of the noResize value setting of adjacent frames. Turning off resizability has no effect on the ability of
scripts to alter the sizes of frames via the frameset element object’s cols or rows properties.

Example
The following statement turns off the ability for a frame to be resized:

parent.document.getElementById(“myFrame1”).noResize = true;

Because of the negative nature of the property name, it may be difficult to keep the logic straight (setting
noResize to true means that resizability is turned off). Keep a watchful eye on your Boolean values.

Related Items: frameset.cols, frameset.rows properties

scrolling
Value: yes | no | 1 | 0 as strings Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The scrolling property lets scripts turn scroll bars on and off inside a single frame of a frameset. By
default, scrolling is turned on unless overridden by the scroll attribute of the <frame> tag.

Values for the scrolling property are strings that substitute for Boolean values. Value yes or 1 means that
scroll bars are visible (provided that there is more content than can be viewed without scrolling); no or 0
hides scroll bars in the frame. IE also recognizes (and sets as default) the auto value.

Although this property is read/write, changing its value by script does not alter a frame’s
appearance in WinIE, Mozilla browsers, or Safari.

Example
Listing 16-42 produces a frameset consisting of eight frames. The content for the frames is generated by a
script within the frameset (via the fillFrame() function). Event handlers (onclick) in the Body of each
frame invoke the toggleFrameScroll() function. Both ways of referencing the frame element object are
shown, with the IE-only version commented out.

In the toggleFrameScroll() function, the if condition checks whether the property is set to something
other than no. This allows the condition to evaluate to true if the property is set to either auto (the first
time) or yes (as set by the function). Note that the scroll bars don’t disappear from the frames in IE, NN6+,
Moz, or Safari.

NOTENOTE

476

Document Objects ReferencePart III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 476

LISTING 16-42

Controlling the frame.scrolling Property

<html>
<head>

<title>frame.scrolling Property</title>
<script type=”text/javascript”>
function toggleFrameScroll(frameID) {

// IE5+/W3C version
var theFrame = document.getElementById(frameID);

if (theFrame.scrolling != “no”) {
theFrame.scrolling = “no”;

} else {
theFrame.scrolling = “yes”;

}
}

// generate content for each frame
function fillFrame(frameID) {

var page = “<html><body onclick=’parent.toggleFrameScroll(\”” +
frameID + “\”)’>”;
page += “<p>This frame has the ID of:<\/p><p>” + frameID + “.<\/p>”;
page += “<\/span><\/body><\/html>”;
return page;

}
</script>

</head>
<frameset id=”outerFrameset” cols=”50%,50%”>

<frameset id=”innerFrameset1” rows=”25%,25%,25%,25%”>
<frame id=”myFrame1” src=”javascript:parent.fillFrame(‘myFrame1’)” />
<frame id=”myFrame2” src=”javascript:parent.fillFrame(‘myFrame2’)” />
<frame id=”myFrame3” src=”javascript:parent.fillFrame(‘myFrame3’)” />
<frame id=”myFrame4” src=”javascript:parent.fillFrame(‘myFrame4’)” />

</frameset>
<frameset id=”innerFrameset2” rows=”25%,25%,25%,25%”>

<frame id=”myFrame5” src=”javascript:parent.fillFrame(‘myFrame5’)” />
<frame id=”myFrame6” src=”javascript:parent.fillFrame(‘myFrame6’)” />
<frame id=”myFrame7” src=”javascript:parent.fillFrame(‘myFrame7’)” />
<frame id=”myFrame8” src=”javascript:parent.fillFrame(‘myFrame8’)” />

</frameset>
</frameset>

</html>

477

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 477

src
Value: URL string Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The src property of a frame element object offers an additional way of navigating to a different page within
a frame (meaning other than assigning a new URL to the location.href property of the frame object). For
backward compatibility with older browsers, however, continue using location.href for scripted naviga-
tion. Remember that the src property belongs to the frame element object, not the window object it repre-
sents. Therefore, references to the src property must be via the element’s ID and/or node hierarchy.

Example
For best results, use fully formed URLs as value for the src property, as shown here:

parent.document.getElementById(“mainFrame”).src = “http://www.dannyg.com”;

Relative URLs and javascript: pseudo-URLs will also work most of the time.

Related Item: location.href property

frameset Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

border

borderColor

cols

frameBorder

frameSpacing

rows

Syntax
Accessing properties or methods of a frameset element object from a frameset:

(IE4+) document.all.framesetID. property | method([parameters])
(IE5+/W3C) document.getElementById(“framesetID”). property | method([parameters])

Accessing properties or methods of a frameset element from a frame document:

(IE4+) parent.document.all.framesetID. property | method([parameters])
(IE5+/W3C) parent.document.getElementById(“framesetID”). property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

478

Document Objects Reference

frameset

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 478

About this object
The frameset element object is the script-accessible equivalent of the element generated via the <frameset>
tag. This element is different from the parent (window-type) object from the original object model. A
frameset element object has properties and methods that impact the HTML element; by contrast, the
window object referenced from documents inside frames via the parent or top window references contains
a document and all the content that goes along with it.

When framesets are nested in one another, a node parent–child relationship exists between containing and
contained framesets. For example, consider the following skeletal nested frameset structure:

<frameset id=”outerFrameset” cols=”30%, 70%”>
<frame id=”frame1”>
<frameset id=”innerFrameset” rows=”50%,50%”>

<frame id=”frame2”>
<frame id=”frame3”>

</frameset>
</frameset>

When writing scripts for documents that go inside any of the frames of this structure, references to the
framesetting window and frames are a flatter hierarchy than the HTML signifies. A script in any frame refer-
ences the framesetting window via the parent reference; a script in any frame references another frame via
the parent.frameName reference. In other words, the window objects of the frameset defined in a docu-
ment are all siblings and have the same parent.

Such is not the case when viewing the preceding structure from the perspective of W3C node terminology.
Parent–child relationships are governed by the nesting of HTML elements, irrespective of whatever win-
dows get generated by the browser. Therefore, frame frame2 has only one sibling: frame3. Both of those
share one parent: innerFrameset. Both innerFrameset and frame1 are children of outerFrameset. If
your script were sitting on a reference to frame2, and you wanted to change the cols property of
outerFrameset, you would have to traverse two generations of nodes:

frame2Ref.parentNode.parentNode.cols = “40%,60%”;

What might confuse matters ever more in practice is that a script belonging to one of the frames must use
window object terminology to jump out of the current window object to the frameset that generated the
frame window for the document. In other words, there is no immediate way to jump directly from a docu-
ment to the frame element object that defines the frame in which the document resides. The document’s
script accesses the node hierarchy of its frameset via the parent.document reference. But this reference is
to the document object that contains the entire frameset structure. Fortunately, the W3C DOM provides the
getElementById() method to extract a reference to any node nested within the document. Thus, a docu-
ment inside one of the frames can access the frame element object just as though it were any element in a
typical document (which it is):

parent.document.getElementById(“frame2”)

No reference to the containing frameset element object is necessary. Or to make that column width
change from a script inside one of the frame windows, the statement would be

parent.document.getElementById(“outerFrame”).cols = “40%,60%”;

The inner frameset is equally accessible by the same syntax.

479

frameset

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 479

Properties
border
Value: Integer Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari+

The border property of a frameset element object lets you read the thickness (in pixels) of the borders
between frames of a frameset. If you do not specify a border attribute in the frameset’s tag, the property is
empty, rather than reflecting the actual border thickness applied by default.

Example
Even though the property is read/write, changing the value does not change the thickness of the border you
see in the browser. If you need to find the thickness of the border, a script reference from one of the frame’s
documents would look like the following:

var thickness = parent.document.all.outerFrameset.border;

Related Item: frameset.frameBorder property

borderColor
Value: Hexadecimal triplet or color name string Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The borderColor property lets you read the value of the color assigned to the bordercolor attribute of
the frameset’s tag. Although the property is read/write, changing the color by script does not alter the border
colors rendered in the browser window. Attribute values set as color names are returned as hexadecimal
triplets when you read the property value.

Example
To retrieve the current color setting in a frameset, a script reference from one of the frame’s documents
would look like the following:

var borderColor = parent.document.all.outerFrameset.borderColor;

Related Items: frame.borderColor, frameset.frameBorder properties

cols
rows
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The cols and rows properties of a frameset element object let you read and modify the sizes of frames
after the frameset has loaded. These two properties are defined in the W3C DOM. Values for both proper-
ties are strings, which may include percent symbols or asterisks. Therefore, if you are trying to increase or
decrease the size of a frame column or row gradually, you must parse the string for the necessary original
values before performing any math on them (or, in IE4+, use the frame element object’s height and width
properties to gauge the current frame size in pixels).

Adjusting these two properties lets you modify the frameset completely, including adding or removing
columns or rows in the frameset grid. Because a change in the frameset structure could impact scripts by

480

Document Objects Reference

frameset.cols

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 480

changing the size of the frames array associated with the parent window or unloading documents that con-
tain needed data, be sure to test your scripts with both states of your frameset. If you want to remove a
frame from a frameset view, you might be safer to specify the size of zero for that particular row or column
in the frameset. Of course, a size of zero still leaves a 1-pixel frame, but it is essentially invisible if borders
are not turned on and the 1-pixel frame has the same background color as the other frames. Another posi-
tive byproduct of this technique is that you can restore the other frame with its document state identical
from when it was hidden.

When you have nested framesets defined in a single document, be sure to reference the desired frameset
element object. One object may be specifying the columns, and another (nested) one specifies the rows for
the grid. Assign a unique ID to each frameset element so that references can be reliably directed to the
proper object.

Example
Listing 16-43, Listing 16-44, and Listing 16-45 show the HTML for a frameset and two of the three docu-
ments that go into the frameset. The final document is an HTML version of the U.S. Bill of Rights, which is
serving here as a content frame for the demonstration.

The frameset listing (see Listing 16-43) shows a three-frame setup. Down the left column is a table of contents
(see Listing 16-44). The right column is divided into two rows. In the top row is a simple control (see Listing
16-45) that hides and shows the table-of-contents frame. As the user clicks the hot text of the control (located
inside a span element), the onclick event handler invokes the toggleTOC() function in the frameset.

LISTING 16-43

Frameset and Script for Hiding/Showing a Frame

<html>
<head>

<title>Hide/Show Frame Example</title>
<script type=”text/javascript”>
var origCols;
function toggleTOC() {

if (origCols) {
showTOC();

} else {
hideTOC();

}
}
function hideTOC() {

var frameset = document.getElementById(“outerFrameset”);
origCols = frameset.cols;
frameset.cols = “0,*”;

}
function showTOC() {

if (origCols) {
document.getElementById(“outerFrameset”).cols = origCols;
origCols = null;

}

continued

481

frameset.cols

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 481

LISTING 16-43 (continued)

}
</script>

</head>
<frameset id=”outerFrameset” frameborder=”no” cols=”150,*”>

<frame id=”TOC” name=”TOCFrame” src=”lst16-44.htm” />
<frameset id=”innerFrameset1” rows=”80,*”>

<frame id=”controls” name=”controlsFrame” src=”lst16-45.htm” />
<frame id=”content” name=”contentFrame” src=”bofright.htm” />

</frameset>
</frameset>

</html>

When a user clicks the hotspot to hide the frame, the script copies the original cols property settings to a
global variable. The variable is used in showTOC() to restore the frameset to its original proportions. This
allows a designer to modify the HTML for the frameset without also having to dig into scripts to hard-wire
the restored size.

LISTING 16-44

Table of Contents Frame Content

<html>
<head>

<title>Table of Contents</title>
</head>
<body bgcolor=”#EEEEEE”>

<h3>
Table of Contents

</h3>
<hr />
<ul style=”font-size:10pt”>

Article
I

Article
II

Article
III

Article
IV

Article
V

Article
VI

Article
VII

Article
VIII

Article

482

Document Objects Reference

frameset.cols

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 482

IX
Article

X

</body>
</html>

LISTING 16-45

Control Panel Frame

<html>
<head>

<title>Control Panel</title>
</head>
<body>

<p><span id=”tocToggle” style=”text-decoration:underline; cursor:pointer”
onclick=”parent.toggleTOC()”><<Hide/Show>> Table of
Contents</p>

</body>
</html>

Related Item: frame object

frameBorder
Value: yes | no | 1 | 0 as strings Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The frameBorder property offers scripted access to a frameset element object’s frameborder attribute
setting. IE4+ does not respond well to modifying this property after the page has loaded.

Values for the frameBorder property are strings that substitute for Boolean values. Value yes or 1 means
that the border is (supposed to be) turned on; no or 0 turns off the border.

Example
The default value for the frameBorder property is yes. You can use this setting to create a toggle script
(which, unfortunately, does not change the appearance in IE). The IE5+ version looks like the following:

function toggleFrameScroll(framesetID) {
var theFrameset = document.getElementById(framesetID);
if (theFrameset.frameBorder == “yes”) {

theFrameset.frameBorder = “no”;
} else {

theFrameset.frameBorder = “yes”;
}

}

Related Item: frame.frameBorder property

483

frameset.frameBorder

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 483

frameSpacing
Value: Integer Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The frameSpacing property of a frameset element object lets you read the spacing (in pixels) between
frames of a frameset. If you do not specify a framespacing attribute in the frameset’s tag, the property is
empty, rather than reflecting the actual border thickness applied by default (usually 2).

Example
Even though the property is read/write in IE, changing the value does not change the thickness of the frame
spacing you see in the browser. If you need to find the spacing as set by the tag’s attribute, a script reference
from one of the frame’s documents would look like the following:

var spacing = document.getElementById(“outerFrameset”).frameSpacing;

Related Item: frameset.border property

iframe Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

allowTransparency

contentDocument

contentWindow

frameBorder

frameSpacing

height

hspace

longDesc

marginHeight

marginWidth

name

noResize

scrolling

src

vspace

width

484

Document Objects Reference

iframe

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 484

Syntax
Accessing properties or methods of an iframe element object from a containing document:

(IE4+) document.all.iframeID. property | method([parameters])
(IE4+/NN6) window.frames[“iframeName”]. property | method([parameters])
(IE5+/W3C) document.getElementById(“iframeID”). property | method([parameters])

Accessing properties of methods of an iframe element from a document inside the iframe element:

(IE4+) parent.document.all.iframeID. property | method([parameters])
(IE5+/W3C) parent.document.getElementById(“iframeID”). property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

About this object
An iframe element allows HTML content from a separate source to be loaded within the body of another
document. In some respects, the NN4 layer element was a precursor to the iframe concept, but unlike
the layer, an iframe element is not inherently positionable. It is positionable the same way as any other
HTML element: by assigning positioning attributes to a style sheet associated with the iframe. Without
explicit positioning, an iframe element appears in the body of a document in normal source-code order of
elements. Unlike a frame of a frameset, an iframe can be placed arbitrarily in the middle of any document.
If the frame changes size under script control, the surrounding content moves out of the way or cinches up.

What truly separates the iframe apart from other HTML elements is its ability to load and display external
HTML files and, with the help of scripts, have different pages loaded into the iframe without disturbing
the rest of the content of the main document. Pages loaded into the iframe can also have scripts and any
other features that you may like to put into an HTML document (including XML in IE for Windows).

The iframe element has a rich set of attributes that let the HTML author control the look; size (height
and width); and, to some degree, behavior of the frame. Most of those are accessible to scripts as properties
of an iframe element object.

It is important to bear in mind that an iframe element is in many respects like a frame element, especially
when it comes to window kinds of relationships. If you plant an iframe element in a document of the main
window, that element shows up in the main window’s object model as a frame, accessible via common
frames terminology:

window.frames[i]
window.frames[frameName]

Within that iframe frame object is a document and all its contents. All references to the document objects
inside the iframe must flow through the portal of the iframe frame.

Conversely, scripts in the document living inside an iframe can communicate with the main document via
the parent reference. Of course, you cannot replace the content of the main window with another HTML
document (using location.href, for instance) without destroying the iframe that was in the original
document.

485

iframe

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 485

Properties
align
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The align property governs how an iframe element aligns itself with respect to surrounding content on
the page. Two of the possible values (left and right) position the iframe along the left and right edge
(respectively) of the iframe’s containing element (usually the body). Just as with an image, when an
iframe is floated along the left and right edges of a container, other content wraps around the element.
Table 16-5 shows all possible values and their meanings.

TABLE 16-5

Values of the align Property

Value Description

absbottom Aligns the bottom of the iframe with the imaginary line that extends along character
descenders of surrounding text

absmiddle Aligns the middle of the iframe with the center point between the surrounding text’s top and
absbottom

baseline Aligns the bottom of the iframe with the baseline of surrounding text

bottom Same as baseline in IE

left Aligns the iframe flush with left edge of the containing element

middle Aligns the imaginary vertical center line of surrounding text with the same for the iframe
element

right Aligns the iframe flush with the right edge of the containing element

texttop Aligns the top of the iframe element with the imaginary line that extends along the tallest
ascender of surrounding text

top Aligns the top of the iframe element with the surrounding element’s top

As your script changes the value of the align property, the page automatically reflows the content to suit
the new alignment.

Example
The default setting for an iframe alignment is baseline. A script can shift the iframe to be flush with the
right edge of the containing element as follows:

document.getElementById(“iframe1”).align = “right”;

Related Items: iframe.hspace, iframe.vspace properties

486

Document Objects Reference

iframe.align

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 486

allowTransparency
Value: Boolean Read/Write
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The allowTransparency property indicates whether the frame’s background is transparent. By setting this
property to true, you allow a background color or image to show through the transparent frame.

contentDocument
Value: document object reference Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The contentDocument property of an iframe element object is nothing more than a reference to the doc-
ument contained by that frame. If your script finds that it has a reference to an iframe element object, you
can use the contentDocument property to get a valid reference to the document and, therefore, any other
content of the frame.

Example
A document script might be using the ID of an iframe element to read or adjust one of the element proper-
ties; then it needs to perform some action on the content of the page through its document object. You can
get the reference to the document object via a statement such as the following:

var doc = document.getElementById(“Frame3”).contentDocument;

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value;

Related Items: contentWindow property; document object

contentWindow
Value: document object reference Read-Only
Compatibility: WinIE5.5+, MacIE-, NN7+, Moz1.0.1+, Safari-

The contentWindow property of an iframe element object serves as a reference to the window object gen-
erated by the frame. You can then use this window object as a means of accessing the document object and
any document elements.

Related Items: contentDocument property; window object

frameBorder
(See frame.frameBorder() and frameset.frameBorder())

frameSpacing
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

(See frameset.frameSpacing())

487

iframe.frameSpacing

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 487

height
width
Value: Integer Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The height and width properties provide access to the height and width of the iframe object, and allow
you to alter the size of the frame. Both properties are specified in pixels.

hspace
vspace
Value: Integer Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These IE-specific properties allow for margins to be set around an iframe element. In general, hspace and
vspace properties (and their HTML attributes) have been replaced by CSS margins and padding. These
properties and their attributes are not recognized by any W3C standard (including HTML 4).

Values for these properties are integers representing the number of pixels of padding between the element
and surrounding content. The hspace value assigns the same number of pixels to the left and right sides of
the element; the vspace value is applied to both the top and bottom edges. Scripted changes to these val-
ues have no effect in WinIE5+.

Related Item: style.padding property

longDesc
Value: URL string Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The longDesc property is the scripted equivalent of the longdesc attribute of the <iframe> tag. This
HTML 4 attribute is intended to provide browsers a URL to a document that contains a long description of
the element. Future browsers can use this feature to provide information about the frame for visually
impaired site visitors.

marginHeight
marginWidth
Value: Integer Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Browsers tend to insert content within a frame automatically by adding a margin between the content and
the edge of the frame. These values are represented by the marginHeight (top and bottom edges) and
marginWidth (left and right edges) properties. Although the properties are not read-only, changing the val-
ues after the frameset has loaded does not alter the appearance of the document in the frame. If you need to
alter the margin(s) of a document inside a frame, adjust the document.body.style margin properties.

Also be aware that although the default values of these properties are empty (that is, when no marginheight
or marginwidth attributes are set for the <iframe> tag), margins are built into the page. The precise pixel
count of those margins varies with different operating systems.

Related Item: style object (Chapter 26)

488

Document Objects Reference

iframe.marginHeight

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 488

name
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The name property is the identifier associated with the frame for use as a frame reference. Scripts can refer-
ence the frame through the name property (for example, window.frames[“myIframe”]), which is typi-
cally assigned via the name attribute.

noResize
(See frame.noResize())

scrolling
Value: yes | no | 1 | 0 as strings Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The scrolling property lets scripts turn scroll bars on and off inside an iframe element. By default,
scrolling is turned on unless overridden by the scroll attribute of the <iframe> tag.

Values for the scrolling property are strings that substitute for Boolean values. Value yes or 1 means that
scroll bars are visible (provided that there is more content than can be viewed without scrolling); no or 0
hides scroll bars in the frame. IE4+ also recognizes (and sets as default) the auto value.

Example
The following toggleIFrameScroll() function accepts a string of the iframe element’s ID as a parameter
and switches between on and off scroll bars in the iframe. The if condition checks whether the property
is set to something other than no. This test allows the condition to evaluate to true if the property is set to
either auto (the first time) or yes (as set by the function).

function toggleFrameScroll(frameID) {
// IE5 & NN6 version
var theFrame = document.getElementById(frameID);

if (theFrame.scrolling != “no”) {
theFrame.scrolling = “no”;

} else {
theFrame.scrolling = “yes”;

}
}

Related Item: frame.scrolling property

src
Value: URL string Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The src property of an iframe element object offers an additional way of navigating to a different page
within an inline frame (that is, other than assigning a new URL to the location.href property of the
frame object). Remember that the src property belongs to the iframe element object, not the window
object it represents. Therefore, references to the src property must be via the element’s ID and/or node
hierarchy.

489

iframe.src

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 489

Example
For best results, use fully formed URLs as value for the src property, as shown here:

document.getElementById(“myIframe”).src = “http://www.dannyg.com”;

Relative URLs and javascript: pseudo-URLs also work most of the time.

Related Item: location.href property

popup Object

Properties Methods Event Handlers

document hide()

isOpen show()

Syntax
Creating a popup object:

var popupObj = window.createPopup()

Accessing properties or methods of a popup object from a document in the window that created the pop-up:

popupObj.property | method([parameters])

Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

About this object
A popup object is a chromeless window space that overlaps the window whose document generates the
pop-up. A pop-up also appears in front of any dialog boxes. Unlike the dialog-box windows generated via
IE’s showModalDialog() and showModelessDialog() methods, your scripts must not only create the
window, but also put content in it and then define where on the screen and how big it will be.

Because the pop-up window has no chrome (title bar, resize handles, and so on), you should populate its
content with a border and/or background color so that it stands out from the main window’s content. The
following statements reflect a typical sequence of creating, populating, and showing a popup object:

var popup = window.createPopup();
var popupBody = popup.document.body;
popupBody.style.border = “solid 2px black”;
popupBody.style.padding = “5px”;
popupBody.innerHTML = “<p>Here is some text in a popup window</p>”;
popup.show(200,100, 200, 50, document.body);

As handy as it may be, in a strict W3C approach to JavaScript, you wouldn’t use the
innerHTML property because it isn’t officially part of the W3C standard. However, it is often

too powerful a convenience property to ignore, as much of the code throughout this book is a testament. The
book does show the W3C node manipulation alternative to innerHTML in some examples. Refer to Chapter
18 for a thorough explanation and examples of the W3C alternative to innerHTML.

NOTENOTE

490

Document Objects Reference

popup

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 490

The pop-up window that IE creates is, in fact, a window, but only from the point of view of the document
that it contains. In other words, although the number of properties and methods for the popup object is
small, the parentWindow property of the document inside the pop-up points to a genuine window prop-
erty. Even so, be aware that this pop-up does not appear as a distinct window among windows listed in the
Windows Taskbar. If a user clicks outside the pop-up or switches to another application, the pop-up disap-
pears, and you must reinvoke the show() method by script (complete with dimension and position param-
eters) to force the pop-up to reappear.

When you assign content to a pop-up, you are also responsible for making sure that the content fits the size
of the pop-up you specify. If the content runs past the rectangular space (body text word wraps within the
pop-up’s rectangle), no scroll bars appear.

Properties
document
Value: document object reference Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

Use the document property as a gateway to the content of a pop-up window. This property is the only access
point available from the script that creates the pop-up to the pop-up itself. The most common application of
this property is to set document properties governing the content of the pop-up window. For example, to
give the pop-up a border (because the pop-up itself has no window chrome), the script that creates the win-
dow can assign values to the style property of the document in the pop-up window, as follows:

myPopup.document.body.style.border = “solid 3px gray”;

Be aware that the document object of a pop-up window may not implement the full flexibility you know
about primary window document objects. For example, you are not allowed to assign a URL to the docu-
ment.URL property in a pop-up window.

Example
Use The Evaluator (Chapter 13) to experiment with the popup object and its properties. Enter the following
statements in the top text box. The first statement creates a pop-up window whose reference is assigned to
the a global variable. Next, a reference to the body of the pop-up’s document is preserved in the b variable
for the sake of convenience. Further statements work with these two variables.

a = window.createPopup()
b = a.document.body
b.style.border = “solid 2px black”
b.style.padding = “5px”
b.innerHTML = “<p>Here is some text in a popup window</p>”
a.show(200,100, 200, 50, document.body)

See the description of the show() method for details on the parameters.

Related Item: document object

isOpen
Value: Boolean Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

While a pop-up window is visible, its isOpen property returns true; otherwise, the property returns
false. Because any user action in the browser causes the pop-up to hide itself, the property is useful only
for script statements that are running on their own after the pop-up is made visible.

491

popupObject.isOpen

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 491

Example
Use The Evaluator (Chapter 13) to experiment with the isOpen property. Enter the following statements in
the top text box. The sequence begins with a creation of a simple pop-up window, whose reference is
assigned to the a global variable. Note that the final statement is actually two statements, designed so that
the second statement executes while the pop-up window is still open.

a = window.createPopup();
a.document.body.innerHTML = “<p>Here is a popup window</p>”;
a.show(200,100, 200, 50, document.body); alert(“Popup is open:” + a.isOpen);

If you then click in the main window to hide the pop-up, you will see a different result if you enter the fol-
lowing statement in the top text box by itself:

alert(“Popup is open:” + a.isOpen);

Related Item: popup.show() method

Methods
hide()
show(left, top, width, height[, positioningElementRef])
Returns: Nothing
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

After you have created a popup object with the window.createPopup() method and populated it with
content, you must explicitly show the window via the show() method. If the window is hidden because a
user clicked the main browser window somewhere, the show() method (and all its parameters) must be
invoked again. To have a script hide the window, invoke the hide() method for the popup object.

The first four parameters of the show() method are required; they define the pixel location and size of the
pop-up window. By default, the coordinate space for the left and top parameters is the video display.
Thus, a left and top setting of zero places the pop-up in the top-left corner of the video screen. But you
can define a different coordinate space by adding an optional fifth parameter. This parameter must be a ref-
erence to an element on the page. To confine the coordinate space to the content region of the browser win-
dow, specify the document.body object as the positioning element reference.

Example
Listing 16-46 demonstrates the show() and hide() methods for a popup object. A click of the button on
the page invokes the selfTimer() function, which acts as the main routine for this page. The goal is to
produce a pop-up window that self-destructs 5 seconds after it appears. Along the way, a message in the
pop-up counts down the seconds.

A reference to the pop-up window is preserved as a global variable called popup. After the popup object is
created, the initContent() function stuffs the content into the pop-up by way of assigning style proper-
ties and some innerHTML for the body of the document that is automatically created when the pop-up is
generated. A span element is defined so that another function later on can modify the content of just that
segment of text in the pop-up. Notice that the assignment of content to the pop-up is predicated on the
pop-up window’s having been initialized (by virtue of the popup variable’s having a value assigned to it) and
that the pop-up window is not showing. Although invoking initContent() under any other circum-
stances is probably impossible, the validation of the desired conditions is good programming practice.

492

Document Objects Reference

popupObject.hide()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 492

Back in selfTimer(), the popup object is displayed. Defining the desired size requires some trial and error
to make sure that the pop-up window comfortably accommodates the text that is put into the pop-up in the
initContent() function.

With the pop-up window showing, now is the time to invoke the countDown() function. Before the func-
tion performs any action, it validates that the pop-up has been initialized and is still visible. If a user clicks
the main window while the counter is counting down, this changes the value of the isOpen property to
false, and nothing inside the if condition executes.

This countDown() function grabs the inner text of the span and uses paresInt() to extract just the inte-
ger number (using base 10 numbering, because we’re dealing with zero-leading numbers that can poten-
tially be regarded as octal values). The condition of the if construction decreases the retrieved integer by
one. If the decremented value is zero, the time is up, and the pop-up window is hidden with the popup
global variable returned to its original, null value. But if the value is other than zero, the inner text of the
span is set to the decremented value (with a leading zero), and the setTimeout() method is called upon
to reinvoke the countDown() function in 1 second (1,000 milliseconds).

LISTING 16-46

Hiding and Showing a Pop-Up

<html>
<head>

<title>popup Object</title>
<script type=”text/javascript”>
var popup;
function initContent() {

if (popup && !popup.isOpen) {
var popBody = popup.document.body;
popBody.style.border = “solid 3px red”;
popBody.style.padding = “10px”;
popBody.style.fontSize = “24pt”;
popBody.style.textAlign = “center”;
var bodyText = “<P>This popup will self-destruct in “;
bodyText += “05<\/span>”;
bodyText += “ seconds...<\/P>”;
popBody.innerHTML = bodyText;

}
}
function countDown() {

if (popup && popup.isOpen) {
var currCount = parseInt(popup.document.all.counter.innerText, 10);
if (--currCount == 0) {

popup.hide();
popup = null;

} else {
popup.document.all.counter.innerText = “0” + currCount;
setTimeout(“countDown()”, 1000);

}
}

}

continued

493

popupObject.hide()

Window and Frame Objects 16

24_069165 ch16.qxp 3/1/07 3:45 PM Page 493

LISTING 16-46 (continued)

function selfTimer() {
popup = window.createPopup();
initContent();
popup.show(200,200,400,100,document.body);
setTimeout(“countDown()”, 1000);

}
</script>

</head>
<body>

<form>
<input type=”button” value=”Impossible Mission”
onclick=”selfTimer()” />

</form>
</body>

</html>

The hide() method here is invoked by a script that is running while the pop-up window is showing.
Because a pop-up window automatically goes away if a user clicks the main window, it is highly unlikely
that the hide() method would ever be invoked by itself in response to user action in the main window. If
you want a script in the pop-up window to close the pop-up, use parentWindow.close().

Related Items: popup.isOpen property, window.createPopup() method

494

Document Objects Reference

popupObject.hide()

Part III

24_069165 ch16.qxp 3/1/07 3:45 PM Page 494

Not all objects in the document object model are things you can see in the
content area of the browser window. Each browser window or frame
maintains a bunch of other information about the page you are currently

visiting and where you have been. The URL of the page you see in the window is
called the location, and browsers store this information in the location object.
As you surf the Web, the browser stores the URLs of your past pages in the his-
tory object. You can manually view what that object contains by looking in the
browser menu that enables you to jump back to a previously visited page. This
chapter is all about these two nearly invisible, but important, objects.

These objects are not only valuable to your browser, but also valuable to snoop-
ers who might want to write scripts to see what URLs you’re viewing in another
frame or the URLs of other sites you’ve visited in the past dozen mouse clicks. As
a result, security restrictions built into browsers limit access to some of these
objects’ properties (unless you use signed scripts in NN4+/Moz). For older
browsers, these properties simply are not available from a script.

495

IN THIS CHAPTER
Loading new pages and
other media types via the
location object

Security restrictions
across frames

Navigating through the browser
history under script control

Location and
History Objects

25_069165 ch17.qxp 3/1/07 3:46 PM Page 495

location Object

Properties Methods Event Handlers

hash assign() None

host reload()

hostname replace()

href

pathname

port

protocol

search

Syntax
Loading a new document into the current window:

[window.]location.href = “URL”;

Accessing location object properties or methods:

[window.]location.property | method([parameters])

About this object
In its place one level below window-style objects in the original document object hierarchy, the location
object represents information about the URL of any currently open window or of a specific frame. To dis-
play the URL of the current web page, you can reference the location object like this:

document.write(location.href);

In this example, the href property evaluates to the URL, which is written to the current page in its entirety.
The location object also allows you to access individual parts of the URL, as you see in a moment.

When you reference the location object in the framesetting document of a multiple-frame window, the
location is given as the parent window’s URL that appears in the Location (or Address) field of the browser.
Each frame also has a location associated with it, although you may not see any overt reference to the
frame’s URL in the browser. To get URL information about a document located in another frame, the refer-
ence to the location object must include the window frame reference. For example, if you have a window
consisting of two frames, Table 17-1 shows the possible references to the location objects for all frames
comprising the web presentation.

Scripts cannot alter the URL displayed in the browser’s Location/Address box. For security and
privacy reasons, that text box cannot display anything other than the URL of a current page or

URL in transit.

NOTENOTE

496

Document Objects Reference

windowObject.location

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 496

TABLE 17-1

Location Object References in a Two-Frame Browser Window

Reference Description

location (or window.location) URL of frame displaying the document that runs the script
statement containing this reference

parent.location URL information for parent window that defines the <frameset>

parent.frames[0].location URL information for first visible frame

parent.frames[1].location URL information for second visible frame

parent.otherFrameName.location URL information for another named frame in the same frameset

Most properties of a location object deal with network-oriented information. This information involves
various data about the physical location of the document on the network, including the host server, the pro-
tocol being used, and other components of the URL. Given a complete URL for a typical World Wide Web
page, the window.location object assigns property names to various segments of the URL, as shown here:

http://www.example.com:80/promos/newproducts.html#giantGizmo

Property Value

protocol “http:”

hostname “www.example.com”

port “80”

host “www.example.com:80”

pathname “/promos/newproducts.html”

hash “#giantGizmo”

href “http://www.example.com:80/promos newproducts.html#giantGizmo”

The window.location object is handy when a script needs to extract information about the URL, perhaps
to obtain a base reference on which to build URLs for other documents to be fetched as the result of user
action. This object can eliminate a nuisance for web authors who develop sites on one machine and then
upload them to a server (perhaps at an Internet service provider) with an entirely different directory struc-
ture. By building scripts to construct base references from the directory location of the current document,
you can construct the complete URLs for loading documents. You don’t have to change the base reference
data manually in your documents as you shift the files from computer to computer or from directory to
directory. To extract the segment of the URL and place it in the enclosing directory, use the following:

var baseRef = location.href.substring(0,location.href.lastIndexOf(“/”) + 1);

497

windowObject.location

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 497

Security alert: To allay fears of Internet security breaches and privacy invasions, scriptable
browsers prevent your script in one frame from retrieving location object properties from

other frames whose domain and server are not your own (unless you use signed scripts in NN4+/Moz or the
user has set the IE browser to trust your site). This restriction puts a damper on many scripters’ well-meaning
designs and aids for web watchers and visitors. If you attempt such property accesses, however, you receive
an “access denied” (or similar) security warning dialog box.

Setting the value of some location properties is the preferred way to control which document gets loaded
into a window or frame. Though you may expect to find a method somewhere in JavaScript that contains a
plain-language Go or Open word (to simulate what you see in the browser menu bar), you point your
browser to another URL by setting the window.location.href property to that URL, as in:

window.location.href = “http://www.dannyg.com/”;

The equals assignment operator (=) in this kind of statement is a powerful weapon. In fact, setting the
location.href object to a URL of a different MIME type, such as one of the variety of sound and video
formats, causes the browser to load those files into the plug-in or helper application designated in your
browser’s settings. The location.assign() method was originally intended for internal use by the
browser, but it is available for scripters (although I don’t recommend using it for navigation). Internet
Explorer’s object model includes a window.navigate() method that also loads a document into a window,
but you can’t use it for cross-browser applications.

Two other methods complement the location object’s capability to control navigation. One method is the
script equivalent of clicking Reload; the other method enables you to replace the current document’s entry
in the history with that of the next URL of your script’s choice.

Properties
hash
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The hash mark (#) is a URL convention that directs the browser to an anchor located in the document. Any
name you assign to an anchor (with the ... tag pair) becomes part of the URL after
the hash mark. A location object’s hash property is the name of the anchor part of the current URL
(which consists of the hash mark and the name).

If you have written HTML documents with anchors and directed links to navigate to those anchors, you
have probably noticed that although the destination location shows the anchor as part of the URL (for
example, in the Location field), the window’s anchor value does not change as the user manually scrolls to
positions in the document where other anchors are defined. An anchor appears in the URL only when the
window has navigated there as part of a link or in response to a script that adjusts the URL.

Just as you can navigate to any URL by setting the window.location.href property, you can navigate to
another hash in the same document by adjusting only the hash property of the location without the hash
mark (as shown in the following example).

Listing 17-1 demonstrates how to use the hash property to access the anchor part of a URL. When you load
the script in Listing 17-1, adjust the size of the browser window so that only one section is visible at a time.
When you click a button, the script navigates to the next logical section in the progression and eventually
takes you back to the top. The page won’t scroll any farther than to the bottom of the document. Therefore,
an anchor near the bottom of the page may not appear at the top of the browser window.

CAUTION CAUTION

498

Document Objects Reference

windowObject.location.hash

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 498

LISTING 17-1

A Document with Anchors

<html>
<head>

<title>location.hash Property</title>
<script type=”text/javascript”>
function goNextAnchor(where) {

window.location.hash = where;
}
</script>

</head>
<body>

<h1>Top</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec1’)” />

</form>
<hr />

<h1>Section 1</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec2’)” />

</form>
<hr />

<h1>Section 2</h1>
<form>

<input type=”button” name=”next” value=”NEXT”
onclick=”goNextAnchor(‘sec3’)” />

</form>
<hr />

<h1>Section 3</h1>
<form>

<input type=”button” name=”next” value=”BACK TO TOP”
onclick=”goNextAnchor(‘start’)” />

</form>
</body>

</html>

The property assignment event handling technique used in the previous example and through-
out the chapter is a deliberate simplification to make the code more readable. It is generally

better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

Anchor names are passed as parameters with each button’s onclick event handler. Instead of going
through the work of assembling a window.location value in the function by appending a literal hash

NOTENOTE

499

windowObject.location.hash

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 499

mark and the value for the anchor, here I simply modify the hash property of the current window’s loca-
tion. This is the preferred, cleaner method.

If you attempt to read back the window.location.hash property in an added line of script, however, the
window’s actual URL probably will not have been updated yet, and the browser will appear to be giving your
script false information. To prevent this problem in subsequent statements of the same function, construct
the URLs of those statements from the same variable values you use to set the window.location.hash
property; don’t rely on the browser to give you the values you expect.

Related Item: location.href property

host
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The location.host property describes both the hostname and port of a URL. The port is included in the
value only when the port is an explicit part of the URL. If you navigate to a URL that does not display the
port number in the Location field of the browser, the location.host property returns the same value as
the location.hostname property.

Use the location.host property to extract the hostname:port part of the URL of any document loaded
in the browser. This capability may be helpful for building a URL to a specific document that you want your
script to access on the fly.

Use the documents in Listing 17-2, Listing 17-3, and Listing 17-4 as tools to help you learn the values that
the various window.location properties return. In the browser, open the file for Listing 17-2. This file
creates a two-frame window. The left frame contains a temporary placeholder (see Listing 17-4) that dis-
plays some instructions. The right frame has a document (see Listing 17-3) that enables you to load URLs
into the left frame and get readings on three different windows available: the parent window (which creates
the multiframe window), the left frame, and the right frame.

LISTING 17-2

Frameset for the Property Picker

<html>
<head>

<title>window.location Properties</title>
</head>
<frameset cols=”50%,50%” border=”1” bordercolor=”black”>

<frame name=”Frame1” src=”lst17-04.htm” />
<frame name=”Frame2” src=”lst17-03.htm” />

</frameset>
</html>

500

Document Objects Reference

windowObject.location.host

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 500

LISTING 17-3

Property Picker

<html>
<head>

<title>Property Picker</title>
<script type=”text/javascript”>
var isNav = (typeof netscape != “undefined”) ? true : false;

function fillLeftFrame() {
newURL = prompt(“Enter the URL of a document to show in the left

frame:”,””);
if (newURL != null && newURL != “”) {

parent.frames[0].location = newURL;
}

}

function showLocationData(form) {
for (var i = 0; i <3; i++) {

if (form.whichFrame[i].checked) {
var windName = form.whichFrame[i].value;
break;

}
}
var theWind = “” + windName + “.location”;
if (isNav) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalBrowserRead”);

}
var theObj = eval(theWind);
form.windName.value = windName;
form.windHash.value = theObj.hash;
form.windHost.value = theObj.host;
form.windHostname.value = theObj.hostname;
form.windHref.value = theObj.href;
form.windPath.value = theObj.pathname;
form.windPort.value = theObj.port;
form.windProtocol.value = theObj.protocol;
form.windSearch.value = theObj.search;
if (isNav) {

netscape.security.PrivilegeManager.disablePrivilege(
“UniversalBrowserRead”);

}
}
</script>

</head>

continued

501

windowObject.location.host

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 501

LISTING 17-3 (continued)

<body>
Click the “Open URL” button to enter the location of an HTML document to
display in the left frame of this window.
<form>

<input type=”button” name=”opener” value=”Open URL...”
onclick=”fillLeftFrame()” />
<hr />
<center>

Select a window/frame. Then click the “Show Location Properties”
button to view each window.location property value for the desired
window.
<p><input type=”radio” name=”whichFrame” value=”parent”

checked=”checked” />Parent window <input type=”radio”
name=”whichFrame” value=”parent.frames[0]” />Left frame <input
type=”radio” name=”whichFrame” value=”parent.frames[1]” />This
frame</p>

<p><input type=”button” name=”getProperties”
value=”Show Location Properties”
onclick=”showLocationData(this.form)” /> <input type=”reset”
value=”Clear” /></p>

<table border=”2”>
<tr>

<td align=”right”>Window:</td>
<td><input type=”text” name=”windName” size=”30” /></td>

</tr>
<tr>

<td align=”right”>hash:</td>
<td><input type=”text” name=”windHash” size=”30” /></td>

</tr>
<tr>

<td align=”right”>host:</td>
<td><input type=”text” name=”windHost” size=”30” /></td>

</tr>
<tr>

<td align=”right”>hostname:</td>
<td><input type=”text” name=”windHostname” size=”30” /></td>

</tr>
<tr>

<td align=”right”>href:</td>
<td><textarea name=”windHref” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>
<tr>

<td align=”right”>pathname:</td>
<td><textarea name=”windPath” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>
<tr>

<td align=”right”>port:</td>
<td><input type=”text” name=”windPort” size=”30” /></td>

</tr>

502

Document Objects Reference

windowObject.location.host

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 502

<tr>
<td align=”right”>protocol:</td>
<td><input type=”text” name=”windProtocol” size=”30” /></td>

</tr>
<tr>

<td align=”right”>search:</td>
<td><textarea name=”windSearch” rows=”3” cols=”30”

wrap=”soft”></textarea></td>
</tr>

</table>
</center>

</form>
</body>

</html>

LISTING 17-4

Placeholder Document for Listing 17-2

<html>
<head>

<title>Opening Placeholder</title>
</head>
<body>

Initial placeholder. Experiment with other URLs for this frame (see
right).

</body>
</html>

For the best results, open a URL to a web document on the network from the same domain and server from
which you load the listings (perhaps your local hard disk). If possible, load a document that includes
anchor points to navigate through a long document. Click the Left frame radio button and then click the
button that shows all properties. This action fills the table in the right frame with all the available location
properties for the selected window.

Related Items: location.port, location.hostname properties

hostname
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The hostname of a typical URL is the name of the server on the network that stores the document you
view in the browser. For most web sites, the server name includes not only the domain name, but also the
www.prefix. The hostname does not, however, include the port number if the URL specifies such a number.
Keep in mind that the hostname property will likely come up blank for pages that you open from your
local hard drive (local host).

503

windowObject.location.hostname

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 503

See Listing 17-2, Listing 17-3, and Listing 17-4 for a set of related pages to help you view the hostname
data for a variety of other pages.

Related Items: location.host, location.port properties

href
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Of all the location object properties, href (hypertext reference) is probably the one most often called
upon in scripting. The location.href property supplies a string of the entire URL of the specified window
object.

Using this property on the left side of an assignment statement is the JavaScript way of opening a URL for
display in a window. Any of the following statements can load my web site’s index page into a single-frame
browser window:

window.location = “http://www.dannyg.com”;
window.location.href = “http://www.dannyg.com”;

At times, you may encounter difficulty by omitting a reference to a window. JavaScript may get confused
and reference the document.location property. To prevent this confusion, the document.location
property was deprecated (put on the no-no list) and replaced by the document.URL property. In the mean-
time, you can’t go wrong by always specifying a window in the reference.

You should be able to omit the href property name when assigning a new URL to the
location object (for example, location = “http://www.dannyg.com”). Although this

works in most browsers most of the time, some early browsers behave more reliably if you assign a URL
explicitly to the location.href property. If you want to play it safe, use location.href at all times.

Sometimes, you must extract the name of the current directory in a script so that another statement can
append a known document to the URL before loading it into the window. Although the other location
object properties yield an assortment of a URL’s segments, none of them provides the full URL to the current
URL’s directory. But you can use JavaScript string manipulation techniques to accomplish this task. Listing
17-5 shows such a possibility.

Depending on your browser, the values for the location.href property may be encoded with ASCII equiva-
lents of nonalphanumeric characters. Such an ASCII value includes the % symbol and the ASCII numeric value.
The most common encoded character in a URL is the space: %20. If you need to extract a URL and display that
value as a string in your documents, you can safely pass all such potentially encoded strings through the
JavaScript unescape() function. For example, if a URL is http://www.example.com/product%20list, you
can convert it by passing it through the unescape() function, as in the following example.

var plainURL = unescape(window.location.href);
// result = “http://www.example.com/product list”;

The inverse function, escape(), is available for sending encoded strings to server applications, such as CGI
scripts. See Chapter 35 for more details on these functions.

Listing 17-5 shows how the href property can be used to view the directory URL of the current page. This
example includes the unescape() function in front of the part of the script that captures the URL. This
function serves cosmetic purposes by displaying the pathname in alert dialog boxes for browsers that nor-
mally display the ASCII-encoded version.

NOTENOTE

504

Document Objects Reference

windowObject.location.href

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 504

Although Listing 17-5 uses the unescape() global function for backward compatibility, that
function (and its partner, escape()) have been removed from the ECMAScript standard as of

version 3. These functions have been replaced by more modern versions, decodeURI() and encodeURI().
See Chapter 35 for details.

LISTING 17-5

Extracting the Directory of the Current Document

<html>
<head>

<title>Extract pathname</title>
<script type=”text/javascript”>
// general purpose function to extract URL of current directory
function getDirPath(URL) {

var result = unescape(URL.substring(0,(URL.lastIndexOf(“/”)) + 1));
return result;

}

// handle button event, passing work onto general purpose function
function showDirPath(URL) {

alert(getDirPath(URL));
}
</script>

</head>
<body>

<form>
<input type=”button” value=”View directory URL”
onclick=”showDirPath(window.location.href)” />

</form>
</body>

</html>

Related Items: location.pathname, document.location properties; String object (Chapter 35)

pathname
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The pathname component of a URL consists of the directory structure relative to the server’s root volume. In
other words, the root (the server name in an http: connection) is not part of the pathname. If the URL’s
path is to a file in the root directory, the location.pathname property is a single slash (/) character. Any
other pathname starts with a slash character, indicating a directory nested within the root. The value of the
location.pathname property also includes the document name.

See Listing 17-2, Listing 17-3, and Listing 17-4 earlier in this chapter for a multiple-frame example you can
use to view the location.pathname property for a variety of URLs of your choice.

Related Item: location.href property

NOTENOTE

505

windowObject.location.pathname

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 505

port
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

These days, few consumer-friendly web sites need to include the port number as part of their URLs. You see
port numbers mostly in the less-popular protocols, in URLs to sites used for private development purposes,
or in URLs to sites that have no assigned domain names. You can retrieve the value with the
location.port property. If you extract the value from one URL and intend to build another URL with that
component, be sure to include the colon delimiter between the server’s IP address and port number.

If you have access to URLs containing port numbers, use the documents in Listing 17-2, Listing 17-3, and
Listing 17-4 to experiment with the output of the location.port property.

Related Item: location.host property

protocol
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The first component of any URL is the protocol used for the particular type of communication. For World
Wide Web pages, the Hypertext Transfer Protocol (http) is the standard. Other common protocols you may
see in your browser include HTTP-Secure (https), File Transfer Protocol (ftp), File (file), and Mail
(mailto); web pages opened from your local hard drive use the file protocol. Values for the
location.protocol property include not only the name of the protocol, but also the trailing colon delim-
iter. Thus, for a typical web-page URL, the location.protocol property is

http:

Notice that the usual slashes after the protocol in the URL are not part of the location.protocol value.
Of all the location object properties, only the full URL (location.href) reveals the slash delimiters
between the protocol and other components.

See Listing 17-2, Listing 17-3, and Listing 17-4 for a multiple-frame example you can use to view the
location.protocol property for a variety of URLs. Notice that the protocol shows up initially as file:
to indicate that the first page in the left frame is stored locally and accessed via the File protocol. Also try
loading an FTP site to see the location.protocol value for that type of URL.

Related Item: location.href property

search
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Perhaps you’ve noticed the long, cryptic URL that appears in the Location/Address field of your browser
whenever you ask one of the World Wide Web search services to look up matches for items you enter in the
keyword field. The URL starts the regular way — with protocol, host, and pathname values. But following
the more traditional URL are search commands that are submitted to the search engine (typically, a CGI
program running on the server). You can retrieve or set that trailing search query by using the
location.search property.

506

Document Objects Reference

windowObject.location.search

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 506

Each search engine has its own formula for query submissions based on the designs of the HTML forms that
obtain details from users. These search queries come in an encoded format that appears in anything but
plain language. If you plan to script a search query, be sure you fully understand the search engine’s format
before you start assembling a string to assign to the location.search property of a window.

The most common format for search data is a series of name/value pairs. An equal symbol (=) separates a
name and its value. Multiple name/value pairs have ampersands (&) between them. You should use the
escape() function to convert the data to URL-friendly format, especially when the content includes spaces.

The location.search property also applies to any part of a URL after the filename, including parameters
being sent to CGI programs on the server.

Passing data among pages via URLs
It is not uncommon to want to preserve some pieces of data that exist in one page so that a script in another
page can pick up where the script processing left off in the first page. You can achieve persistence across
page loads without any server programming through one of three techniques: the document.cookie (see
Chapter 18), variables in framesetting documents, and the search string of a URL. That’s really what hap-
pens when you visit search and e-commerce sites that return information to your browser. Rather than
store, say, your search criteria on the server, they spit the criteria back to the browser as part of the URL.
The next time you activate that URL, the values are sent to the server for processing (for example, to send
you the next page of search results for a particular query).

Passing data among pages is not limited to client/server communication. You can use the search string strictly
on the client side to pass data from one page to another. Unless some CGI process on the server is pro-
grammed to do something with the search string, a web server regurgitates the search string as part of the
location data that comes back with a page. A script in the newly loaded page can inspect the search string
(via the location.search property) and tear it apart to gather the data and put it into script variables. Take
a look at Listing 17-6, Listing 17-7, and Listing 17-8 to see a powerful application of this technique.

As mentioned in the opening of Chapter 16 about frames, you can force a particular HTML page to open
inside the frameset for which it is designed. But with the help of the search string, you can reuse the same
framesetting document to accommodate any number of content pages that go into one of the frames (rather
than specifying a separate frameset for each possible combination of pages in the frameset). The listings in
this section create a simple example of how to force a page to load in a frameset by passing some informa-
tion about the page to the frameset. Thus, if a user has a URL to one of the content frames (perhaps it has
been bookmarked by right-clicking the frame, or it comes up as a search-engine result), the page appears in
its designated frameset the next time the user visits the page.

The fundamental task going on in this scheme has two parts. The first is in each of the content pages, where
a script checks whether the page is loaded inside a frameset. If the frameset is missing, a search string is
composed and appended to the URL for the framesetting document. The framesetting document has its
own short script that looks for the presence of the search string. If the string is there, the script extracts the
search string data and uses it to load that specific page into the content frame of the frameset.

Listing 17-6 is the framesetting document. The getSearchAsArray() function is more complete than nec-
essary for this simple example, but you can use it in other instances to convert any number of name/value
pairs passed in the search string (in traditional format of name1=value1&name2=value2&etc.) into an
array whose indexes are the names (making it easier for scripts to extract a specific piece of passed data).

507

windowObject.location.search

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 507

LISTING 17-6

A Smart Frameset

<html>
<head>

<title>Example Frameset</title>
<script type=”text/javascript”>
// Convert location.search into an array of values
// indexed by name.
function getSearchAsArray() {

var results = new Array();
var input = unescape(location.search.substr(1));
if (input) {

var srchArray = input.split(“&”);
var tempArray = new Array();
for (var i = 0; i < srchArray.length; i++) {

tempArray = srchArray[i].split(“=”);
results[tempArray[0]] = tempArray[1];

}
}
return results;

}

function loadFrame() {
if (location.search) {

var srchArray = getSearchAsArray();
if (srchArray[“content”]) {

self.content.location.href = srchArray[“content”];
}

}
}
</script>

</head>
<frameset cols=”250,*” onload=”loadFrame()”>

<frame name=”toc” src=”lst17-07.htm” />
<frame name=”content” src=”lst17-08.htm” />

</frameset>
</html>

Listing 17-7 is the HTML for the table-of-contents frame. Nothing elaborate goes on here, but you can see
how normal navigation works for this simplified frameset. You can also see how this example could be eas-
ily built upon to provide a handy table-of-contents feature to a site with multiple sections or pages.

508

Document Objects Reference

windowObject.location.search

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 508

LISTING 17-7

The Table of Contents

<html>
<head>

<title>Table of Contents</title>
</head>
<body bgcolor=”#EEEEEE”>

<h3>Table of Contents</h3>
<hr />

Page 1
Page 2
Page 3

</body>

</html>

Listing 17-8 shows one of the content pages. As the page loads, the checkFrameset() function is invoked.
If the window does not load inside a frameset, the script navigates to the framesetting page, passing the cur-
rent content URL as a search string. Notice that the loading of this page on its own does not get recorded to
the browser’s history and isn’t accessed if the user clicks the Back button.

LISTING 17-8

A Content Page

<html>
<head>

<title>Page 1</title>
<script type=”text/javascript”>
function checkFrameset() {

if (parent == window) {
// Use replace() to keep current page out of history
location.replace(“lst17-06.htm?content=” + escape(location.href));

}
}

// Invoke the function
checkFrameset();
</script>

</head>
<body>

<h1>Page 1</h1>
<hr />

</body>
</html>

509

windowObject.location.search

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 509

In practice, I recommend placing the code for the checkFrameset() function and call to it inside an exter-
nal .js library and linking that library to each content document of the frameset. That’s why the function
assigns the generic location.href property to the search string: You can use it on any content page.

The code in Listing 17-6, Listing 17-7, and Listing 17-8 establishes a frameset containing two frames. In the
left frame is a table of contents that allows you to navigate among three different pages, the first of which is
initially displayed in the right frame. The interesting thing about the example is how you can specify a new
page in the content parameter of the search property; then the page is opened within the frameset. For
example, the following URL would result in the page hello.htm being opened in the right frame:

lst17-06.htm?content=hello.htm

In this example URL, the frameset page is first opened due to the inclusion of the file lst17-06.htm, whereas
the hello.htm file is specified as the value of the content parameter.

Related Item: location.href property

Methods
assign(“URL”)
Returns: Nothing
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

In earlier discussions about the location object, I said that you navigate to another page by assigning a
new URL to the location object or location.href property. The location.assign() method does the
same thing. In fact, when you set the location object to a URL, JavaScript silently applies the assign()
method. No particular penalty or benefit comes from using the assign() method except perhaps making
your code more understandable to others.

Related Item: location.href property

reload(unconditionalGETBoolean)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The location.reload() method may be named inappropriately because it makes you think of the
Reload/Refresh button in the browser toolbar. The reload() method is actually more powerful than
the Reload/Refresh button (a soft reload) in that it clears form control values that otherwise might survive
the Reload/Refresh button. Note that MacIE and Safari do not preserve form control settings even with a
soft reload.

Most form elements retain their screen states when you click Reload/Refresh. Text and textarea objects
maintain whatever text is inside them; radio buttons and checkboxes maintain their checked status; select
objects remember which item is selected. About the only items the Reload/Refresh button destroys are
global variable values and any settable, but not visible, property (for example, the value of a hidden input
object). I call this kind of reload a soft reload. A hard reload, on the other hand, should reset all data associ-
ated with a page, including default form selections.

Browsers are frustratingly irregular about the ways they reload a document in the memory cache. In theory,
an application of the location.reload() method should retrieve the page from the cache if the page is
still available there (and the history.go(0) method should be even gentler, preserving form element set-
tings). Adding a true parameter to the method is supposed to force an unconditional GET to the server,
ignoring the cached version of the page. Yet when it is crucial for your application to get a page from the
cache (for speed) or from the server (to guarantee a fresh copy), the browser behaves just the opposite of

510

Document Objects Reference

windowObject.location.reload()

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 510

the way you want it to behave. Meta tags supposedly designed to prevent caching of a page rarely, if ever,
work. Some scripters have had success in reloading the page from the server by setting location.href to
the URL of the page, plus a slightly different search string (for example, based on a string representation of
the Date object) so that there is no match for the URL in the cache.

The bottom line is to be prepared to try different schemes to achieve the effect you want. Also be prepared
not to get the results you need. In other words, learn to live with the fact that you don’t really have exacting
control over retrieving a fresh page.

Listing 17-9 provides a means of testing the different outcomes of a soft reload versus a hard reload. Open
this example page in a browser, and click a radio button. Then enter some new text, and make a choice in
the select object. Clicking the Soft Reload/Refresh button invokes a method that reloads the document as
though you had clicked the browser’s Reload/Refresh button. It also preserves the visible properties of form
elements. The Hard Reload button invokes the location.reload() method, which resets all objects to
their default settings.

LISTING 17-9

Hard versus Soft Reloading

<html>
<head>

<title>Reload Comparisons</title>
<script type=”text/javascript”>
function hardReload() {

location.reload(true);
}
function softReload() {

history.go(0);
}
</script>

</head>
<body>

<form name=”myForm”>
<input type=”radio” name=”rad1” value=”1” />Radio 1

<input type=”radio” name=”rad1” value=”2” />Radio 2

<input type=”radio” name=”rad1” value=”3” />Radio 3
<p><input type=”text” name=”entry” value=”Original” /></p>
<p><select name=”theList”>

<option>Red</option>
<option>Green</option>
<option>Blue</option>

</select></p>
<hr />
<input type=”button” value=”Soft Reload” onclick=”softReload()” />
<input type=”button” value=”Hard Reload” onclick=”hardReload()” />

</form>
</body>

</html>

Related Item: history.go() method

511

windowObject.location.reload()

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 511

replace(“URL”)
Returns: Nothing
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

In a complex web site, you may have pages that you do not want to appear in the user’s history list. For
example, a registration sequence may lead the user to one or more intermediate HTML documents that
won’t make much sense to the user later. Or you may have a one-time introduction page that appears only
the first time a user visits your site. You especially don’t want users to see these pages again if they use the
Back button to return to a previous URL. The location.replace() method navigates to another page,
but it does not let the current page stay in the queue of pages accessible via the Back button.

Although you cannot prevent a document from appearing in the history list while the user views that page,
you can instruct the browser to load another document into the window and replace the current history
entry with the entry for the new document. This trick does not empty the history list but removes the cur-
rent item from the list before the next URL is loaded. Removing the item from the history list prevents users
from seeing the page again by clicking the Back button later.

Listing 17-10 shows how to use the replace() method to direct a web browser to a new URL. Calling the
location.replace() method navigates to another URL similarly to assigning a URL to the location. The
difference is that the document doing the calling doesn’t appear in the history list after the new document
loads. You can verify this by trying to click the Back button to return to the page after clicking Replace Me
in Listing 17-10; the button is dimmed, because the page no longer exists in the browser history. Also check
the history listing (in your browser’s usual spot for this information) before and after clicking Replace Me.

LISTING 17-10

Invoking the location.replace() Method

<html>
<head>

<title>location.replace() Method</title>
<script type=”text/javascript”>
function doReplace() {

location.replace(“lst17-01.htm”);
}
</script>

</head>
<body>

<form name=”myForm”>
<input type=”button” value=”Replace Me” onclick=”doReplace()” />

</form>
</body>

</html>

Related Item: history object

512

Document Objects Reference

windowObject.location.replace()

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 512

history Object

Properties Methods Event Handler

current back() (None)

length forward()

next go()

previous

Syntax
Accessing history object properties or methods:

[window.]history.property | method([parameters])

About this object
As a user surfs the web, the browser maintains a list of URLs for the most recent stops. This list is repre-
sented in the scriptable object model by the history object. A script cannot surreptitiously extract actual
URLs maintained in that list unless you use signed scripts (in NN4+/Moz; see Chapter 46 on the CD-ROM)
and the user grants permission. Under unsigned conditions, a script can methodically navigate to each URL
in the history (by relative number or by stepping back one URL at a time), in which case the user sees the
browser navigating on its own as though possessed by a spirit. Good Netiquette dictates that you do not
navigate a user outside your web site without the user’s explicit permission.

One application for the history object and its back() or go() methods is to provide the equivalent of a
Back button in your HTML documents. That button triggers a script that checks for any items in the history
list and then goes back one page. Your document doesn’t have to know anything about the URL from which
the user lands at your page; it delegates the specifics of the navigation back to the browser.

The behavior of the Back and Forward buttons is also available through a pair of window methods:
window.back() and window.forward(). The history object methods are not specific to a frame that is
part of the reference. When the parent.frameName.history.back() method reaches the end of history
for that frame, further invocations of that method are ignored.

IE’s history mechanism is not localized to a particular frame of a frameset. Instead, the history.back()
and history.forward() methods mimic the physical act of clicking the toolbar buttons. If you want to
ensure cross-browser, if not cross-generational, behavior in a frameset, address references to the
history.back() and history.forward() methods to the parent window.

You should use the history object and its methods with extreme care. Your design must be smart enough
to watch what the user is doing with your pages (for example, by checking the current URL before navigat-
ing with these methods). Otherwise, you run the risk of confusing your user by navigating to unexpected
places. Your script can also get into trouble because it cannot detect where the current document is in the
Back–Forward sequence in history.

513

windowObject.history

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 513

Properties
current
next
previous
Value: String Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari-

To know where to go when you click the Back and Forward buttons, the browser maintains a list of URLs
visited. To someone trying to invade your privacy and see what sites and pages you frequent, this informa-
tion is valuable. That’s why the three properties that expose the actual URLs in the history list are restricted
to pages with signed scripts (NN4+/Moz) and whose visitors have given permission to read sensitive
browser data (see Chapter 46 on the CD-ROM).

With signed scripts and permission, you can look through the entire array of history entries in any frame or
window. Because the list is an array, you can extract individual items by index value. For example, if the
array has 10 entries, you can see the fifth item by using normal array indexing methods:

var fifthEntry = window.history[4];

No property or method exists that directly reveals the index value of the currently loaded URL, but you can
script an educated guess by comparing the values of the current, next, and previous properties of the
history object against the entire list.

I personally don’t like some unknown entity watching over my shoulder while I’m on the Net, so I respect
that same feeling in others and therefore discourage the use of these powers unless the user is given ade-
quate warning. The signed script permission dialog box does not offer enough detail about the conse-
quences of revealing this level of information. This means that you should explicitly notify users of the fact
that you are accessing their history, even when you have implicit permission via a signed script.

Related Item: history.length property

length
Value: Number Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Use the history.length property to count the items in the history list. Unfortunately, this nugget of infor-
mation is not particularly helpful in scripting navigation relative to the current location because your script
cannot extract anything from the place in the history queue where the current document is located. If the
current document is at the top of the list (the most recently loaded), you can calculate relative to that loca-
tion. But users can use the Go/View menu to jump around the history list as they like. The position of a list-
ing in the history list does not change by virtue of navigating back to that document. A history.length
of 1, however, indicates that the current document is the first one the user has loaded since starting the
browser software.

Listing 17-11 shows how to use the length property to notify users of how many pages they’ve visited.

514

Document Objects Reference

windowObject.history.length

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 514

LISTING 17-11

A Browser History Count

<html>
<head>

<title>History Object</title>
<script type=”text/javascript”>
function showCount() {

var histCount = window.history.length;
if (histCount > 5) {

alert(“My, my, you\’ve been busy. You have visited “ + histCount +
“ pages so far.”);

} else {
alert(“You have been to “ + histCount + “ Web pages this

session.”);
}

}
</script>

</head>
<body>

<form>
<input type=”button” name=”activity” value=”My Activity”
onclick=”showCount()” />

</form>
</body>

</html>

Related Items: None

Methods
back()
forward()
Returns: Nothing
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Although the names might lead you to believe that these methods mimic the buttons on a browser’s toolbar,
they do not. The history.back() method is window/frame specific, meaning that if you direct successive
back() methods to a frame within a frameset, the method is ignored when it reaches the first document to
be loaded into that frame. The Back button and the window.back() method unload the frameset and con-
tinue taking you back through the browser’s global history.

If you deliberately lead a user to a dead end in your web site, you should make sure that the HTML docu-
ment provides a way to navigate back to a recognizable spot. Because you can easily create a new window
that has no toolbar or menu bar (non-Macintosh browsers), you may end up stranding your users because
they have no way of navigating out of a cul-de-sac in such a window. A button in your document should
give the user a way back to the last location.

515

windowObject.history.back()

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 515

Unless you need to perform some additional processing prior to navigating to the previous location, you
can simply place this method as the parameter to the event handler attribute of a button definition. To
guarantee compatibility across all browsers, direct this method at the parent document when used from
within a frameset.

Less likely to be scripted than the history.back() action is the method that performs the opposite action:
navigating forward one step in the browser’s history list. The only time you can confidently use the
history.forward() method is to balance the use of the history.back() method in the same script —
where your script closely keeps track of how many steps the script heads in either direction. Use the
history.forward() method with extreme caution and only after performing extensive user testing on
your web pages to make sure that you’ve covered all user possibilities. Similar to navigating backward via
history.back(), forward progress when using history.forward() extends only through the history
listing for a given window or frame, not the entire browser history list.

Listing 17-12 and Listing 17-13 provide a little workshop in which you can test the behavior of a variety of
forms of backward and forward navigation in different browsers.

LISTING 17-12

Navigation Lab Frameset

<html>
<head>

<title>Back and Forward</title>
</head>
<frameset cols=”45%,55%”>

<frame name=”controller” src=”lst17-13.htm” />
<frame name=”display” src=”lst17-01.htm” />

</frameset>
</html>

LISTING 17-13

Navigation Lab Control Panel

<html>
<head>

<title>Lab Controls</title>
</head>
<body>

Load a series of documents into the right frame by clicking some of
these links (make a note of the sequence you click on):
<p>Listing 17-1

Listing 17-5

Listing 17-9
</p>

<hr />
<form name=”input”>

Click on the various buttons below to see the results in this
frameset:

516

Document Objects Reference

windowObject.history.back()

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 516

<tt>history.back()</tt> and <tt>history.forward()</tt> for

righthand frame:<input type=”button” value=”Back”
onclick=”parent.display.history.back()” /><input type=”button”
value=”Forward” onclick=”parent.display.history.forward()” />

<tt>history.back()</tt> for this frame:<input type=”button”
value=”Back” onclick=”history.back()” />

<tt>history.back()</tt> for parent:<input type=”button”
value=”Back” onclick=”parent.history.back()” />

</form>

</body>
</html>

Related Items: history.go() method

go(relativeNumber | “URLOrTitleSubstring”)
Returns: Nothing
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Use the history.go() method to script navigation within the history list currently stored in the browser.
If you elect to use a URL as a parameter, however, that precise URL must already exist in the history listing.
Therefore, do not regard this method as an alternative to setting the window.location object to a brand-
new URL.

For navigating n steps in either direction along the history list, use the relativeNumber parameter of the
history.go() method. This number is an integer value that indicates which item in the list to use, relative
to the current location. For example, if the current URL is at the top of the list (that is, the Forward button
in the toolbar is dimmed), you need to use the following method to jump to the URL two items backward
in the list:

history.go(-2);

In other words, the current URL is the equivalent of history.go(0) (a method that reloads the window).
A positive integer indicates a jump that many items forward in the history list. Thus, history.go(-1) is
the same as history.back(), whereas history.go(1) is the same as history.forward().

Alternatively, you can specify one of the URLs or document titles stored in the browser’s history list (titles
appear in the Go/View menu). As security and privacy concerns have increased over time, this variant of the
go() method has been reined in. It’s best not to use the string parameter in your scripting.

Like most other history methods, your script finds it difficult to manage the history list or the current URL’s
spot in the queue. That fact makes it even more difficult for your script to determine intelligently how far to
navigate in either direction or to which specific URL or title matches it should jump. Use this method only
for situations in which your web pages are in strict control of the user’s activity (or for designing scripts for
yourself that automatically crawl around sites according to a fixed regimen). When you give the user control
over navigation, you have no guarantee that the history list will be what you expect, and any scripts you
write that depend on a history object will likely break.

In practice, this method mostly performs a soft reload of the current window using the 0 parameter.

517

windowObject.history.go()

Location and History Objects 17

25_069165 ch17.qxp 3/1/07 3:46 PM Page 517

If you are developing a page for all scriptable browsers, be aware that Internet Explorer’s go()
method behaves a little differently from Netscape’s. In IE4+, the matching string must be part

of the URL and not part of the document title, as in Navigator. This is another reason to steer clear of using
the string approach to navigate via the history.go() method. Additionally, the reloading of a page with
history.go(0) in IE often returns to the server to reload the page rather than reloading from the cache.

Listing 17-14 contains sample code that demonstrates how to navigate the history list via the go() method.
Fill in either the number or text field of the page in Listing 17-14 and then click the associated button. The
script passes the appropriate kind of data to the go() method. Be sure to use negative numbers for visiting
a page earlier in the history.

Mozilla browsers respond only to the integer offset approach to using the history.go()
method.

LISTING 17-14

Navigating to an Item in History

<html>
<head>

<title>history.go() Method</title>
<script type=”text/javascript”>
function doGoNum(form) {

window.history.go(parseInt(form.histNum.value));
}
function doGoTxt(form) {

window.history.go(form.histWord.value);
}
</script>

</head>
<body>

<form>
Calling the history.go() method:
<hr />
Enter a number (+/-):<input type=”text” name=”histNum” size=”3”
value=”0” /> <input type=”button” value=”Go to Offset”
onclick=”doGoNum(this.form)” />
<p>Enter a word in a title:<input type=”text” name=”histWord” />

<input type=”button” value=”Go to Match”
onclick=”doGoTxt(this.form)” /></p>

</form>
</body>

</html>

Related Items: history.back(), history.forward(), location.reload() methods

NOTENOTE

TIPTIP

518

Document Objects Reference

windowObject.history.go()

Part III

25_069165 ch17.qxp 3/1/07 3:46 PM Page 518

User interaction is a vital aspect of client-side JavaScript scripting, and
most of the communication between script and user takes place by way
of the document object and its components. Understanding the scope of

the document object within each of the object models you support is key to
implementing successful cross-browser applications.

Review the document object’s place within the original object hierarchy. Figure
18-1 shows that the document object is a pivotal point for a large percentage of
objects. In the W3C DOM, the document object plays an even more important
role as the container of all element objects delivered with the page: The docu-
ment object is the root of the entire document tree.

In fact, the document object and all that it contains is so big that I have divided
its discussion into many chapters, each focusing on related object groups. This
chapter looks at the document object and body object (which have conceptual
relationships), whereas each of the succeeding chapters in this part of the book
details objects contained by the document object.

519

IN THIS CHAPTER
Accessing arrays of objects
contained by the document
object

Writing new document content
to a window or frame

Using the body element for IE
window measurements

The Document and
Body Objects

26_069165 ch18.qxp 3/1/07 3:47 PM Page 519

FIGURE 18-1

The basic document object model hierarchy.

document Object
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Properties Methods Event Handlers

activeElement attachEvent()† onactivate†

alinkColor captureEvents() onbeforecut†

all† clear() onbeforedeactivate†

anchors[] clearAttributes()† onbeforeeditfocus†

applets[] close() onbeforepaste†

attributes† createAttribute() onclick†

baseURI createCDATASection() oncontextmenu†

bgColor createComment() oncontrolselect†

body createDocumentFragment() oncut†

charset createElement() ondblclick†

characterSet createElementNS() ondrag†

childNodes† createEvent() ondragend†

compatMode createEventObject() ondragenter†

contentType† createNSResolver() ondragleave†

window
parent

history document location

text radio button select

textarea checkbox reset option

link form anchor

password submit

frame self top

520

Document Objects Reference

document

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 520

Properties Methods Event Handlers

cookie createRange() ondragover†

defaultCharset createStyleSheet() ondragstart†

defaultView createTextNode() ondrop†

designMode createTreeWalker() onhelp†

doctype detachEvent()† onkeydown†

documentElement elementFromPoint() onkeypress†

documentURI execCommand() onkeyup†

domain evaluate() onmousedown†

embeds[] focus()† onmousemove†

expando getElementById() onmouseout†

fgColor getElementsByName() onmouseover†

fileCreatedDate getElementsByTagName()† onmouseup†

fileModifiedDate getElementsByTagNameNS()† onpaste†

fileSize hasFocus()† onpropertychange†

firstChild† importNode()† onreadyStatechange†

forms[] mergeAttributes()† onresizeend†

frames[] open() onresizestart†

height queryCommandEnabled() onselectionchange

ids[] queryCommandIndterm() onstop

images[] queryCommandState()

implementation† queryCommandSupported()†

inputEncoding queryCommandText()

lastChild† queryCommandValue()

lastModified recalc()

layers[] releaseCapture()†

linkColor releaseEvents()

links[] routeEvent()

location setActive()†

media† write()

mimeType writeln()

nameProp

namespaces[]

namespaceURI†

nextSibling†

continued

521

document

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 521

Properties Methods Event Handlers

nodeName†

nodeType†

ownerDocument†

parentNode†

parentWindow†

plugins[]†

previousSibling†

protocol

readyState†

referrer

scripts[]

security

selection

strictErrorChecking

styleSheets[]

tags[]

title

uniqueID†

URL

URLUnencoded

vlinkColor

width

xmlEncoding

xmlStandalone

xmlVersion

†See Chapter 15.

Syntax
Accessing document object properties or methods:

[window.]document.property | method([parameters])

About this object
A document object encompasses the totality of what exists inside the content region of a browser window
or window frame (excluding toolbars, status lines, and so on). The document is a combination of the

522

Document Objects Reference

document

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 522

content and interface elements that make the web page worth visiting. In modern browsers the document
object also serves as the root node of a page’s hierarchical tree of nodes — that from which all other nodes
grow.

Because the document object isn’t explicitly represented in an HTML document by tags or any other nota-
tion, the original designers of JavaScript and object models decided to make the document object the portal
to many settings that were represented in HTML as belonging to the body element. That element’s tag con-
tains attributes for document-wide attributes, such as background color (bgcolor) and link colors in vari-
ous states (alink, link, and vlink). The body element also served as an HTML container for forms, links,
and anchors. The document object, therefore, assumed a majority of the role of the body element. But even
then, the document object became the most convenient place to bind some properties that extend beyond
the body element, such as the title element and the URL of the link that referred the user to the page.
When viewed within the context of the HTML source code, the original document object is somewhat
schizophrenic. Even so, the document object has worked well as the basis for references to original object
model objects, such as forms, images, and applets.

This, of course, was before every HTML element, including the body element, was exposed as an object
through modern object models. Amazingly, even with the IE4+ object model and W3C DOM — both of
which treat the body element as an object separate from the document object — script compatibility with
the original object model is quite easily accomplished. The document object has assumed a new schizo-
phrenia, splitting its personality between the original object model and the one that places the document
object at the root of the hierarchy, quite separate from the body element object it contains. The object
knows which face to put on based on the rest of the script syntax that follows it. This means that quite often
there are multiple ways to achieve the same reference. For example, you can use the following statement in
all scriptable browsers to get the number of form objects in a document:

document.forms.length

In IE4+, you can also use

document.tags[“form”].length

And in the W3C DOM as implemented in IE5+ and NN6+/Moz/Cam/Safari, you can use

document.getElementsByTagName(“form”).length

Modern browsers provide a generic approach to accessing elements (getElementsByTagName() method
in the W3C DOM) to meet the requirements of object models that expose every HTML (and XML) element
as an object.

Promoting the body element to the ranks of exposed objects presented its own challenges to the new object
model designers. The body element is the true owner of some properties that the original document object
had to take on by default. Most properties that belonged to the original document object were renamed in
their transfer to the body element. For example, the original document.alinkColor property is the
body.aLink property in the modern model. But the bgColor property has not been renamed. For the sake
of code compatibility, modern browsers recognize both properties, even though the W3C DOM has
removed the old versions as properties of what it conceives as the document object. Considering the fact
that modern browsers are now prevalent, you should be able to stick with the new properties from here on.

523

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 523

Properties
activeElement
Value: Object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

In IE4+, a script can examine the document.activeElement property to see which element currently has
focus. The value returned is an element object reference. You can use any of the properties and methods
listed in Chapter 15 to find out more about the object.

Although the element used to generate a mouse or keyboard event will most likely have focus, don’t rely on
the activeElement property to find out which element generated an event. The IE event.srcElement
property is far more reliable.

Example
Use The Evaluator (see Chapter 13) with IE4+ to experiment with the activeElement property. Type the
following statement into the top text box:

document.activeElement.value

After you press the Enter key, the Results box shows the value of the text box you just typed into (the very
same expression you just typed). But if you then click the Evaluate button, you will see the value property
of that button object appear in the Results box.

Related Items: event.srcElement property.

alinkColor
bgColor
fgColor
linkColor
vlinkColor
Value: Hexadecimal triplet or color name string. Mostly Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

These five properties are the script equivalent of the <body> tag attributes of the same name (although the
property names are case-sensitive). All five settings can be read via the document.body object in modern
browsers. Values for all color properties can be either the common HTML hexadecimal triplet value (for
example, “#00FF00”) or any of the standard color names.

Example
I select some color values at random to plug into three settings of the ugly colors group for Listing 18-1.
The smaller window displays a dummy button so that you can see how its display contrasts with color set-
tings. Notice that the script sets the colors of the smaller window by rewriting the entire window’s HTML
code. After changing colors, the script displays the color values in the original window’s textarea. Even
though some colors are set with the color constant values, properties come back in the hexadecimal triplet
values. You can experiment to your heart’s content by changing color values in the listing. Every time you
change the values in the script, save the HTML file and reload it in the browser.

524

Document Objects Reference

document.alinkColor

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 524

LISTING 18-1

Tweaking the Color of Page Elements

<html>
<head>

<title>Color Me</title>
<script type=”text/javascript”>
// may be blocked at load time by browser popup blockers
var newWindow = window.open(“”,””,”height=150,width=300”);

function defaultColors() {
return “bgcolor=’#c0c0c0’ vlink=’#551a8b’ link=’#0000ff’”;

}

function uglyColors() {
return “bgcolor=’yellow’ vlink=’pink’ link=’lawngreen’”;

}

function showColorValues() {
var result = “”;
result += “bgColor: “ + newWindow.document.bgColor + “\n”;
result += “vlinkColor: “ + newWindow.document.vlinkColor + “\n”;
result += “linkColor: “ + newWindow.document.linkColor + “\n”;
document.forms[0].results.value = result;

}

// dynamically writes contents of another window
function drawPage(colorStyle) {

// work around popup blockers
if (!newWindow || newWindow.closed) {

newWindow = window.open(“”,””,”height=150,width=300”);
}
var thePage = “”;
thePage += “<html><head><title>Color Sampler<\/title><\/head><body “;
if (colorStyle == “default”) {

thePage += defaultColors();
} else {

thePage += uglyColors();
}
thePage += “>Just so you can see the variety of items and color, <a “;
thePage += “href=’http://www.nowhere.com’>here\’s a link<\/a>, and here is another link <\/a> you can use
on-line to visit and see how its color differs from the standard link.”;
thePage += “<form>”;
thePage += “<input type=’button’ name=’sample’ value=’Just a Button’>”;
thePage += “<\/form><\/body><\/html>”;
newWindow.document.write(thePage);
newWindow.document.close();
showColorValues();

continued

525

document.alinkColor

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 525

LISTING 18-1 (continued)

}

// the following works properly only in Windows Navigator
function setColors(colorStyle) {

if (colorStyle == “default”) {
document.bgColor = “#c0c0c0”;

} else {
document.bgColor = “yellow”;

}
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“default1”), “click”,
function(evt) {drawPage(“default”)});

addEvent(document.getElementById(“weird1”), “click”,
function(evt) {drawPage(“ugly”)});

addEvent(document.getElementById(“default2”), “click”,
function(evt) {setColors(“default”)});

addEvent(document.getElementById(“weird2”), “click”,
function(evt) {setColors(“ugly”)});

});
</script>

</head>
<body>

Try the two color schemes on the document in the small window.
<form>

<input type=”button” id=”default1” name=”default” value=’Default Colors’
/> <input type=”button” id=”weird1” name=”weird” value=”Ugly Colors” />
<p><textarea name=”results” rows=”3” cols=”20”>

</textarea></p>
<hr />
These buttons change the current document.
<p><input type=”button” id=”default2” name=”default”

value=’Default Colors’ /> <input type=”button” id=”weird2”
name=”weird” value=”Ugly Colors” /></p>

</form>
</body>

</html>

526

Document Objects Reference

document.alinkColor

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 526

The examples in this chapter take advantage of the modern approach to event handling, which
involves the addEventListener() (NN6+/Moz/W3C) and attachEvent() (IE5+) meth-

ods. This event handling technique is explained in detail in Chapter 25.

Related Items: body.aLink, body.bgColor, body.link, body.text, body.vLink properties.

anchors[]
Value: Array of anchor objects. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Anchor objects (described in Chapter 19) are points in an HTML document marked with
tags. Anchor objects are referenced in URLs by a hash value between the page URL and anchor name. Like
other object properties that contain a list of nested objects, the document.anchors property delivers an
indexed array of anchors in a document. Use the array references to pinpoint a specific anchor for retrieving
any anchor property.

Anchor arrays begin their index counts with 0: The first anchor in a document, then, has the reference doc-
ument.anchors[0]. And, as is true with any built-in array object, you can find out how many entries the
array has by checking the length property. For example:

alert(“This document has “ + document.anchors.length + “ anchors.”);

The document.anchors property is read-only. To script navigation to a particular anchor, assign a value to
the window.location or window.location.hash object, as described in the location object discussion
in Chapter 17.

Example
In Listing 18-2, I append an extra script to Listing 17-1 to demonstrate how to extract the number of
anchors in the document. The document dynamically writes the number of anchors found in the docu-
ment. You will not likely ever need to reveal such information to users of your page, and the
document.anchors property is not one that you will call frequently. The object model defines it automati-
cally as a document property while defining actual anchor objects.

LISTING 18-2

Using Anchors to Navigate Through a Page

<html>
<head>

<title>document.anchors Property</title>
<script type=”text/javascript”>
function goNextAnchor(where) {

window.location.hash = where;
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

continued

NOTENOTE

527

document.anchors

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 527

LISTING 18-2 (continued)

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“next1”), “click”,
function(evt) {goNextAnchor(“sec1”)});

addEvent(document.getElementById(“next2”), “click”,
function(evt) {goNextAnchor(“sec2”)});

addEvent(document.getElementById(“next3”), “click”,
function(evt) {goNextAnchor(“sec3”)});

addEvent(document.getElementById(“next4”), “click”,
function(evt) {goNextAnchor(“start”)});

});
</script>

</head>
<body>

<h1>Top</h1>
<form>

<input type=”button” id=”next1” name=”next” value=”NEXT” />
</form>
<hr />
<h1>Section 1</h1>
<form>

<input type=”button” id=”next2” name=”next” value=”NEXT” />
</form>
<hr />
<h1>Section 2</h1>
<form>

<input type=”button” id=”next3” name=”next” value=”NEXT” />
</form>
<hr />
<h1>Section 3</h1>
<form>

<input type=”button” id=”next4” name=”next” value=”BACK TO TOP” />
</form>
<hr />
<p>

<script type=”text/javascript”>
document.write(“<i>There are “ + document.anchors.length + “ anchors

defined for this document<\/i>”)
</script>

</p>
</body>

</html>

528

Document Objects Reference

document.anchors

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 528

Related Items: anchor, location objects; document.links property.

applets[]
Value: Array of applet objects. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The applets property refers to Java applets defined in a document by the <applet> tag. An applet is not
officially an object in the document until the applet loads completely.

Most of the work you do with Java applets from JavaScript takes place through the methods and variables
defined inside the applet. Although you can reference an applet according to its indexed array position
within the applets array, you will more likely use the applet object’s name in the reference to avoid any
confusion.

Example
The document.applets property is defined automatically as the browser builds the object model for a
document that contains applet objects. You will rarely access this property, except to determine how many
applet objects a document has, as in this example:

var numApplets = document.applets.length;

Related Items: applet object.

baseURI
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

The baseURI property reveals the absolute base URI of the document. You can check the base URI of a doc-
ument in the Evaluator (see Chapter 13) by entering the following:

document.baseURI

Related Items: document.documentURI property.

bgColor
(See alinkColor)

body
Value: body element object. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The document.body property is a shortcut reference to the body element object in modern object models.
As you can see in the discussion of the body element object later in this chapter, that object has many key
properties that govern the look of the entire page. Because the document object is the root of all references
within any window or frame, the document.body property is easier to use to get to the body properties,
rather than longer references normally used to access HTML element objects in both the IE4+ and W3C
object models.

529

document.body

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 529

Example
Use The Evaluator (see Chapter 13) to examine properties of the body element object. First, to prove that
the document.body is the same as the element object that comes back from longer references, enter the fol-
lowing statement into the top text box with either IE5+, NN6+/Moz, or some other W3C browser:

document.body == document.getElementsByTagName(“body”)[0]

Next, check out the body object’s property listings later in this chapter and enter the listings into the top
text box to review their results. For example:

document.body.bgColor
document.body.tagName

The main point to take from this example is that the document.body reference provides a simpler and
more direct means of accessing a document’s body object without having to use the
getElementsByTagName() method.

Related Items: body element object.

charset
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The charset property reveals the character set used by the browser (IE4+) to render the current document
(the NN6+/Moz version of this property is called characterSet). You can find possible values for this
property at

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Each browser and operating system has its own default character set. Values may also be set through a
<meta> tag.

Example
Use The Evaluator (see Chapter 13) to experiment with the charset property. To see the default setting
applied to the page, enter the following statement into the top text box:

document.charset

If you are running IE5+ for Windows and you enter the following statement, the browser will apply a differ-
ent character set to the page:

document.charset = “iso-8859-2”

If your version of Windows does not have that character set installed in the system, the browser may ask
permission to download and install the character set.

Related Items: characterSet, defaultCharset properties.

characterSet
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

530

Document Objects Reference

document.characterSet

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 530

The characterSet property reveals the character set used by the browser to render the current document
(the IE version of this property is called charset). You can find possible values for this property at

http://www.iana.org/assignments/character-sets

Each browser and operating system has its own default character set. Values may also be set through a
<meta> tag.

Example
Use The Evaluator (see Chapter 13) to experiment with the characterSet property in NN6+/Moz. To see
the default setting applied to the page, enter the following statement into the top text box:

document.charset

Related Items: charset property.

compatMode
Value: String. Read-Only
Compatibility: WinIE6+, MacIE6+, NN7+, Moz+, Safari-

The compatMode property reveals the compatibility mode for the document, as determined by the DOCTYPE
element’s content. The value for this property can be one of the following string constants: BackCompat or
CSS1Compat. The default setting for the compatMode property is BackCompat, which means that the docu-
ment is not standards-compliant. By standards-compliant I’m referring to the CSS1 standard.

Example
You may find it useful to check the compatibility mode of a document in order to carry out processing spe-
cific to one of the modes. Following is an example of how you might branch to carry out processing for
backward-compatible documents:

if (document.compatMode == “BackCompat”) {
// perform backward compatible processing

}

Related Items: Standards Compatibility Modes (see Chapter 13).

contentType
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

The contentType property holds the content type (MIME type) of the document. For a normal HTML
document, the value of this property is text/html.

cookie
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The cookie mechanism in a web browser lets you store small pieces of information on the client computer
in a reasonably secure manner. In other words, when you need some tidbit of information to persist at the
client level while either loading diverse HTML documents or moving from one session to another, the

531

document.cookie

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 531

cookie mechanism saves the day. The cookie is commonly used as a means to store the username and pass-
word you enter into a password-protected web site. The first time you enter this information into a form,
the server-side form processing program has the browser write the information back to a cookie on your
hard disk (usually after encrypting the password). Rather than bothering you to enter the username and
password the next time you access the site, the server searches the cookie data stored for that particular
server and extracts the username and password for automatic validation processing behind the scenes.

Other applications of the cookie include storing user preferences and information about the user’s previous
visit to the site. Preferences may include font styles or sizes and whether the user prefers viewing content
inside a frameset or not. As shown in Chapter 54 on the CD-ROM, a time stamp of the previous visit can
allow a coded HTML page to display highlighted images next to content that has changed since the user’s
last visit, even if you have updated the page several times in the interim. Rather than hard-wiring New flags
for your last visit, the scripts highlight what’s new for the visitor.

The cookie file
Allowing some foreign server program to read from and write to your hard disk may give you pause, but
browser cookie mechanisms don’t just open up your drive’s directory for the world to see (or corrupt).
Instead, the cookie mechanism provides access to just one special text file (Navigator/Mozilla/Safari) or type
of text file (Internet Explorer) located in a platform-specific spot on your drive.

In Mozilla-based browsers, for example, the cookie file is named cookies.txt and is located in a directory
(whose name ends in .slt) within the browser’s profile area. In Windows, that location is C:\\Windows\
Application Data\Mozilla\Profiles\[profilename]\; in Mac OSX, the location is [user]/
Library/Mozilla/Profiles/[profilename]/. Internet Explorer for Windows uses a different filing
system: all cookies for each domain are saved in a domain-specific file inside the C:\\Windows\Temporary
Internet Files\ directory. Filenames begin with Cookie: and include the username and domain of the
server that wrote the cookie. Safari cookies are recorded in an XML file named Cookies.plist within the
[user]/Library/Cookies/ directory.

A cookie file is a text file. If curiosity drives you to open a cookie file, I recommend you do so only with a
copy saved in another directory or folder. Any alteration to the existing file can mess up whatever valuable
cookies are stored there for sites you regularly visit. The data format for cookie files differs across browsers,
in line with the different methodologies used for filing cookies. Inside the Mozilla file (after a few comment
lines warning you not to manually alter the file) are lines of tab-delimited text. Each return-delimited line
contains one cookie’s information. The cookie file is just like a text listing of a database. In each of the
IE cookie files, the same data points are stored for a cookie as for Mozilla, but the items are in a return-
delimited list. The structure of these files is of no importance to scripting cookies, because all browsers
utilize the same syntax for reading and writing cookies through the document.cookie property.

As you experiment with browser’s cookies, you will be tempted to look into the cookie file
after a script writes some data to the cookie. The cookie file usually will not contain the newly

written data, because in most browsers cookies are transferred to disk only when the user quits the browser;
conversely, the cookie file is read into the browser’s memory when it is launched. While you read, write, and
delete cookies during a browser session, all activity is performed in memory (to speed up the process) to be
saved later.

A cookie record
Among the fields of each cookie record are the following (not necessarily in this order):

n Domain of the server that created the cookie

n Information on whether you need a secure HTTP connection to access the cookie

NOTENOTE

532

Document Objects Reference

document.cookie

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 532

n Pathname of URL(s) capable of accessing the cookie

n Expiration date of the cookie

n Name of the cookie entry

n String data associated with the cookie entry

Note that cookies are domain-specific. In other words, if one domain creates a cookie, another domain can-
not access it through the browser’s cookie mechanism behind your back. That reason is why it’s generally
safe to store what I call throwaway passwords (the username/password pairs required to access some free reg-
istration-required sites) in cookies. Moreover, sites that store passwords in a cookie usually do so as
encrypted strings, making it more difficult for someone to hijack the cookie file from your unattended PC
and figure out what your personal password scheme may be.

Cookies also have expiration dates. Because some browsers may allow no more than a fixed number of
cookies (1000 in Firefox), the cookie file can get pretty full over the years. Therefore, if a cookie needs to
persist past the current browser session, it should have an expiration date established by the cookie writer.
Browsers automatically clean out any expired cookies.

Not all cookies have to last beyond the current session, however. In fact, a scenario in which you use cook-
ies temporarily while working your way through a web site is quite typical. Many shopping sites employ
one or more temporary cookie records to behave as the shopping cart for recording items you intend to
purchase. These items are copied to the order form at checkout time. But after you submit the order form to
the server, that client-side data has no particular value. As it turns out, if your script does not specify an
expiration date, the browser keeps the cookie fresh in memory without writing it to the cookie file. When
you quit the browser, that cookie data disappears as expected.

JavaScript access
Scripted access of cookies from JavaScript is limited to setting the cookie (with a number of optional param-
eters) and getting the cookie data (but with none of the parameters).

The original object model defines cookies as properties of documents, but this description is somewhat mis-
leading. If you use the default path to set a cookie (that is, the current directory of the document whose
script sets the cookie in the first place), all documents in that same server directory have read and write
access to the cookie. A benefit of this arrangement is that if you have a scripted application that contains
multiple documents, all documents served from the same directory can share the cookie data. Modern
browsers, however, impose a limit of 20 named cookie entries (that is, one name/value pair) for any
domain. If your cookie requirements are extensive, you need to fashion ways of concatenating cookie data (I
do this in the Decision Helper application in Chapter 55 on the CD-ROM).

Saving cookies
To write cookie data to the cookie file, you use a simple JavaScript assignment operator with the docu-
ment.cookie property. But the formatting of the data is crucial to achieving success. Here is the syntax for
assigning a value to a cookie (optional items are in brackets; placeholders for data you supply are in italics):

document.cookie = “cookieName=cookieData
[; expires=timeInGMTString]
[; path=pathName]
[; domain=domainName]
[; secure]”

Let’s examine each of the properties individually.

533

document.cookie

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 533

Name/Data
Each cookie must have a name and a string value (even if that value is an empty string). Such name/value
pairs are fairly common in HTML, but they look odd in an assignment statement. For example, if you want
to save the string “Fred” to a cookie named “userName,” the JavaScript statement is

document.cookie = “userName=Fred”;

If the browser sees no existing cookie in the current domain with this name, it automatically creates the
cookie entry for you; if the named cookie already exists, the browser replaces the old data with the new
data. Retrieving the document.cookie property at this point yields the following string:

userName=Fred

You can omit all the other cookie-setting properties, in which case the browser uses default values, as
explained in a following section. For temporary cookies (those that don’t have to persist beyond the current
browser session), the name/value pair is usually all you need.

The entire name/value pair must be a single string with no semicolons, commas, or character spaces. To
take care of spaces between words, preprocess the value with the JavaScript encodeURIComponent() func-
tion, which URI-encodes the spaces as %20 (and then be sure to convert the value to restore the human-
readable spaces (through decodeURIComponent()) when you retrieve the cookie later).

You cannot save a JavaScript array or object to a cookie. But with the help of the Array.join() method,
you can convert an array to a string; use String.split() to re-create the array after reading the cookie at
a later time.

Expires
Expiration dates, when supplied, must be passed as Greenwich Mean Time (GMT) strings (see Chapter 30
about time data). To calculate an expiration date based on today’s date, use the JavaScript Date object as
follows:

var exp = new Date();
var oneYearFromNow = exp.getTime() + (365 * 24 * 60 * 60 * 1000);
exp.setTime(oneYearFromNow);

Since the getTime() and setTime() methods operate in milliseconds, the year you’re adding to the cur-
rent date must be converted to milliseconds. After making the calculation, the date is converted to the
accepted GMT string format:

document.cookie = “userName=Fred; expires=” + exp.toGMTString();

In the cookie file, the expiration date and time is stored as a numeric value (in seconds) but, to set it, you
need to supply the time in GMT format. You can delete a cookie before it expires by setting the named
cookie’s expiration date to a time and date earlier than the current time and date. The safest expiration
parameter is

expires=Thu, 01-Jan-70 00:00:01 GMT

Omitting the expiration date signals the browser that this cookie is temporary. The browser never writes it
to the cookie file and forgets it the next time you quit the browser.

534

Document Objects Reference

document.cookie

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 534

Path
For client-side cookies, the default path setting (the current directory) is usually the best choice. You can, of
course, create a duplicate copy of a cookie with a separate path (and domain) so that the same data is avail-
able to a document located in another area of your site (or the Web).

Domain
To help synchronize cookie data with a particular document (or group of documents), the browser matches
the domain of the current document with the domain values of cookie entries in the cookie file. Therefore,
if you were to display a list of all cookie data contained in a document.cookie property, you would get
back all the name/value cookie pairs from the cookie file whose domain parameter matches that of the cur-
rent document.

Unless you expect the document to be replicated in another server within your domain, you can usually
omit the domain parameter when saving a cookie. Default behavior automatically supplies the domain of
the current document to the cookie file entry. Be aware that a domain setting must have at least two periods,
such as

.google.com

.hotwired.com

Or, you can write an entire URL to the domain, including the http:// protocol.

SECURE
If you omit the SECURE parameter when saving a cookie, you imply that the cookie data is accessible to any
document or server-side program from your site that meets the other domain- and path-matching proper-
ties. For client-side scripting of cookies, you should omit this parameter when saving a cookie.

Retrieving cookie data
Cookie data retrieved through JavaScript is contained in one string, which contains the whole name-data
pair. Even though the cookie file stores other parameters for each cookie, you can retrieve only the name-
data pairs through JavaScript. Moreover, when two or more (up to a maximum of 20) cookies meet the cur-
rent domain criteria, these cookies are also lumped into that string, delimited by a semicolon and space. For
example, a document.cookie string may look like this:

userName=Fred; password=NikL2sPacU

In other words, you cannot treat named cookies as objects. Instead, you must parse the entire cookie string,
extracting the data from the desired name-data pair.

When you know that you’re dealing with only one cookie (and that no more will ever be added to the
domain), you can customize the extraction based on known data, such as the cookie name. For example,
with a cookie name that is seven characters long, you can extract the data with a statement such as this:

var data = decodeURIComponent(document.cookie.substring(7,document
.cookie.length));

The first parameter of the substring() method includes the equal sign to separate the name from the
data; this is where the 7 comes from in the code. This example works with single cookies only because it
assumes that the cookie starts at the beginning of the cookie file, which may not be the case if there are
multiple cookies.

535

document.cookie

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 535

A better approach to cookie extraction is to create a general-purpose function that can work with single- or
multiple-entry cookies. Here is one I use in some of my pages:

function getCookieData(labelName) {
var labelLen = labelName.length;
// read cookie property only once for speed
var cookieData = document.cookie;
var cLen = cookieData.length;
var i = 0;
var cEnd;
while (i < cLen) {

var j = i + labelLen;
if (cookieData.substring(i,j) == labelName) {

cEnd = cookieData.indexOf(“;”,j);
if (cEnd == -1) {

cEnd = cookieData.length;
}
return decodeURIComponent(cookieData.substring(j+1, cEnd));

}
i++;

}
return “”;

}

Calls to this function pass the label name of the desired cookie as a parameter. The function parses the
entire cookie string, chipping away any mismatched entries (through the semicolons) until it finds the
cookie name.

If all of this cookie code still makes your head hurt, you can turn to a set of functions devised by experi-
enced JavaScripter and web site designer Bill Dortch of hIdaho Design. His cookie functions provide generic
access to cookies that you can use in all of your cookie-related pages. Listing 18-3 shows Bill’s cookie func-
tions, which include a variety of safety nets for date calculation bugs that appeared in some legacy versions
of Netscape Navigator. The code is updated with modern URL encoding and decoding methods. Don’t be
put off by the length of the listing: Most of the lines are comments.

LISTING 18-3

Bill Dortch’s Cookie Functions

<html>
<head>

<title>Cookie Functions</title>
</head>
<body>

<script type=”text/javascript”>
//
// Cookie Functions -- “Night of the Living Cookie” Version (25-Jul-96)
//
// Written by: Bill Dortch, hIdaho Design
// The following functions are released to the public domain.

536

Document Objects Reference

document.cookie

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 536

//
// This version takes a more aggressive approach to deleting
// cookies. Previous versions set the expiration date to one
// millisecond prior to the current time; however, this method
// did not work in Netscape 2.02 (though it does in earlier and
// later versions), resulting in “zombie” cookies that would not
// die. DeleteCookie now sets the expiration date to the earliest
// usable date (one second into 1970), and sets the cookie’s value
// to null for good measure.
//
// Also, this version adds optional path and domain parameters to
// the DeleteCookie function. If you specify a path and/or domain
// when creating (setting) a cookie**, you must specify the same
// path/domain when deleting it, or deletion will not occur.
//
// The FixCookieDate function must now be called explicitly to
// correct for the 2.x Mac date bug. This function should be
// called *once* after a Date object is created and before it
// is passed (as an expiration date) to SetCookie. Because the
// Mac date bug affects all dates, not just those passed to
// SetCookie, you might want to make it a habit to call
// FixCookieDate any time you create a new Date object:
//
// var theDate = new Date();
// FixCookieDate (theDate);
//
// Calling FixCookieDate has no effect on platforms other than
// the Mac, so there is no need to determine the user’s platform
// prior to calling it.
//
// This version also incorporates several minor coding improvements.
//
// **Note that it is possible to set multiple cookies with the same
// name but different (nested) paths. For example:
//
// SetCookie (“color”,”red”,null,”/outer”);
// SetCookie (“color”,”blue”,null,”/outer/inner”);
//
// However, GetCookie cannot distinguish between these and will return
// the first cookie that matches a given name. It is therefore
// recommended that you *not* use the same name for cookies with
// different paths. (Bear in mind that there is *always* a path
// associated with a cookie; if you don’t explicitly specify one,
// the path of the setting document is used.)
//
// Revision History:
//
// “JavaScript Bible 6th Edition” Version (28-July-2006)
// - Replaced deprecated escape()/unescape() functions with
// encodeURI() and decodeURI() functions

continued

537

document.cookie

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 537

LISTING 18-3 (continued)

//
// “Toss Your Cookies” Version (22-Mar-96)
// - Added FixCookieDate() function to correct for Mac date bug
//
// “Second Helping” Version (21-Jan-96)
// - Added path, domain and secure parameters to SetCookie
// - Replaced home-rolled encode/decode functions with
// new (then) escape/unescape functions
//
// “Free Cookies” Version (December 95)
//
//
// For information on the significance of cookie parameters,
// and on cookies in general, please refer to the official cookie
// spec, at:
//
// http://www.netscape.com/newsref/std/cookie_spec.html
//
//**
//
// “Internal” function to return the decoded value of a cookie
//
function getCookieVal (offset) {

var endstr = document.cookie.indexOf (“;”, offset);
if (endstr == -1) {

endstr = document.cookie.length;
}
return decodeURIComponent(document.cookie.substring(offset, endstr));

}

//
// Function to correct for 2.x Mac date bug. Call this function to
// fix a date object prior to passing it to SetCookie.
// IMPORTANT: This function should only be called *once* for
// any given date object! See example at the end of this document.
//
function FixCookieDate (date) {

var base = new Date(0);
var skew = base.getTime(); // dawn of (Unix) time - should be 0
if (skew > 0) { // Except on the Mac - ahead of its time

date.setTime (date.getTime() - skew);
}

}

//
// Function to return the value of the cookie specified by “name”.
// name - String object containing the cookie name.
// returns - String object containing the cookie value, or null if
// the cookie does not exist.
//
function GetCookie (name) {

538

Document Objects Reference

document.cookie

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 538

var arg = name + “=”;
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {

var j = i + alen;
if (document.cookie.substring(i, j) == arg) {

return getCookieVal (j);
}
i = document.cookie.indexOf(“ “, i) + 1;
if (i == 0) {

break;
}

}
return null;

}

//
// Function to create or update a cookie.
// name - String object containing the cookie name.
// value - String object containing the cookie value. May contain
// any valid string characters.
// [expires] - Date object containing the expiration data of the
// cookie. If omitted or null, expires the cookie at the end of the
// current session.
// [path] - String object indicating the path for which the cookie is
// valid.
// If omitted or null, uses the path of the calling document.
// [domain] - String object indicating the domain for which the cookie
// is valid. If omitted or null, uses the domain of the calling
// document.
// [secure] - Boolean (true/false) value indicating whether cookie
// transmission requires a secure channel (HTTPS).
//
// The first two parameters are required. The others, if supplied, must
// be passed in the order listed above. To omit an unused optional
// field, use null as a place holder. For example, to call SetCookie
// using name, value and path, you would code:
//
// SetCookie (“myCookieName”, “myCookieValue”, null, “/”);
//
// Note that trailing omitted parameters do not require a placeholder.
//
// To set a secure cookie for path “/myPath”, that expires after the
// current session, you might code:
//
// SetCookie (myCookieVar, cookieValueVar, null, “/myPath”, null,
// true);
//
function SetCookie (name,value,expires,path,domain,secure) {

continued

539

document.cookie

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 539

LISTING 18-3 (continued)

document.cookie = name + “=” + encodeURIComponent (value) +
((expires) ? “; expires=” + expires.toGMTString() : “”) +
((path) ? “; path=” + path : “”) +
((domain) ? “; domain=” + domain : “”) +
((secure) ? “; secure” : “”);

}

// Function to delete a cookie. (Sets expiration date to start of epoch)
// name - String object containing the cookie name
// path - String object containing the path of the cookie to delete.
// This MUST be the same as the path used to create the
// cookie, or null/omitted if
// no path was specified when creating the cookie.
// domain - String object containing the domain of the cookie to
// delete. This MUST be the same as the domain used to
// create the cookie, or null/omitted if no domain was
// specified when creating the cookie.
//
function DeleteCookie (name,path,domain) {

if (GetCookie(name)) {
document.cookie = name + “=” +

((path) ? “; path=” + path : “”) +
((domain) ? “; domain=” + domain : “”) +
“; expires=Thu, 01-Jan-70 00:00:01 GMT”;

}
}

//
// Examples
//
var expdate = new Date ();
FixCookieDate (expdate); // Correct for Mac date bug (call only once)
expdate.setTime (expdate.getTime() + (24 * 60 * 60 * 1000)); // 24 hrs
SetCookie (“ccpath”, “http://www.hidaho.com/colorcenter/”, expdate);
SetCookie (“ccname”, “hIdaho Design ColorCenter”, expdate);
SetCookie (“tempvar”, “This is a temporary cookie.”);
SetCookie (“ubiquitous”, “This cookie will work anywhere in this

domain”,null,”/”);
SetCookie (“paranoid”, “This cookie requires secure

communications”,expdate,”/”,null,true);
SetCookie (“goner”, “This cookie must die!”);
document.write (document.cookie + “
”);
DeleteCookie (“goner”);
document.write (document.cookie + “
”);
document.write (“ccpath = “ + GetCookie(“ccpath”) + “
”);
document.write (“ccname = “ + GetCookie(“ccname”) + “
”);
document.write (“tempvar = “ + GetCookie(“tempvar”) + “
”);
</script>

</body>
</html>

540

Document Objects Reference

document.cookie

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 540

Extra batches
You may design a site that needs more than 20 cookies for a given domain. For example, in a shopping site,
you never know how many items a customer may load into the shopping cart cookie.

Because each named cookie stores plain text, you can create your own text-based data structures to accom-
modate multiple pieces of information per cookie. (But also watch out for a practical limit of 2,000 charac-
ters per name/value pair within the 4,000 character maximum for any domain’s combined cookies.) The
trick is determining a delimiter character that won’t be used by any of the data in the cookie. In Decision
Helper (in Chapter 55 on the CD-ROM), for example, I use a period to separate multiple integers stored in
a cookie.

With the delimiter character established, you must then write functions that concatenate these “subcookies”
into single cookie strings and extract them on the other side. It’s a bit more work, but well worth the effort
to have the power of persistent data on the client.

Example
Experiment with the last group of statements in Listing 18-3 to create, retrieve, and delete cookies. You can
also experiment with The Evaluator by assigning a name/value pair string to document.cookie, and then
examining the value of the cookie property.

Related Items: String object methods (see Chapter 28).

defaultCharset
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The defaultCharset property reveals the character set used by the browser to render the current docu-
ment. You can find possible values for this property at

http://www.iana.org/assignments/character-sets

Each browser and operating system has its own default character set. Values may also be set through a
<meta> tag. The difference between the defaultCharset and charset properties is not clear, especially
because both are read/write (although modifying the defaultCharset property has no visual effect on the
page). However, if your scripts temporarily modify the charset property, you can use the
defaultCharset property to return to the original character set:

document.charset = document.defaultCharset;

Example
Use The Evaluator (see Chapter 13) to experiment with the defaultCharset property. To see the default
setting applied to the page, enter the following statement into the top text box:

document.defaultCharset

Related Items: charset, characterSet properties.

defaultView
Value: window or frame object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

541

document.defaultView

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 541

The defaultView property returns a reference to the object serving as the viewer for the document. The
viewer is responsible for rendering the document, and in Mozilla the object returned in the defaultView
property is the window or frame object that contains the document. This W3C DOM Level 2 property pro-
vides access to computed CSS values being applied to any HTML element (through the document
.defaultView.getComputedStyle() method).

Related Items: window and frame properties; window.getComputedStyle() method.

designMode
Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN7.1, Moz1.4+, Safari-

The designMode property is applicable only when WinIE5+ technology is being used as a component in
another application. The property controls whether the browser module is being used for HTML editing.
Modifying the property from within a typical HTML page in the IE5+ browser has no effect. But on the
Mozilla side, the property can be used to turn an iframe element’s document object into an HTML editable
document. Visit http://www.mozilla.org/editor for current details and examples.

doctype
Value: DocumentType object reference. Read-Only
Compatibility: WinIE-, MacIE5+, NN6+, Moz+, Safari-

The doctype property comes from the W3C Core DOM and returns a DocumentType object — a representa-
tion of the DTD information for the document. The DocumentType object (if one is explicitly defined in the
source code) is the first child node of the root document node (and is thus a sibling to the HTML element).

Table 18-1 shows the typical DocumentType object property list and values for a generic HTML page.
Future DOM specifications will allow these properties to be read/write.

TABLE 18-1

DocumentType Object in NN6+/Moz

Property Value

entities null

internalSubset (empty)

name html

notations null

publicId -//W3C//DTD XHTML 1.0 Transitional//EN

systemId http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

Related Items: Node object (Chapter 14).

542

Document Objects Reference

document.doctype

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 542

Example
Take a look at the document.doctype object by entering the following line of code in the bottom text field
of the Evaluator web page (see Chapter 13):

document.doctype

If you pay close attention you’ll notice that the publicId property is actually set to -//W3C//DTD HTML 4.01
Transitional//EN, which is different from the value shown in Table 18-1. This reveals the fact that the
Evaluator page declares itself as an HTML 4.01 document.

documentElement
Value: HTML or XML element object reference. Read-Only
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The documentElement property returns a reference to the HTML (or XML) element object that contains all
of the content of the current document. The naming of this property is a bit misleading, because the root
document node is not an element, but its only child node is the HTML (or XML) element for the page. At
best, you can think of this property as providing scripts with an element face to the document object and
document node associated with the page currently loaded in the browser.

As compared to the document.body object, the document.documentElement object represents the html
element for a page, whereas docoument.body represents the body element. This explains why document
.body is a child of the document.documentElement object.

Example
Use The Evaluator (see Chapter 13) to examine the behavior of the documentElement property. In
IE5+/W3C, enter the following statement into the top text field:

document.documentElement.tagName

The result is HTML, as expected.

Related Items: ownerDocument property (see Chapter 15).

documentURI
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN8+, Moz1.7+, Safari

The documentURI property contains the location of the document. This is the W3C DOM Level 3 equiva-
lent of the non-W3C DOM location.href property. Use The Evaluator (see Chapter 13) to view the doc-
ument URI by entering the following:

document.documentURI

Related Items: document.baseURI property.

domain
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

543

document.domain

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 543

Security restrictions can get in the way of sites that have more than one server at their domain. Because
some objects, especially the location object, prevent access to properties of other servers displayed in
other frames, legitimate access to those properties are blocked. For example, it’s not uncommon for popular
sites to have their usual public access site on a server named something such as www.popular.com. If a
page on that server includes a front end to a site search engine located at search.popular.com, visitors
who use browsers with these security restrictions are denied access.

To guard against that eventuality, a script in documents from both servers can instruct the browser to think
both servers are the same. In the preceding example, you would set the document.domain property in
both documents to popular.com. Without specifically setting the property, the default value includes the
server name as well, thus causing a mismatch between hostnames.

Before you start thinking that you can spoof your way into other servers, be aware that you can set
the document.domain property only to servers with the same domain (following the two-dot rule) as the
document doing the setting. Therefore, documents originating only from xxx.popular.com can set
their document.domain properties to popular.com server.

Related Items: window.open() method; window.location object; security (see Chapter 46 on the
CD-ROM).

embeds[]
Value: Array of embed element objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Although now supplanted by the <object> tag, the <embed> tag used to be the markup that loaded data
requiring a plug-in application to play or display. The document.embeds property is an array of embed ele-
ment objects within the document:

var count = document.embeds.length;

Related Items: embed element object (see Chapter 41 on the CD-ROM).

expando
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

Microsoft calls any custom property that is not a native property of the document object an expando prop-
erty. By default, most objects in recent generations of browsers allow scripts to add new properties of
objects as a way to temporarily store data without explicitly defining global variables. For example, if you
want to maintain an independent counter of how often a function is invoked, you can create a custom
property of the document object and use it as the storage facility:

document.counter = 0;

IE4+ enables you to control whether the document object is capable of accepting expando properties. The
default value of the document.expando property is true, thus allowing custom properties. But the poten-
tial downside to this permissiveness, especially during the page construction phase, is that a misspelled
native property name is gladly accepted by the document object. You may not be aware of why the title bar
of the browser window doesn’t change when you assign a new string to the document.Title property
(which, in the case-sensitive world of JavaScript, is distinct from the native document.title property).

544

Document Objects Reference

document.expando

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 544

Example
Use The Evaluator (see Chapter 13) to experiment with the document.expando property in IE4+. Begin by
proving that the document object can normally accept custom properties. Type the following statement into
the top text field:

document.spooky = “Boo!”

This property is now set and stays that way until the page is either reloaded or unloaded.

Now freeze the document object’s properties with the following statement:

document.expando = false

If you try to add a new property, such as the following, you receive an error:

document.happy = “tra la”

Interestingly, even though document.expando is turned off, the first custom property is still accessible and
modifiable.

Related Items: prototype property of custom objects (Chapter 34).

fgColor
(See alinkColor)

fileCreatedDate
fileModifiedDate
fileSize
Value: String, Integer (fileSize). Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These three IE-specific properties return information about the file that holds the current document. The
first two properties (not implemented in MacIE) reveal the dates on which the current document’s file was
created and modified. For an unmodified file, its creation and modified dates are the same. The fileSize
property reveals the number of bytes of the file.

Date values returned for the first two properties are in a format similar to mm/dd/yyyy. Note, however, that
the values contain only the date and not the time. In any case, you can use the values as the parameter to a
new Date() constructor function. You can then use date calculations for such information as the number of
days between the current day and the most recent modification.

Not all servers may provide the proper date or size information about a file or in a format that IE can inter-
pret. Test your implementation on the deployment server to ensure compatibility.

Also, be aware that these properties can be read only for a file that is loaded in the browser. JavaScript by
itself cannot get this information about files that are on the server but not loaded in the browser.

Example
Listing 18-4 dynamically generates several pieces of content relating to the creation and modification dates
of the file, as well as its size. More importantly, the listing demonstrates how to turn a value returned by the
file date properties into a genuine date object that can be used for date calculations. In the case of Listing
18-4, the calculation is the number of full days between the creation date and the day someone views the

545

document.fileCreatedDate

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 545

file. Notice that the dynamically generated content is added very simply through the innerText properties
of carefully located span elements in the body content.

LISTING 18-4

Displaying File Information for a Web Page

<html>
<head>

<title>fileCreatedDate and fileModifiedDate Properties</title>
<script type=”text/javascript”>
function fillInBlanks() {

var created = document.fileCreatedDate;
var modified = document.fileModifiedDate;
document.getElementById(“created”).innerText = created;
document.getElementById(“modified”).innerText = modified;
var createdDate = new Date(created).getTime();
var today = new Date().getTime();
var diff = Math.floor((today - createdDate) / (1000*60*60*24));
document.getElementById(“diff”).innerText = diff;
document.getElementById(“size”).innerText = document.fileSize;

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

fillInBlanks();
});
</script>

</head>
<body>

<h1>fileCreatedDate and fileModifiedDate Properties</h1>
<hr />
<p>This file (bytes) was created on <span

id=”created”> and most recently modified on .</p>

<p>It has been days since this file was
created.</p>

</body>
</html>

Related Items: lastModified property.

546

Document Objects Reference

document.fileCreatedDate

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 546

forms[]
Value: Array. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

As I show in Chapter 21, which is dedicated to the form object, an HTML form (anything defined inside a
<form>...</form> tag pair) is a JavaScript object unto itself. You can create a valid reference to a form
according to its name (assigned through a form’s name attribute). For example, if a document contains the
following form definition:

<form name=”phoneData”>
input item definitions

</form>

then your scripts can refer to the form object by name:

document.phoneData

However, a document object also tracks its forms in another way: as an array of form objects. The first item
of a document.forms array is the form that loaded first (it was first from the top of the HTML code). If
your document defines one form, the forms property is an array one entry in length; with three separate
forms in the document, the array is three entries long.

Use standard array notation to reference a particular form from the document.forms array. For example,
the first form in a document (the zeroth entry of the document.forms array) is referenced as

document.forms[0]

Any of the form object’s properties or methods are available by appending the desired property or method
name to the reference. For example, to retrieve the value of an input text field named homePhone from the
second form of a document, the reference you use is

document.forms[1].homePhone.value

One advantage to using the document.forms property for addressing a form object or element instead of
the actual form name is that you may be able to generate a library of generalizable scripts that know how to
cycle through all available forms in a document and hunt for a form that has some special element and
property. The following script fragment (part of a repeat loop described more fully in Chapter 32) uses a
loop-counting variable (i) to help the script check all forms in a document:

for (var i = 0; i < document.forms.length; i++) {
if (document.forms[i]. ...) {

statements
}

}

One more variation on forms array references enables you to substitute the name of a form (as a string) for
the forms array index. For example, the form named phoneData can be referenced as:

document.forms[“phoneData”]

If you use a lot of care in assigning names to objects, you will likely prefer the document.formName style of
referencing forms. In this book, you see both indexed array and form name style references. The advantage of
using name references is that even if you redesign the page and change the order of forms in the document,
references to the named forms will still be valid, whereas the index numbers of the forms will have changed.
See also the discussion in Chapter 21 of the form object and how to pass a form’s data to a function.

547

document.forms

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 547

Example
The document in Listing 18-5 is set up to display an alert dialog box that simulates navigation to a particu-
lar music site, based on the selected status of the bluish check box. The user input here is divided into two
forms: one form with the check box and the other form with the button that does the navigation. A block of
copy fills the space in between. Clicking the bottom button (in the second form) triggers the function that
fetches the checked property of the bluish check box by using the document.forms[i] array as part of the
address.

LISTING 18-5

A Simple Form Example

<html>
<head>

<title>document.forms example</title>
<script type=”text/javascript”>
function goMusic() {

if (document.forms[0].bluish.checked) {
alert(“Now going to the Blues music area...”);

} else {
alert(“Now going to Rock music area...”);

}
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“visit”), “click”, goMusic);
});
</script>

</head>
<body>

<form name=”theBlues”>
<input type=”checkbox” name=”bluish” />Check here if you’ve got the
blues.

</form>
<hr />
M

o

r

e

548

Document Objects Reference

document.forms

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 548

C

o

p

y

<hr />
<form name=”visit”>

<input type=”button” id=”visit” value=”Visit music site” />
</form>

</body>
</html>

Related Items: form object (see Chapter 21).

frames[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The document.frames property is similar to the window.frames property, but its association with the
document object may seem a bit illogical at times. The objects contained by the array returned from the
property are window objects, which means they are the window objects of any frame elements (from a
framesetting document) or iframe elements (from a plain HTML document) defined for the document.
Distinguishing the window objects from the iframe element objects is important. Window objects have
different properties and methods than the frame and iframe element objects. The latter’s properties typi-
cally represent the attributes for those element’s tags. If a document contains no iframe elements, the doc-
ument.frames array length is zero.

Although you can access an individual frame object through the typical array syntax (for example, docu-
ment.frames[0]), you can also use alternate syntax that Microsoft provides for collections of objects. The
index number can also be placed inside parentheses, as in:

document.frames(0)

Moreover, if the frames have values assigned to their name attributes, you can use the name (in string form)
as a parameter:

document.frames(“contents”)

And if the collection of frames has more than one frame with the same name, you must take special care.
Using the duplicated name as a parameter forces the reference to return a collection of frame objects that
share that name. Or, you can limit the returned value to a single instance of the duplicate-named frames by
specifying an optional second parameter indicating the index. For example, if a document has two iframe
elements with the name contents, a script could reference the second window object as:

document.frames(“contents”, 1)

For the sake of cross-browser compatibility, my preference for referencing frame window objects is through
the window.frames property.

Example
See Listings 16-7 and 16-8 for examples of using the frames property with window objects.

Related Items: window.frames property.

549

document.frames

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 549

height
width
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz+, Safari+

The height and width properties provide the pixel dimensions of the content within the current window
(or frame). If the document’s content is smaller than the size of the browser’s content region, the dimensions
returned by these properties include the blank space to the right or bottom edges of the content area of the
window. But if the content extends beyond the viewable edges of the content region, the dimensions
include the unseen content as well. The corresponding measures in Internet Explorer are the
document.body.scrollHeight and document.body.scrollWidth properties.

Example
Use The Evaluator (see Chapter 13) to examine the height and width properties of that document. Enter
the following statement into the top text box and click the Evaluate button:

“height=” + document.height + “; width=” + document.width

Resize the window so that you see both vertical and horizontal scroll bars in the browser window and click
the Evaluate button again. If either or both numbers get smaller, the values in the Results box are the exact
size of the space occupied by the document. But if you expand the window to well beyond where the scroll
bars are needed, the values extend to the number of pixels in each dimension of the window’s content
region.

Related Items: document.body.scrollHeight, document.body.scrollWidth properties.

images[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE3+, NN3+, Moz+, Safari+

With images treated as first-class objects beginning with NN3 and IE4, it’s only natural for a document to
maintain an array of all the image tags defined on the page (just as it does for links and anchors). The prime
importance of having images as objects is that you can modify their content (the source file associated with
the rectangular space of the image) on the fly. You can find details about the image object in Chapter 20.

Use image array references to pinpoint a specific image for retrieval of any image property or for assigning a
new image file to its src property. Image arrays begin their index counts with 0: The first image in a docu-
ment has the reference document.images[0]. And, as with any array object, you can find out how many
images the array contains by checking the length property. For example:

var imageCount = document.images.length;

Images can also have names, so if you prefer, you can refer to the image object by its name, as in

var imageLoaded = document.imageName.complete;

or

var imageLoaded = document.images[imageName].complete;

The document.images array is a useful guide to knowing whether a browser supports swappable images.
Any browser that treats an img element as an object always forms a document.images array in the page. If

550

Document Objects Reference

document.images

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 550

no images are defined in the page, the array is still there, but its length is zero. The array’s existence, how-
ever, is the clue about image object compatibility. Because the document.images array evaluates to an
array object when present, the expression can be used as a condition expression for branching to statements
that involve image swapping:

if (document.images) {
// image swapping or precaching here

}

Browsers that don’t have this property (legacy and potentially mobile) evaluate document.images as
undefined and thus the condition is treated as a false value.

Example
The document.images property is defined automatically as the browser builds the object model for a doc-
ument that contains image objects. See the discussion about the Image object in Chapter 20 for reference
examples.

Related Items: Image object (Chapter 20).

implementation
Value: Object. Read-Only
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The Core W3C DOM defines the document.implementation property as an avenue to let scripts find out
what DOM features (that is, modules of the DOM standard) are implemented for the current environment.
Although the object returned by the property (a DOMImplementation object) has no properties, it has a
method, hasFeature(), which lets scripts find out, for example, whether the environment supports
HTML or just XML. The first parameter of the hasFeature() method is the feature in the form of a string.
The second parameter is a string form of the version number. The method returns a Boolean value.

The “Conformance” section of the W3C DOM specification governs the module names (the standard also
allows browser-specific features to be tested through the hasFeature() method). Module names include
strings such as HTML, XML, MouseEvents, and so on.

Version numbering for W3C DOM modules corresponds to the W3C DOM level. Thus, the version for the
XML DOM module in DOM Level 2 is known as 2.0. Note that versions refer to DOM modules and not,
for example, the separate HTML standard.

Example
Use The Evaluator (see Chapter 13) to experiment with the document.implementation.hasFeature()
method. Enter the following statements one at a time into the top text field and examine the results:

document.implementation.hasFeature(“HTML”,”1.0”)
document.implementation.hasFeature(“HTML”,”2.0”)
document.implementation.hasFeature(“HTML”,”3.0”)
document.implementation.hasFeature(“CSS”,”2.0”)
document.implementation.hasFeature(“CSS2”,”2.0”)

Feel free to try other values. As of IE7, for some reason Internet Explorer returns false for some features that
it indeed supports, such as CSS 2.0. In other words, it’s probably not a good idea to place a lot of trust in
the IE results of the hasFeature() method, at least for the time being.

551

document.implementation

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 551

inputEncoding
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari-

The input encoding of a document is the character encoding that is in effect at the time when the document
is parsed. For example, ISO-8859-1 is a common character encoding that you may see reported by the
inputEncoding property.

lastModified
Value: Date string. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Every disk file maintains a modified time stamp, and most (but not all) servers are configured to expose this
information to a browser accessing a file. This information is available by reading the
document.lastModified property. If your server supplies this information to the client, you can use the
value of this property to present this information for readers of your web page. The script automatically
updates the value for you, rather than requiring you to hand-code the HTML line every time you modify
the home page.

If the value returned to you displays itself as a date in 1969, it means that you are positioned somewhere
west of GMT, or Greenwich Mean Time (some number of time zones west of GMT at 1 January 1970), and
the server is not providing the proper data when it serves the file. Sometimes server configuration can fix
the problem, but not always.

The returned value is not a date object (see Chapter 30), but rather a straight string consisting of time and
date, as recorded by the document’s file system. The format of the string varies from browser to browser and
version to version. You can, however, usually convert the date string to a JavaScript date object and use the
date object’s methods to extract selected elements for recompilation into readable form. Listing 18-6 shows
an example.

Even local file systems don’t necessarily provide the correct data for every browser to interpret. But put that
same file on a UNIX or Windows web server, and the date appears correctly when accessed through the
Net.

Example
Experiment with the document.lastModified property with Listing 18-6. But also be prepared for inac-
curate readings if the file is located on some servers or local hard disks.

LISTING 18-6

Putting a Time Stamp on a Page

<html>
<head>

<title>Time Stamper</title>
</head>
<body>

<center>
<h1>GiantCo Home Page</h1>

552

Document Objects Reference

document.lastModified

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 552

</center>
<script type=”text/javascript”>
update = new Date(document.lastModified);
theMonth = update.getMonth() + 1;
theDate = update.getDate();
theYear = update.getFullYear();
document.writeln(“<I>Last updated:” + theMonth + “/” + theDate + “/” +

theYear + “<\/I>”);
</script>
<hr />

</body>
</html>

As noted at great length in the Date object discussion in Chapter 30, you should be aware that date formats
vary greatly from country to country. Some of these formats use a different order for date elements. When
you hard-code a date format, it may take a form that is unfamiliar to other users of your page.

Related Items: Date object (see Chapter 30).

layers[]
Value: Array. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz-, Safari-

The layer object (see Chapter 40 on the CD-ROM) is the NN4 way of exposing positioned elements to the
object model. Thus, the document.layers property is an array of positioned elements in the document.
The Layer object and document.layers property are orphaned in NN4, and their importance is all but
gone now that Mozilla has taken over. Chapter 40 on the CD-ROM includes several examples of how to
carry out similar functionality as the document.layers property using the standard W3C DOM.

Related Items: layer object (see Chapter 40 on the CD-ROM).

linkColor
(See alinkColor)

links[]
Value: Array. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The document.links property is similar to the document.anchors property, except that the objects
maintained by the array are link objects — items created with tags. Use the array references to
pinpoint a specific link for retrieving any link property, such as the target window specified in the link’s
HTML definition.

Link arrays begin their index counts with 0: The first link in a document has the reference
document.links[0]. And, as with any array object, you can find out how many entries the array has by
checking the length property. For example:

var linkCount = document.links.length;

553

document.links

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 553

Entries in the document.links property are full-fledged location objects, which means you have the
same properties available to each member of the links[] array as you do in the location object.

Example
The document.links property is defined automatically as the browser builds the object model for a docu-
ment that contains link objects. You rarely access this property, except to determine the number of link
objects in the document.

Related Items: link object; document.anchors property.

URL
Value: String. Read/Write and Read-Only (see text)
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The document.URL property is similar to the window.location property. A location object, you may
recall from Chapter 17, consists of a number of properties about the document currently loaded in a window
or frame. Assigning a new URL to the location object (or location.href property) tells the browser to
load the page from that URL into the frame. The document.URL property, on the other hand, is simply a
string (read-only in Navigator, Mozilla, and Safari) that reveals the URL of the current document. The value
may be important to your script, but the property does not have the object power of the window.location
object. You cannot change (assign another value to) this property value because a document has only one
URL: its location on the Net (or your hard disk) where the file exists, and what protocol is required to get it.

This may seem like a fine distinction, and it is. The reference you use (window.location object or
document.URL property) depends on what you are trying to accomplish specifically with the script. If the
script is changing the content of a window by loading a new URL, you have no choice but to assign a value
to the window.location object. Similarly, if the script is concerned with the component parts of a URL,
the properties of the location object provide the simplest avenue to that information. To retrieve the URL
of a document in string form (whether it is in the current window or in another frame), you can use either
the document.URL property or the window.location.href property.

The document.URL property replaces the old document.location property, which is still
supported in most browsers.

Example
HTML documents in Listings 18-7 through 18-9 create a test lab that enables you to experiment with view-
ing the document.URL property for different windows and frames in a multiframe environment. Results are
displayed in a table, with an additional listing of the document.title property to help you identify docu-
ments being referred to. The same security restrictions that apply to retrieving window.location object
properties also apply to retrieving the document.URL property from another window or frame.

LISTING 18-7

A Simple Frameset for the URL Example

<html>
<head>

<title>document.URL Reader</title>
</head>

NOTENOTE

554

Document Objects Reference

document.URL

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 554

<frameset rows=”60%,40%”>
<frame name=”Frame1” src=”lst18-09.htm” />
<frame name=”Frame2” src=”lst18-08.htm” />

</frameset>
</html>

LISTING 18-8

Showing Location Information for Different Contexts

<html>
<head>

<title>URL Property Reader</title>
<script type=”text/javascript”>
function fillTopFrame() {

newURL=prompt(“Enter the URL of a document to show in the top frame:”,””);
if (newURL != null && newURL != “”) {

top.frames[0].location = newURL;
}

}

function showLoc(item) {
var windName = item.value;
var theRef = windName + “.document”;
item.form.dLoc.value = decodeURIComponent(eval(theRef + “.URL”));
item.form.dTitle.value = decodeURIComponent(eval(theRef + “.title”));

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“opener”), “click”, fillTopFrame);
addEvent(document.getElementById(“parent”), “click”,

function(evt) {showLoc(document.getElementById(“parent”));});
addEvent(document.getElementById(“upper”), “click”,

function(evt) {showLoc(document.getElementById(“upper”));});
addEvent(document.getElementById(“this”), “click”,

function(evt) {showLoc(document.getElementById(“this”));});
});
</script>

continued

555

document.URL

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 555

LISTING 18-8 (continued)

</head>
<body>

Click the “Open URL” button to enter the location of an HTML document to
display in the upper frame of this window.
<form>

<input type=”button” id=”opener” name=”opener” value=”Open URL...” />
</form>
<hr />
<form>

Select a window or frame to view each document property values.
<p><input type=”radio” id=”parent” name=”whichFrame” value=”parent”

/>Parent window <input type=”radio” name=”whichFrame” id=”upper”
value=”top.frames[0]” />Upper frame <input type=”radio”
name=”whichFrame” id=”this” value=”top.frames[1]” />This frame</p>

<table border=”2”>
<tr>

<td align=”right”>document.URL:</td>
<td><textarea name=”dLoc” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>
<tr>

<td align=”right”>document.title:</td>
<td><textarea name=”dTitle” rows=”3” cols=”30” wrap=”soft”>

</textarea></td>
</tr>

</table>
</form>

</body>
</html>

LISTING 18-9

A Placeholder Page for the URL Example

<html>
<head>

<title>Opening Placeholder</title>
</head>
<body>

Initial place holder. Experiment with other URLs for this frame (see
below).

</body>
</html>

Related Items: location object; location.href, URLUnencoded properties.

556

Document Objects Reference

document.URL

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 556

media
Value: String. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The document.media property indicates the output medium for which content is formatted. The property
actually returns an empty string as of IE7, but the intention appears to be to provide a way to use scripting
to set the equivalent of the CSS2 @media rule (one of the so-called at rules because of the at symbol). This
style sheet rule allows browsers to assign separate styles for each type of output device on which the page is
rendered (for example, perhaps a different font for a printer versus the screen). In practice, however, this
property is not modifiable, at least through IE7.

Related Items: None.

mimeType
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Although this property is readable in WinIE5+, its value is not strictly speaking a MIME type, or at least not
in traditional MIME format. Moreover, the results are inconsistent between IE versions 5, 6, and 7. Perhaps
this property will be of more use in an XML, rather than HTML, document environment. In any case, this
property in no way exposes supported MIME types in the current browser.

nameProp
Value: String. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The nameProp property returns a string containing the title of the document, which is the same as
document.title. If the document doesn’t have a title, nameProp contains an empty string.

Related Items: title property.

namespaces[]
Value: Array of namespace objects. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

A namespace object can dynamically import an XML-based IE Element Behavior. The namespaces prop-
erty returns an array of all namespace objects defined in the current document.

Related Items: None.

parentWindow
Value: window object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The document.parentWindow property returns a reference to the window object containing the current
document. The value is the same as any reference to the current window.

557

document.parentWindow

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 557

Example
To prove the parentWindow property points to the document’s window, you can enter the following state-
ment into the top text field of The Evaluator (see Chapter 13):

document.parentWindow == self

This expression evaluates to true only if both references are of the same object.

Related Items: window object.

plugins[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The document.plugins property returns the same array of embed element objects that you get from the
document.embeds property. This property has been deprecated in favor of document.embeds.

Related Items: document.embeds property.

protocol
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific document.protocol property returns the plain-language version of the protocol that was
used to access the current document. For example, if the file is accessed from a web server, the property
returns Hypertext Transfer Protocol. This property differs from the location.protocol property,
which returns the portion of the URL that includes the often more cryptic protocol abbreviation (for exam-
ple, http:). As a general rule, you want to hide all of this stuff from a web application user.

Example
If you use The Evaluator (Chapter 13) to test the document.protocol property, you will find that it dis-
plays File Protocol in the results because you are accessing the listing from a local hard disk or
CD-ROM. However, if you upload the Evaluator web page to a web server and access it from the server, you
will see the expected Hypertext Transfer Protocol result.

Related Items: location.protocol property.

referrer
Value: String. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

When a link from one document leads to another, the second document can, under JavaScript control,
reveal the URL of the document containing the link. The document.referrer property contains a string of
that URL. This feature can be a useful tool for customizing the content of pages based on the previous loca-
tion the user was visiting within your site. A referrer contains a value only when the user reaches the cur-
rent page through a link. Any other method of navigation (such as through the history, bookmarks, or by
manually entering a URL) sets this property to an empty string.

The document.referrer property usually returns an empty string unless the files are
retrieved from a web server.CAUTION CAUTION

558

Document Objects Reference

document.referrer

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 558

Example
This demonstration requires two documents (and for IE, you’ll also need to access the documents from a
web server). The first document, in Listing 18-10, simply contains one line of text as a link to the second
document. In the second document, shown in Listing 18-11, a script verifies the document from which the
user came through a link. If the script knows about that link, it displays a message relevant to the experi-
ence the user had at the first document. Also try opening Listing 18-11 in a new browser window from the
Open File command in the File menu to see how the script won’t recognize the referrer.

LISTING 18-10

An Example Referrer Page

<html>
<head>

<title>document.referrer Property 1</title>
</head>
<body>

<h1>Visit my sister document</h1>
</body>

</html>

LISTING 18-11

Determining the Referrer when a Page Is Visited Through a Link

<html>
<head>

<title>document.referrer Property 2</title>
</head>
<body>

<h1>
<script type=”text/javascript”>
alert(document.referrer.length + “ : “ + document.referrer);
if(document.referrer.length > 0 &&

document.referrer.indexOf(“lst18-10.htm”) != -1) {
document.write(“How is my brother document?”);

} else {
document.write(“Hello, and thank you for stopping by.”);

}
</script>

</h1>
</body>

</html>

Related Items: link object.

559

document.referrer

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 559

scripts[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific document.scripts property returns an array of all script element objects in the current
document. You can reference an individual script element object to read not only the properties it shares
with all HTML element objects (see Chapter 15), but also script-specific properties, such as defer, src,
and htmlFor. The actual scripting is accessible either through the innerText or text properties for any
script element object.

Although the document.scripts array is read-only, many properties of individual script element objects
are modifiable. Adding or removing script elements impacts the length of the document.scripts array.
Don’t forget, too, that if your scripts need to access a specific script element object, you can assign an id
attribute to it and reference the element directly.

This property is an IE-specific convenience property that is the same as the W3C browser expression docu-
ment.getElementsByTagName(“script”), which returns an array of the same objects.

Example
You can experiment with the document.scripts array in The Evaluator (see Chapter 13). For example,
you can see that only one script element object is in the Evaluator page if you enter the following state-
ment into the top text field:

document.scripts.length

If you want to view all of the properties of that lone script element object, enter the following statement
into the bottom text field:

document.scripts[0]

Among the properties are both innerText and text. If you assign an empty string to either property, the
scripts are wiped out from the object model, but not from the browser. The scripts disappear because after
the scripts loaded, they were cached outside of the object model. Therefore, if you enter the following state-
ment into the top field:

document.scripts[0].text = “”

the script contents are gone from the object model, yet subsequent clicks of the Evaluate and List Properties
buttons (which invoke functions of the script element object) still work.

Related Items: script element object (Chapter 37 on the CD-ROM).

security
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The security property reveals information about a security certificate, if one is associated with the current
document.

560

Document Objects Reference

document.security

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 560

selection
Value: Object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The document.selection property returns a selection object whose content is represented in the
browser window as a body text selection. That selection can be explicitly performed by the user (by clicking
and dragging across some text) or created under script control through the WinIE TextRange object (see
Chapter 36 on the CD-ROM). Because script action on a selection (for example, finding the next instance of
selected text) is performed through the TextRange object, converting a selection to a TextRange object
using the document.selection.createRange() method is common practice. See the selection object
in Chapter 36 on the CD-ROM for more details.

Be aware that you cannot script interaction with text selections through user interface elements, such as
buttons. Clicking a button gives focus to the button and deselects the selection. Use other events, such as
document.onmouseup to trigger actions on a selection.

Example
See Listings 15-36 and 15-44 in Chapter 15 to see the document.selection property in action for script-
controlled copying and pasting (WinIE only).

Related Items: selection, TextRange objects.

strictErrorChecking
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari-

The strictErrorChecking property reveals the error-checking mode for the document. More specifically,
if the property is set to true (the default), exceptions and errors related to DOM operations are reported.
Otherwise, DOM-related exceptions may not be thrown, and errors may not be reported.

styleSheets[]
Value: Array. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The document.styleSheets array consists of references to all style element objects in the document.
Not included in this array are style sheets that are assigned to elements by way of the style attribute inside
a tag or linked in through link elements. See Chapter 26 for details about the styleSheet object.

Related Items: styleSheet object (Chapter 26).

title
Value: String. Read-Only and Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A document’s title is the text that appears between the <title>...</title> tag pair in an HTML docu-
ment’s Head portion. The title usually appears in the title bar of the browser window in a single-frame pres-
entation, or in a tabbed pane within a multi-paned browser window. Only the title of the topmost

561

document.title

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 561

framesetting document appears as the title of a multiframe window. Even so, the title property for an
individual document within a frame is available through scripting. For example, if two frames are available
(UpperFrame and LowerFrame), a script in the document occupying the LowerFrame frame can reference
the title property of the other frame’s document, such as this:

parent.UpperFrame.document.title

The document.title property is a holdover from the original document object model. HTML elements in
recent browsers have an entirely different application of the title property (see Chapter 15). In modern
browsers (IE4+/W3C/Moz/Safari), you should address the document’s title by way of the title element
object directly.

Related Items: history object.

URL
(See location)

URLUnencoded
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The document.URL property returns a URL-encoded string, meaning that non-alphanumeric characters in
the URL are converted to URL-friendly characters (for example, a space becomes %20). You can always use
the decodeURI() function on the value returned by the document.URL property, but the URLUnencoded
property does that for you. If there are no URL-encoded characters in the URL, then both properties return
identical strings.

Related Items: document.URL property.

vlinkColor
(See alinkColor)

width
(See height)

xmlEncoding
xmlStandalone
xmlVersion
Value: String. Read-Only
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari-

These three properties reveal information about the document as it pertains to XML. More specifically, they
convey the XML encoding of the document, whether or not the document is a standalone XML document,
and the XML version number of the document, respectively. If any of the property values cannot be deter-
mined, their values remain null.

562

Document Objects Reference

document.xmlEncoding

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 562

Methods
captureEvents(eventTypeList)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

In Navigator 4 only, the natural propagation of an event is downward from the window object, through the
document object, and eventually reaching its target. For example, if you click a button, the click event
first reaches the window object; then it goes to the document object; if the button is defined within a layer,
the event also filters through that layer; eventually (in a split second) the event reaches the button, where an
onclick event handler is ready to act on that click.

Event capture with different syntax has been standardized in the W3C DOM and is implemented in W3C
browsers, such as Firefox and Camino (Mozilla). More specifically, the W3C event capture model introduces
the concept of an event listener, which enables you to bind an event handler function to an event. See the
addEventListener() method in Chapter 15 for the W3C counterpart to the NN4 captureEvents()
method. Also, see Chapter 25 for more details on the combination of event capture and event bubbling in
the W3C DOM.

clear()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Ever since NN2, the document.clear() method was intended to clear the current document from the
browser window. This method is quite impractical, because you typically need some further scripts to exe-
cute after you clear the document, but if the scripts are gone, nothing else happens.

In practice, the document.clear() method never did what it was supposed to do (and in earlier browsers
easily caused browser crashes). I recommend against using document.clear(), including in preparation
for generating a new page’s content with document.write(). The document.write() method clears the
original document from the window before adding new content. If you truly want to empty a window or
frame, then use document.write() to write a blank HTML document or to load an empty HTML docu-
ment from the server.

Related Items: document.close(), document.write(), document.writeln() methods.

close()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Whenever a layout stream is opened to a window through the document.open() method or either of the
document writing methods (which also open the layout stream), you must close the stream after the docu-
ment is written. This causes the Layout:Complete and Done messages to appear in the status line (although
you may experience some bugs in the status message on some platforms). The document-closing step is very
important to prepare the window for the next potential round of replenishment with new script-assembled
HTML. If you don’t close the document, subsequent writing is appended to the bottom of the document.

Some or all of the data specified for the window won’t display properly until you invoke the
document.close() method, especially when images are being drawn as part of the document stream. A
common symptom is the momentary appearance and then disappearance of the document parts. If you see
such behavior, look for a missing document.close() method after the last document.write() method.

563

document.close()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 563

Example
Before you experiment with the document.close() method, be sure you understand the
document.write() method described later in this chapter. After that, make a separate set of the three doc-
uments for that method’s example (Listings 18-14 through 18-16 in a different directory or folder). In the
takePulse() function listing, comment out the document.close() statement, as shown here:

msg += “<p>Make it a great day!</body></html>”;
parent.frames[1].document.write(msg);
//parent.frames[1].document.close();

Now try the pages on your browser. You see that each click of the upper button appends text to the bottom
frame, without first removing the previous text. The reason is that the previous layout stream was never
closed. The document thinks that you’re still writing to it. Also, without properly closing the stream, the
last line of text may not appear in the most recently written batch.

Related Items: document.open(), document.clear(), document.write(), document.writeln()
methods.

createAttribute(“attributeName”)
Returns: Attribute object reference.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The document.createAttribute() method generates an attribute node object (formally known as an
Attr object in W3C DOM terminology) and returns a reference to the newly created object. Invoking the
method assigns only the name of the attribute, so it is up to your script to assign a value to the object’s
nodeValue property and then plug the new attribute into an existing element through that element’s
setAttributeNode() method (described in Chapter 15). The following sequence generates an attribute
that becomes an attribute of a table element:

564

Document Objects Reference

document.createAttribute()

Part III

Fixing the Sticky Wait Cursor

From time to time, various browsers fail to restore the cursor to normal after document.write() and
document.close() (and some other content-modifying scripts). The cursor stubbornly remains in the wait

mode or the progress bar keeps spinning when, in truth, all processing has been completed. One, albeit ugly,
workaround that I have found effective is to force an extra document.close() via a javascript: pseudo-
URL (just adding another document.close() to your script doesn’t do the trick). For use within a frameset,
the javascript: URL must be directed to the top of the frameset hierarchy, whereas the document.close()
is aimed at the frame that had its content changed. For example, if the change is made to a frame named
content, create a function, such as the following:

function recloseDoc() {
top.location.href =

“javascript:void (parent.content.document.close())”;
}

If you place this function in the framesetting document, scripts that modify the content frame can invoke this
script after any operation that prevents the normal cursor from appearing.

26_069165 ch18.qxp 3/1/07 3:47 PM Page 564

var newAttr = document.createAttribute(“width”);
newAttr.nodeValue = “80%”;
document.getElementById(“myTable”).setAttributeNode(newAttr);

Attributes do not always have to be attributes known to the HTML standard, because the method also
works for XML elements, which have custom attributes.

Example
To create an attribute and inspect its properties, enter the following text into the top text box of The
Evaluator (see Chapter 13):

a = document.createAttribute(“author”)

Now enter a into the bottom text box to inspect the properties of an Attr object.

Related Items: setAttributeNode() method (Chapter 15).

createCDATASection(“data”)
Returns: CDATA section object reference.
Compatibility: WinIE-, MacIE5, NN7+, Moz+, Safari-

The document.createCDATASection() method generates a CDATA section node for whatever string you
pass as the parameter. The value of the new node becomes the string that you pass.

createComment(“commentText”)
Returns: Comment object reference.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The document.createComment() method creates an instance of a comment node. Upon creation, the
node is in memory and available to be inserted into the document via any node’s appendChild() or
insertBefore() method.

Related Items: appendChild() and insertBefore() methods.

createDocumentFragment()
Returns: Document fragment object reference.
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The document.createDocumentFragment() method creates an instance of an empty document fragment
node. This node serves as a holder that can be used to assemble a sequence of nodes in memory. After creat-
ing and assembling nodes into the document fragment, the entire fragment can be inserted into the docu-
ment tree.

A document fragment is particularly helpful when your scripts assemble an arbitrary sequence of element
and text nodes. By providing a parent node for all content within, the fragment node supplies the necessary
parent node context for W3C DOM node methods, such as appendChild() during the content assembly
process. If you then append or insert the document fragment node to an element in the rendered document
tree, the fragment wrapper disappears, leaving just its content in the desired location in the document.
Therefore, a typical usage pattern for a document fragment is to begin by creating an empty fragment node
(through the createDocumentFragment() method), populate it at will with newly created element or text

565

document.createDocumentFragment()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 565

nodes or both, and then use the appropriate node method on a document tree’s element to append, insert,
or replace using the fragment node as the source material.

Related Items: None.

createElement(“tagName”)
createElementNS(“namespaceURI”, “tagName”)
Returns: Element object reference.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The document.createElement() and document.createElementNS() methods generate an element
object for whatever HTML (or XML) tag name you pass as the parameter. An object created in this manner
is not officially part of the current document node tree because it has not yet been placed into the docu-
ment. But these methods are the way you begin assembling an element object that eventually gets inserted
into the document. The createElementNS() method is identical to createElement() except the latter
method accepts an extra parameter that you use to pass a namespace URI for the element. Additionally, the
tag name that you specify when creating an element via createElementNS() must be a qualified name.
Note, however, that createElementNS() is not supported in Internet Explorer through version 7.

The returned value is a reference to the object. Properties of that object include all properties (set to default
values) that the browser’s object model defines for that element object. Your scripts can then address the
object through this reference to set the object’s properties. Typically you do this before the object is inserted
into the document, especially because otherwise read-only properties can be modified before the element is
inserted into the document.

After the object is inserted into the document, the original reference (for example, a global variable used to
store the value returned from the createElement() method) still points to the object, even while it is in
the document and being displayed for the user. To demonstrate this effect, consider the following state-
ments that create a simple paragraph element containing a text node:

var newText = document.createTextNode(“Four score and seven years ago...”);
var newElem = document.createElement(“p”);
newElem.id = “newestP”;
newElem.appendChild(newText);
document.body.appendChild(newElem);

At this point, the new paragraph is visible in the document. But you can now modify, for example, the style
of the paragraph by addressing either the element in the document object model or the variable that holds
the reference to the object you created:

newElem.style.fontSize = “20pt”;

or

document.getElementById(“newestP”).style.fontSize = “20pt”;

The two references are inextricably connected and always point to the exact same object. Therefore, if you
want to use a script to generate a series of similar elements (for example, a bunch of li list item elements),
then you can use createElement() to make the first one and set all properties that the items have in com-
mon. Then use cloneNode() to make a new copy, which you can then treat as a separate element (and
probably assign unique IDs to each one).

566

Document Objects Reference

document.createElement()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 566

When scripting in the W3C DOM environment, you may rely on document.createElement() frequently
to generate new content for a page or portion thereof (unless you prefer to use the convenience innerHTML
property to add content in the form of strings of HTML). In a strict W3C DOM environment, creating new
elements is not a matter of assembling HTML strings, but rather creating genuine element (and text node)
objects.

Example
Chapter 15 contains numerous examples of the document.createElement() method in concert with
methods that add or replace content to a document. See Listings 15-10, 15-21, 15-22, 15-28, 15-29, and
15-31.

Related Items: document.createTextNode() method.

createEvent(“eventType”)
Returns: Event object reference.
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The document.createEvent() method creates an instance of a W3C DOM Event object of the specified
event category. Upon creation, the generic event must be initialized as a particular event type, and any other
relevant properties set for the event. After successfully initializing the event, you can fire it through a call to
the dispatchEvent() method.

Event types recognized by Mozilla are KeyEvents, MouseEvents, MutationEvents, and UIEvents.
Beginning with Mozilla 1.7.5, the following additional types may also be used: Event, KeyboardEvent,
MouseEvent, MutationEvent, MutationNameEvent, TextEvent, UIEvent. The process of initializing
each of these event types requires its own series of parameters in the associated initEvent() method. See
Chapter 25 for more details.

Example
Following is an example of how you might create an event, initialize it to a specific event type, and send it
to a given element:

var evt = document.createEvent(“MouseEvents”);
evt.initEvent(“mouseup”, true, true);
document.getElementById(“myButton”).dispatchEvent(evt);

Related Items: createEventObject() method; W3C DOM event object (Chapter 25).

createEventObject([eventObject])
Returns: event object.
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The IE-specific createEventObject() method creates an event object, which can then be passed as a
parameter to the fireEvent() method of any element object. The event object created by this event is
just like an event object created by a user or system action.

An optional parameter enables you to base the new event on an existing event object. In other words, the
properties of the newly created event object pick up all the properties of the event object passed as a
parameter, which then enables you to modify properties of your choice. If you provide no parameter to the
method, then you must fill the essential properties manually. For more about the properties of an event
object, see Chapter 25.

567

document.createEventObject()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 567

Example
See the discussion of the fireEvent() method in Chapter 15 for an example of the sequence to follow
when creating an event to fire on an element.

Related Items: createEvent() method; fireEvent() method (see Chapter 15); event object (see
Chapter 25).

createNSResolver(nodeResolver)
Returns: XPath namespace resolver object reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

The createNSResolver() method is used in the context of XPath to alter a node so that it can resolve
namespaces. This is necessary as part of the evaluation of an XPath expression. The only parameter is the
node that is to serve as the basis for the namespace resolver.

Related Items: evaluate() method.

createRange()
Returns: Range object reference.
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The document.createRange() method creates an empty W3C DOM Range object with the boundary
points of the range collapsed to the point before the first character of the rendered body text.

Related Items: Range object.

createStyleSheet([“URL”[, index]])
Returns: styleSheet object reference.
Compatibility: WinIE4+, MacIE4, NN-, Moz-, Safari-

The IE-specific createStyleSheet() method creates a styleSheet object, a type of object that includes
style element objects as well as style sheets that are imported into a document through the link element.
Thus you can dynamically load an external style sheet even after a page has loaded.

Unlike the other create methods entering W3C DOM usage, the createStyleSheet() method not only
creates the style sheet, but it inserts the object into the document object model immediately. Thus, any style
sheet rules that belong (or are assigned to) that object take effect on the page right away. If you’d rather cre-
ate a style sheet and delay its deployment, you should use the createElement() method and element
object assembly techniques.

If you don’t specify any parameters to the method in WinIE, an empty styleSheet object is created. It is
assumed that you will then use styleSheet object methods, such as addRule() to add the details to the
style sheet. To link in an external style sheet file, assign the file’s URL to the first parameter of the method.
The newly imported style sheet is appended to the end of the document.styleSheets array of styleSheet
objects. An optional second parameter lets you specify precisely where in the sequence of style sheet ele-
ments the newly linked style sheet should be inserted. A style sheet rule for any given selector is overridden
by a style sheet for the same selector that appears later in the sequence of style sheets in a document.

568

Document Objects Reference

document.createStyleSheet()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 568

Example
Listing 18-12 demonstrates adding an internal and external stylesheet to a document. For the internal addi-
tion, the addStyle1() function invokes document.createStyleSheet() and adds a rule governing the
p elements of the page. In the addStyle2() function, an external file is loaded. That file contains the fol-
lowing two style rules:

h2 {font-size:20pt; color:blue}
p {color:blue}

Notice that by specifying a position of zero for the imported stylesheet, the addition of the internal
stylesheet always comes afterward in styleSheet object sequence. Thus, except when you deploy only the
external style sheet, the red text color of the p elements override the blue color of the external style sheet. If
you remove the second parameter of the createStyleSheet() method in addStyle2(), the external
style sheet is appended to the end of the list. If it is the last style sheet to be added, the blue color prevails.
Repeatedly clicking the buttons in this example continues to add the style sheets to the document.

LISTING 18-12

Creating and Applying Style Sheets

<html>
<head>

<title>document.createStyleSheet() Method</title>
<script type=”text/javascript”>
function addStyle1() {

var newStyle = document.createStyleSheet();
newStyle.addRule(“P”, “font-size:16pt; color:red”);

}

function addStyle2() {
var newStyle = document.createStyleSheet(“lst18-12.css”,0);

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“addint”), “click”, addStyle1);
addEvent(document.getElementById(“addext”), “click”, addStyle2);

});
</script>

</head>

continued

569

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 569

LISTING 18-12 (continued)

<body>
<h1>document.createStyleSheet() Method</h1>
<hr />
<form>

<input type=”button” id=”addint” value=”Add Internal” /> <input
type=”button” id=”addext” value=”Add External” />

</form>
<h2>Section 1</h2>
<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

<h2>Section 2</h2>
<p>Duis aute irure dolor in reprehenderit involuptate velit esse cillum

dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deseruntmollit anim id est
laborum.</p>

</body>
</html>

Related Items: styleSheet object (Chapter 26).

createTextNode(“text”)
Returns: Object.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

A text node is a W3C DOM object that contains body text without any HTML (or XML) tags, but is usually
contained by (meaning, is a child of) an HTML (or XML) element. Without the IE innerText convenience
property for modifying the text of an element, the W3C DOM relies on the node hierarchy of a document
(Mozilla exceeds the W3C DOM by providing an innerHTML property, which you can use to replace text in
an element). To insert or replace text inside an HTML element in the W3C DOM way, you create the text
node and then use methods of the parent element (for example, appendChild(), insertBefore(), and
replaceChild(), all described in Chapter 15) to modify the document’s content. To generate a fresh text
node, use document.createTextNode().

The sole parameter of the createTextNode() method is a string whose text becomes the nodeValue of
the text node object returned by the method. You can also create an empty text node (passing an empty
string) and assign a string to the nodeValue of the object later. As soon as the text node is present in the
document object model, scripts can simply change the nodeValue property to modify text of an existing
element. For more details on the role of text nodes in the W3C DOM, see Chapter 14.

Example
Although Chapters 14 and 15 (Listing 15-21, for instance) provide numerous examples of the
createTextNode() method at work, using The Evaluator (see Chapter 13) is instructive to see just what
the method generates in IE5+/W3C. You can use one of the built-in global variables of The Evaluator to
hold a reference to a newly generated text node by entering the following statement into the top text field:

a = document.createTextNode(“Hello”)

570

Document Objects Reference

document.createTextNode()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 570

The Results box shows that an object was created. Now, look at the properties of the object by entering a
into the bottom text field. The precise listings of properties varies between IE5+ and W3C browsers, but the
W3C DOM properties that they share in common indicate that the object is a node type 3 with a node
name of #text. No parents, children, or siblings exist yet because the object created here is not part of the
document hierarchy tree until it is explicitly added to the document.

To see how insertion works, enter the following statement into the top text field to append the text node to
the myP paragraph:

document.getElementById(“myP”).appendChild(a)

The word Hello appears at the end of the simple paragraph lower on the page. Now you can modify the text
of that node either through the reference from the point of view of the containing p element or through the
global variable reference for the newly created node:

document.getElementById(“myP”).lastChild.nodeValue = “Howdy”

or

a.nodeValue = “Howdy”

Related Items: document.createElement() method.

createTreeWalker(rootNode, whatToShow, filterFunction,
entityRefExpansion)
Returns: TreeWalker object reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz1.4+, Safari-

The document.createTreeWalker() method creates an instance of a TreeWalker object that can be
used to navigate the document tree. The first parameter to the method indicates the node in the document
that is to serve as the root node of the tree. The second parameter is an integer constant that specifies one of
several built-in filters for selecting nodes to be included in the tree. Following are the possible acceptable
values for this parameter:

NodeFilter.SHOW_ALL NodeFilter.SHOW_ATTRIBUTE

NodeFilter.SHOW_CDATA_SECTION NodeFilter.SHOW_COMMENT

NodeFilter.SHOW_DOCUMENT NodeFilter.SHOW_DOCUMENT_FRAGMENT

NodeFilter.SHOW_DOCUMENT_TYPE NodeFilter.SHOW_ELEMENT

NodeFilter.SHOW_ENTITY NodeFilter.SHOW_ENTITY_REFERENCE

NodeFilter.SHOW_NOTATION NodeFilter.SHOW_PROCESSING_INSTRUCTION

NodeFilter.SHOW_TEXT

The third parameter to the createNodeIterator() method is a reference to a filter function that can filter
nodes even further than the whatToShow parameter. This function must accept a single node and return an
integer value based upon one of the following constants: NodeFilter.FILTER_ACCEPT, NodeFilter.FIL-
TER_REJECT, or NodeFilter.FILTER_SKIP. The idea is that you code the function to perform a test on
each node and return an indicator value that lets the node iterator know whether or not to include the node
in the tree. Your function doesn’t loop through nodes. The TreeWalker object mechanism repetitively
invokes the function as needed to look for the presence of whatever characteristic you wish to use as a filter.

571

document.createTreeWalker()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 571

The final parameter to the method is a Boolean value that determines whether or not the content of
entity reference nodes should be treated as hierarchical nodes. This parameter applies primarily to XML
documents.

Related Items: TreeWalker object.

elementFromPoint(x, y)
Returns: Element object reference.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific elementFromPoint() method returns a reference to whatever element object occupies the
point whose integer coordinates are supplied as parameters to the method. The coordinate plane is that of
the document, whose top-left corner is at point 0,0. This coordinate plane can be very helpful in interactive
designs that need to calculate collision detection between positioned objects or mouse events.

When more than one object occupies the same point (for example, one element is positioned atop another),
the element with the highest z-index value is returned. A positioned element always wins when placed atop
a normal body-level element. And if multiple overlapping positioned elements have the same z-index value
(or none by default), the element that comes last in the source code order is returned for the coordinate that
they share in common.

Example
Listing 18-13 is a document that contains many different types of elements, each of which has an ID attrib-
ute assigned to it. The onmouseover event handler for the document object invokes a function that finds
out which element the cursor is over when the event fires. Note that the event coordinates are
event.clientX and event.clientY, which use the same coordinate plane as the page for their point of
reference. As you roll the mouse over every element, its ID appears on the page. Some elements, such as br
and tr, occupy no space in the document, so you cannot get their IDs to appear. On a typical browser
screen size, a positioned element rests atop one of the paragraph elements so that you can see how the
elementFromPoint() method handles overlapping elements. If you scroll the page, the coordinates for the
event and the page’s elements stay in sync.

LISTING 18-13

Tracking the Mouse as It Passes over Elements

<html>
<head>

<title>document.elementFromPoint() Method</title>
<script type=”text/javascript”>
function replaceHTML(elem, text) {

while(elem.firstChild)
elem.removeChild(elem.firstChild);

elem.appendChild(document.createTextNode(text));
}

function showElemUnderneath() {
var elem = document.elementFromPoint(event.clientX, event.clientY);
replaceHTML(document.getElementById(“mySpan”), elem.id);

}

// bind the event handlers

572

Document Objects Reference

document.elementFromPoint()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 572

function addEvent(elem, evtType, func) {
if (elem.addEventListener) {

elem.addEventListener(evtType, func, false);
} else if (elem.attachEvent) {

elem.attachEvent(“on” + evtType, func);
} else {

elem[“on” + evtType] = func;
}

}
addEvent(window, “load”, function() {

addEvent(document, “mouseover”, showElemUnderneath);
});
</script>

</head>
<body id=”myBody”>

<h1 id=”header”>document.elementFromPoint() Method</h1>
<hr id=”myHR” />
<p id=”instructions”>Roll the mouse around the page. The coordinates

of the mouse pointer are currently atop an element<br id=”myBR” />
whose ID is:””.</p>

<form id=”myForm”>
<input id=”myButton” type=”button” value=”Sample Button” />

</form>
<table border=”1” id=”myTable”>

<tr id=”tr1”>
<td id=”td_A1”>Cell A1</td>
<td id=”td_B1”>Cell B1</td>

</tr>
<tr id=”tr2”>

<td id=”td_A2”>Cell A2</td>
<td id=”td_B2”>Cell B2</td>

</tr>
</table>
<h2 id=”sec1”>Section 1</h2>
<p id=”p1”>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed

do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

<h2 id=”sec2”>Section 2</h2>
<p id=”p2”>Duis aute irure dolor in reprehenderit involuptate velit esse

cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit anim
id est laborum.</p>

<div id=”myDIV”
style=”position:absolute; top:340; left:300; background-color:yellow”>

Here is a positioned element.
</div>

</body>
</html>

573

document.elementFromPoint()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 573

Related Items: event.clientX, event.clientY properties; positioned objects (Chapter 40 on the
CD-ROM).

evaluate(“expression”, contextNode, resolver, type, result)
Returns: XPath result object reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

The document.evaluate() method evaluates an XPath expression and returns a result as an XPath result
object (XPathResult). The most important parameter to this method is the first one, which contains the
actual XPath expression as a string. The second parameter is the context node to which the expression
applies, whereas the third parameter is the namespace resolver (see the createNSResolver() method).
The resolver parameter can be specified as null as long as there aren’t any namespace prefixes used
within the expression.

The type parameter determines the type of the result of the expression and is specified as one of the XPath
result types, such as 0 for any type, 1 for number, 2 for string, and so forth. Finally, a reusable result
object can be specified in the last parameter, which will then be modified and returned from the method as
the result of the expression.

Related Items: createNSResolver() method.

execCommand(“commandName”[, UIFlag] [, param])
Returns: Boolean.
Compatibility: WinIE4+, MacIE-, NN7.1+, Moz1.3+, Safari1.3+

The execCommand() method is the JavaScript gateway to a set of commands that is outside of the methods
defined for objects in the object model. A series of related methods (queryCommandEnable() and others)
also facilitate management of these commands.

The syntax for the execCommand() method requires at least one parameter, a string version of the com-
mand name. Command names are not case-sensitive. An optional second parameter is a Boolean flag to
instruct the command to display any user interface artifacts that may be associated with the command. The
default is false. For the third parameter, some commands require that an attribute value be passed for the
command to work. For example, to set the font size of a text range, the syntax is

myRange.execCommand(“FontSize”, true, 5);

The execCommand() method returns Boolean true if the command is successful; false if not successful.
Some commands can return values (for example, finding out the font name of a selection), but those are
accessed through the queryCommandValue() method.

In Internet Explorer, most of these commands operate on body text selections that are TextRange objects.
As described in Chapter 36 on the CD-ROM, a TextRange object must be created under script control. But
a TextRange object can be done in response to a user selecting some text in the document. Because a
TextRange object is independent of the element hierarchy (indeed, a TextRange can spread across multi-
ple nodes), it cannot respond to stylesheet specifications. Thus, many of the commands that can operate on
a TextRange object have to do with formatting or modifying the text. For a list of commands that work
exclusively on TextRange objects, see the TextRange.execCommand() method in Chapter 36 on the
CD-ROM.

574

Document Objects Reference

document.execCommand()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 574

Although many of the commands intended for the TextRange also work when invoked from the document
object, in this section the focus is on those commands that have scope over the entire document. Table 18-2
lists those few commands that work with the document. Also listed are many commands that work exclu-
sively on text selections in the document, whether the selections are made manually by the user or with the
help of the TextRange object (see Chapter 36 on the CD-ROM).

TABLE 18-2

document.execCommand() Commands

Command Parameter Description

BackColor Color String Encloses the current selection with a font element whose style attribute
sets the background-color style to the parameter value.

CreateBookmark Anchor String Encloses the current selection (or text range) with an anchor element whose
name attribute is set to the parameter value.

CreateLink URL String Encloses the current selection with an a element whose href attribute is set
to the parameter value.

FontName Font Face(s) Encloses the current selection with a font element whose face attribute is
set to the parameter value.

FontSize Size String Encloses the current selection with a font element whose size attribute is
set to the parameter value.

FontColor Color String Encloses the current selection with a font element whose color attribute is
set to the parameter value.

Indent None Indents the current selection.

JustifyCenter None Centers the current selection.

JustifyFull None Full-justifies the current selection.

JustifyLeft None Left-justifies the current selection.

JustifyRight None Right-justifies the current selection.

Outdent None Outdents the current selection.

Refresh None Reloads the page.

RemoveFormat None Removes formatting for the current selection.

SelectAll None Selects all text of the document.

UnBookmark None Removes anchor tags that surround the current selection.

Unlink None Removes link tags that surround the current selection.

Unselect None Deselects the current selection anywhere in the document.

Mozilla 1.4 and Safari 1.3 added a feature that allows scripts to turn an iframe element’s document object
into an HTML editable document. Here is an example of how to center the selected text in an iframe with
an ID of msg:

document.getElementById(“msg”).contentDocument.execCommand(“JustifyCenter”);

575

document.execCommand()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 575

Note that the contentDocument property is used to access the iframe as a document. Visit http://
www.mozilla.org/editor for additional details and examples of the document.execCommand()
method.

Example
You can find many examples of the execCommand() method for the TextRange object in Chapter 36 on
the CD-ROM. But you can try out the document-specific commands in The Evaluator (see Chapter 13) in
Internet Explorer if you like. Try each of the following statements in the top text box and click the Evaluate
button:

document.execCommand(“Refresh”)
document.execCommand(“SelectAll”)
document.execCommand(“Unselect”)

All methods return true in the Results box.

Because any way you can evaluate a statement in The Evaluator forces a body selection to become de-
selected before the evaluation takes place, you can’t experiment this way with the selection-oriented
commands.

Related Items: queryCommandEnabled(), queryCommandIndterm(), queryCommandState(),
queryCommandSupported(), queryCommandText(), queryCommandValue() methods.

getElementById(“elementID”)
Returns: Element object reference.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The document.getElementById() method is the W3C DOM syntax for retrieving a reference to any ele-
ment in a document that has a unique identifier assigned to its id attribute. If the document contains more
than one instance of an ID, the method returns a reference to the first element in source code order with
that ID. Because this method is such an important avenue to writing references to objects that are to be
modified under script control, you can see how important it is to assign unique IDs to elements.

This method’s name is quite a finger twister for scripters, especially compared to the IE4+ convention of let-
ting a reference to any element begin simply with the object’s ID. However, the getElementById()
method is the modern way of acquiring an element’s reference for W3C DOM-compatible browsers, includ-
ing IE. When you type this method, be sure to use a lowercase d as the last character of the method name.

Unlike some other element-oriented methods (for example, getElementsByTagName()), which can be
invoked on any element in a document, the getElementById() method works exclusively with the
document object.

Example
You can find many examples of this method in use throughout this book, but you can take a closer look at
how it works by experimenting in The Evaluator (see Chapter 13). A number of elements in The Evaluator
have IDs assigned to them, so that you can use the method to inspect the objects and their properties. Enter
the following statements into both the top and bottom text fields of The Evaluator. Results from the top
field are references to the objects; results from the bottom field are lists of properties for the particular
object.

576

Document Objects Reference

document.getElementById()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 576

document.getElementById(“myP”)
document.getElementById(“myEM”)
document.getElementById(“myTitle”)
document.getElementById(“myScript”)

Related Items: getElementsByTagName() method (Chapter 15).

getElementsByName(“elementName”)
Returns: Array.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The document.getElementsByName() method returns an array of references to objects whose name
attribute is assigned the element name passed as the method’s attribute. Although NN6+/Moz recognizes
name attributes even for elements that don’t have them by default, IE does not. Therefore, for maximum
cross-browser compatibility, use this method only to locate elements that have name attributes defined for
them by default, such as form control elements. If the element does not exist in the document, the method
returns an array of zero length.

For the most part, you are best served by using IDs on elements and the getElementById() method to
unearth references to individual objects. But some elements, especially the input element of type radio, use
the name attribute to group elements together. In that case, a call to getElementsByName() returns an
array of all elements that share the name — facilitating perhaps a for loop that inspects the checked prop-
erty of a radio button group. Thus, instead of using the old-fashioned approach by way of the containing
form object:

var buttonGroup = document.forms[0].radioGroupName;

you can go more directly:

var buttonGroup = document.getElementsByName(radioGroupName);

In the latter case, you operate independently of the containing form object’s index number or name. This
assumes, of course, that a group name is not shared elsewhere on the page, which would certainly lead to
confusion.

Example
Use The Evaluator (see Chapter 13) to test out the getElementsByName() method. All form elements in
the upper part of the page have names associated with them. Enter the following statements into the top
text field and observe the results:

document.getElementsByName(“output”)
document.getElementsByName(“speed”).length
document.getElementsByName(“speed”)[0].value

You can also explore all of the properties of the text field by typing the following expression into the bottom
field:

document.getElementsByName(“speed”)[0]

Related Items: document.getElementsById(), getElementsByTagName() methods.

577

document.getElementsByName()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 577

importNode(node, deep)
Returns: Node object reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

The document.importNode() method imports a node from another document object into the current
document object. A copy of the original node is made when the node is imported, meaning that the original
node remains unchanged. The second parameter to the method is a Boolean value that determines whether
or not the node’s entire subtree is imported (true) or just the node itself (false).

open([“mimeType”] [,”replace”])
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Opening a document is different from opening a window. In the case of a window, you’re creating a new
object, both on the screen and in the browser’s memory. Opening a document, on the other hand, tells the
browser to get ready to accept some data for display in the window named or implied in the reference to the
document.open() method. (For example, parent.frames[1].document.open() may refer to a differ-
ent frame in a frameset, whereas document.open() implies the current window or frame.) Therefore, the
method name may mislead newcomers because the document.open() method has nothing to do with
loading documents from the web server or hard disk. Rather, this method is a prelude to sending data to a
window through the document.write() or document.writeln() methods. In a sense, the
document.open() method merely opens the valve of a pipe; the other methods send the data down the
pipe like a stream, and the document.close() method closes that valve as soon as the page’s data has been
sent in full.

The document.open() method is optional because a document.write() method that attempts to write to
a closed document automatically clears the old document and opens the stream for a new one. Whether or
not you use the document.open() method, be sure to use the document.close() method after all the
writing has taken place.

An optional parameter to the document.open() method enables you to specify the nature of the data
being sent to the window. A MIME (Multipurpose Internet Mail Extension) type is a specification for trans-
ferring and representing multimedia data on the Internet (originally for mail transmission, but now applica-
ble to all Internet data exchanges). You’ve seen MIME depictions in the list of helper applications in your
browser’s preferences settings. A pair of data type names separated by a slash represents a MIME type (such
as text/html and image/gif). When you specify a MIME type as a parameter to the document.open()
method, you’re instructing the browser about the kind of data it is about to receive, so that it knows how to
render the data. Common values that most browsers accept are:

text/html
text/plain
image/gif
image/jpeg
image/xbm

If you omit the parameter, JavaScript assumes the most popular type, text/html— the kind of data you
typically assemble in a script prior to writing to the window. The text/html type includes any images that
the HTML references. Specifying any of the image types means that you have the raw binary representation
of the image that you want to appear in the new document — possible, but unlikely.

Another possibility is to direct the output of a write() method to a plug-in. For the mimeType parameter,
specify the plug-in’s MIME type (for example, application/x-director for Shockwave). Again, the data

578

Document Objects Reference

document.open()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 578

you write to a plug-in must be in a form that it knows how to handle. The same mechanism also works for
writing data directly to a helper application.

IE accepts only the text/html MIME type parameter.

Modern browsers include a second, optional parameter to the method: replace. This parameter does for
the document.open() method what the replace() method does for the location object. For docu-
ment.open(), it means that the new document you are about to write replaces the previous document in
the window or frame from being recorded to that window or frame’s history.

Example
You can see an example of where the document.open() method fits in the scheme of dynamically creating
content for another frame in the discussion of the document.write() method later in this chapter.

Related Items: document.close(), document.clear(), document.write(), document.writeln()
methods.

queryCommandEnabled(“commandName”)
queryCommandIndterm(“commandName”)
queryCommandCommandState(“commandName”)
queryCommandSupported(“commandName”)
queryCommandText(“commandName”)
queryCommandValue(“commandName”)
Returns: Various values.
Compatibility: WinIE4+, MacIE-, NN7.1, Moz1.3+, Safari-

These six methods lend further support to the execCommand() method for document and TextRange
objects in WinIE. If you choose to use the execCommand() method to achieve some stylistic change on a
text selection, you can use some of these query methods to make sure the browser supports the desired
command and to retrieve any returned values. Table 18-3 summarizes the purpose and returned values for
each of the query methods.

TABLE 18-3

IE Query Commands

queryCommand Returns Description

Enabled Boolean Reveals whether the document or TextRange object is in a suitable state to be
invoked.

Indterm Boolean Reveals whether the command is in an indeterminate state.

CommandState Boolean | null Reveals whether the command has been completed (true), is still working
(false), or is in an indeterminate state (null).

Supported Boolean Reveals whether the command is supported in the current browser.

Text String Returns any text that may be returned by a command.

Value Varies Returns whatever value (if any) is returned by a command.

NOTENOTE

579

document.queryCommandEnabled()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 579

Because the execCommand() method cannot be invoked on a page while it is still loading, any such invoca-
tions that may collide with the loading of a page should check with queryCommandEnabled() prior to
invoking the command. Validating that the browser version running the script supports the desired com-
mand is also a good idea. Therefore, you may want to wrap any command call with the following condi-
tional structure:

if (document.queryCommandEnabled(commandName) &&
document.queryCommandSupported(commandName)) {
...

}

When using a command to read information about a selection, use the queryCommandText() or
queryCommandValue() methods to catch that information (recall that the execCommand() method itself
returns a Boolean value regardless of the specific command invoked).

Example
See the examples for these methods covered under the TextRange object in Chapter 36 on the CD-ROM.

Related Items: TextRange object (see Chapter 36 on the CD-ROM); execCommand() method.

recalc([allFlag])
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

IE5 introduced the concept of dynamic properties. With the help of the setExpression() method of all
elements and the expression() style sheet value, you can establish dependencies between object proper-
ties and potentially dynamic properties, such as a window’s size or a draggable element’s location. After
those dependencies are established, the document.recalc() method causes those dependencies to be
recalculated — usually in response to some user action, such as resizing a window or dragging an element.

The optional parameter is a Boolean value. The default value, false, means that the recalculations are per-
formed only on expressions for which the browser has detected any change since the last recalculation. If
you specify true, however, all expressions are recalculated whether they have changed or not.

Mozilla 1.4 includes a feature that allows scripts to turn an iframe element’s document object into an
HTML editable document. Part of the scripting incorporates the document.execCommand() and related
methods. Visit http://www.mozilla.org/editor for current details and examples.

Example
You can see an example of recalc() in Listing 15-32 for the setExpression() method. In that example,
the dependencies are between the current time and properties of standard element objects.

Related Items: getExpression(), removeExpression(), setExpression() methods (Chapter 15).

write(“string1” [,”string2” ... [, “stringn”]])
writeln(“string1” [,”string2” ... [, “stringn”]])
Returns: Boolean true if successful.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

580

Document Objects Reference

document.write()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 580

Both of these methods send text to a document for display in its window. The only difference between the
two methods is that document.writeln() appends a carriage return to the end of the string it sends to the
document. This carriage return is helpful for formatting source code when viewed through the browser’s
source view window. For new lines in rendered HTML that is generated by these methods, you must still
write a
 to insert a line break.

A common, incorrect conclusion that many JavaScript newcomers make is that these methods enable a
script to modify the contents of an existing document, which is not true. As soon as a document has loaded
into a window (or frame), the only fully backward-compatible text that you can modify without reloading
or rewriting the entire page is the content of text and textarea objects. In IE4+, you can modify HTML
and text through the innerHTML, innerText, outerHTML, and outerText properties of any element. For
W3C DOM–compatible browsers, you can modify an element’s text by setting its nodeValue or innerHTML
properties. The preferred approach for modifying the content of a node involves strict adherence to the
W3C DOM, which requires creating and inserting or replacing new elements, as described in Chapter 15
and demonstrated in examples throughout this chapter and the rest of the book.

The two safest ways to use the document.write() and document.writeln() methods are to:

n Write some or all of the page’s content by way of scripts embedded in the document

n Send HTML code either to a new window or to a separate frame in a multiframe window

For the first case, you essentially interlace script segments within your HTML. The scripts run as the docu-
ment loads, writing whatever scripted HTML content you like. This task is exactly what you did in
script1.htm in Chapter 3. This task is also how you can have one page generate browser-specific HTML
when a particular class of browser requires unique syntax.

In the latter case, a script can gather input from the user in one frame and then algorithmically determine
the layout and content destined for another frame. The script assembles the HTML code for the other frame
as a string variable (including all necessary HTML tags). Before the script can write anything to the frame, it
can optionally open the layout stream (to close the current document in that frame) with the
parent.frameName.document.open() method. In the next step, a
parent.frameName.document.write() method pours the entire string into the other frame. Finally,
a parent.frameName.document.close() method ensures that the total data stream is written to the
window. Such a frame looks just the same as if it were created by a source document on the server rather
than on the fly in memory. The document object of that window or frame is a full citizen as a standard
document object. You can, therefore, even include scripts as part of the HTML specification for one of these
temporary HTML pages.

After an HTML document (containing a script that is going to write via the write() or writeln() meth-
ods) loads completely, the page’s incoming stream closes automatically. If you then attempt to apply a series
of document.write() statements, the first document.write() method completely removes all vestiges of
the original document. That includes all of its objects and scripted variable values. Therefore, if you try to
assemble a new page with a series of document.write() statements, the script and variables from the orig-
inal page will be gone before the second document.write() statement executes. To get around this poten-
tial problem, assemble the content for the new screen of content as one string variable and then pass that
variable as the parameter to a single document.write() statement. Also be sure to include a
document.close() statement in the next line of script.

Assembling HTML in a script to be written via the document.write() method often requires skill in con-
catenating string values and nesting strings. A number of JavaScript String object shortcuts facilitate the
formatting of text with HTML tags (see Chapter 28 for details).

581

document.write()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 581

If you are writing to a different frame or window, you are free to use multiple document.write() statements
if you like. Whether your script sends lots of small strings via multiple document.write() methods or
assembles a larger string to be sent through one document.write() method depends partly on the situation
and partly on your own scripting style. From a performance standpoint, a fairly standard procedure is to do
more preliminary work in memory and place as few I/O (input/output) calls as possible. On the other hand,
making a difficult-to-track mistake is easier in string concatenation when you assemble longer strings. My per-
sonal preference is to assemble longer strings, but you should use the system that’s most comfortable for you.

You may see another little-known way of passing parameters to these methods. Instead of concatenating
string values with the plus (+) operator, you can also bring string values together by separating them with
commas, in which case the strings appear to be arguments to the document.write() method. For exam-
ple, the following two statements produce the same results:

document.write(“Today is “ + new Date());
document.write(“Today is “,new Date());

Neither form is better than the other, so use the one that feels more comfortable to your existing program-
ming style.

Dynamically generating scripts requires an extra trick, especially in NN. The root of the prob-
lem is that if you try code, such as document.write(“<script></script>”), the browser

interprets the end script tag as the end of the script that is doing the writing. You have to trick the browser
by separating the end tag into a couple of components. Escaping the forward slash also helps. For example, if
you want to load a different .js file for each class of browser, the code looks similar to the following:

// variable ‘browserVer’ is a browser-specific string
// and ‘page’ is the HTML your script is accumulating
// for document.write()
page += “<script type=’text/javascript’ src=’” +

browseVer + “.js’><” + “\/script>”;

Using the document.open(), document.write(), and document.close() methods to display images in
a document requires some small extra steps. First, any URL assignments that you write via
document.write() must be complete (not relative) URL references. Alternatively, you can write the
<base> tag for the dynamically generated page so that its href attribute value matches that of the file that
is writing the page.

The other image trick is to be sure to specify height and width attributes for every image, scripted or oth-
erwise. Document-rendering performance is improved on all platforms, because the values help the browser
lay out elements even before their details are loaded.

In addition to the document.write() example that follows (see Listings 18-14 through 18-16), you can
find fuller implementations that use this method to assemble images and bar charts in many of the applica-
tions in Chapters 49 through 58 on the CD-ROM. Because you can assemble any valid HTML as a string to
be written to a window or frame, a customized, on-the-fly document can be as elaborate as the most com-
plex HTML document that you can imagine.

Example
The example in Listings 18-14 through 18-16 demonstrates several important points about using the docu-
ment.write() or document.writeln() methods for writing to another frame. First is the fact that you
can write any HTML code to a frame, and the browser accepts it as if the source code came from an HTML
file somewhere. In the example, I assemble a complete HTML document, including basic HTML tags for
completeness.

NOTENOTE

582

Document Objects Reference

document.write()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 582

LISTING 18-14

A Frameset for the Document Writing Example

<html>
<head>

<title>Writin’ to the doc</title>
</head>
<frameset rows=”50%,50%”>

<frame name=”Frame1” src=”lst18-15.htm” />
<frame name=”Frame2” src=”lst18-16.htm” />

</frameset>
</html>

LISTING 18-15

Writing a Document Based upon User Input

<html>
<head>

<title>Document Write Controller</title>
<script type=”text/javascript”>
function takePulse(form) {

var msg = “<html><head><title>On The Fly with “ +
form.yourName.value + “<\/title><\/head>”;

msg += “<body bgcolor=’salmon’><h1>Good Day “ + form.yourName.value +
“!<\/h1><hr />”;

for (var i = 0; i < form.how.length; i++) {
if (form.how[i].checked) {

msg += form.how[i].value;
break;

}
}
msg += “
Make it a great day!<\/body><\/html>”;
parent.Frame2.document.write(msg);
parent.Frame2.document.close();

}

function getTitle() {
alert(“Lower frame document.title is now:” +

parent.Frame2.document.title);
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {

continued

583

document.write()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 583

LISTING 18-15 (continued)

elem.attachEvent(“on” + evtType, func);
} else {

elem[“on” + evtType] = func;
}

}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“enter”), “click”,
function(evt) {takePulse(document.getElementById(“enter”).form)});

addEvent(document.getElementById(“peek”), “click”, getTitle);
});
</script>

</head>
<body>

Fill in a name, and select how that person feels today. Then click “Write
To Below” to see the results in the bottom frame.
<form>

Enter your first name:<input type=”text” name=”yourName”
value=”Dave” />
<p>How are you today? <input type=”radio” name=”how”

value=”I hope that feeling continues forever.”
checked=”checked” />Swell <input type=”radio” name=”how”
value=”You may be on your way to feeling Swell” />Pretty Good
<input type=”radio” name=”how”
value=”Things can only get better from here.” />So-So</p>

<p><input type=”button” id=”enter” name=”enter”
value=”Write To Below” /></p>

<hr />
<input type=”button” id=”peek” name=”peek”

value=”Check Lower Frame Title” />
</form>

</body>
</html>

LISTING 18-16

A Placeholder Page for the Document Writing Example

<html>
<head>

<title>Placeholder</title>
</head>
<body>
</body>

</html>

584

Document Objects Reference

document.write()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 584

It is important to note that this example customizes the content of the document based on user input. This
customization makes the experience of working with your web page feel far more interactive to the user —
yet you’re doing it without any server-side programs.

The second point I want to bring home is that the document created in the separate frame by the document
.write() method is a genuine document object. In this example, the <title> tag of the written document
changes if you redraw the lower frame after changing the entry of the name field in the upper frame. If you
click the lower button after updating the bottom frame, you see that the document.title property has,
indeed, changed to reflect the <title> tag written to the browser in the course of displaying the frame’s
page. The fact that you can artificially create full-fledged, JavaScript document objects on the fly represents
one of the most important powers of serverless CGI scripting (for information delivery to the user) with
JavaScript. You have much to take advantage of here if your imagination is up to the task.

Note that you can easily modify Listing 18-15 to write the results to the same frame as the document con-
taining the field and buttons. Instead of specifying the lower frame:

parent.frames[1].document.open()
parent.frames[1].document.write(msg)
parent.frames[1].document.close()

The code simply can use:

document.open()
document.write(msg)
document.close()

This code would replace the form document with the results and not require any frames in the first place.
Because the code assembles all of the content for the new document into one variable value, that data sur-
vive the one document.write() method.

The frameset document (see Listing 18-14) creates a blank frame by loading a blank document (see Listing
18-16). An alternative I highly recommend is to have the framesetting document fill the frame with a blank
document of its own creation. See the section “Blank frames” in Chapter 16 for further details about this
technique.

Related Items: document.open(); document.close(); document.clear() methods.

Event handlers
onselectionchange
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The onselectionchange event can be triggered by numerous user actions, although all of those actions
occur on elements that are under the influence of the WinIE5.5+ edit mode.

Related Items: oncontrolselect event handler.

onstop
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The onstop event fires in WinIE5+ when the user clicks the browser’s Stop button. Use this event handler
to stop potentially runaway script execution on a page, because the Stop button does not otherwise control
scripts after a page has loaded. If you are having a problem with a runaway repeat loop during develop-
ment, you can temporarily use this event handler to let you stop the script for debugging.

585

document.onstop

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 585

Example
Listing 18-17 provides a simple example of an intentional infinitely looping script. In case you load this
page into a browser other than IE5+, you can click the Halt Counter button to stop the looping. The Halt
Counter button as well as the onstop event handler invokes the same function.

LISTING 18-17

Stopping a Script Using the onstop Event Handler

<html>
<head>

<title>onStop Event Handler</title>
<script type=”text/javascript”>
var counter = 0;
var timerID;
function startCounter() {

document.forms[0].display.value = ++counter;
//clearTimeout(timerID)
timerID = setTimeout(“startCounter()”, 10);

}
function haltCounter() {

clearTimeout(timerID);
counter = 0;

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document, “stop”, haltCounter);
addEvent(document.getElementById(“start”), “click”, startCounter);
addEvent(document.getElementById(“halt”), “click”, haltCounter);

});
</script>

</head>
<body>

<h1>onStop Event Handler</h1>
<hr />
<p>Click the browser’s Stop button (in IE) to stop the script counter.</p>
<form>

<p><input type=”text” name=”display” /></p>
<input type=”button” id=”start” value=”Start Counter” />
<input type=”button” id=”halt” value=”Halt Counter” />

586

Document Objects Reference

document.onstop

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 586

</form>
</body>

</html>

Related Items: Repeat loops (Chapter 32).

body Element Object
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alink createControlRange() onafterprint

background createTextRange() onbeforeprint

bgColor doScroll() onscroll

bgProperties

bottomMargin

leftMargin

link

noWrap

rightMargin

scroll

scrollLeft

scrollTop

text

topMargin

vLink

Syntax
Accessing body element object properties or methods:

[window.] document.body.property | method([parameters])

About this object
In object models that reveal HTML element objects, the body element object is the primary container of the
content that visitors see on the page. The body contains all rendered HTML. This special place in the node
hierarchy gives the body object some special powers, especially in the IE object model.

587

document.body

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 587

As if to signify the special relationship, both the IE and W3C object models provide the same shortcut refer-
ence to the body element: document.body. As a first-class HTML element object (as evidenced by the long
lists of properties, methods, and event handlers covered in Chapter 15), you are also free to use other syn-
taxes to reach the body element.

You are certainly familiar with several body element attributes that govern body-wide content appearance,
such as link colors (in three states) and background (color or image). But IE and NN/Mozilla (and the W3C
so far) have some very different ideas about the body element’s role in scripting documents. Many methods
and properties that NN/Mozilla considers to be the domain of the window (for example, scrolling, inside
window dimensions, and so forth), IE puts into the hands of the body element object. Therefore, whereas
NN/Mozilla scrolls the window (and whatever it may contain), IE scrolls the body (inside whatever window
it lives). And because the body element fills the entire viewable area of a browser window or frame, that
viewable rectangle is determined in IE by the body’s scrollHeight and scrollWidth properties, whereas
NN4+/Moz features window.innerHeight and window.innerWidth properties. This distinction is
important to point out because when you are scripting window- or document-wide appearance factors, you
may have to look for properties and methods for the window or body element object, depending on your
target browser(s).

Use caution when referencing the document.body object while the page is loading. The
object may not officially exist until the page has completely loaded. If you need to set some

initial properties through scripting, do so in response to the onload event handler located in the <body>
tag. Attempts at setting body element object properties in immediate scripts inside the head element may
result in error messages about the object not being found.

Properties
aLink
bgColor
link
text
vLink
Value: Hexadecimal triplet or color name string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The aLink, link, and vLink properties replaced the ancient document properties alinkColor,
linkColor, and vlinkColor. The bgColor property is the same as the old document.bgColor property,
while the text property replaced the document.fgColor property. These properties serve as the scripted
equivalents of the HTML attributes for the body element — the property names more closely align them-
selves with the HTML attributes than the old property names.

I use past tense when referring to these properties because CSS has largely made them obsolete. Granted,
they still work but will likely fall into disuse as web developers continue to embrace style sheets as the pre-
ferred means of altering color in web pages. Link colors that are set through pseudo-class selectors in style
sheets (as style attributes of the body element) must be accessed through the style property for the body
object.

NOTENOTE

588

Document Objects Reference

document.body.aLink

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 588

background
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The background property enables you to set or get the URL for the background image (if any) assigned to
the body element. A body element’s background image overlays the background color in case both attrib-
utes or properties are set. To remove an image from the document’s background, set the
document.body.background property to an empty string.

Similar to the properties that provide access to colors on the page, the background image in modern web
pages should be set through style sheets, as opposed to the body.background property. In that case, you
access the background programmatically through the style property of the body object.

bgColor
(See aLink)

bgProperties
Value: String constant. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific bgProperties property is an alternative way of adjusting whether the background image
should remain fixed when the user scrolls the document or if it should scroll with the document. Initial set-
tings for this behavior should be done through the background-attachment CSS attribute and modified
under script control by way of the body element’s style.backgroundAttachment property.

No matter which way you reference this property, the only allowable values are string constants scroll
(the default) or fixed.

Example
Both of the following statements change the default behavior of background image scrolling in IE4+:

document.body.bgProperties = “fixed”;

or

document.body.style.backgroundAttachment = “fixed”;

The added benefit of using the style sheet version is that it also works in NN6+/Moz.

Related Items: body.background property.

bottomMargin
leftMargin
rightMargin
topMargin
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

589

document.body.bottomMargin

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 589

The four IE-specific margin properties are alternatives to setting the corresponding four margin style sheet
attributes for the body element (body.style.marginBottom, and so on). Style sheet margins represent
blank space between the edge of an element’s content and its next outermost container. In the case of the
body element, that container is an invisible document container.

Of the four properties, only the one for the bottom margin may be confusing if the content does not fill the
vertical space of a window or frame. The margin value is not automatically increased to accommodate the
extra blank space.

Example
Both of the following statements change the default left margin in IE4+:

document.body.leftMargin = 30;

or

document.body.style.marginLeft = 30;

Related Items: style object.

leftMargin
(See bottomMargin)

link
(See aLink)

noWrap
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The noWrap property enables you to modify the body element behavior normally set through the nowrap
attribute. Because the property name is a negative, the Boolean logic needed to control it can get confusing.

The default behavior for a body element is for text to wrap within the width of the window or frame. This
behavior occurs when the value of noWrap is its default value of false. By turning noWrap to true, a line
of text continues to render past the right edge of the window or frame until the HTML contains a line break
(or end of paragraph). If the text continues on past the right edge of the window, the window (or frame)
gains a horizontal scroll bar (of course, not if a frame is set to not scroll).

By and large, users don’t like to scroll in any direction if they don’t have to. Unless you have a special need
to keep single lines intact, let the default behavior rule the day.

Example
To change the word-wrapping behavior from the default, the statement is:

document.body.noWrap = true;

Related Items: None.

rightMargin
(See bottomMargin)

590

Document Objects Reference

document.body.rightMargin

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 590

scroll
Value: Constant string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific scroll property provides scripted access to the IE-specific scroll attribute of a body ele-
ment. By default, an IE body element displays a vertical scroll bar even if the height of the content does not
warrant it; a horizontal scroll bar appears only when the content is forced to be wider than the window or
frame. You can make sure that both scroll bars are hidden by setting the scroll attribute to no or changing
it through a script. Possible values for this property are the constant strings yes and no.

Other than frame attributes and NN4+/Moz-signed scripts, other browsers do not provide facilities for
turning off scroll bars under script control. You can generate a new window (via the window.open()
method) and specify that its scroll bars be hidden.

Example
To change the scroll bar appearance from the default, the statement is:

document.body.scroll = “no”;

Related Items: window.scrollbars property; window.open() method.

scrollLeft
scrollTop
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN7+, Moz+, Safari-

Even though the scrollLeft and scrollTop properties of the body object are the same as those for
generic HTML element objects, they play an important role in determining the position of positioned ele-
ments (described more fully in Chapter 40 on the CD-ROM). Because the mouse event and element posi-
tion properties tend to be relative to the visible content region of the browser window, you must take the
scrolling values of the document.body object into account when assigning an absolute position. Values for
both of these properties are integers representing pixels.

Example
Listing 18-18 is an unusual construction that creates a frameset and creates the content for each of the two
frames all within a single HTML document. In the left frame of the frameset are two fields that are ready to
show the pixel values of the right frame’s xOffset and yOffset properties. The content of the right frame
is a 30-row table of fixed width (800 pixels). Mouse-click events are captured by the document level (see
Chapter 25), allowing you to click any table or cell border or outside the table to trigger the
showOffsets() function in the right frame. That function is a simple script that displays the page offset
values in their respective fields in the left frame.

LISTING 18-18

Determining Scroll Values

<html>
<head>

<title>Master of all Windows</title>

continued

591

document.body.scrollLeft

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 591

LISTING 18-18 (continued)

<script type=”text/javascript”>
function leftFrame() {

var output = “<html><body><h3>Body Scroll Values<\/h3><hr />\n”;
output += “<form>body.scrollLeft:<input type=’text’ name=’xOffset’

size=4 />
\n”;
output += “body.scrollTop:<input type=’text’ name=’yOffset’

size=4 />
\n”;
output += “<\/form><\/body><\/html>”;
return output;

}

function rightFrame() {
var output = “<html><head><script type=’text/javascript’>\n”;
output += “function showOffsets() {\n”;
output += “parent.readout.document.forms[0].xOffset.value =

document.body.scrollLeft\n”;
output += “parent.readout.document.forms[0].yOffset.value =

document.body.scrollTop\n}\n”;
output += “document.onclick = showOffsets\n”;
output += “<\/script><\/head><body><h3>Content Page<\/h3>\n”;
output += “Scroll this frame and click on a table border to view page

offset values.
<hr />\n”;
output += “<table border=5 width=800>”;
var oneRow = “<td>Cell 1<\/td><td>Cell 2<\/td><td>Cell 3<\/td><td>Cell

4<\/td><td>Cell 5<\/td>”;
for (var i = 1; i <= 30; i++) {

output += “<tr><td>Row “ + i + “<\/b><\/td>” + oneRow +
“<\/tr>”;

}
output += “<\/table><\/body><\/html>”;
return output;

}
</script>

</head>
<frameset cols=”30%,70%”>

<frame name=”readout” src=”javascript:parent.leftFrame()” />
<frame name=”display” src=”javascript:parent.rightFrame()” />

</frameset>
</html>

Related Items: window.pageXOffset, window.pageYOffset properties.

text
(See aLink)

592

Document Objects Reference

document.body.text

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 592

topMargin
(See bottomMargin)

vLink
(See aLink)

Methods
createControlRange()
Returns: Array.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

This method creates a control range in WinIE5+ browsers. Control ranges are used for control-based selec-
tion, as opposed to text-based selection made possible by text ranges. The method only applies to docu-
ments in edit mode. In regular document view mode, the createControlRange() method returns an
empty array.

createTextRange()
Returns: Object.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The body element object is the most common object to use to generate a TextRange object in IE4+, espe-
cially when the text you are about to manipulate is part of the document’s body text. The initial TextRange
object returned from the createTextRange() method encompasses the entire body element’s HTML and
body text. Further action on the returned object is required to set the start and end point of the range. See
Chapter 36’s discussion of the TextRange object for more details (located on the CD-ROM).

Example
See Listing 36-10 (on the CD-ROM) for an example of the createTextRange() method in action.

Related Items: TextRange object (Chapter 36 on the CD-ROM).

doScroll([“scrollAction”])
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Use the doScroll() method to simulate user action on the scroll bars inside a window or frame that holds
the current document. This method comes in handy if you are creating your own scroll bars in place of the
standard system scroll bars. Scrolling is instantaneous, however, rather than with animation even if the
Display control panel is set for animated scrolling. The parameter for this method is one of the string con-
stant values shown in Table 18-4. In practice, occasionally the longer scroll action names more closely sim-
ulate an actual click on the scroll bar component, whereas the shortcut versions may scroll at a slightly
different increment.

593

document.body.doScroll()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 593

TABLE 18-4

document.body.doScroll() Parameters

Long Parameter Short Parameter Scroll Action Simulates

scrollbarDown down Clicking the down arrow.

scrollbarHThumb n/a Clicking the horizontal scroll bar thumb (no scrolling action).

scrollbarLeft left Clicking the left arrow.

scrollbarPageDown pageDown Clicking the page down area or pressing PgDn (default).

scrollbarPageLeft pageLeft Clicking the page left area.

scrollbarPageRight pageRight Clicking the page right area.

scrollbarPageUp pageUp Clicking the page up area or pressing PgUp.

scrollbarVThumb n/a Clicking the vertical scroll bar thumb (no scrolling action).

Unlike scrolling to a specific pixel location (by setting the body element’s scrollTop and scrollLeft
properties), the doScroll() method depends entirely on the spatial relationship between the body content
and the window or frame size. Also, the doScroll() method triggers the onscroll event handler for the
body element object.

Be aware that scripted modifications to body content can alter these spatial relationships. IE is prone to
being sluggish in updating all of its internal dimensions after content has been altered. Should you attempt
to invoke the doScroll() method after such a layout modification, the scroll may not be performed as
expected. You may find the common trick of using setTimeout() to delay the invocation of the
doScroll() method by a fraction of a second.

Example
Use The Evaluator (see Chapter 13) to experiment with the doScroll() method in IE5+. Size the browser
window so that at least the vertical scroll bar is active (meaning it has a thumb region). Enter the following
statement into the top text field and press Enter a few times to simulate clicking the PgDn key:

document.body.doScroll()

Return to the top of the page and now do the same for scrolling by the increment of the scroll bar down
arrow:

document.body.doScroll(“down”)

You can also experiment with upward scrolling. Enter the desired statement in the top text field and leave
the text cursor in the field. Manually scroll to the bottom of the page and then press Enter to activate the
command.

Related Items: body.scroll, body.scrollTop, body.scrollLeft properties; window.scroll(),
window.scrollBy(), window.scrollTo() methods.

594

Document Objects Reference

document.body.doScroll()

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 594

Event handlers
onafterprint
onbeforeprint
(See the onafterprint event handler for the window object, Chapter 16)

TreeWalker Object

Property Method Event Handler

currentNode firstChild() (None)

expandEntityReference lastChild()

filter nextNode()

root nextSibling()

whatToShow parentNode()

previousNode()

previousSibling()

Syntax
Creating a TreeWalker object:

var treewalk = document.createTreeWalker(document, whatToShow, filterFunction,
entityRefExpansion);

Accessing TreeWalker object properties and methods:

TreeWalker.property | method([parameters])

Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

About this object
The TreeWalker object serves as a container for a list of nodes that meet the criteria defined by the
document.createTreeWalker() method, which is used to create the object. The list of nodes contained
by a TreeWalker object conforms to the same hierarchical structure of the document from which they are
referenced. The TreeWalker object provides a means of navigating through this list of nodes based upon
their inherent tree-like structure.

You can think of the TreeWalker object as somewhat of an iterator object since its main purpose is to pro-
vide a means of stepping through nodes in a list. However, in this case the list is a hierarchical tree, as
opposed to a linear list. The TreeWalker object maintains a pointer inside the list of nodes that always
points to the current node. Whenever you navigate through the list using the TreeWalker object, the navi-
gation is always relative to the pointer. For example, referencing the previous or next node through calls to
the previousNode() or nextNode() methods depends upon the current position of the node pointer in
the tree.

595

TreeWalker

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 595

Use the document.createTreeWalker() method to create a TreeWalker object for a particular docu-
ment. This method requires a user function that serves as a filter for nodes selected to be part of the tree. A
reference to the function is the third parameter of the method call. The return value of this user function
can be one of three constant values, which indicate the status of the current node: NodeFilter
.FILTER_ACCEPT, NodeFilter.FILTER_REJECT, or NodeFilter.FILTER_SKIP. The difference between
NodeFilter.FILTER_REJECT and NodeFilter.FILTER_SKIP is that descendents of skipped nodes may
still qualify as part of the tree, whereas rejected nodes and their descendents are excluded altogether.
Following is an example of a user function you could use to create a TreeWalker object:

function ratingAttrFilter(node) {
if (node.hasAttribute(“rating”)) {

return NodeFilter.FILTER_ACCEPT;
}
return NodeFilter.FILTER_REJECT;

}

In this example function, only nodes containing an attribute named rating are allowed through the filter,
which means only those nodes will get added to the list (tree). With this function in place, you then call the
document.createTreeWalker() method to create the TreeWalker object:

var myTreeWalker = document.createTreeWalker(document, NodeFilter.SHOW_ELEMENT,
ratingAttrFilter, false);

Now that the TreeWalker object is created, you can use its properties and methods to access individual
nodes and navigate through the list.

Properties
currentNode
Value: Node reference. Read/Write
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

The currentNode property returns a reference to the current node, which sits at the location of the tree’s
node pointer. Although you can use the currentNode property to access the current node, you can also use
it to set the current node.

Example
To assign a node to the current position in the tree, just create an assignment statement using the
currentNode property:

myTreeWalker.currentNode = document.getElementById(“info”);

Related Item: root property.

596

Document Objects Reference

TreeWalker.currentNode

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 596

expandEntityReference
filter
root
whatToShow
Value: See text. Read-Only
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

These properties reflect the parameter values passed into the document.createTreeWalker() method
upon the creation of the TreeWalker object.

Related Item: document.createTreeWalker() method.

Methods
firstChild()
lastChild()
nextSibling()
parentNode()
previousSibling()
Returns: Node reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

These methods return references to nodes within the hierarchy of the tree-like list of nodes contained by the
TreeWalker object. There is a parent-child relationship among all of the nodes in the tree, and these func-
tions are used to obtain node references based upon this relationship. The node pointer within the tree
moves to the new node whenever you use one of these methods to navigate to a given node. This means
you can access the new node as the current node after calling one of these navigation methods.

Example
The following code shows how to obtain the tag name of the parent node of the current node in the
TreeWalker object:

if (myTreeWalker.parentNode()) {
var parentTag = myTreeWalker.currentNode.tagName;

}

Related Items: nextNode(), previousNode() methods.

nextNode()
previousNode()
Returns: Node reference.
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-

The nextNode() and previousNode() methods navigate back and forth in the list of nodes contained by
the TreeWalker object. It’s important to note that these methods operate on the node list as if it has been
flattened from a tree into a linear sequence of nodes. Both methods move the internal node pointer to the
next or previous node, respectively.

597

TreeWalker.nextNode()

The Document and Body Objects 18

26_069165 ch18.qxp 3/1/07 3:47 PM Page 597

Example
The following code demonstrates both the node filter function and a typical function you could use to dis-
play (in a series of alert windows, perhaps for debugging purposes) the IDs of all elements inside the body
that have id attributes assigned. The nextNode() method is called first to advance the TreeWalker’s node
pointer to the first node of the collection, and then iteratively (inside a do-while construction) to obtain
the next node that passes the node filter’s test.

function idFilter(node) {
if (node.hasAttribute(“id”)) {

return NodeFilter.FILTER_ACCEPT;
}
return NodeFilter.FILTER_SKIP;

}

function showIds() {
var tw =
document.createTreeWalker(document.body, NodeFilter.SHOW_ELEMENT, idFilter,

false);
// make sure TreeWalker contains at least one node, and go to it if true
if (tw.nextNode()) {

do {
alert(tw.currentNode.id);

} while (tw.nextNode());
}

}

Related Items: parentNode() method.

598

Document Objects Reference

Running Subhead

Part III

26_069165 ch18.qxp 3/1/07 3:47 PM Page 598

The Web is based on the notion that the world’s information can be strung
together by way of the hyperlink — the clickable hunk of text or image
that enables an inquisitive reader to navigate to a further explanation or

related material. Of all the document objects you work with in JavaScript, the
link is the one that makes that connection. Anchors also provide guideposts to
specific locations within documents.

As scriptable objects going back to the first scriptable browsers, links and
anchors are comparatively simple devices. But this simplicity belies their signifi-
cance in the entire scheme of the Web. Under script control, links can be far
more powerful than mere tethers to locations on the Web.

In modern browsers, the notion of separating links and anchors as similar yet
distinctly different objects begins to fade. The association of the word link with
objects is potentially confused by the newer browsers’ recognition of the link
element (see Chapter 37 on the CD-ROM), which has an entirely different pur-
pose, as a scriptable object. Taking the place of the anchor and link objects is an
HTML element object representing the element created by the <a> tag. As an ele-
ment object, the a element assumes all of the properties, methods, and event
handlers that accrue to all HTML element objects in modern object models. To
begin making that transition, this chapter treats all three types of objects at the
same time.

599

IN THIS CHAPTER
Differences among link, anchor,
and a element objects

Scripting a link to invoke
a script function

Scripting a link to swap an image
on mouse rollovers

Link and Anchor Objects

27_069165 ch19.qxp 3/1/07 3:47 PM Page 599

Anchor, Link, and a Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

charset

coords

hash

host

hostname

href

hreflang

Methods

mimeType

name

nameProp

pathname

port

protocol

rel

rev

search

shape

target

type

urn

Syntax
Accessing link object properties:

(all) [window.]document.links[index].property

Accessing a element object properties:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

600

Document Objects Reference

a

Part III

27_069165 ch19.qxp 3/1/07 3:47 PM Page 600

About this object
A little scripting history can help you understand where the link and anchor objects came from and how
the a element object evolved from them.

Using the terminology of the original object model, the anchor and link objects are both created in the
object model from the <a> tag. What distinguishes a link from an anchor is the presence of the href attri-
bute in the tag. Without an href attribute, the element is an anchor object, which has only a single prop-
erty (name) in modern browsers. A link, on the other hand, is much more alive as an object — all because
of the inclusion of an href attribute, which usually points to a URL to load into a window or frame.

When object models treat HTML elements as objects, both the anchor and link objects are subsumed by the
a element object. Even so, one important characteristic from the original object holds true: All a element
objects that behave as link objects (by virtue of the presence of an href attribute) are members of the
document.links property array. Therefore, if your scripts need to inspect or modify properties of all link
objects on a page, they can do so by way of a for loop through the array of link objects. This is true even if
you script solely for modern browsers and want to, say, change a style attribute of all links (for example,
change their style.textDecoration property from none to underline). The fact that the same element
can have different behaviors depending on the existence of one attribute makes me think of the a element
object as potentially two different animals. Thus, you see references to link and anchor objects throughout
this book when the distinction between the two is important.

Scripting newcomers are often confused about the purpose of the target attribute of an a element when
they want a scripted link to act on a different frame or window. Under plain HTML, the target attribute
points to the frame or window into which the new document (the one assigned to the href attribute) is to
load, leaving the current window or frame intact. But if you intend to use event handlers to navigate (by set-
ting the location.href property), the target attribute does not apply to the scripted action. Instead,
assign the new URL to the location.href property of the desired frame or window. For example, if one
frame contains a table of contents consisting entirely of links, the onclick event handlers of those links can
load other pages into the main frame by assigning the URL to the parent.main.location.href property.
You must also cancel the default behavior of any link, as described in the discussion of the generic onclick
event handler in Chapter 15.

When you want a click of the link (whether the link consists of text or an image) to initiate an action without
actually navigating to another URL, you can use a special technique — the javascript: pseudo-URL — to
direct the URL to a JavaScript function. The URL javascript:functionName() is a valid parameter for the
href attribute (and not just in the link object). You can also add a special void operator that guarantees that
the called function does not trigger any true linking action (href=”javascript: void someFunction()”).
Specifying an empty string for the href attribute yields an FTP-like file listing for the client computer — an
undesirable artifact. Don’t forget, too, that if the URL leads to a type of file that initiates a browser helper
application (for example, to play a QuickTime movie), the helper app or plug-in loads and plays without
changing the page in the browser window.

Usage of the javascript: pseudo-URL is controversial. There is no published industry stan-
dard that supports it, even though most browsers do. It is also unfriendly to users who visit the

page with scripting disabled or unavailable (for example, browsers designed for visually impaired users)
because the links won’t do anything, leading to frustration. You should also be aware that search engines
won’t follow these types of links when they work their way through a site.

NOTENOTE

601

a

Link and Anchor Objects 19

27_069165 ch19.qxp 3/1/07 3:47 PM Page 601

A single link can change the content of more than one frame at the same time with the help of JavaScript. If
you want only JavaScript-enabled browsers to act on such links, one approach is to use a javascript:
pseudo-URL to invoke a function that changes the location.href properties of multiple frames. For
example, consider the following function, which changes the content of two frames:

function navFrames(url1, url2) {
parent.product.location.href = url1;
parent.accessories.location.href = url2;

}

Then you can have a javascript: pseudo-URL invoke this multipurpose function and pass the specifics
for the link as parameters:

<a href=”javascript: void navFrames(‘products/gizmo344.html’,
‘access/access344.html’)”>Deluxe Super Gizmo

Or if you want one link to do something for everyone, but something extra for JavaScript-enabled browsers
(an approach that is desirable when designing a page for accessibility), you can combine the standard link
behavior with an onclick event handler to take care of both situations:

function setAccessFrame(url) {
parent.accessories.location.href = url;

}
...
<a href=”products/gizmo344.html” target=”product”
onclick=”setAccessFrame(‘access/access344.html’)”>Deluxe Super Gizmo

The property assignment event handling technique in the previous example is a deliberate sim-
plification to make the code more readable. It is generally better to use the more modern

approach of binding events using the addEventListener() (NN6+/Moz/W3C) or attachEvent() (IE5+)
method. A modern cross-browser event handling technique is explained in detail in Chapter 25.

Notice here that the target attribute is necessary for the standard link behavior, whereas the script assigns
a URL to a frame’s location.href property.

One additional technique allows a single link tag to operate for both scriptable and nonscriptable browsers.
For nonscriptable browsers, establish a genuine URL to navigate from the link. Then make sure that the
link’s onclick event handler evaluates to return false or cancels the default action. At click time, a
scriptable browser executes the event handler and ignores the href attribute; a nonscriptable browser
ignores the event handler and follows the link. See the discussion of the generic onclick event handler in
Chapter 15 for more details.

Properties
charset
Value: String Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz+, Safari+

The charset property represents the HTML 4 charset attribute of an a element. It advises the browser of
the character set used by the document to which the href attribute points. The value is a string of one of
the character set codes from the registry at http://www.iana.org/assignments/character-sets. The
most commonly used character set on the Web is called ISO-8859-5.

NOTENOTE

602

Document Objects Reference

a.charset

Part III

27_069165 ch19.qxp 3/1/07 3:47 PM Page 602

coords
shape
Value: Strings Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz+, Safari+

HTML 4 provides specifications for a elements that accommodate different shapes (rect, circle, and poly)
and coordinates when the link surrounds an image. Although the coords and shape properties are present
for a element objects in all W3C DOM–compatible browsers, active support for the feature is not present
in NN6.

hash
host
hostname
pathname
port
protocol
search
Value: Strings Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

This large set of properties is identical to the same-named properties of the location object (see
Chapter 17). All properties are components of the URL that is assigned to the link object’s href attribute.
Although none of these properties appears in the W3C DOM specification for the a element object, the
properties survive in modern browsers for backward compatibility. If you want to script the change of the
destination for a link, try modifying the value of the object’s href property rather than individual compo-
nents of the URL.

Related Item: location object

href
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The href property (included in the W3C DOM) is the URL of the destination of an a element equipped to
act as a link. URLs can be relative or absolute.

In W3C DOM–compatible browsers, you can turn an anchor object into a link object by assigning a value
to the href property even if the a element has no href attribute in the HTML that loads from the server.
Naturally, this conversion is temporary, and it lasts only as long as the page is loaded in the browser. When
you assign a value to the href property of an a element that surrounds text, the text assumes the appear-
ance of a link (either the default appearance or whatever style you assign to links).

Related Item: location object

603

a.href

Link and Anchor Objects 19

27_069165 ch19.qxp 3/1/07 3:47 PM Page 603

hreflang
Value: String Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz+, Safari+

The hreflang property advises the browser (if the browser takes advantage of it) about the written lan-
guage used for the content to which the a element’s href attribute points. Values for this property must be
in the form of the standard language codes (for example, en-us for U.S. English).

Methods
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The Methods property (note the uppercase M) represents the HTML 4 methods attribute for an a element.
Values for this attribute and property serve as advisory instructions to the browser about which HTTP
method(s) to use for accessing the destination document. This is a rare case in which an HTML 4 attribute
is not echoed in the W3C DOM. In any case, although IE4+ supports the property, the IE browsers do noth-
ing special with the information.

mimeType
Value: String Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

This property is used to obtain the MIME type of the document linked to by the a element. The HTML 4
and W3C DOM specifications define a type attribute and type property instead of mimeType. The prop-
erty is a read-only property and, therefore, has no control over the MIME type of the destination document.

Related Item: a.type property

name
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Although a name attribute is optional for an a element serving solely as a link object, it is required for an
anchor object. This value is exposed to scripting via the name property. Although it is unlikely that you will
need to change the value by scripting, you can use this property as a way to identify a link object from
among the document.links arrays in a repeat loop. For example:

for (var i = 0; i < document.links.length; i++) {
if (document.links[i].name == “bottom” {

// statements dealing with the link named “bottom”
}

}

If this code makes it inside the if clause, you know you’ve found a link with the name bottom.

604

Document Objects Reference

a.name

Part III

27_069165 ch19.qxp 3/1/07 3:47 PM Page 604

nameProp
Value: String Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The IE-specific nameProp property is a convenience property that retrieves the segment of the href to
the right of the rightmost forward slash character of the URL. Most typically, this value is the name of the
file from a URL. But if the URL also includes a port number, that number is returned as part of the
nameProp value.

rel
rev
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The rel and rev properties define relationships in the forward and back directions with respect to the
destination document of the a element. In other words, you’re describing how a link relates to the docu-
ment to which it points, as well as how the document relates back. For example, in a table-of-contents
page, each link to a chapter might have its rel attribute set to chapter, whereas its rev attribute might be
set to contents. Browsers have yet to exploit most of the potential of these attributes and properties.

A long list of values is predefined for these properties, based on the corresponding attribute values specified
in HTML 4. If the browser does nothing with a particular value, the value is ignored. You can string
together multiple values in a space-delimited list inside a single string. Accepted values are as follows:

alternate contents index start

appendix copyright next stylesheet

bookmark glossary prev subsection

chapter help section

target
Value: String Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

An important property of the link object is the target. This value reflects the window name supplied to
the target attribute in the a element.

You can temporarily change the target for a link. But as with most transient object properties, the setting
does not survive soft reloads. Rather than alter the target this way, you can safely force the target change by
letting the href attribute call a javascript:functionName() psuedo-URL in which the function assigns
a document to the desired window.location. If you have done extensive HTML authoring before, you will
find it hard to break the habit of relying on the target attribute.

Another drawback to the target attribute is the fact that it isn’t supported by the strict XHTML DTD. So if
you develop XHTML pages that must validate with the strict DTD, you will not be able to include a target
attribute in your <a> tags. Instead, use the page’s onload event handler or the a element’s onclick event

605

a.target

Link and Anchor Objects 19

27_069165 ch19.qxp 3/1/07 3:47 PM Page 605

handler to invoke a function that assigns the desired value to the target property. In this case, you are
using a JavaScript property to sidestep a limitation associated with an HTML attribute.

Related Item: document.links property

type
Value: String Read/Write
Compatibility: WinIE6+, MacIE6+, NN6+, Moz+, Safari+

The type property represents the HTML 4 type attribute, which specifies the MIME type for the content of
the destination document to which the element’s href attribute points. This is primarily an advisory prop-
erty for browsers that wish to, say, display different cursor styles based on the anticipated type of content at
the other end of the link. Thus far, browsers do not take advantage of this feature. However, you can assign
MIME type values to the attribute (for example, video/mpeg) and let scripts read those values for making
style changes to the link text after the page loads. IE4+ also implements a similar property in the mimeType
property.

Related Item: a.mimeType property

urn
Value: String Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The urn property represents the IE-specific URN attribute, which enables authors to use a URN (Uniform
Resource Name) for the destination of the a element. (See http://www.ietf.org/rfc/rfc2141.txt for
information about URNs.) This property is not in common use.

606

Document Objects Reference

a.urn

Part III

27_069165 ch19.qxp 3/1/07 3:47 PM Page 606

For modern web browsers, images and areas — those items created by the
 and <area> tags — are first-class objects that you can script for
enhanced interactivity. You can swap the image displayed in an tag

with other images, perhaps to show the highlighting of an icon button when the
cursor rolls atop it. And with scriptable client-side area maps, pages can be
smarter about how they respond to users’ clicks on image regions.

One further benefit afforded scripters is that they can preload images into the
browser’s image cache as the page loads. With cached images, the user experi-
ences no delay when the first swap occurs. The need for this capability has
diminished slightly with higher bandwidth connections, but it still isn’t a bad
idea for those users who still rely on connections with speed limitations.

New on the graphical JavaScript scene is the notion of a canvas, which is a graph-
ical region that you can use to carry out graphics operations via JavaScript code.
A few browsers already support canvases, so you can get started tinkering with
them now.

Image and img Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

607

IN THIS CHAPTER
How to precache images

Swapping images after a
document loads

Creating interactive, client-side
image maps

Drawing vector graphics with a
canvas

Image, Area, Map, and
Canvas Objects

28_069165 ch20.qxp 3/1/07 3:48 PM Page 607

Properties Methods Event Handlers

align onabort

alt onerror

border onload

complete

dynsrc

fileCreatedDate

fileModifiedDate

fileSize

fileUpdatedDate

height

href

hspace

isMap

loop

longDesc

lowsrc

mimeType

name

nameProp

naturalHeight

naturalWidth

protocol

src

start

useMap

vspace

width

x

y

Syntax
Creating an Image object:

imageObject = new Image([pixelWidth, pixelHeight]);

608

Document Objects Reference

img

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 608

Accessing img element and image object properties or methods:

(NN3+/IE4+) [window.]document.imageName. property | method([parameters])
(NN3+/IE4+) [window.]document.images[index]. property | method([parameters])
(NN3+/IE4+) [window.]document.images[“imageName”]. property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

About this object
Before getting into detail about images as objects, it’s important to understand the distinction between
instances of the static Image object and img element objects. The former exist only in the browser’s memory
without showing anything to the user; the latter are the elements on the page generated via the (or
nonsanctioned, but accepted, <image>) tag. Scripts use instances of the Image object to precache images
for a page, but Image object instances obviously have fewer applicable properties, methods, and event han-
dlers because they are neither visible on the page nor influenced by tag attributes.

The primary advantage of treating img elements as objects is that scripts can change the image that occupies
the img object’s space on the page, even after the document has loaded and displayed an initial image. The
key to this scriptability is the src property of an image.

In a typical scenario, a page loads with an initial image. That image’s tags specify any of the extra attributes,
such as height and width (which help speed the rendering of the page), and specify whether the image
uses a client-side image map to make it interactive. (See the area object later in this chapter.) As the user
spends time on the page, the image can then change (perhaps in response to user action or some timed
event in the script), replacing the original image with a new one in the same space. In legacy browsers that
support the img element object, the height and width of the initial image that loads into the element estab-
lishes a fixed-sized rectangular space for the image. Attempts to fit an image of another size into that space
forces the image to scale (up or down, as the case may be) to fit the rectangle. But in modern browsers
(IE4+/Moz/W3C), a change in the image’s size is reflected by an automatic reflow of the page content
around the different size.

The benefit of separate instances of the Image object is that a script can create a virtual image to hold a pre-
loaded image. (The image is loaded into the image cache but the browser does not display the image.) The
hope is that one or more unseen images will load into memory while the user is busy reading the page or
waiting for the page to download. Then, in response to user action on the page, an image can change
instantaneously rather than forcing the user to wait for the image to load on demand.

To preload an image, begin by assigning a new, empty image object to a global variable. The new image is
created via the constructor function available to the Image object:

var imageVariable = new Image(width, height);

You help the browser allocate memory for the image if you provide the pixel height and width of the pre-
cached image as parameters to the constructor function. All that this statement does is create an object in
memory whose properties are all empty. To force the browser to load the image into the cache, assign an
image file URL to the object’s src property:

var oneImage = new Image(55,68);
oneImage.src = “neatImage.gif”;

609

img

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 609

As this image loads, you see the progress in the status bar just like any image. Later, assign the src property
of this stored image to the src property of the img element object that appears on the page:

document.images[“someImage”].src = oneImage.src;

Depending on the type and size of image, you will be amazed at the speedy response of this kind of loading.
With small-palette graphics, the image displays instantaneously.

A popular user-interface technique is to change the appearance of an image that represents a clickable but-
ton when the user rolls the mouse pointer atop that art. This action assumes that a mouse event fires on an
element associated with the object. Image rollovers are most commonly accomplished in two different
image states: normal and highlighted. But you may want to increase the number of states to more closely
simulate the way clickable buttons work in application programs. In some instances, a third state signifies
that the button is switched on. For example, if you use rollovers in a frame for navigational purposes and
the user clicks a button to navigate to the Products area, that button stays selected but in a different style
than the rollover highlights. Some designers go one step further by providing a fourth state that appears
briefly when the user mouses down an image. Each one of these states requires the download of yet another
image, so you have to gauge the effect of the results against the delay in loading the page.

The speed with which image swapping takes place may lead you to consider using this approach for anima-
tion. Though this approach may be practical for brief bursts of animation, the many other ways of introducing
animation to your web page (such as via GIF89a-standard images, Flash animations, Java applets, and a variety
of plug-ins) produce animation that offers better speed control. In fact, swapping preloaded JavaScript image
objects for some cartoon-like animations may be too fast. You can build a delay mechanism around the
setInterval() method, but the precise timing between frames varies with client processor performance.

All browsers that implement the img element object also implement the document.images array. You can
(and probably should) use the availability of this array as a conditional switch before any script statements
that work with the img element or Image object. The construction to use is as follows:

if (document.images) {
// statements working with images as objects

}

Earlier browsers treat the absence of this array as the equivalent of false in the if clause’s conditional
statement.

Most of the properties discussed here mirror attributes of the img HTML element. For more details on the
meanings and implications of attribute values on the rendered content, consult the HTML 4.01 specification
(http://www.w3.org/TR/REC-html401) and Microsoft’s extensions for IE (http://msdn
.microsoft.com/workshop/author/dhtml/reference/objects/img.asp).

Properties
align
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The align property defines how the image is oriented in relation to surrounding text content. It is a double-
duty property because you can use it to control the vertical or horizontal alignment depending on the value
(and whether the image is influenced by a float style attribute). Values are string constants, as follows:

absbottom middle
absmiddle right
baseline texttop

610

Document Objects Reference

img.align

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 610

bottom top
left

The default alignment for an image is bottom. Increasingly, element alignment is handed over to stylesheet
control. In modern web pages, designers are encouraged to use stylesheets as opposed to element attributes
for presentation details such as alignment.

Listing 20-1 enables you to choose from the different align property values as they influence the layout of
an image whose HTML is embedded inline with some other text. Resize the window to see different per-
spectives on word-wrapping on a page and their effects on the alignment choices. Not all browsers provide
distinctive alignments for each choice, so experiment in multiple supported browsers.

LISTING 20-1

Testing an Image’s align Property

<html>
<head>

<title>img align Property</title>
<script type=”text/javascript”>
function setAlignment(sel) {

document.getElementById(“myIMG”).align =
sel.options[sel.selectedIndex].value;

}
</script>

</head>
<body>

<h1>img align Property</h1>
<hr />
<form>

Choose the image alignment: <select onchange=”setAlignment(this)”>
<option value=”absbottom”>absbottom</option>
<option value=”absmiddle”>absmiddle</option>
<option value=”baseline”>baseline</option>
<option value=”bottom” selected=”selected”>bottom</option>
<option value=”left”>left</option>
<option value=”middle”>middle</option>
<option value=”right”>right</option>
<option value=”texttop”>texttop</option>
<option value=”top”>top</option>

</select>
</form>
<hr />
<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim adminim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.</p>

</body>
</html>

Related Items: text-align, float stylesheet attributes.

611

img.align

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 611

alt
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The alt property enables you to set or modify the text that the browser displays in the image’s rectangular
space (if height and width are specified in the tag) before the image downloads to the client. Also, if a
browser has images turned off (or is incapable of displaying images), the alt text helps users identify what
is normally displayed in that space. You can modify this alt text even after the page loads.

Example
Use The Evaluator (Chapter 13) to assign a string to the alt property of the document.myIMG image on
the page. First, assign a nonexistent image to the src property to remove the existing image:

document.myIMG.src = “fred.gif”

Scroll down to the image, and you can see a space for the image. Now, assign a string to the alt property:

document.myIMG.alt = “Fred\’s face”

The extra backslash is required to escape the apostrophe inside the string. Scroll down to see the new alt
text in the image space.

Related Item: title property.

border
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The border property defines the thickness in pixels of a border around an image. Remember that if you
wrap an image inside an a element to make use of the mouse events (for rollovers and such), be sure to set
the border=0 attribute of the tag to prevent the browser from generating the usual link kind of bor-
der around the image. Even though the default value of the attribute is zero, surrounding the image with an
a element or attaching the image to a client-side image map puts a border around the image.

Example
Feel free to experiment with the document.myIMG.border property for the image in The Evaluator
(Chapter 13) by assigning different integer values to the property.

Related Items: isMap, useMap properties.

complete
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari-

Sometimes you may want to make sure that an image is not still in the process of loading before allowing
another process to take place. This situation is different from waiting for an image to load before triggering
some other process (which you can do via the image object’s onload event handler). To verify that the img
object displays a completed image, check for the Boolean value of the complete property. To verify that a
particular image file has loaded, first find out whether the complete property is true; then compare the
src property against the desired filename.

612

Document Objects Reference

img.complete

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 612

An image’s complete property switches to true even if only the specified lowsrc image has finished load-
ing. Do not rely on this property alone for determining whether the src image has loaded if both src and
lowsrc attributes are specified in the tag.

One of the best ways to use this property is in an if construction’s conditional statement:

if (document.myImage.complete) {
// statements that work with document.myImage

}

To experiment with the image.complete property, quit and relaunch your browser before loading Listing
20-2 (in case the images are in memory cache). As each image loads, click the “Is it loaded yet?” button to
see the status of the complete property for the image object. The value is false until the loading finishes;
then, the value becomes true. The arch image is the bigger of the two image files. You may have to quit
and relaunch your browser between trials to clear the arch image from the cache (or empty the browser’s
memory cache). If you experience difficulty with this property in your scripts, try adding an onload event
handler (even if it is empty, as in Listing 20-2) to your tag.

LISTING 20-2

Scripting image.complete

<html>
<head>

<title></title>
<script type=”text/javascript”>
function loadIt(theImage,form) {

form.result.value = “”;
document.images[0].src = theImage;

}
function checkLoad(form) {

form.result.value = document.images[0].complete;
}
</script>

</head>
<body>

<form>

<input type=”button” value=”Load keyboard”
onclick=”loadIt(‘cpu2.gif’,this.form)” /> <input type=”button”
value=”Load arch” onclick=”loadIt(‘arch.gif’,this.form)” />
<p><input type=”button” value=”Is it loaded yet?”

onclick=”checkLoad(this.form)” /> <input type=”text”
name=”result” /></p>

</form>
</body>

</html>

613

img.complete

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 613

The property assignment event handling technique in the previous example is a deliberate sim-
plification to make the code more readable. It is generally better to use the more modern

approach of binding events using the addEventListener() (NN6+/Moz/W3C) or attachEvent() (IE5+)
methods. A modern cross-browser event handling technique is explained in detail in Chapter 25.

Related Items: img.src, img.lowsrc, img.readyState properties; onload event handler.

dynsrc
Value: URL string. Read/Write
Compatibility: WinIE4-6, MacIE4+, NN-, Moz-, Safari-

The dynsrc property is a URL to a video source file, which (in IE) you can play through an img element.
You can turn a space devoted to a static image into a video viewer by assigning a URL of a valid video
source (for example, an .avi or .mpg file) to the dynsrc property of the image element object. Unlike the
src property of image objects, assigning a URL to the dynsrc property does not precache the video.

You may experience buggy behavior in various IE versions when you assign a value to an image’s dynsrc
property after the img element renders a .gif or .jpg image. In WinIE5, the status bar indicates that the
video file is still downloading, even though the download is complete. Clicking the Stop button has no
effect. WinIE5.5+ may not even load the video file, leaving a blank space on the page. MacIE5 changes
between static and motion images with no problems, but playing the video file multiple times causes the
img element to display black space beyond the element’s rectangle.

Related Items: img.loop, img.start properties.

fileCreatedDate
fileModifiedDate
fileUpdatedDate
fileSize
Value: String, Integer (fileSize). Read-Only
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

These four IE-specific properties return information about the file displayed in the img element (whether
still or motion image). Three of the properties reveal the dates on which the current image’s file was created,
modified, and updated. For an unmodified file, its creation and modified dates are the same. The updated
date of an image is the date on which the image file was last uploaded to the server; the fileUpdatedDate
property is only supported on WinIE5.5+ and MacIE5. The fileSize property reveals the number of bytes
of the file.

Date values returned for the first two properties are formatted differently between IE4 and IE5. The former
provides a full readout of the day and date; the latter returns a format similar to mm/dd/yyyy. Note, how-
ever, that the values contain only the date and not the time. In any case, you can use the values as the
parameter to a new Date() constructor function. This enables you to then use date calculations for such
information as the number of days between the current day and the most recent modification.

Not all servers provide the proper date or size information about a file or in a format that IE can interpret.
Test your implementation on the deployment server to ensure compatibility.

Also, be aware that these properties can be read-only for a file that is loaded in the browser. JavaScript by
itself cannot get this information about files on the server that are not loaded in the browser.

NOTENOTE

614

Document Objects Reference

img.fileCreatedDate

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 614

All of these file-related properties are present in the Mac version of IE, but the values are
empty.

Example
These properties are similar to the same-named properties of the document object. You can see these prop-
erties in action in Listing 18-4. Make a copy of that listing, and supply an image before modifying the refer-
ences from the document object to the image object to see how these properties work with the img element
object.

Or just test them out one at a time using an existing image in the Evaluator (Chapter 13):

document.getElementById(“myIMG”).fileSize

Related Items: None.

height
width
Value: Integer. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The height and width properties return and control the pixel height and width of an image object. The
property is read/write in all modern browsers that support the img element object. However, the net effect
of changing these properties varies from browser to browser. For example, if you adjust the height prop-
erty of an image in Mozilla, the browser automatically scales the image within the same proportions as the
original. But adjusting the width property has no effect on the height property. In IE7, the opposite effect
is true in regard to width and height. Any time an image is scaled dynamically, unwanted pixelation can
occur in the image, so modify an image’s size with extreme care.

Example
Use The Evaluator (Chapter 13) to experiment with the height and width properties. Begin retrieving the
default values by entering the following two statements into the top text box:

document.myIMG.height
document.myIMG.width

Increase the height of the image from its default 90 to 180:

document.myIMG.height = 180

Next, exaggerate the width:

document.myIMG.width = 400

View the resulting image.

Related Items: hspace, vspace properties.

href
(See src property)

NOTENOTE

615

img.href

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 615

hspace
vspace
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The hspace and vspace properties control the pixel width of a transparent margin surrounding an image.
Specifically, hspace controls the margins at the left and right of the image; vspace controls the top and
bottom margins. Images, by default, have margins of zero pixels.

Example
Use The Evaluator (Chapter 13) to experiment with the hspace and vspace properties. Begin by noticing
that the image near the bottom of the page has no margins specified for it and is flush left with the page.
Now assign a horizontal margin spacing of 30 pixels:

document.myIMG.hspace = 30

The image has shifted to the right by 30 pixels. An invisible margin also exists to the right of the image.

Related Items: height, width properties.

isMap
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The isMap property enables you to set whether the image should act as a server-side image map. When set
as a server-side image map, pixel coordinates of the click are passed as parameters to whatever link href
surrounds the image. For client-side image maps, see the useMap property later in this chapter.

Example
The image in The Evaluator page is not defined as an image map. Thus, if you type the following statement
into the top text box, the property returns false:

document.myIMG.isMap

Related Item: img.useMap property.

longDesc
Value: URL string. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The longDesc property is a URL of a file that is intended to provide a detailed description of the image
associated with the img element. Current browsers recognize this property, but do not do anything special
with the information — whether specified by script or the longdesc attribute.

Related Item: alt property.

loop
Value: Integer. Read/Write
Compatibility: WinIE4-6, MacIE4+, NN-, Moz-, Safari-

616

Document Objects Reference

img.longDesc

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 616

The loop property represents the number of times a video clip playing through the img element object
should run. After the video plays that number of times, only the first frame of the video appears in the
image area. The default value is 1; but if you set the value to -1, the video plays continuously.
Unfortunately, setting the property to 0 prior to assigning a URL to the dynsrc property does not prevent
the movie from playing at least once (except on the Mac, as noted in the dynsrc property discussion earlier
in this chapter).

Related Item: dynsrc property.

lowsrc
lowSrc
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari-

For image files that take several seconds to load, modern browsers enable you to specify a lower-resolution
image or some other quick-loading placeholder to stand in while the big image crawls to the browser. You
assign this alternate image via the lowsrc attribute in the tag. The attribute is reflected in the
lowsrc property of an image object.

All compatible browsers recognize the all-lowercase version of this property. NN6 also recognizes an
interCap “S” version of the property, lowSrc.

Be aware that if you assign a URL to the lowsrc attribute, the complete property switches to true and the
onLoad event handler fires when the alternate file finishes loading: The browser does not wait for the main
src file to load.

Example
See Listing 20-4 for the image object’s onload event handler to see how the source-related properties affect
event processing.

Related Items: img.src, img.complete properties.

mimeType
Value: String. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

The mimeType property returns a plain-language description of the MIME type for the image, such as JPEG
Image or GIF Image.

Example
You can use the mimeType property in Internet Explorer to determine the format of an image, as the follow-
ing example demonstrates:

if (document.myIMG.mimeType.indexOf(“JPEG”) != -1) {
// Carry out JPEG-specific processing

}

In this example, the indexOf() method is used to check for the presence of the phrase “JPEG” anywhere
in the MIME type string. This works because the string returned in the mimeType property for JPEG images
is “JPEG Image”.

Related Items: None.

617

img.mimeType

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 617

name
Value: Identifier string. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The name property returns the value assigned to the name attribute of an img element. Modern browsers
allow you to use the ID of the element (id attribute) to reference the img element object via document.all
(IE) and document.getElementById(). But references in the form of document.imageName and
document.images[imageName] must use only the value assigned to the name attribute.

In some designs, it may be convenient to assign numerically sequenced names to img elements, such as
img1, img2, and so on. As with any scriptable identifier, the name cannot begin with a numeric character.
Rarely, if ever, will you need to change the name of an img element object.

Example
You can use The Evaluator (Chapter 13) to examine the value returned by the name property of the image
on that page. Enter the following statement into the top text box:

document.myIMG.name

Of course, this is redundant because the name is part of the reference to the object.

Related Item: id property.

nameProp
Value: Filename string. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Unlike the src property, which returns a complete URL in IE, the IE nameProp property returns only the
filename exclusive of protocol and path. If your image-swapping script needs to read the name of the file
currently assigned to the image (to determine which image to show next), the nameProp property makes it
easier to get the actual filename without having to perform extensive parsing of the URL.

Example
You can use The Evaluator Sr. (Chapter 13) to compare the results of the src and nameProp properties in
WinIE5+. Enter each of the following statements into the top text box:

document.myIMG.src
document.myIMG.nameProp

Related Item: img.src property.

naturalHeight
naturalWidth
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The naturalHeight and naturalWidth properties return the unscaled height and width of the image, in
pixels. These properties are useful in situations where script code or img element attributes have scaled an
image and you wish to know the image’s original size.

618

Document Objects Reference

img.naturalHeight

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 618

Example
Use The Evaluator (Chapter 13) to experiment with the naturalHeight and naturalWidth properties in
a Mozilla-based browser. Begin retrieving the default values by entering the following statement into the top
text box:

document.myIMG.width

Increase the width of the image from its default 120 to 200:

document.myIMG.width = 200

If you scroll down to the image, you see that the image has scaled in proportion. You can now find out the
natural width of the original image by taking a look at the naturalWidth property:

document.myIMG.naturalWidth

The Evaluator will reveal 120 as the natural image width even though the image is currently scaled to 200.

Related Items: img.height, img.width properties.

protocol
Value: String. Read-Only
Compatibility: WinIE4+, MacIE5+, NN-, Moz-, Safari-

The IE protocol property returns only the protocol portion of the complete URL returned by the src
property. This allows your script, for example, to see if the image is sourced from a local hard drive or a web
server. Values returned are not the actual protocol strings; rather, they are descriptions thereof: HyperText
Transfer Protocol or File Protocol.

Example
You can use The Evaluator Sr. (Chapter 13) to examine the protocol property of the image on the page.
Enter the following statement into the top text box:

document.myIMG.protocol

Related Items: img.src, img.nameProp properties.

src
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The src property is the gateway to precaching images (in instances of the Image object that are stored in
memory) and performing image swapping (in img element objects). Assigning a URL to the src property of
an image object in memory causes the browser to load the image into the browser’s cache (provided the user
has the cache turned on). Assigning a URL to the src property of an img element object causes the element
to display the new image. To take advantage of this powerful combination, you preload alternate versions of
swappable images into image objects in memory and then assign the src property of the image object to
the src property of the desired img element object.

In legacy browsers, the size of the image defined by the original img element governs the rectangular space
devoted to that image. An attempt to assign an image of a different size to that img element object causes
the image to rescale to fit the rectangle (usually resulting in a distorted image). In all modern browsers,

619

img.src

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 619

however, the img element object resizes itself to accommodate the image, and the page content reflows
around the new size.

Note that when you read the src property, it returns a fully formed URL of the image file including protocol
and path. This often makes it inconvenient to let the name of the file guide your script to swap images with
another image in a sequence of your choice. Some other mechanism (such as storing the current filename in
a global variable) may be easier to work with (and see the WinIE5+ nameProp property).

Example
In the following example (see Listing 20-3), you see a few applications of image objects. Of prime impor-
tance is a comparison of how precached and regular images feel to the user. As a bonus, you see an example
of how to set a timer to automatically change the images displayed in an image object. This feature is a pop-
ular request among sites that display advertising banners or slide shows.

As the page loads, a global variable is handed an array of image objects. Entries of the array are assigned
string names as index values (“desk1”, “desk2”, and so on). The intention is that these names ultimately
will be used as addresses to the array entries. Each image object in the array has a URL assigned to it, which
precaches the image.

The page (see Figure 20-1) includes two img elements: one that displays noncached images and one that
displays cached images. Under each image is a select element that you can use to select one of four possi-
ble image files for each element. The onchange event handler for each select list invokes a different func-
tion to change the noncached (loadIndividual()) or cached (loadCached()) images. Both of these
functions take as their single parameter a reference to the form that contains the select elements.

To cycle through images at five-second intervals, the checkTimer() function looks to see if the timer check
box is selected. If so, the selectedIndex property of the cached image select control is copied and
incremented (or reset to zero if the index is at the maximum value). The select element is adjusted, so
you can now invoke the loadCached() function to read the currently selected item and set the image
accordingly.

For some extra style points, the <body> tag includes an onunload event handler that invokes the
resetSelects() function. This general-purpose function loops through all forms on the page and all ele-
ments within each form. For every select element, the selectedIndex property is reset to zero. Thus, if
a user reloads the page, or returns to the page via the Back button, the images start in their original
sequence. An onload event handler makes sure that the images are in sync with the select choices and
the checkTimer() function is invoked with a five-second delay. Unless the timer check box is checked,
however, the cached images don’t cycle.

LISTING 20-3

A Scripted Image Object and Rotating Images

<html>
<head>

<title>Image Object</title>
<script type=”text/javascript”>
// global declaration for ‘desk’ images array
var imageDB;
// pre-cache the ‘desk’ images
if (document.images) {

620

Document Objects Reference

img.src

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 620

// list array index names for convenience
var deskImages = new Array(“desk1”, “desk2”, “desk3”, “desk4”);
// build image array and pre-cache them
imageDB = new Array(4);
for (var i = 0; i < imageDB.length ; i++) {

imageDB[deskImages[i]] = new Image(120,90);
imageDB[deskImages[i]].src = deskImages[i] + “.gif”;

}
}
// change image of ‘individual’ image
function loadIndividual(form) {

if (document.images) {
var gifName =

form.individual.options[form.individual.selectedIndex].value;
document.getElementById(“thumbnail1”).src = gifName + “.gif”;

}
}
// change image of ‘cached’ image
function loadCached(form) {

if (document.images) {
var gifIndex =

form.cached.options[form.cached.selectedIndex].value;
document.getElementById(“thumbnail2”).src = imageDB[gifIndex].src;

}
}
// if switched on, cycle ‘cached’ image to next in queue
function checkTimer() {

if (document.images && document.Timer.timerBox.checked) {
var gifIndex = document.selections.cached.selectedIndex;
if (++gifIndex > imageDB.length - 1) {

gifIndex = 0;
}
document.selections.cached.selectedIndex = gifIndex;
loadCached(document.selections);
var timeoutID = setTimeout(“checkTimer()”,5000);

}
}
// reset form controls to defaults on unload
function resetSelects() {

for (var i = 0; i < document.forms.length; i++) {
for (var j = 0; j < document.forms[i].elements.length; j++) {

if (document.forms[i].elements[j].type == “select-one”) {
document.forms[i].elements[j].selectedIndex = 0;

}
}

}
}
// get things rolling
function init() {

loadIndividual(document.selections);

continued

621

img.src

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 621

LISTING 20-3 (continued)

loadCached(document.selections);
setTimeout(“checkTimer()”,5000);

}
</script>

</head>
<body onload=”init()” onunload=”resetSelects ()”>

<h1>Image Object</h1>
<hr />
<center>

<table border=”3” cellpadding=”3”>
<tr>

<th></th>
<th>Individually Loaded</th>
<th>Pre-cached</th>

</tr>
<tr>

<td align=”right”>Image:</td>
<td><img alt=”image” src=”cpu1.gif” id=”thumbnail1”

height=”90” width=”120” /></td>
<td><img alt=”image” src=”desk1.gif” id=”thumbnail2”

height=”90” width=”120” /></td>
</tr>
<tr>

<td align=”right”>Select image:</td>
<form name=”selections”>
<td><select name=”individual”

onchange=”loadIndividual(this.form)”>
<option value=”cpu1”>Wires</option>
<option value=”cpu2”>Keyboard</option>
<option value=”cpu3”>Disks</option>
<option value=”cpu4”>Cables</option>

</select></td>
<td><select name=”cached” onchange=”loadCached(this.form)”>

<option value=”desk1”>Bands</option>
<option value=”desk2”>Clips</option>
<option value=”desk3”>Lamp</option>
<option value=”desk4”>Erasers</option>

</select></td>
</form>

</tr>
</table>
<form name=”Timer”>

<input type=”checkbox” name=”timerBox”
onclick=”checkTimer()” />Auto-cycle through pre-cached images

</form>
</center>

</body>
</html>

622

Document Objects Reference

img.src

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 622

FIGURE 20-1

The image object demonstration page.

Related Items: img.lowsrc, img.nameProp properties.

start
Value: String. Read/Write
Compatibility: WinIE4-6, MacIE4+, NN-, Moz-, Safari-

The start property works in conjunction with video clips viewed through the img element in IE4+. By
default, a clip starts playing (except on the Macintosh) when the image file opens. This follows the default
setting of the start property: “fileopen”. Another recognized value is “mouseover”, which prevents the
clip from running until the user rolls the mouse pointer atop the image.

Related Items: img.dynsrc, img.loop properties.

useMap
Value: Identifier string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The useMap property represents the usemap attribute of an img element, pointing to the name assigned to
the map element in the page (see Listing 20-6). This map element contains the details about the client-side
image map (described later in this chapter). The value for the useMap property must include the hash mark

623

img.useMap

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 623

that defines an internal HTML reference on the page. If you need to switch among two or more image maps
for the same img element (for example, you swap images or the user is in a different mode), you can define
multiple map elements each with a different name. Then change the value of the useMap property for the
img element object to associate a different map with the image.

Related Item: isMap property.

vspace
(See hspace)

width
(See height)

x
y
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4, Moz1+, Safari1+

A script can retrieve the x and y coordinates of an img element (the top-left corner of the rectangular space
occupied by the image) via the x and y properties. These properties are read-only. These properties are gen-
erally not used in favor of the offsetLeft and offsetTop properties of any element, which are also sup-
ported in IE.

Related Items: img.offsetLeft, img.offsetTop properties; img.scrollIntoView(),
window.scrollTo() methods.

Event handlers

onabort
onerror
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Your scripts may need to be proactive when a user clicks the Stop button while an image loads or when a
network or server problem causes the image transfer to fail. Use the onabort event handler to activate a
function in the event of a user clicking the Stop button; use the onerror event handler for the unexpected
transfer snafu.

In practice, these event handlers don’t supply all the information you may like to have in a script, such as
the filename of the image loading at the time. If such information is critical to your scripts, the scripts need
to store the name of a currently loading image to a variable before they set the image’s src property. You
also don’t know the nature of the error that triggers an error event. You can treat such problems by forcing a
scripted page to reload or by navigating to an entirely different spot in your web site.

Example
Listing 20-4 includes an onabort event handler. If the images already exist in the cache, you must quit and
relaunch the browser to try to stop the image from loading. In that example, I provide a reload option for
the entire page. How you handle the exception depends a great deal on your page design. Do your best to
smooth over any difficulties that users may encounter.

624

Document Objects Reference

img.onabort

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 624

onload
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

An img object’s onload event handler fires when one of three actions occurs: an image’s lowsrc image fin-
ishes loading; in the absence of a lowsrc image specification, the src image finishes loading; or when each
frame of an animated GIF (GIF89a format) appears.

It’s important to understand that if you define a lowsrc file inside an tag, the img object receives no
further word about the src image having completed its loading. If this information is critical to your script,
verify the current image file by checking the src property of the image object.

Be aware, too, that an img element’s onload event handler may fire before the other elements on the page
have completed loading. If the event handler function refers to other elements on the page, the function
should verify the existence of other elements prior to addressing them.

Quit and restart your browser to get the most from Listing 20-4. As the document first loads, the lowsrc
image file (the picture of pencil erasers) loads ahead of the computer keyboard image. When the erasers are
loaded, the onload event handler writes “done” to the text field even though the main image is not loaded
yet. You can experiment further by loading the arch image. This image takes longer to load, so the lowsrc
image (set on the fly, in this case) loads way ahead of it.

LISTING 20-4

The Image onload Event Handler

<html>
<head>

<title></title>
<script type=”text/javascript”>
function loadIt(theImage,form) {

if (document.images) {
form.result.value = “”;
document.images[0].lowsrc = “desk1.gif”;
document.images[0].src = theImage;

}
}
function checkLoad(form) {

if (document.images) {
form.result.value = document.images[0].complete;

}
}
function signal() {

if(confirm(“You have stopped the image from loading. Do you want to
try again?”)) {
location.reload();

}
}
</script>

</head>

continued

625

img.onload

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 625

LISTING 20-4 (continued)

<body>
<img alt=”image” src=”cpu2.gif” lowsrc=”desk4.gif” width=”120”
height=”90” onload=”if (document.forms[0].result)
document.forms[0].result.value=’done’” onabort=”signal()” />
<form>

<input type=”button” value=”Load keyboard”
onclick=”loadIt(‘cpu2.gif’,this.form)” /> <input type=”button”
value=”Load arch” onclick=”loadIt(‘arch.gif’,this.form)” />
<p><input type=”button” value=”Is it loaded yet?”

onclick=”checkLoad(this.form)” /> <input type=”text”
name=”result” /> <input type=”hidden” /></p>

</form>
</body>

</html>

Related Items: img.src, img.lowsrc properties.

area Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alt

coords

hash

host

hostname

href

noHref

pathname

port

protocol

search

shape

target

626

Document Objects Reference

area

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 626

Syntax
Accessing area element object properties:

(NN3+/IE4+) [window.]document.links[index].property
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE4+) [window.]document.all.MAPElemID.areas[index].property |

method([parameters])
(IE5+/W3C) [window.]document.getElementById(“MAPElemID).areas[index].property |

method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

About this object
Document object models treat an image map area object as one of the link (a element) objects in a docu-
ment (see the anchor object in Chapter 19). When you think about it, such treatment is not illogical at all
because clicking a map area generally leads the user to another document or anchor location in the same
document — a hyperlinked reference.

Although the HTML definitions of links and map areas differ greatly, the earliest scriptable implementations
of both kinds of objects had nearly the same properties and event handlers. Starting with IE4, NN6/Moz,
and W3C-compatible browsers, all area element attributes are accessible as scriptable properties.
Moreover, you can change the makeup of client-side image map areas by way of the map element object.
The map element object contains an array of area element objects nested inside. You can remove, modify,
or add to the area elements inside the map element.

Client-side image maps are fun to work with, and they have been well documented in HTML references
since Netscape Navigator 2 introduced the feature. Essentially, you define any number of areas within the
image based on shape and coordinates. Many graphics tools can help you capture the coordinates of images
that you need to enter into the coords attribute of the <area> tag.

If one gotcha exists that trips up most HTML authors, it’s the tricky link between the
and <map> tags. You must assign a name to the <map>; in the tag, the usemap attribute

requires a hash symbol (#) and the map name. If you forget the hash symbol, you can’t create a connection
between the image and its map.

Listing 20-5 contains an example of a client-side image map that allows you to navigate through different
geographical features of the Middle East. As you drag the mouse around an aerial image, certain regions
cause the mouse pointer to change, indicating that there is a link associated with the region. Clicking a
region results in an alert box indicating which region you clicked.

TIPTIP

627

area

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 627

LISTING 20-5

A Simple Client-Side Image Map

<html>
<head>

<title></title>
<script type=”text/javascript”>
function show(msg) {

window.status = msg;
return true;

}
function go(where) {

alert(“We’re going to “ + where + “!”);
}
function clearIt() {

window.status = “”;
return true;

}
</script>

</head>
<body>

<h1>Sinai and Vicinity</h1>
<img alt=”image” src=”nile.gif” width=”320” height=”240”
usemap=”#sinai” />
<map id=”sinai” name=”sinai”>

<area href=”javascript:go(‘Cairo’)” coords=”12,152,26,161”
shape=”rect” onmouseover=”return show(‘Cairo’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘the Nile River’)”
coords=”1,155,6,162,0,175,3,201,61,232,109,227,167,238,274,239,292,
220,307,220,319,230,319,217,298,213,282,217,267,233,198,228,154,227,
107,221,71,225,21,199,19,165,0,149”
shape=”poly” onmouseover=”return show(‘Nile River’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘Israel’)” coords=”95,69,201,91”
shape=”rect” onmouseover=”return show(‘Israel’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘Saudi Arabia’)” coords=”256,57,319,121”
shape=”rect” onmouseover=”return show(‘Saudi Arabia’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘the Mediterranean Sea’)”
coords=”1,55,26,123” shape=”rect”
onmouseover=”return show(‘Mediterranean Sea’)”
onmouseout=”return clearIt()” />
<area href=”javascript:go(‘the Mediterranean Sea’)”
coords=”27,56,104,103” shape=”rect”
onmouseover=”return show(‘Mediterranean Sea’)”
onmouseout=”return clearIt()” />

</map>
</body>

</html>

628

Document Objects Reference

area

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 628

Properties
alt
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The alt property represents the alt attribute of an area. Internet Explorer displays the alt text in a tiny
pop-up window (tool tip) above an area when you pause (hover) the mouse pointer over it. There is debate
among web developers about Microsoft’s usage of tool tips for alt text, both in image maps and regular
images.

Future browsers may implement this attribute to provide additional information about the link associated
with the area element. For the time being, Internet Explorer is the only mainstream browser to use the alt
property in any noticeable way.

Related Item: title property.

coords
shape
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The coords and shape properties control the location, size, and shape of the image hot spot governed by
the area element. Shape values that you can use for this property control the format of the coords prop-
erty values, as follows:

Shape Coordinates Example

circ center-x, center-y, radius “30, 30, 20”

circle center-x, center-y, radius “30, 30, 20”

poly x1, y1, x2, y2,... “0, 0, 0, 30, 15, 30, 0, 0”

polygon x1, y1, x2, y2,... “0, 0, 0, 30, 15, 30, 0, 0”

rect left, top, right, bottom “10, 20, 60, 40”

rectangle left, top, right, bottom “10, 20, 60, 40”

The default shape for an area is a rectangle.

Related Items: None.

629

area.coords

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 629

hash
host
hostname
href
pathname
port
protocol
search
target
(See corresponding properties of the link object in Chapter 19)

noHref
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The noHref property is used to enable or disable a particular area within a map. The property is true by
default, which means an area is enabled. Set the property to false to prevent the area from serving as a
link within the map.

shape
(See coords)

map Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

areas[] onscroll

name

Syntax
Accessing map element object properties:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

630

Document Objects Reference

map

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 630

About this object
The map element object is an invisible HTML container for all area elements, each of which defines a “hot”
region for an image. Client-side image maps associate links (and targets) to rectangular, circular, or polygo-
nal regions of the image.

By far, the most important properties of a map element object are the areas array and, to a lesser extent, its
name. It is unlikely that you will change the name of a map. (It is better to define multiple map elements
with different names, and then assign the desired name to an img element object’s useMap property.) But
you can use the areas array to change the makeup of the area objects inside a given client-side map.

Properties
areas[]
Value: Array of area element objects. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Use the areas array to iterate through all area element objects within a map element. Whereas Mozilla
adheres closely to the document node structure of the W3C DOM, IE4+ provides more direct access to the
area element objects nested inside a map. If you want to rewrite the area elements inside a map, you can
clear out the old ones by setting the length property of the areas array to zero. Then assign area element
objects to slots in the array to build that array.

Listing 20-6 demonstrates how to use scripting to replace the area element objects inside a map element.
The scenario is that the page loads with one image of a computer keyboard. This image is linked to the
keyboardMap client-side image map, which specifies details for three hot spots on the image. If you then
switch the image displayed in that img element, scripts change the useMap property of the img element
object to point to a second map that has specifications more suited to the desk lamp in the second image.
Roll the mouse pointer atop the images, and view the URLs associated with each area in the status bar (for
this example, the URLs do not lead to other pages).

Another button on the page, however, invokes the makeAreas() function (not working in MacIE5), which
creates four new area element objects and (through DOM-specific pathways) adds those new area specifi-
cations to the image. If you roll the mouse atop the image after the function executes, you can see that the
URLs now reflect those of the new areas. Also note the addition of a fourth area, whose status bar message
appears in Figure 20-2.

LISTING 20-6

Modifying area Elements on the Fly

<html>
<head>

<title>map Element Object</title>
<script type=”text/javascript”>
// generate area elements on the fly
function makeAreas() {

document.getElementById(“myIMG”).src = “desk3.gif”;
// build area element objects

continued

631

map.areas

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 631

LISTING 20-6 (continued)

var area1 = document.createElement(“area”);
area1.href = “Script-Made-Shade.html”;
area1.shape = “polygon”;
area1.coords = “52,28,108,35,119,29,119,8,63,0,52,28”;
var area2 = document.createElement(“area”);
area2.href = “Script-Made-Base.html”;
area2.shape = “rect”;
area2.coords = “75,65,117,87”;
var area3 = document.createElement(“area”);
area3.href = “Script-Made-Chain.html”;
area3.shape = “polygon”;
area3.coords = “68,51,73,51,69,32,68,51”;
var area4 = document.createElement(“area”);
area4.href = “Script-Made-Emptyness.html”;
area4.shape = “rect”;
area4.coords = “0,0,50,120”;
// stuff new elements into MAP child nodes
var mapObj = document.getElementById(“lamp_map”);
while (mapObj.childNodes.length) {

mapObj.removeChild(mapObj.firstChild);
}
mapObj.appendChild(area1);
mapObj.appendChild(area2);
mapObj.appendChild(area3);
mapObj.appendChild(area4);
// workaround NN6 display bug
document.getElementById(“myIMG”).style.display = “inline”;

}

function changeToKeyboard() {
document.getElementById(“myIMG”).src = “cpu2.gif”;
document.getElementById(“myIMG”).useMap = “#keyboardMap”;

}

function changeToLamp() {
document.getElementById(“myIMG”).src = “desk3.gif”;
document.getElementById(“myIMG”).useMap = “#lampMap”;

}
</script>

</head>
<body>

<h1>map Element Object</h1>
<hr />
<img alt=”image” id=”myIMG” src=”cpu2.gif” width=”120” height=”90”
usemap=”#keyboardMap” />
<map id=”keyboardMap” name=”keyboardMap”>

<area href=”AlpaKeys.htm” shape=”rect” coords=”0,0,26,42” />
<area href=”ArrowKeys.htm” shape=”polygon”
coords=”48,89,57,77,69,82,77,70,89,78,84,89,48,89” />
<area href=”PageKeys.htm” shape=”circle” coords=”104,51,14” />

632

Document Objects Reference

map.areas

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 632

</map>
<map name=”lampMap” id=”lamp_map”>

<area href=”Shade.htm” shape=”polygon”
coords=”52,28,108,35,119,29,119,8,63,0,52,28” />
<area href=”Base.htm” shape=”rect” coords=”75,65,117,87” />
<area href=”Chain.htm” shape=”polygon”
coords=”68,51,73,51,69,32,68,51” />

</map>
<form>

<p><input type=”button” value=”Load Lamp Image”
onclick=”changeToLamp()” /> <input type=”button”
value=”Write Map on the Fly” onclick=”makeAreas()” /></p>

<p><input type=”button” value=”Load Keyboard Image”
onclick=”changeToKeyboard()” /></p>

</form>
</body>

</html>

FIGURE 20-2

Scripts created a special client-side image map for the image.

Related Items: area element object.

633

map.areas

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 633

canvas Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

fillStyle arc()

globalAlpha arcTo()

globalCompositeOperation bezierCurveTo()

lineCap beginPath()

lineJoin clearRect()

lineWidth clip()

miterLimit closePath()

shadowBlur createLinearGradient()

shadowColor createPattern()

shadowOffsetX createRadialGradient()

shadowOffsetY drawImage()

strokeStyle fill()

target fillRect()

getContext()

lineTo()

moveTo()

quadraticCurveTo()

rect()

restore()

rotate()

save()

scale()

stroke()

strokeRect()

translate()

Syntax
Accessing canvas element object properties:

(W3C) [window.]document.getElementById(“canvasID”).property |
method([parameters])

Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

634

Document Objects Reference

canvas

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 634

About this object
A canvas is a relatively new construct that enables you to create a rectangular region on a page that can be
drawn to programmatically through JavaScript. Relative to a web page, a canvas appears as an image since it
occupies a rectangular space. Unlike images, however, canvas content is generated programmatically using a
series of methods defined on the canvas object. Support for canvases first appeared in the Safari browser in
version 1.3, and then spread to Mozilla browsers in Mozilla version 1.8, which corresponds to Firefox 1.5.

Canvas objects are created and positioned on the page using the <canvas> tag, which supports only two
unique attributes: width and height. After the canvas is created, the remainder of the work associated
with creating a canvas graphic falls to JavaScript code. You’ll typically want to create a special draw function
that takes on the task of drawing to the canvas upon the page loading. The job of the draw function is to
use the methods of the canvas object to render the canvas graphic.

Listing 20-7 contains a skeletal page for placing a basic canvas with a border. Notice that there is a draw()
function that is ready to receive code that renders the canvas graphic.

LISTING 20-7

A Skeletal Canvas

<html>
<head>

<title>canvas Object</title>
<script type=”text/javascript”>
function draw() {

// Draw some stuff
}
</script>
<style type=”text/css”>

canvas { border: 1px solid black; }
</style>

</head>
<body onload=”draw();”>

<h1>canvas Object</h1>
<hr />
<canvas width=”350” height=”250”></canvas>

</body>
</html>

Listing 20-8 contains a more interesting canvas example that builds on the skeletal page by adding some
actual canvas drawing code. The properties and methods in the canvas object provide you with the capa-
bility to do some amazing things, so consider this example a rudimentary scratching of the canvas surface.

635

canvas

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 635

LISTING 20-8

A Canvas Containing a Simple Chart

<html>
<head>

<title>canvas Object</title>
<script type=”text/javascript”>
function draw() {

var canvas = document.getElementById(“chart”);
if (canvas.getContext) {

var context = canvas.getContext(“2d”);
context.lineWidth = 20;

// First bar
context.strokeStyle = “red”;
context.beginPath();
context.moveTo(20, 90);
context.lineTo(20, 10);
context.stroke();

// Second bar
context.strokeStyle = “green”;
context.beginPath();
context.moveTo(50, 90);
context.lineTo(50, 50);
context.stroke();

// Third bar
context.strokeStyle = “yellow”;
context.beginPath();
context.moveTo(80, 90);
context.lineTo(80, 25);
context.stroke();

// Fourth bar
context.strokeStyle = “blue”;
context.beginPath();
context.moveTo(110, 90);
context.lineTo(110, 75);
context.stroke();

}
}
</script>
<style type=”text/css”>

canvas { border: 1px solid black; }
</style>

</head>
<body onload=”draw();”>

<h1>canvas Object</h1>
<hr />

636

Document Objects Reference

canvas

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 636

<canvas id=”chart” width=”130” height=”100”></canvas>
</body>

</html>

Figure 20-3 shows this canvas example in action, which involves the display of a simple bar chart. The
thing to keep in mind is that this bar chart is being rendered programmatically using vector graphics, which
is quite powerful.

This example reveals a few more details about how canvases work. First off, notice that you must first
obtain a context in order to perform operations on the canvas. In reality, you perform graphics operations
on a canvas context, not the canvas element itself. The job of a context is to provide you with a virtual sur-
face on which to draw. You obtain a canvas context by calling the getContext() method on the canvas
object and specifying the type of context; currently, only the 2d (two-dimensional) context is supported in
browsers.

When you have a context, canvas drawing operations are carried out relative to the context. You are then
free to tinker with stroke and fill colors, create paths and fills, and do most of the familiar graphical things
that go along with vector drawing.

You can find a more complete tutorial and examples dedicated to drawing with the canvas element at
http://developer.mozilla.org/en/docs/Canvas_tutorial.

FIGURE 20-3

A simple bar chart created using a vector canvas.

637

canvas

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 637

Properties
fillStyle
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The fillStyle property is used to set the brush used in fill operations when a region of a canvas is filled
with a color or pattern. Although you can create gradients and other interesting patterns for use in filling
shapes, the most basic usage of the fillStyle property is to create a solid color fill by setting the property
to an HTML-style color (#RRGGBB). All fill operations that follow the fillStyle setting will use the new
fill style.

Example
Setting a fill color simply involves assigning an HTML-style color to the fillStyle property:

context.fillStyle = “#FF00FF”;

Related Item: strokeStyle property.

globalAlpha
Value: Float. Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The globalAlpha property is a floating-point property that establishes the transparency (or opacity,
depending on how you think about it) of the content drawn on a canvas. Acceptable values for this prop-
erty range from 0.0 (fully transparent) to 1.0 (fully opaque). The default setting is 1.0, which means that all
canvases have no transparency initially.

Example
To set the transparency of a canvas to 50 percent transparency, set the globalAlpha property to 0.5:

context.globalAlpha = 0.5;

Related Item: None.

globalCompositeOperation
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The globalCompositeOperation property determines how the canvas appears in relation to background
content on a web page. This is a powerful property because it can dramatically affect the manner in which
canvas content appears with respect to any underlying web page content. The default setting is source-
over, which means opaque areas of the canvas are displayed but transparent areas are not. Other popular
settings include copy, lighter, and darker, among others.

Example
If you want a canvas to always fully cover the background web page regardless of any transparent areas it
may have, you should set the globalCompositeOperation property to copy:

context.globalCompositeOperation = “copy”;

Related Item: None.

638

Document Objects Reference

contextObject.fillStyle

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 638

lineCap
lineJoin
lineWidth
Value: String, Float (lineWidth). Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These properties all impact the manner in which lines are drawn on a canvas. The lineCap property deter-
mines the appearance of line end points (butt, round, or square). Similar to lineCap is the lineJoin
property, which determines how lines are joined to each other (bevel, miter, or round). By default, lines
terminate with no special end point (butt) and are joined cleanly with no special joint graphic (miter).

The lineWidth property establishes the width of lines and is expressed as an integer value greater than 0 in
the canvas coordinate space. When a line is drawn, its width appears centered over the line coordinates.

Example
You’ll often want to change the lineWidth property to get different effects when assembling a canvas
graphic. Here’s an example of setting a wider line width (10 in this case):

context.lineWidth = 10;

Related Items: miterLimit, strokeStyle properties.

miterLimit
Value: Float. Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The miterLimit property is a floating-point value that determines more specifically how lines are joined
together. The miterLimit property works in conjunction with the lineJoin property to cleanly and con-
sistently join lines in a path.

Related Item: lineJoin property.

shadowBlur
shadowColor
shadowOffsetX
shadowOffsetY
Value: Integer, String (shadowColor). Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These properties all work in conjunction to establish a shadow around canvas content. The shadowBlur
property determines the width of the shadow itself, whereas shadowColor sets the color of the shadow as
an HTML-style RGB value (#RRGGBB). Finally, the shadowOffsetX and shadowOffsetY properties specify
exactly how far the shadow is offset from a graphic. The shadowBlur, shadowOffsetX, and
shadowOffsetY properties are all expressed in units of the canvas coordinate space.

Example
The following code creates a shadow that is 5 units wide, light gray in color (#BBBBBB), and offset 3 units in
both the X and Y directions:

639

contextObject.shadowBlur

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 639

context.shadowBlur = 5;
context.shadowColor = “#BBBBBB”;
context.shadowOffsetX = 3;
context.shadowOffsetY = 3;

Related Item: None.

strokeStyle
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The strokeStyle property controls the style of strokes used to draw on the canvas. You are free to set the
stroke style to a gradient or pattern using more advanced canvas features, but the simpler approach is to
just set a solid colored stroke as an HTML-style color value (#RRGGBB). The default stroke style is a solid
black stroke.

Example
To change the stroke style to a solid green brush, set the strokeStyle property to the color green:

context.strokeStyle = “#00FF00”;

Related Item: fillStyle property.

Methods
arc(x, y, radius, startAngle, endAngle, clockwise)
arcTo(x1, y1, x2, y2, radius)
bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)
quadraticCurveTo(cpx, cpy, x, y)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These methods are all responsible for drawing curves in one way or another. If you have any experience
with drawing vector graphics, then you’re probably familiar with the difference between arcs, Bezier curves,
and quadratic curves.

The arc() method draws a curved line based upon a center point, a radius, and start and end angles. You
can think of this method as tracing the curve of a circle from one angle to another. The angles are expressed
in radians, not degrees, so you’ll probably need to convert degrees to radians:

var radians = (Math.PI / 180) * degrees;

The last argument to arc() is a Boolean value that determines whether or not the arc is drawn in the clock-
wise (true) or counterclockwise (false) direction.

The arcTo() method draws an arc along a curve based upon tangent lines of a circle. This method is not
implemented in Mozilla until version 1.8.1.

Finally, the bezierCurveTo() and quadraticCurveTo() methods draw a curved line based upon argu-
ments relating to Bezier and quadratic curves, respectively, which are a bit beyond this discussion. To learn
more about Bezier and quadratic curves, check out en.wikipedia.org/wiki/Bézier_curve.

640

Document Objects Reference

contextObject.arc()

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 640

beginPath()
closePath()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These two methods are used to manage paths. Call the beginPath() method to start a new path, into
which you can then add shapes. When you’re finished, call closePath() to close up the path. The only
purpose of closePath() is to close a subpath that is still open, meaning that you want to finish connecting
an open shape back to its start. If you’ve created a path that is already closed, there is no need to call the
closePath() method. Listing 20-8 contains a good example of where the closePath() method is unnec-
essary because the bar shapes don’t need to be closed.

clip()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The clip() method recalculates the clipping path based upon the current path and the clipping path that
already exists. Subsequent drawing operations rely on the newly calculated clipping path.

createLinearGradient(x1, y1, x2, y2)
createRadialGradient(x1, y1, radius1, x2, y2, radius2)
createPattern(image, repetition)
Returns: Gradient object reference, pattern object reference (createPattern()).
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These methods are used to create special patterns and gradients for fill operations. A linear gradient is speci-
fied as a smooth color transition between two coordinates, whereas a radial gradient is specified based upon
two circles with similar radii. You set the actual color range of a gradient by calling the addColorStop()
method on the gradient object returned from the createLinearGradient() and
createRadialGradient() methods. The addColorStop() method accepts a floating-point offset and a
string color value as its only two arguments.

The createPattern() method is used to create a fill pattern based upon an image. You provide an image
object and a repetition argument for how the image is tiled when filling a region. Repetition options include
repeat, repeat-x, repeat-y, and no-repeat.

drawImage(image, x, y)
drawImage(image, x, y, width, height)
drawImage(image, srcX, srcY, srcWidth, srcHeight, destX,
destY, destWidth, destHeight)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These drawImage() methods all draw an image to the context. The difference between them has to do with
if and how the image is scaled as it is drawn. The first version draws the image at a coordinate with no scal-
ing, whereas the second version scales the image to the specified target width and height. Finally, the third
version enables you to draw a portion of the image to a target location with a scaled width and height.

641

contextObject.drawImage()

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 641

fill()
fillRect(x, y, width, height)
clearRect(x, y, width, height)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These methods are used to fill and clear areas. The fill() method fills the area within the current path,
whereas the fillRect() method fills a specified rectangle independent of the current path. The
clearRect() method is used to clear (erase) a rectangle.

getContext(contextID)
Returns: Context object reference.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The getContext() method operates on a canvas element object, not a context, and is used to obtain a
context for further graphical operations. You must call this method to obtain a context before you can draw
to a canvas since all of the canvas drawing methods are actually called relative to a context, not a canvas.
For the standard two-dimensional canvas context, specify “2d” as the sole parameter to the method.

lineTo(x, y)
moveTo(x, y)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

These two methods are used to draw lines and adjust the stroke location. The moveTo() method simply
moves the current stroke location without adding anything to the path. The lineTo() method, on the
other hand, draws a line from the current stroke location to the specified point. It’s worth pointing out that
drawing a line with the lineTo() method only adds a line to the current path; the line doesn’t actually
appear on the canvas until you call the stroke() method to carry out the actual drawing of the path.

rect(x, y, width, height)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

The rect() method adds a rectangle to the current path. Similar to other drawing methods, the rectangle is
actually just added to the current path, which isn’t truly visible until you render it using the stroke()
method.

restore()
save()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

642

Document Objects Reference

contextObject.arc()

Part III

28_069165 ch20.qxp 3/1/07 3:48 PM Page 642

It’s possible to save and restore the state of the graphic context, in which case you can make changes and
then return to a desired state. The context state includes information such as the clip region, line width, fill
color, and so forth. Call the save() and restore() methods to save and restore the context state.

rotate(angle)
scale(x, y)
translate(x, y)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

All of the drawing operations that you perform on a canvas are expressed in units relative to the coordinate
system of the canvas. These three methods enable you to alter the canvas coordinate system by rotating,
scaling, or translating its origin. Rotating the coordinate system affects how angles are expressed in drawing
operations that involve angles. Scaling the coordinate system impacts the relative size of units expressed in
the system. And finally, translating the coordinate system alters the location of the origin, which affects
where positive and negative values intersect on the drawing surface.

stroke()
strokeRect(x, y, width, height)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN-, Moz1.8+, Safari1.3+

Most of the drawing operations on a canvas impact the current path, which you can think of as a drawing
you’ve committed to memory but have yet to put on paper. You render a path to the canvas by calling the
stroke() method. If you want to draw a rectangle to the canvas without dealing with the current path, call
the strokeRect() method.

643

contextObject.arc()

Image, Area, Map, and Canvas Objects 20

28_069165 ch20.qxp 3/1/07 3:48 PM Page 643

28_069165 ch20.qxp 3/1/07 3:48 PM Page 644

Prior to the advent of dynamic object models and automatic page reflow,
the majority of scripting in an HTML document took place in and around
forms. Even with all the modern DHTML powers, forms remain the pri-

mary user interface elements of HTML documents because they enable users to
input information and make choices in very familiar user interface elements,
such as buttons, option lists, and so on.

Expanded object models of W3C-compatible browsers include scriptable access
to form-related elements that are part of the HTML 4.0 specification. One pair of
elements, fieldset and legend, provides both contextual and visual contain-
ment of form controls in a document. Another element, label, provides context
for text labels that usually appear adjacent to form controls. Although there is
generally little reason to script these objects, the browsers give you access to
them just as they do for virtually every HTML element supported by the browser.

An interesting new twist in the form equation is Web Forms 2.0, which is a dra-
matically improved form technology based upon the original form features in
HTML 4.0. Web Forms 2.0 establishes a powerful and consistent set of form con-
trols that include built-in validation and much needed standard controls such as
an interactive date picker, among other things. Only Opera 9 supports the new
features, but other browsers will likely adopt them in the future.

The Form in the Object Hierarchy
Take another look at the JavaScript object hierarchy in the lowest common
denominator object model (refer to Figure 14-1). The form element object can
contain a wide variety of form element objects (sometimes called form controls),
which I cover in Chapters 22 through 24. In this chapter, however, I focus pri-
marily on the container.

645

IN THIS CHAPTER
The form object as a container
of form controls

Processing form validations

label, fieldset, and legend
element objects

Putting Web Forms 2.0 to work

The Form and Related
Objects

29_069165 ch21.qxp 3/1/07 3:48 PM Page 645

The good news on the compatibility front is that much of the client-side scripting works on all scriptable
browsers. Although you are free to use the newer getElementById() approach of addressing forms and
their nested elements when your audience exclusively uses newer browsers, it can serve you well to be com-
fortable with the old-fashioned reference syntax. In fact, one of the older approaches to form referencing is
still endorsed by the W3C, so you can use it without worrying about your code being antiquated for the
sake of compatibility. Knowing this, almost all example code in this and the next three chapters uses syntax
that is compatible across all browsers, including the earliest scriptable browsers.

form Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

acceptCharset handleEvent() onreset

action reset() onsubmit

autocomplete submit()

elements[]

encoding

enctype

length

method

name

target

Syntax
Accessing form object properties or methods:

(All) [window.]document.formName. property | method([parameters])
(All) [window.]document.forms[index]. property | method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(All/W3C) [window.]document.forms[“formName”]. property | method([parameters])
(All/W3C) [window.]document.forms[“formName”].elements[“property”] |

method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
Forms and their elements are the most common two-way gateways between users and JavaScript scripts. A
form control element provides the only way that users can enter textual information across all browsers.

646

Document Objects Reference

form

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 646

Form controls also provide somewhat standardized and recognizable user interface elements for the user to
make a selection from a predetermined set of choices. Sometimes those choices appear in the form of an
on/off check box, in a set of mutually exclusive radio buttons, or as a selection from a list.

As you have seen in many web sites, the form is the avenue for the user to enter information that is sent to
the server housing the web files. Just what the server does with this information depends on the programs
running on the server. If your web site runs on a server directly under your control (that is, it is in-house or
hosted by a service), you have the freedom to set up all kinds of data-gathering or database search programs
to interact with the user. But with some of the more consumer-oriented Internet service providers (ISPs),
you may have no server-side application support available — or, at best, a limited set of popular but inflexi-
ble CGI (Common Gateway Interface) programs available to all customers of the service. Custom databases
or transactional services are rarely provided for this kind of Internet service.

Regardless of your Internet server status, you can find plenty of uses for JavaScript scripts in forms. For
instance, rather than using data exchanges (and Internet bandwidth) to gather raw user input and report
any input errors, a JavaScript-enhanced document can preprocess the information to make sure that it
employs the format that your back-end database or other programs most easily process. All corrective inter-
action takes place in the browser, without one extra bit flowing across the Net. I devote all of Chapter 43
(on the CD-ROM) to these kinds of form data-validation techniques. Additionally, Web Forms 2.0, which
you meet later in this chapter, includes built-in support for many of the common validation tasks that are
typically solved via JavaScript.

How you define a form element (independent of the user interface elements described in subsequent chap-
ters) depends a great deal on how you plan to use the information from the form’s controls. If you intend to
use the form exclusively for JavaScript purposes (that is, no queries or postings going to the server), you do
not need to use the action, target, and method attributes. But if your web page will be feeding informa-
tion or queries back to a server, you need to specify at least the action and method attributes. You need to
also specify the target attribute if the resulting data from the server is to be displayed in a window other
than the calling window and the enctype attribute if your form’s scripts fashion the server-bound data in a
MIME type other than in a plain ASCII stream.

References to form control elements
For most client-side scripting, user interaction comes from the elements within a form; the form element
object is merely a container for the various control elements. If your scripts perform any data validation
checks on user entries prior to submission or other calculations, many statements have the form object as
part of the reference to the element.

A complex HTML document can have multiple form objects. Each <form>...</form> tag pair defines
one form. You don’t receive any penalties (except for potential confusion on the part of someone reading
your script) if you reuse a name for an element in each of a document’s forms. For example, if each of three
forms has a grouping of radio buttons with the name “choice,” the object reference to each button ensures
that JavaScript doesn’t confuse them. The reference to the first button of each of those button groups is as
follows:

document.forms[0].choice[0]
document.forms[1].choice[0]
document.forms[2].choice[0]

If you assign identifiers to id attributes, however, you should not reuse an identifier on the same page.

647

form

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 647

Passing forms and elements to functions
When a form or form element contains an event handler that calls a function defined elsewhere in the docu-
ment, you can use a couple of shortcuts to simplify the task of addressing the objects while the function
does its work. Failure to grasp this concept not only causes you to write more code than you have to, but it
also hopelessly loses you when you try to trace somebody else’s code in his or her JavaScripted document.
The watchword in event handler parameters is

this

which represents a reference to the current object that contains the event handler attribute. For example,
consider the function and form definition in Listing 21-1. The entire user interface for this listing consists of
form elements, as shown in Figure 21-1.

LISTING 21-1

Passing the form Object as a Parameter

<html>
<head>

<title>Beatle Picker</title>
<script type=”text/javascript”>
function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {

break;
}

}
var chosenBeatle = form.Beatles[i].value;
var chosenSong = form.song.value;
alert(“Looking to see if “ + chosenSong + “ was written by “ +

chosenBeatle + “...”);
}

function checkSong(songTitle) {
var enteredSong = songTitle.value;
alert(“Making sure that “ + enteredSong +

“ was recorded by the Beatles.”);
}
</script>

</head>
<body>

<form name=”Abbey Road”>
Choose your favorite Beatle:
<input type=”radio” name=”Beatles” id=”Beatles1”

value=”John Lennon” checked=”true” />John
<input type=”radio” name=”Beatles” id=”Beatles2”

value=”Paul McCartney” />Paul
<input type=”radio” name=”Beatles” id=”Beatles3”

value=”George Harrison” />George

648

Document Objects Reference

form

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 648

<input type=”radio” name=”Beatles” id=”Beatles4”
value=”Ringo Starr” />Ringo

<p>Enter the name of your favorite Beatles song:

<input type=”text” name=”song” id=”song” value=”Eleanor Rigby”

onchange=”checkSong(this)” /></p>
<p><input type=”button” name=”process” id=”process”

value=”Process Request...” onclick=”processData(this.form)” /></p>
</form>

</body>
</html>

The property assignment event handling technique in the previous example is a deliberate sim-
plification to make the code more readable. It is generally better to use the more modern

approach of binding events using the addEventListener() (NN6+/Moz/W3C) or attachEvent() (IE5+)
methods. A modern cross-browser event handling technique is explained in detail in Chapter 25.

FIGURE 21-1

Controls pass different object references to functions in Listing 21-1.

NOTENOTE

649

form

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 649

The processData() function, which needs to read and write properties of multiple form control elements,
can reference the controls in two ways. One way is to have the onclick event handler (in the button ele-
ment at the bottom of the document) call the processData() function and not pass any parameters. Inside
the function, all references to objects (such as the radio buttons or the song field) must be complete refer-
ences, such as

document.forms[0].song.value

to retrieve the value entered into the song field.

A more efficient way is to send a reference to the form object as a parameter with the call to the function (as
shown in Listing 21-1). By specifying this.form as the parameter, you tell JavaScript to send along every-
thing it knows about the form from which the function is called. This works because form is a property of
every form control element; the property is a reference to the form that contains the control. Therefore,
this.form passes the value of the form property of the control.

At the function, the reference to the form object is assigned to a variable name (arbitrarily set to form here)
that appears in parentheses after the function name. I use the parameter variable name form here because it
represents an entire form. But you can use any valid variable name you like.

The reference to the form contains everything the browser needs to know to find that form within the docu-
ment. Any statements in the function can therefore use the parameter value in place of the longer, more
cumbersome reference to the form. Thus, here I can use form to take the place of document.forms[0] or
document.forms[“Beatles”] in any address. To get the value of the song field, the reference is:

form.song.value

Had I assigned the form object to a parameter variable called sylvester, the reference would have been:

sylvester.song.value

When a function parameter is a reference to an object, statements in the function can retrieve or set proper-
ties of that object as well as invoke the object’s methods.

Another version of the this parameter passing style simply uses the word this as the parameter. Unlike
this.form, which passes a reference to the entire form connected to a particular element, this passes a
reference only to that one element. In Listing 21-1, you can add an event handler to the song field to do
some validation of the entry (to make sure that the entry appears in a database array of Beatles’ songs cre-
ated elsewhere in the document). Therefore, you want to send only the field object to the function for
analysis:

<input type=”text” name=”song” id=”song” onchange=”checkSong(this)” />

You then have to create a function to catch this call:

function checkSong(songTitle) {
var enteredSong = songTitle.value;
alert(“Making sure that “ + enteredSong + “ was recorded by the Beatles.”);

}

Within this function, you can go straight to the heart — the value property of the field element — without
a long reference.

One further extension of this methodology passes only a single property of a form control element as a
parameter. In the last example, the checkSong() function needs only the value property of the field, so

650

Document Objects Reference

form

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 650

the event handler can pass this.value as a parameter. Because this refers to the very object in which the
event handler appears, the this.propertyName syntax enables you to extract and pass along a single
property:

<input type=”text” name=”song” id=”song” onchange=”checkSong(this.value)” />

A benefit of this way of passing form element data is that the function doesn’t have to do as much work:

function checkSong(songTitle) {
alert(“Making sure that “ + songTitle + “ was recorded by the Beatles.”);

}

Unlike passing object references (like the form and text field objects above), when you pass a property value
(for example, this.value), the property’s value is passed with no reference to the object from which it
came. This suffices when the function just needs the value to do its job. However, if part of that job is to
modify the object’s property (for example, converting all text from a field to uppercase and redisplaying the
converted text), the value passed to the function does not maintain a “live” connection with its object. To
modify a property of the object that invokes an event handler function, you need to pass some object refer-
ence so that the function knows where to go to work on the object.

Many programmers with experience in other languages expect parameters to be passed either
by reference or by value, but not both ways. The rule of thumb in JavaScript, however, is fairly

simple: object references are passed by reference; property values are passed by value.

Here are some guidelines to follow when deciding what kind of value to pass to an event handler function:

n Pass the entire form control object (this) when the function needs to make subsequent access to
that same element (perhaps reading an object’s value property, converting the value to all upper-
case letters, and then writing the result back to the same object’s value property).

n Pass only one property (this.propertyName) when the function needs read-only access to that
property.

n Pass the entire form element object (this.form) for the function to access multiple elements
inside a form (for example, a button click means that the function must retrieve a field’s content).
Remember, too, that control objects all have a form property, which is a reference to the contain-
ing form object. Therefore, if you pass only this, the function can still obtain the form reference.

Also be aware that you can submit multiple parameters (for example, onclick=”someFunction
(this.form, this.name)”) or even an entirely different object from the same form (for example,
onclick=”someFunction(this.form.emailAddr.value)”). Simply adjust your function’s incoming
parameters accordingly. (See Chapter 34 for more details about custom functions.)

E-mailing forms
A common request among scripters is how to send a form via e-mail to the page’s author. This includes the
occasional desire to send “secret” e-mail to the author whenever someone visits the web site. Let me address
the privacy issue first.

A site visitor’s e-mail address is valuable personal information that you should not retrieve without the visi-
tor’s permission or knowledge. Early browser versions employed various approaches to help safeguard
e-mail addresses. Some were more effective than others. Due to the unreliable nature and occasionally awk-
ward user interface of mailing a form via the mailto: URL, I do not recommend its use.

TIPTIP

651

form

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 651

Many ISPs that host web sites provide standard CGIs for forwarding forms to an e-mail address of your
choice. Search the Web for “formmail service” to locate third-party suppliers of this feature if you don’t have
access to server programming for yourself.

The remaining discussion about mailing forms focuses primarily on modern browsers and assumes an ide-
ally configured e-mail program is installed. You should be aware that mailing forms in the following ways is
controversial in some web standards circles since making an assumption about what the user has installed is
somewhat of a leap of faith. Consequently, the W3C HTML specification does not endorse these techniques
specifically. Use these facilities judiciously and only after extensive testing on the client browsers you intend
to support.

If you want to have forms submitted as e-mail messages, you must attend to three <form> tag attributes.
The first is the method attribute. You must set it to POST. Next comes enctype. If you omit this attribute,
the e-mail client sends the form data as an attachment consisting of escaped name-value pairs, as in this
example:

name=Danny+Goodman&rank=Scripter+First+Class&serialNumber=042

But if you set the enctype attribute to text/plain, the form name-value pairs are placed in the body of the
mail message in a more human-readable format:

name=Danny Goodman
rank=Scripter First Class
serialNumber=042

The last attribute of note is the action attribute, which is normally the spot to place a URL to another file
or server CGI. Substitute the URL with the special mailto: URL followed by an optional parameter for the
subject. Here is an example:

action=”mailto:prez@whitehouse.gov?subject=Opinion%20Poll”

To sum up, the following example shows the complete <form> tag for e-mailing the form:

<form name=”entry”
method=”POST”
enctype=”text/plain”
action=”mailto:prez@whitehouse.gov?subject=Opinion Poll”>

None of this requires any JavaScript at all. But seeing how you can use the attributes — and the fact that
these attributes are exposed as properties of the form element object — you might see some extended possi-
bilities for script control over forms.

Changing form attributes
All modern browsers expose form element attributes as modifiable properties. Therefore, you can change,
say, the action of a form via a script in response to user interaction on your page. For example, you can have
two different CGI programs invoked on your server depending on whether a form’s check box is checked.

The best opportunity to change the properties of a form element object is in a function
invoked by the form’s onsubmit event handler. The modifications are performed at the last

instant prior to actual submission, leaving no room for user-induced glitches to get in the way.

TIPTIP

652

Document Objects Reference

form

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 652

Buttons in forms
A common mistake that newcomers to scripting make is defining all clickable buttons as the submit type of
input object (<input type=”submit”>). The Submit button does exactly what it says — it submits the
form. If you don’t set any method or action attributes of the <form> tag, the browser inserts its default
values for you: method=GET and action=pageURL. When you submit a form with these attributes, the
page reloads itself and resets all field values to their initial values.

Use a Submit button only when you want the button to actually submit the form. If you want a button for
other types of action, use the button style (<input type=”button”>). A regular button can invoke a func-
tion that performs some internal actions and then invokes the form element object’s submit() method to
submit the form under script control.

Redirection after submission
Undoubtedly, you have submitted a form to a site and seen a “Thank You” page come back from the server
to verify that your submission was accepted. This is warm and fuzzy, if not logical, feedback for the submis-
sion action. It is not surprising that you would want to re-create that effect even if the submission is to a
mailto: URL. Unfortunately, a problem gets in the way.

A common sense approach to the situation calls for a script to perform the submission (via the form
.submit() method) and then navigate to another page that does the “Thank You.” Here is such a scenario
from inside a function triggered by a click of a link surrounding a nice, graphical Submit button:

function doSubmit() {
document.forms[0].submit();
location.href = “thanks.html”;

}

The problem is that when another statement executes immediately after the form.submit() method, the
submission is canceled. In other words, the script does not wait for the submission to complete itself and
verify to the browser that all is well (even though the browser appears to know how to track that informa-
tion given the status bar feedback during submission). The point is, because JavaScript does not provide an
event that is triggered by a successful submission, there is no sure-fire way to display your own “Thank
You” page.

Don’t be tempted by the window.setTimeout() method to change the location after some number of mil-
liseconds following the form.submit() method. You cannot predict how fast the network and/or server is
for every visitor. If the submission does not complete before the timeout ends, the submission is still can-
celed — even if it is partially complete.

Form element arrays
Document object models provide a feature that is beneficial to a lot of scripters. If you create a series of like-
named objects, they automatically become an array of objects accessible via array syntax (see Chapter 7).
This is particularly helpful when you create forms with columns and rows of fields, such as in an order
form. By assigning the same name to all fields in a column, you can employ for loops to cycle through each
row using the loop index as an array index.

653

form

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 653

As an example, the following code shows a typical function that calculates the total for an order form row
(and calls another custom function to format the value):

function extendRows(form) {
for (var i = 0; i < Qty.length; i++) {

var rowSum = form.Qty[i].value * form.Price[i].value;
form.Total[i].value = formatNum(rowSum,2);

}
}

All fields in the Qty column are named Qty. The item in the first row has an array index value of zero and is
addressed as form.Qty[i].

About <input> element objects
Whereas this chapter focuses strictly on the form element as a container of controls, the next three chapters
discuss different types of controls that nest inside a form. Many of these controls share the same HTML tag:
<input>. Only the type attribute of the <input> tag determines whether the browser shows you a click-
able button, a check box, a text field, or so on. The fact that one element has so many guises makes the sys-
tem seem illogical at times to scripters.

An input element has some attributes (and corresponding scriptable object properties) that simply don’t
apply to every type of form control. For example, although the maxLength property of a text box makes
perfect sense in limiting the number of characters that a user can type into it, the property has no bearing
whatsoever on form controls that act as clickable buttons. Similarly, you can switch a radio button or check
box on or off by adjusting the checked property; however, that property simply doesn’t apply to a text box.

As the document object models have evolved, they have done so in an increasingly object-oriented way. The
result in this form-oriented corner of the model is that all elements created via the <input> tag have a long
list of characteristics that they all share by virtue of being types of input elements — they inherit the prop-
erties and methods that are defined for any input element. To try to limit the confusion, I divide the chap-
ters in this book that deal with input elements along functional lines (clickable buttons in one chapter, text
fields in the other), and only list and discuss those input element properties and methods that apply to the
specific control type.

In the meantime, this chapter continues with details of the form element object.

Properties
acceptCharset
Value: String. Read/Write
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

The acceptCharset property represents the acceptcharset attribute of the form element in HTML 4.0.
The value is a list of one or more recognized character sets that the server receiving the form must support.
For a list of registered character set names, see http://www.iana.org/assignments/character-sets.

Related Items: None.

654

Document Objects Reference

form.acceptCharset

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 654

action
Value: URL string. Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The action property (along with the method and target properties) primarily functions for HTML
authors whose pages communicate with server-based CGI scripts. This property is the same as the value
you assign to the action attribute of a <form> tag. The value is typically a URL on the server where queries
or postings are sent for submission.

User input may affect how you want your page to access a server. For example, a checked box in your docu-
ment may set a form’s action property so that a CGI script on one server handles all the input, whereas an
unchecked box means the form data goes to a different CGI script or a CGI script on an entirely different
server. Or, one setting may direct the action to one mailto: address, whereas another setting sets the
action property to a different mailto: address.

Although the specifications for all three related properties indicate that you can set them on the fly, such
changes are ephemeral. A soft reload eradicates any settings you make to these properties, so you should
make changes to these properties only in the same script function that submits the form (see form
.submit() later in this chapter).

Related Items: form.method, form.target, form.encoding properties.

autocomplete
Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

Microsoft added a feature to forms starting with WinIE5 that allows the browser to supply hints for filling
out form controls if the controls’ names map to a set of single-line text controls defined via some additional
attributes linked to the vCard XML schema. For details on implementing this browser feature, see http://
msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/
properties/autocomplete.asp. Values for the autoComplete property are your choice of two strings:
on or off. In either case, the form element object does not report knowing about this property unless you
set the autocomplete attribute in the form’s tag.

Related Items: None.

elements[]
Value: Array of form control elements. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Elements include all the user interface elements defined for a form: text fields, buttons, radio buttons, check
boxes, selection lists, and more. The elements property is an array of all form control items defined within
the current form. For example, if a form defines three <input> items, the elements property for that form
is an array consisting of three entries (one for each item in source code order). Each entry is a valid refer-
ence to that element; so, to extract properties or call methods for those elements, your script must dig
deeper in the reference. Therefore, if the first element of a form is a text field and you want to extract the
string currently showing in the field (a text element’s value property), the reference looks like this:

document.forms[0].elements[0].value

655

form.elements

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 655

Notice that this reference summons two array-oriented properties along the way: one for the document’s
forms property and one for the form’s elements property.

In practice, I suggest you refer to form controls (and forms) by their names (or IDs if you prefer to use
document.getElementById()). This allows you the flexibility to move controls around the page as
you fine-tune the design, and you don’t have to worry about the source code order of the controls. The
elements array comes in handy when you need to iterate through all of the controls within a form. If your
script needs to loop through all elements of a form in search of particular kinds of elements, use the type
property of every form control object to identify which kind of object it is. The type property consists of
the same string used in the type attribute of an <input> tag.

Overall, I prefer to generate meaningful names for each form control element and use those names in refer-
ences throughout my scripts. The elements array helps with form control names, as well. Instead of a
numeric index to the elements array, you can use the string name of the control element as the index.
Thus, you can create a generic function that processes any number of form control elements, and simply
pass the string name of the control as a parameter to the function. Then use that parameter as the
elements array index value. For example:

function putVal(controlName, val) {
document.forms[0].elements[controlName].value = val;

}

If you want to modify the number of controls within a form, you should use the element and/or node man-
agement facilities of the browser(s) of your choice. For example, in modern browsers you can assemble the
HTML string for an entirely new set of form controls and then assign that string to the innerHTML property
of the form element object.

As handy as it may be, in a strict W3C approach to JavaScript, you wouldn’t use the
innerHTML property since it isn’t officially part of the W3C standard. However, it is often too

powerful a convenience property to ignore, as much of the code throughout this book is a testament. The
book does show the W3C node manipulation alternative to innerHTML in some examples. Refer to Chapter
18 for a thorough explanation and examples of the W3C alternative to innerHTML.

The document in Listing 21-2 demonstrates a practical use of the elements property. A form contains four
fields and some other elements mixed in between (see Figure 21-2). The first part of the function that acts
on these items repeats through all the elements in the form to find out which ones are text box objects and
which text box objects are empty. Notice how I use the type property to separate text box objects from the
rest, even when radio buttons appear amid the fields. If one field has nothing in it, I alert the user and use
that same index value to place the insertion point at the field with the field’s focus() method.

NOTENOTE

656

Document Objects Reference

form.elements

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 656

LISTING 21-2

Using the form.elements Array

<html>
<head>

<title>Elements Array</title>
<script type=”text/javascript”>
function verifyIt() {

var form = document.forms[0];
for (i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text” &&
form.elements[i].value == “”) {
alert(“Please fill out all fields.”);
form.elements[i].focus();
break;

}
// more tests

}
// more statements

}
</script>

</head>
<body>

<form>
Enter your first name:<input type=”text” name=”firstName”

id=”firstName” />
<p>Enter your last name:<input type=”text” name=”lastName”

id=”lastName” /></p>
<p><input type=”radio” name=”gender” id=”gender1” />Male

<input type=”radio” name=”gender” id=”gender2” />Female</p>
<p>Enter your address:<input type=”text” name=”address” id=”address”

/></p>
<p>Enter your city:<input type=”text” name=”city” id=”city” /></p>
<p><input type=”checkbox” name=”retired” id=”retired” />I am

retired</p>
</form>
<form>

<input type=”button” name=”act” id=”act” value=”Verify”
onclick=”verifyIt()” />

</form>
</body>

</html>

657

form.elements

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 657

FIGURE 21-2

The elements array helps find text fields for validation.

Related Items: text, textarea, button, radio, checkbox, select objects.

encoding
enctype
Value: MIME type string. Read/Write (see text)
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

You can define a form to alert a server when the data you submit is in a MIME type. The encoding prop-
erty reflects the setting of the enctype attribute in the form definition. The enctype property name is
defined for form element objects in the W3C DOM (with encoding removed), but NN6+ provides both
properties for backward and forward compatibility.

For mailto: URLs, I recommend setting this value (in the tag or via script) to “text/plain” to have the
form contents placed in the mail message body. If the definition does not have an enctype attribute, this
property is an empty string.

Related Items: form.action, form.method properties.

658

Document Objects Reference

form.encoding

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 658

length
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The length property of a form element object provides the same information as the length property of
the form’s elements array. The property provides a convenient, if not entirely logical, shortcut to retrieving
the number of controls in a form.

Related Items: form.elements property.

method
Value: String (GET or POST). Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A form’s method property is either the GET or POST value (not case-sensitive) assigned to the method attrib-
ute in a <form> definition. Terminology overlaps here a bit, so be careful to distinguish a form’s method of
transferring its data to a server from the object-oriented method (action or function) that all JavaScript
forms have.

The method property is of primary importance to HTML documents that submit a form’s data to a server-
based CGI script because it determines the format used to convey this information. For example, to submit
a form to a mailto: URL, the method property must be POST. Details of forms posting and CGI processing
are beyond the scope of this book. Consult HTML or CGI documentation to determine which is the appro-
priate setting for this attribute in your web server environment. If a form does not have a method attribute
explicitly defined for it, the default value is GET.

Related Items: form.action, form.target, form.encoding properties.

name
Value: Identifier string. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Assigning a name to a form via the name attribute is optional but highly recommended when your scripts
need to reference a form or its elements. This attribute’s value is retrievable as the name property of a form.
You don’t have much need to read this property unless you inspect another source’s document for its form
construction, as in:

var formName = parent.frameName.document.forms[0].name;

Moreover, because server-side CGI programs frequently rely on the name of the form for validation pur-
poses, it is unlikely you will need to change this property.

target
Value: Identifier string. Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Whenever an HTML document submits a query to a server for processing, the server typically sends back
an HTML page — whether it is a canned response or, more likely, a customized page based on the input
provided by the user. You see this situation all the time when you perform a search at web sites. In a multi-
frame or multiwindow environment, you may want to keep the form part of this transaction in view for the

659

form.target

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 659

user but leave the responding page in a separate frame or window for viewing. The purpose of the target
attribute of a <form> definition is to enable you to specify where the output from the server’s query should
be displayed.

The value of the target property is the name of the window or frame. For instance, if you define a frame-
set with three frames and assign the names Frame1, Frame2, and Frame3 to them, you need to supply one
of these names (as a quoted string) as the parameter of the target attribute of the <form> definition.
Browsers also observe four special window names that you can use in the <form> definition: _top, _par-
ent, _self, and _blank. To set the target as a separate subwindow opened via a script, use the window
name from the window.open() method’s second parameter and not the window object reference that the
method returns.

If you code your page to validate according to strict XHTML, you won’t be able to include a target attrib-
ute for a form. But you can still use a script to assign a value to the property without interfering with the
validation.

Related Items: form.action, form.method, form.encoding properties.

Methods
reset()
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

A common practice, especially with a long form, is to provide a button that enables the user to return all the
form elements to their default settings. The standard Reset button (a separate object type described in
Chapter 22) does that task just fine. But if you want to clear the form using script control, you must do so
by invoking the reset() method for the form. More than likely, such a call is initiated from outside the
form, perhaps from a function or graphical button. In such cases, make sure that the reference to the
reset() method includes the complete reference to the form you want to reset — even if the page only has
one form defined for it.

In Listing 21-3, I assign the act of resetting the form to the href attribute of a link object (that is attached
to a graphic called reset.jpg). I use the javascript: URL to invoke the reset() method for the form
directly (in other words, without doing it via function). Note that the form’s action in this example is to a
nonexistent URL. If you click the Submit icon, you receive an “unable to locate” error from the browser.

LISTING 21-3

form.reset() and form.submit() Methods

<html>
<head>

<title>Registration Form</title>
</head>
<body>

<form name=”entries” method=”POST”
action=”http://www.u.edu/pub/cgi-bin/register”>

Enter your first name:<input type=”text” name=”firstName”
id=”firstName” />

<p>Enter your last name:<input type=”text” name=”lastName”
id=”lastName” /></p>

<p>Enter your address:<input type=”text” name=”address”

660

Document Objects Reference

form.reset()

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 660

id=”address” /></p>
<p>Enter your city:<input type=”text” name=”city” id=”city” /></p>
<p><input type=”radio” name=”gender” id=”gender1” checked=”checked”

/>Male <input type=”radio” name=”gender” id=”gender2” />Female</p>
<p><input type=”checkbox” name=”retired” id=”retired” />I am

retired</p>
</form>
<p><img alt=”image”

src=”submit.jpg” height=”25” width=”100” border=”0” /> <img alt=”image”
src=”reset.jpg” height=”25” width=”100” border=”0” /></p>

</body>
</html>

Related Items: onreset event handler; reset object.

submit()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The most common way to send a form’s data to a server’s CGI program for processing is to have a user click
a Submit button. The standard HTML Submit button is designed to send data from all named elements of a
form according to the specifications listed in the <form> definition’s attributes. But if you want to submit a
form’s data to a server automatically for a user, or want to use a graphical button for submission, you can
accomplish the submission with the form.submit() method.

Invoking this method is almost the same as a user clicking a form’s Submit button (except that the
onsubmit event handler is not triggered). Therefore, you may have an image on your page that is a graphi-
cal submission button. If that image is surrounded by a link object, you can capture a mouse click on that
image and trigger a function whose content includes a call to a form’s submit() method (see Listing 21-3).

In a multiple-form HTML document, however, you must reference the proper form either by name or
according to its position in a document.forms array. Always make sure that the reference you specify in
your script points to the desired form before you submit any data to a server.

As a security and privacy precaution for people visiting your site, JavaScript ignores all submit() methods
whose associated form actions are set to a mailto: URL. Many web page designers would love to have
secret e-mail addresses captured from visitors. Because such a capture can be considered an invasion of pri-
vacy, the power has been disabled since early browser versions. You can, however, still use an explicit
Submit button object to mail a form to you from browsers. (See the section “E-mailing forms” earlier in this
chapter.)

Because the form.submit() method does not trigger the form’s onsubmit event handler, you must
perform any presubmission processing and forms validation in the same script that ends with the form.
submit() statement. You also do not want to interrupt the submission process after the script invokes the
form.submit() method. Script statements inserted after one that invokes form.submit()— especially
those that navigate to other pages or attempt a second submission — cause the first submission to cancel
itself.

Related Item: onsubmit event handler.

661

form.submit()

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 661

Event handlers
onreset
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Immediately before a Reset button returns a form to its default settings, JavaScript sends a reset event to
the form. By including an onreset event handler in the form definition, you can trap that event before the
reset takes place.

A friendly way of using this feature is to provide a safety net for a user who accidentally clicks the Reset but-
ton after filling out a form. The event handler can run a function that asks the user to confirm the action.

The onreset event handler must evaluate to return true for the event to continue to the browser. This
may remind you of the way onmouseover and onmouseout event handlers work for links and image areas.
This requirement is far more useful here because your function can control whether the reset operation ulti-
mately proceeds to conclusion.

Listing 21-4 demonstrates one way to prevent accidental form resets or submissions. Using standard Reset
and Submit buttons as interface elements, the <form> object definition includes both event handlers. Each
event handler calls its own function that offers a choice for users. Notice how each event handler includes
the word return and takes advantage of the Boolean values that come back from the confirm() method
dialog boxes in both functions.

LISTING 21-4

The onreset and onsubmit Event Handlers

<html>
<head>

<title>Submit and Reset Confirmation</title>
<script type=”text/javascript”>
function allowReset() {

return window.confirm(“Go ahead and clear the form?”);
}
function allowSend() {

return window.confirm(“Go ahead and mail this info?”);
}
</script>

</head>
<body>

<form method=”POST” enctype=”text/plain”
action=”mailto:trash4@dannyg.com” onreset=”return allowReset()”
onsubmit=”return allowSend()”>

Enter your first name:<input type=”text” name=”firstName”
id=”firstName” />

<p>Enter your last name:<input type=”text” name=”lastName”
id=”lastName” /></p>

<p>Enter your address:<input type=”text” name=”address”
id=”address” /></p>

662

Document Objects Reference

form.onreset

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 662

<p>Enter your city:<input type=”text” name=”city” id=”city” /></p>
<p><input type=”radio” name=”gender” id=”gender1” checked=”checked”

/>Male <input type=”radio” name=”gender” id=”gender2” />Female</p>
<p><input type=”checkbox” name=”retired” id=”retired” />I am retired</p>
<p><input type=”reset” /> <input type=”submit” /></p>

</form>
</body>

</html>

onsubmit
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

No matter how a form’s data is actually submitted (by a user clicking a Submit button or by a script invok-
ing the form.submit() method), you may want your JavaScript-enabled HTML document to perform
some data validation on the user input, especially with text fields, before the submission heads for the
server. You have the option of doing such validation while the user enters data (see Chapter 43 on the
CD-ROM) or in batch mode before sending the data to the server (or both). The place to trigger this last-
ditch data validation is the form’s onsubmit event handler. Note, however, that this event fires only from a
genuine Submit type <input> element and not from the form’s submit() method.

When you define an onsubmit handler as an attribute of a <form> definition, JavaScript sends the submit
event to the form just before it dashes off the data to the server. Therefore, any script or function that is the
parameter of the onsubmit attribute executes before the data is actually submitted. Note that this event
handler fires only in response to a genuine Submit-style button and not from a form.submit() method.

Any code executed for the onsubmit event handler must evaluate to an expression consisting of the word
return plus a Boolean value. If the Boolean value is true, the submission executes as usual; if the value is
false, no submission is made. Therefore, if your script performs some validation prior to submitting data,
make sure that the event handler calls that validation function as part of a return statement (as shown in
Listing 21-4).

Even after your onsubmit event handler traps a submission, JavaScript’s security mechanism can present
additional alerts to the user depending on the server location of the HTML document and the destination of
the submission.

fieldset and legend Element Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

form

663

fieldset

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 663

Syntax
Accessing fieldset or legend element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

About these objects
The fieldset and legend elements go hand in hand to provide some visual context to a series of form
controls within a form. Browsers that implement the fieldset element draw a rectangle around the docu-
ment space occupied by the form controls nested inside the fieldset element. The rectangle renders the
full width of the body, unless its width is controlled by appropriate stylesheet properties (for example,
width). To that rectangle is added a text label that is assigned via the legend element nested inside the
fieldset element. None of this HTML-controlled grouping is necessary if you design a page layout that
already provides graphical elements to group the form controls together.

Nesting the elements properly is essential to obtaining the desired browser rendering. A typical HTML
sequence looks like the following:

<form>
<fieldset>
<legend>Legend Text</legend>
All your form controls and their labels go here.
</fieldset>
</form>

You can have more than one fieldset element inside a form. Each set has a rectangle drawn around it.
This can help organize a long form into more easily digestible blocks of controls for users — yet the single
form retains its integrity for submission to the server.

A fieldset element acts like any HTML container with respect to stylesheets and the inheritance thereof.
For example, if you set the color style property of a fieldset element, the color affects the text of ele-
ments nested within; however, the color of the border drawn by the browser is unaffected. Assigning a color
to the fieldset style’s border-color property colors just the border and not the textual content of nested
elements.

Note that the content of the legend element can be any HTML. Alternatively, you can assign a distinctive
stylesheet rule to the legend element. If your scripts need to modify the text of the legend, you can accom-
plish this in modern browsers with the nodeValue properties of HTML element objects.

Only two element-specific properties are assigned to this object pair. The first is the align property of the
legend object. This property matches the capabilities of the align attribute for the element as specified in
the HTML 4.0 recommendation (albeit the property is deprecated in favor of stylesheet rules). MacIE5+ and
WinIE5.5+ enable you to adjust this property on the fly (generally between your choices of “right” and
“left”) to alter the location of the legend at the top of the fieldset rectangle.

Because these elements are children of a form element, it makes sense that the DOM Level 2 specification
supplies the read-only form property to both of these objects. That property returns a reference to the form
element object that encloses either element. The form property for the fieldset and legend objects is
implemented in modern browsers.

664

Document Objects Reference

fieldset

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 664

label Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

form

htmlFor

Syntax
Accessing label element object properties or methods:

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

About this object
With the push in the HTML 4.0 specification to provide context-oriented tags for just about every bit of
content on the page, the W3C HTML working group filled a gap with respect to text that usually hangs in
front of or immediately after input, select, and textarea form control elements. You use these text
chunks as labels for the items to describe the purpose of the control. The only input element that had an
attribute for its label was the button input type. But even the newer button element did away with that.

A label element enables you to surround a control’s label text with a contextual tag. In addition, one of the
element’s attributes — for— enables you to associate the label with a particular form control element. In
the HTML, the for attribute is assigned the ID of the control with which the label is associated. A label
element can be associated with a form control if the form control’s tag is contained between the label ele-
ment’s start and end tags.

At first glance, browsers do nothing special (from a rendering point of view) for a label element. But for
some kinds of elements, especially check box and radio input type elements, browsers help restore to users
a vital user-interface convention: clicking the label is the same as clicking the control. For text elements,
focus events are passed to the text input element associated with the label. In fact, all events that are
directed at a label bubble upward to the form control associated with it. The following page fragment
demonstrates how fieldset, legend, and label elements look in a form consisting of two radio buttons:

<form ...>
<fieldset id=”form1set1”>
<legend id=”form1set1legend”>Choose the Desired Performance</legend>
<input type=”radio” name=”speed” id=”speed1” />

<label for=”speed1”>Fastest (lower quality)</label>

<input type=”radio” name=”speed” id=”speed2” />

<label for=”speed2”>Slower (best quality)</label>
</fieldset>
</form>

665

label

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 665

Even so, a label and its associated form control element do not have to be adjacent to each other in the
source code. For example, you can have a label in one cell of a table row with the form control in another
cell (in the same or different row).

Properties
htmlFor
Value: Element object reference. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The htmlFor property is the scripted equivalent of the for attribute of the label element. An acceptable
value is a full reference to a form control element (input, textarea, or select element objects). It is
highly unlikely that you would modify this property for an existing label element. However, if your script
is creating a new label element (perhaps a replacement form), use this property to associate the label with
a form control.

Scripting and Web Forms 2.0
Standard HTML forms have been with us for some time, which means it shouldn’t necessarily come as a
surprise that there is an effort to revamp the handling of forms on the Web. Although there are several from
technologies vying for the limelight, Web Forms 2.0 is the one with the most momentum, at least for now.

It’s difficult to mention Web Forms 2.0 without also mentioning XForms, which is in many ways a compet-
ing form technology. Unlike Web Forms 2.0, which is based on traditional HTML code and scripting,
XForms relies on a specialized XML syntax to describe form components. This doesn’t necessarily make
either technology better or worse than the other, except for the fact that Web Forms 2.0 is already sup-
ported by a production web browser (Opera 9). And as history has shown, early adoption is one of the best
ways for an emerging technology to take hold.

Speaking of browsers and forms, it’s worth noting that Microsoft doesn’t appear to be very eager to back
either Web Forms 2.0 or XForms. They have their own XML-based form technology known as XAML that
has ties to the next generation Windows operating system. The Mozilla Foundation was involved in devel-
oping the Web Forms 2.0 specification and has stated a commitment to supporting it natively in the Gecko
browser engine that forms the core of Mozilla-based browsers. The same goes for Apple and their desire to
support Web Forms 2.0 in their Safari browser. So expect to see much broader support for Web Forms 2.0
in the very near future, and in the meantime there are plug-ins available for several major browsers.

What is Web Forms 2.0?
Like HTML and JavaScript, Web Forms 2.0 is a specification that describes how a technology is supposed to
work. In this case, the specification describes a set of rich user interface components that carry out common
information gathering tasks such as allowing the user to select a date or enter text. Traditional HTML sup-
ports such tasks via forms as well, but those forms are fairly limited and require a decent amount of script-
ing in order to provide any significant degree of user friendliness. Thanks to modern user interface design,
web users have to expect form validation, an auto-completion feature for frequently entered text, and visual
user interfaces for common data entry tasks such as the selection of a date.

Web Forms 2.0 addresses the limitations of HTML forms by offering advanced form validation without
scripting, auto-completion, careful control over the input focus, and a host of new form control types such

666

Document Objects Reference

label.htmlFor

Part III

29_069165 ch21.qxp 3/1/07 3:48 PM Page 666

as specialized date/time and URL input controls, among others. You can begin using Web Forms 2.0 right
away in the Opera browser (as of version 9), although there are browser add-ons that support it in other
major browsers.

Web Forms 2.0 and JavaScript
Scripting’s role in Web Forms 2.0 is primarily that as a programmatic equivalent to operations and behav-
iors that are built into any browser that supports the standard. For example, Web Forms 2.0 includes a
facility known as repetition blocks, whereby a form can grow or shrink as needed, such as a tabular order
form whose rows of input elements grow as the user adds new items to the order. The Web Forms mecha-
nism takes care of adding repeated rows of form controls and assigning names to elements indicating row
numbers (there is a special button type whose tag attributes link it to the template that is repeated). The
DOM interface provided with Web Forms allows script access to adding and subtracting rows if the page
design requires it.

If it sounds as though Web Forms 2.0 is trying to displace JavaScript, in a way that’s true. The purpose is to
rely less on scripting for form validation and other Dynamic HTML surrounding forms, offering page
authors a more standardized way of handling these common tasks. But the creators of Web Forms 2.0 also
know that scripters will want to get their hands on the new forms “stuff,” and therefore provide ample script
access.

For more information about Web Forms 2.0, visit http://www.whatwg.org/specs/web-forms/
current-work.

667

The Form and Related Objects 21

29_069165 ch21.qxp 3/1/07 3:48 PM Page 667

29_069165 ch21.qxp 3/1/07 3:48 PM Page 668

This chapter is devoted to those lovable buttons that invite users to initiate
action and make choices with a single click of the mouse button. In this
category fall the standard system-looking buttons with labels on them, as

well as radio buttons and checkboxes. For such workhorses of the HTML form,
these objects have a limited vocabulary of object-specific properties, methods,
and event handlers.

I group together the button, submit, and reset objects for an important reason:
They look alike yet they are intended for very different purposes. Knowing when
to use which button is important — especially when to differentiate between the
button and submit objects. Many a newcomer gets the two confused and winds
up with scripting error headaches. That confusion won’t happen to you by the
time you finish this chapter.

The button Element Object,
and the Button, Submit, and
Reset Input Objects
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

form click() onclick

name onmousedown

type onmouseup

value

669

IN THIS CHAPTER
Triggering action from a user’s
click of a button

Assigning hidden values to radio
and checkbox buttons

Distinguishing between radio
button families and their
individual buttons

Button Objects

30_069165 ch22.qxp 3/1/07 3:49 PM Page 669

Syntax
Accessing button object properties or methods:

(All) [window.]document.formName.buttonName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |

method([parameters])
(All) [window.]document.forms[index].buttonName.property |

method([parameters])
(All) [window.]document.forms[“formName”].buttonName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

About these objects
Button objects generate standard, pushbutton-style user interface elements on the page, depending on the
operating system on which the particular browser runs. In the early days, the browsers called upon the
operating systems to generate these standard interface elements. In more recent versions, the browsers
define their own look, albeit frequently still different for each operating system. More recently, the appear-
ance of a button may also be influenced by browser-specific customizations that browser makers put into
their products. Even so, any computer user will recognize a button when the browser produces it on the
page.

There are two ways to put standard buttons into a page. The first, and completely backward-compatible
way, is to use input elements nested inside a form container. The modern approach involves the button
HTML element, which provides a slightly different way of specifying a button in a page, including the
option of putting a button outside of a form (presumably for some client-side script execution, independent
of form submission). From an HTML point of view, the difference between the two concerns itself with the
way the label of the button is specified. With an input element, the string assigned to the value attribute
becomes the label of the button; but a button element is a container (meaning with an end tag), whose
content becomes the button’s label. You can still assign a value to the value attribute, which, if a form con-
tains the button, gets submitted to the server, independent of the label text.

Always give careful thought to the label that you assign to a button. Because a button initiates some action,
make sure that the verb in the label clearly defines what happens after you click it. Also, take cues from
experienced user interface designers who craft operating system and commercial software buttons: Be con-
cise. If you find your button labels going longer than two or three words, reconsider the design of your page
so that the user can clearly understand the purpose of any button from a shorter label.

Browsers automatically display a button sized to accommodate the label text. But only modern browsers
(IE4+/Moz+/W3C) allow you to control more visual aspects of the button, such as size, label font, and col-
oration. And, as for the position of the button on the page, buttons, as in all in-line elements, appear where
they occur in the source code. You can, of course, use element positioning (Chapter 40 on the CD-ROM) to
make a button appear wherever you want it. But if your pages run on multiple operating systems and gener-
ations of browsers, be aware that the appearance (and size) of a button will not be identical on all screens.
Check out the results on as many platforms as possible.

670

Document Objects Reference

document.formObject.buttonObject

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 670

Buttons in the Windows environment follow their normal behavior in that they indicate the focus with
highlighted button-label text (usually with a dotted rectangle). Some newer browsers running on other
operating systems offer this kind of highlighting and selection as a user option. IE5+ provides additional
input element features that prevent buttons from receiving this kind of visible focus.

The lone button object event handler that works on all browser versions is one that responds to a user
clicking the pointer atop the button: the onclick event handler. Virtually all action surrounding a button
object comes from this event handler. You rarely need to extract property values or invoke the click()
method. Modern browsers include support for the individual component events of a click: mousedown and
mouseup; there’s also a plethora of user-initiated events for buttons that you can use.

Two special variants of the button input object are the submit and reset input objects. With their heritages
going back to early incarnations of HTML, these two button types perform special operations on their own.
The submit-style button automatically sends the data within the same form object to the URL listed in the
action attribute of the <form> definition. The method attribute dictates the format in which the button
sends the data. Therefore, you don’t have to script this action if your HTML page is communicating with a
program (often a CGI script) on the server.

If the form’s action attribute is set to a mailto: URL, you must provide the page visitor with a Submit
button to carry out the action. Setting the form’s enctype attribute to text/plain is also helpful so that
the form data arrives in a more readable form than the normal encoded name-value pairs. See “E-mailing
forms” in Chapter 21 for details about submitting form content via e-mail.

The partner of the Submit button is the Reset button. This button, too, has special powers. A click of this
button type restores all elements within the form to their default values. That goes for text objects, radio
button groups, checkboxes, and selection lists. The most common application of the button is to clear entry
fields of the last data entered by the user.

All that distinguishes these three types of buttons from each other in the <input> tag or <button> tag is
the parameter of the type attribute. For buttons not intended to send data to a server, use the “button” style
(this is the default value for the button element). You should reserve “submit” and “reset” for their special
powers.

If you want an image to behave like a button in all scriptable browsers, consider either associating a link
with an image (see the discussion on the link object in Chapter 19) or creating a client-side image map (see
the area object discussion in Chapter 20). An even better idea that applies solely to modern browsers is to
use the input element with a type attribute set to image (discussed later in this chapter).

Probably the biggest mistake scripters make with these buttons is using a Submit button to do the work of a
plain button. Because these two buttons look alike, and the submit type of input element has a longer tradi-
tion than the button, confusing the two is easy. But if all you want is to display a button that initiates client-
side script execution, use a plain button. The Submit button attempts to submit the form. If no action
attribute is set, then the page reloads, and all previous processing and field entries are erased. The plain but-
ton does its job quietly without reloading the page (unless the script intentionally does so).

Properties
form
Value: Form object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

671

document.formObject.buttonObject.form

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 671

A property of every input element object is a reference to the form element that contains the control. This
property can be very convenient in a script when you are dealing with one form control that is passed as a
parameter to the function and you want to either access another control in the same form or invoke a
method of the form. An event handler of any input element can pass this as the parameter, and the func-
tion can still get access to the form without having to hard-wire the script to a particular form name or doc-
ument layout.

Related Items: form object.

name
Value: Identifier string. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

A button’s name is fixed in the input or button element’s name attribute and can be adjusted via scripting
in modern browsers. You may need to retrieve this property in a general-purpose function handler called by
multiple buttons in a document. The function can test for a button name and perform the necessary state-
ments for that button:

if (button.name == “Calculate”) {
// Perform calculation

}

If you change the name of the object, even a soft reload or window resize restores its original name.

Related Items: name property of all form elements.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The precise value of the type property echoes the setting of the type attribute of the <input> or <but-
ton> tag that defines the object: button; submit; or reset.

value
Value: String. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Both input and button elements have the value attribute, which is represented by the value property in
the object model. But the purpose of the attribute/property in the two elements differs. For the input ele-
ment, the value property represents the label displayed on the button. For a button element, however, the
label text is created by the HTML text between the start and end tags for the button element. When the
input element has a name value associated with it, the name-value pair is submitted along with the form.

If you do not assign a value attribute to a reset or submit style button, the browsers automatically assign
the labels Reset and Submit without assigning a value. A value property can be any string, including mul-
tiple words.

You can modify this text on the fly in a script. Modern browsers are smart enough to resize the button and
reflow the page to meet the new space needs; the new label survives a window resizing, but not a soft reload
of the page.

672

Document Objects Reference

document.formObject.buttonObject.value

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 672

Related Items: value property of text object.

Methods
click()
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

A button’s click() method simulates, via scripting, the human action of clicking that button, resulting in a
triggering of a click event.

Related Items: onclick event handler.

Event handlers
onclick
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Virtually all button action takes place in response to the onclick event handler. A click is defined as a press
and release of the mouse button while the screen pointer rests atop the button. The event goes to the button
only after the user releases the mouse button.

For a Submit button, you should probably omit the onclick event handler and allow the form’s onsubmit
event handler to take care of last-minute data entry validation before sending the form. By triggering valida-
tion with the onsubmit event handler, your scripts can cancel the submission if something is not right (see
the form object discussion in Chapter 21).

Listing 22-1 demonstrates not only the onclick event handler of a button but also how you may need to
extract a particular button’s name or value properties from a general-purpose function that services multi-
ple buttons. In this case, each button passes its own object as a parameter to the displayTeam() function.
The function then displays the results in an alert dialog box. A real-world application would probably per-
form more sophisticated actions based on the button clicked.

LISTING 22-1

Three Buttons Sharing One Function

<html>
<head>

<title>Button Click</title>
<script type=”text/javascript”>
function displayTeam(btn) {

switch (btn.value) {
case “Starsky”:

alert(“Starsky & Hutch”);
break;

case “Tango”:
alert(“Tango & Cash”);
break;

continued

673

document.formObject.buttonObject.onclick

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 673

LISTING 22-1 (continued)

case “Turner”:
alert(“Turner & Hooch”);
break;

}
}
</script>

</head>
<body>

Click on your favorite half of a popular crime fighting team:
<form>

<input type=”button” value=”Starsky” onclick=”displayTeam(this)” />
<input type=”button” value=”Tango” onclick=”displayTeam(this)” />
<input type=”button” value=”Turner” onclick=”displayTeam(this)” />

</form>
</body>

</html>

The property assignment event handling technique used in the previous example and through-
out the chapter is a deliberate simplification to make the code more readable. It is generally

better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

Related Items: button.onmousedown, button.onmouseup, form.onsubmit event handlers.

onmousedown
onmouseup
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Modern browsers have event handlers for the components of a click event: the onmousedown and
onmouseup event handlers. These events fire in addition to the onclick event handler.

The system-level buttons provided by the operating system perform their change of appearance while a but-
ton is being pressed. Therefore, trapping for the components of a click action won’t help you in changing
the button’s appearance via scripting. Remember that a user can roll the cursor off the button while the but-
ton is still down. When the cursor leaves the region of the button, the button’s appearance returns to its
unpressed look, but any setting you make with the onmousedown event handler won’t undo itself with an
onmouseup counterpart, even after the user releases the mouse button elsewhere. On the other hand, if you
can precache a click-on and click-off sound, you can use these events to fire the respective sounds in
response to the mouse button action.

Related Items: button.onclick event handler.

NOTENOTE

674

Document Objects Reference

document.formObject.buttonObject.onmousedown

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 674

checkbox Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

checked click()† onclick†

form†

name†

type

value

† See Button object.

Syntax
Accessing checkbox properties or methods:

(All) [window.]document.formName.boxName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |

method([parameters])
(All) [window.]document.forms[index].boxName.property | method([parameters])
(All) [window.]document.forms[“formName”].boxName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
Checkboxes have a very specific purpose in modern graphical user interfaces: to toggle between “on” and
“off” settings. As with a checkbox on a printed form, a mark in the box indicates that the label text is true or
should be included for the individual who made that mark. When the box is unchecked or empty, the text
is false or should not be included. If two or more checkboxes are physically grouped together, they should
have no interaction: Each is an independent setting (see the discussion on the radio object for interrelated
buttons).

I make these user interface points at the outset because, in order to present a user interface in your HTML
pages consistent with the user’s expectations based on exposure to other programs, you must use checkbox
objects only for on/off choices that the user makes. Using a checkbox as an action button that, for example,
navigates to another URL is not good form. Just as they do in a Windows or Mac dialog box, users make
settings with checkboxes and radio buttons and initiate action by clicking a standard button or image map.

675

document.formObject.checkboxObject

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 675

That’s not to say that a checkbox object cannot perform some limited action in response to a user’s click, but
such actions are typically related to the context of the checkbox button’s label text. For example, in some
Windows and Macintosh dialog boxes, turning on a checkbox may activate a bunch of otherwise inactive
settings elsewhere in the same dialog box. Modern browsers allow disabling (dimming) or hiding form ele-
ments, so a checkbox may control those visible attributes of related controls. Or, in a two-frame window, a
checkbox in one frame may control whether the viewer is an advanced user. If so, the content in the other
frame may be more detailed. Toggling the checkbox changes the complexity level of a document showing in
the other frame (using different URLs for each level). The bottom line, then, is that you should use check-
boxes for toggling between on/off settings. Provide regular buttons for users to initiate processing.

In the <input> tag for a checkbox, you can preset the checkbox to be checked when the page appears by
adding the constant checked attribute to the definition. If you omit this attribute, the button takes on its
default, unchecked appearance. As for the checkbox label text, its definition lies outside the <input> tag,
usually as text that appears next to the tag. If you look at the way checkboxes behave in HTML browsers,
this location makes sense: The label is not an active part of the checkbox (as it typically is in Windows and
Macintosh user interfaces, where clicking the label is the same as clicking the box).

Naming a checkbox can be an important part of the object definition, depending on how you plan to use
the information in your script or document. For forms whose content goes to a program running on the
server, you must word the box name as needed for use by the server program so that the program can parse
the form data and extract the setting of the checkbox. For JavaScript client-side use, you can assign not only
a name that describes the button, but also a value useful to your script for making if...else decisions or
for assembling strings that are eventually displayed in a window or frame.

Properties
checked
Value: Boolean. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The simplest property of a checkbox reveals (or lets you set) whether or not a checkbox is checked. The
value is true for a checked box and false for an unchecked box. To check a box via a script, simply
assign true to the checkbox’s checked property:

document.forms[0].boxName.checked = true;

Setting the checked property from a script does not trigger a click event for the checkbox object. So, the
onclick event handler won’t get called in response to a checkbox being checked via the checked property.

You may need an instance in which one checkbox automatically checks or unchecks another checkbox else-
where in the same or other form of the document. To accomplish this task, create an onclick event han-
dler for the one checkbox and build a statement similar to the preceding one to set the other related
checkbox to true. Don’t get too carried away with this feature, however: For a group of interrelated, mutu-
ally exclusive choices, use a group of radio buttons instead.

If your page design requires that a checkbox be checked after the page loads, don’t bother trying to script
this checking action. Simply add the one-word checked attribute to the <input> tag. Because the checked
property is a Boolean value, you can use its results as an argument for an if clause, as shown in the next
example.

The simple example in Listing 22-2 passes a form object reference to the JavaScript function. The function,
in turn, reads the checked value of the form’s checkbox object (checkThis.checked) and uses its Boolean
value as the test result for the if...else construction.

676

Document Objects Reference

document.formObject.checkboxObject.checked

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 676

LISTING 22-2

The checked Property as a Conditional

<html>
<head>

<title>Checkbox Inspector</title>
<script type=”text/javascript”>
function inspectBox(form) {

if (form.checkThis.checked) {
alert(“The box is checked.”);

} else {
alert(“The box is not checked at the moment.”);

}
}
</script>

</head>
<body>

<form>
<input type=”checkbox” name=”checkThis” />Check here
<p><input type=”button” name=”boxChecker” value=”Inspect Box”

onclick=”inspectBox(this.form)” /></p>
</form>

</body>
</html>

Related Items: defaultChecked, value properties.

defaultChecked
Value: Boolean. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Sometimes you may find it beneficial to know if the initial setting of a checkbox has changed. The checked
property alone can’t tell you this because it reflects only the current state of a checkbox. Another property,
defaultChecked, keeps up with the initial state of a checkbox.

If you add the checked attribute to the <input> definition for a checkbox, the defaultChecked property
for that object is true; otherwise, the property is false. Having access to this property enables your scripts
to examine checkboxes to see if they have been adjusted (presumably by the user, if your script does not set
properties).

The following function is designed to compare the current setting of a checkbox against its default value:

function compareBrowser(thisBox) {
if (thisBox.checked != thisBox.defaultChecked) {

// statements about using a different set of HTML pages
}

}

677

document.formObject.checkboxObject.defaultChecked

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 677

The if construction compares the current status of the box against its default status. Both are Boolean val-
ues, so they can be compared against each other. If the current and default settings don’t match, the func-
tion goes on to handle the case in which the current setting is other than the default.

Related Items: checked, value properties.

type
Value: String (checkbox). Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Use the type property to help you identify a checkbox object from an unknown group of form elements.
Just look for the string checkbox as the type of a form element to know if it is indeed a checkbox.

Related Items: form.elements property.

value
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A checkbox object’s value property is a string of any text that you want to associate with the box. Note that
the checkbox’s value property is not the label, as it is for a regular button, but hidden text associated with
the checkbox. For instance, the label that you attach to a checkbox may not be worded in a way that is use-
ful to your script. But if you place that useful wording in the value attribute of the checkbox tag, you can
extract that string via the value property.

When a checkbox object’s data is submitted to a CGI program, the value property is sent as part of the
name-value pair if the box is checked (nothing about the checkbox is sent if the box is unchecked). If you
omit the value attribute in your definition, the property always yields the string “on,” which is submitted
to a CGI program when the box is checked. From the JavaScript side, don’t confuse this string with the on
and off settings of the checkbox: Use the checked property to determine a checkbox’s status.

The scenario for the skeleton HTML page in Listing 22-3 is a form with a checkbox whose selection deter-
mines which of two actions to follow for submission to the server. After the user clicks the Submit button, a
JavaScript function examines the checkbox’s checked property. If the property is true (the button is
checked), the script sets the action property for the entire form to the content of the value property —
thus influencing where the form goes on the server side. If you try this listing on your computer, the result
you see varies widely with the browser version you use. For most browsers, you see some indication (an
error alert or other screen notation) that a file with the name primaryURL or alternateURL doesn’t exist.
The names and the error message come from the submission process for this demonstration.

LISTING 22-3

Adjusting a Server Submission Action

<html>
<head>

<title>Checkbox Submission</title>
<script type=”text/javascript”>
function setAction(form) {

if (form.checkThis.checked) {

678

Document Objects Reference

document.formObject.checkboxObject.value

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 678

form.action = form.checkThis.value;
} else {

form.action = “file://primaryURL”;
}
return true;

}
</script>

</head>
<body>

<form method=”POST” action=””>
<input type=”checkbox” name=”checkThis”
value=”file://alternateURL” />Use alternate
<p><input type=”submit” name=”boxChecker”

onclick=”return setAction(this.form)” /></p>
</form>

</body>
</html>

Related Items: checked property.

Methods
click()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The intention of the click() method is to enact, via script, the physical act of clicking a checkbox (but
without triggering the onclick event handler). However, your scripts are better served by setting the
checked property so that you know exactly what the setting of the box is at any time.

Related Items: checked property; onclick event handler.

Event handlers
onclick
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Because users regularly click checkboxes, the objects have an event handler for the click event. Use this
event handler only if you want your page (or variable values hidden from view) to respond in some way to
the action of clicking a checkbox. Most user actions, as mentioned earlier, are initiated by clicking standard
buttons rather than checkboxes, so be careful not to overuse event handlers in checkboxes.

The page in Listing 22-4 shows how to trap the click event in one checkbox to influence the visibility and
display of other form controls. After you turn on the Monitor checkbox, a list of radio buttons for monitor
sizes appears. Similarly, engaging the Communications checkbox makes two radio buttons visible. Your
choice of radio button brings up one of two further choices within the same table cell (see Figure 22-1).

Notice how the toggle() function was written as a generalizable function. This function can accept a refer-
ence to any checkbox object and any related span. If five more groups like this were added to the table, no
additional functions would be needed.

679

document.formObject.checkboxObject.onclick

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 679

FIGURE 22-1

Clicking each checkbox reveals additional relevant choices.

In the swap() function, an application of a nested if...else shortcut construction is used to convert the
Boolean values of the checked property to the strings needed for the display style property. The nesting is
used to allow a single statement to take care of two conditions: the group of buttons to be controlled and
the checked property of the button invoking the function. This function is not generalizable, because it
contains explicit references to objects in the document. The swap() function can be made generalizable,
but due to the special relationships between pairs of span elements (meaning one has to be hidden while
the other is displayed in its place), the function would require more parameters to fill in the blanks where
explicit references are needed.

LISTING 22-4

A Checkbox and an onclick Event Handler

<html>
<head>

<title>Checkbox Event Handler</title>
<style type=”text/css”>
#monGroup {visibility:hidden}
#comGroup {visibility:hidden}
</style>
<script type=”text/javascript”>

680

Document Objects Reference

document.formObject.checkboxObject.onclick

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 680

// toggle visibility of a main group spans
function toggle(chkbox, group) {

var visSetting = (chkbox.checked) ? “visible” : “hidden”;
document.getElementById(group).style.visibility = visSetting;

}
// swap display of communications sub group spans
function swap(radBtn, group) {

var modemsVisSetting = (group == “modems”) ? ((radBtn.checked) ?
“” : “none”) : “none”;

var netwksVisSetting = (group == “netwks”) ? ((radBtn.checked) ?
“” : “none”) : “none”;

document.getElementById(“modems”).style.display = modemsVisSetting;
document.getElementById(“netwks”).style.display = netwksVisSetting;

}
</script>

</head>
<body>

<form>
<h3>Check all accessories for your computer:</h3>
<table border=”2” cellpadding=”5”>

<tr>
<td><input type=”checkbox” name=”monitor”

onclick=”toggle(this, ‘monGroup’)” />Monitor</td>
<td><input type=”radio”

name=”monitorType” />15” <input type=”radio”
name=”monitorType” />17” <input type=”radio”
name=”monitorType” />21” <input type=”radio”
name=”monitorType” />>21”</td>

</tr>
<tr>

<td><input type=”checkbox” name=”comms”
onclick=”toggle(this, ‘comGroup’)” />Communications</td>

<td><p><input type=”radio” name=”commType”
onclick=”swap(this, ‘modems’)” />Modem <input type=”radio”
name=”commType” onclick=”swap(this, ‘netwks’)” />Network</p>
<p><input type=”radio”
name=”modemType” /><56kbps <input type=”radio”
name=”modemType” />56kbps <input type=”radio”
name=”modemType” />ISDN (any speed) <input type=”radio”
name=”modemType” />Cable <input type=”radio”
name=”modemType” />DSL <span id=”netwks”
style=”display:none”><input type=”radio”
name=”netwkType” />Ethernet 10Mbps (10-Base T) <input
type=”radio” name=”netwkType” />Ethernet 100Mbps (10/100)
<input type=”radio” name=”netwkType” />T1 or
greater </p></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: checkbox mouse-related event handler.

681

document.formObject.checkboxObject.onclick

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 681

radio Input Object

Properties Methods Event Handlers

See checkbox object.

Syntax
Accessing radio object properties or methods:

(All) [window.]document.formName.buttonGroupName[index].property |
method([parameters])

(All) [window.]document.formName.elements[index] [index].property |
method([parameters])

(All) [window.]document.forms[index]. buttonGroupName[index].property |
method([parameters])

(All) [window.]document.forms[“formName”]. buttonGroupName[index].property |
method([parameters])

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID[index].property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”)[index].property |

method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
A radio button object is an unusual one within the body of JavaScript applications. In every other case of
form control elements, one object equals one visual element on the screen. But a radio object actually con-
sists of a group of radio buttons. Because of the nature of radio buttons — a mutually exclusive choice
among two or more selections — a group always has multiple visual elements. All buttons in the group
share the same name — which is how the browser knows to group buttons together and to let the clicking
of a button deselect any other selected button within the group. Beyond that, however, each button can
have unique properties, such as its value or checked property.

Use JavaScript array syntax to access information about an individual button within the button group. Look
at the following example of defining a button group and see how to reference each button. This button
group lets the user select an image size from a group of standard sizes, which includes the number of
megapixels used by that size as the value:

<form>
Select your desired image size:

<input type=”radio” name=”sizes” value=”0.073” checked=”checked” />320x240
<input type=”radio” name=”sizes” value=”0.293” />640x480
<input type=”radio” name=”sizes” value=”0.75” />1024x768
<input type=”radio” name=”sizes” value=”1.25” />1280x1024
</form>

682

Document Objects Reference

document.formObject.radioObject

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 682

After this group displays on the page, the first radio button is preselected for the user. Only one property of
a radio button object (length) applies to all members of the group. However, the other properties apply to
individual buttons within the group. To access any button, use an array index value as part of the button
group name. For example:

firstBtnValue = document.forms[0].sizes[0].value; // “0.073”
secondBtnValue = document.forms[0].sizes[1].value; // “0.293”

Any time you access the checked, defaultChecked, type, or value property, you must point to a spe-
cific button within the group according to its order in the array (or each button can also have a unique ID).
The order of buttons in the group depends on the sequence in which the individual buttons are defined in
the HTML document. In other words, to uncover the currently selected radio button, your script has to iter-
ate through all radio buttons in the radio group. Examples of this come later in the discussion of this object.

Supplying a value attribute to a radio button can be very important in your script. Although the text label
for a button is defined outside the <input> tag, the value attribute lets you store any string in the button’s
hip pocket. In the earlier example, the radio button labels were just first names, whereas the value proper-
ties were set in the definition to the full names of the actors. The values could have been anything that the
script needed, such as birth dates, shoe sizes, URLs, or the first names again (because a script has no way to
retrieve the labels except through innerHTML or node property access in more modern browsers). The
point is that the value attribute should contain whatever string the script needs to derive from the selection
made by the user. The value attribute contents are also what is sent to a server-side program in a submit
action for the form.

How you decide to orient a group of buttons on the screen is entirely up to your design and the real estate
available within your document. You can string them in a horizontal row (as shown earlier), place

tags after each one to form a column, or do so after every other button to form a double column. Numeric
order within the array is determined only by the order in which the buttons are defined in the source code,
not by where they appear. To determine which radio button of a group is checked before doing processing
based on that choice, you need to construct a repeat loop to cycle through the buttons in the group (shown
in the next example). For each button, your script examines the checked property.

Properties
checked
Value: Boolean. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Only one radio button in a group can be highlighted (checked) at a time (the browser takes care of high-
lighting and unhighlighting buttons in a group for you). That one button’s checked property is set to true,
whereas all others in the group are set to false. By setting the checked property of one button in a group
to true, all other buttons automatically uncheck themselves.

Listing 22-5 uses a repeat loop in a function to look through all buttons in a group of image sizes in search
of the checked button. After the loop finds the one whose checked property is true, it returns the value of
the index. In one instance, that index value is used to extract the value property for display in the alert dia-
log box; in the other instance, the value helps determine which button in the group is next in line to have
its checked property set to true.

683

document.formObject.radioObject.checked

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 683

LISTING 22-5

Finding the Selected Button in a Radio Group

<html>
<head>

<title>Extracting Highlighted Radio Button</title>
<script type=”text/javascript”>
function getSelectedButton(buttonGroup){

for (var i = 0; i < buttonGroup.length; i++) {
if (buttonGroup[i].checked) {

return i;
}

}
return 0;

}
function showMegapixels(form) {

var i = getSelectedButton(form.sizes);
alert(“That image size requires “ + form.sizes[i].value + “ megapixels.”);

}
function cycle(form) {

var i = getSelectedButton(form.sizes);
if (i+1 == form.sizes.length) {

form.sizes[0].checked = true;
} else {

form.sizes[i+1].checked = true;
}

}
</script>

</head>
<body>

<form>
Select your desired image size:
<p><input type=”radio” name=”sizes” value=”0.073”

checked=”checked” />320x240 <input type=”radio” name=”sizes”
value=”0.293” />640x480 <input type=”radio” name=”sizes”
value=”0.75” />1024x768 <input type=”radio” name=”sizes”
value=”1.25” />1280x1024 </p>

<p><input type=”button” name=”Viewer” value=”View Megapixels...”
onclick=”showMegapixels(this.form)” /></p>

<p><input type=”button” name=”Cycler” value=”Cycle Buttons”
onclick=”cycle(this.form)” /></p>

</form>
</body>

</html>

Related Items: defaultChecked property.

684

Document Objects Reference

document.formObject.radioObject.checked

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 684

defaultChecked
Value: Boolean. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

If you add the checked attribute to the <input> definition for a radio button, the defaultChecked prop-
erty for that object is true; otherwise, the property is false. Having access to this property enables your
scripts to examine individual radio buttons to see if they have been adjusted (presumably by the user, if
your script does not perform automatic clicking).

In the following script fragment, a function is passed a reference to a form containing the image sizes radio
buttons:

function groupChanged(form) {
for (var i = 0; i < form.sizes.length; i++) {

if (form.sizes[i].defaultChecked) {
if (!form.sizes[i].checked) {

alert(“This radio group has been changed.”);
}

}
}

}

The goal in this code is to see, in as general a way as possible (supplying the radio group name where
needed), if the user changed the default setting. Looping through each of the radio buttons, you look for the
one whose checked attribute is set in the <input> definition. With that index value (i) in hand, you then
look to see if that entry is still checked. If not (notice the ! negation operator), you display an alert dialog
box about the change.

Related Items: checked, value properties.

length
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A radio button group has length — the number of individual radio buttons defined for that group.
Attempting to retrieve the length of an individual button yields a null value. The length property is valu-
able for establishing the maximum range of values in a repeat loop that must cycle through every button
within that group. If you specify the length property to fill that value (rather than hard-wiring the value),
the loop construction will be easier to maintain — as you make changes to the number of buttons in the
group during page construction, the loop adjusts to the changes automatically.

Related Items: None.

name
Value: Identifier string. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The name property, although associated with an entire radio button group, can be read only from individual
buttons in the group, such as

btnGroupName = document.forms[0].groupName[2].name;

685

document.formObject.radioObject.name

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 685

In that sense, each radio button element in a group inherits the name of the group. Your scripts have little
need to extract the name property of a button or group. More often than not, you will hard-wire a button
group’s name into your script to extract other properties of individual buttons. Getting the name property of
an object whose name you know is obviously redundant. But understanding the place of radio button
group names in the scheme of JavaScript objects is important for all scripters.

Related Items: value property.

type
Value: String (radio). Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Use the type property to help identify a radio object from an unknown group of form elements. To find out
if a form element is a radio object, just look for the string radio as the type of the element.

Related Items: form.elements property.

value
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

As described earlier in this chapter for the checkbox object, the value property contains arbitrary informa-
tion that you assign when mapping out the <input> definition for an individual radio button. Using this
property is a handy shortcut to correlating a radio button label with detailed or related information of inter-
est to your script or server-side application. If you like, the value property can contain the same text as the
label.

Related Items: name property.

Methods
click()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The intention of the click() method is to enact, via a script, the physical act of clicking a radio button.
However, you better serve your scripts by setting the checked properties of all buttons in a group so that
you know exactly what the setting of the group is at any time.

Related Items: checked property; onclick event handler.

Event handlers
onclick
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Radio buttons, more than any user interface element available in HTML, are intended for use in making
choices that other objects, such as submit or standard buttons, act upon later. You may see cases in
Windows or Mac programs in which highlighting a radio button — at most — activates or brings into view
additional, related settings (see Listing 22-4).

686

Document Objects Reference

document.formObject.radioObject.onclick

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 686

I strongly advise you not to use scripting handlers that perform significant actions at the click of any radio
button. At best, you may want to use knowledge about a user’s clicking of a radio button to adjust a global
variable or document.cookie setting that influences subsequent processing. Be aware, however, that if you
script such a hidden action for one radio button in a group, you must also script similar actions for others
in the same group. That way, if a user changes the setting back to a previous condition, the global variable is
reset to the way it was. JavaScript, however, tends to run fast enough so that a batch operation can make
such adjustments after the user clicks a more action-oriented button.

Every time a user clicks one of the radio buttons in Listing 22-6, he or she sets a global variable to true or
false, depending on whether the person chose the smallest image size. This action is independent of the
action that is taking place if the user clicks on the View Megapixels action button. An onunload event han-
dler in the <body> definition triggers a function that displays an informational warning message just before
the page clears (click the browser’s Reload button to leave the current page prior to reloading). Here I use an
initialize function triggered by onload so that the current radio button selection sets the global value upon
a reload.

LISTING 22-6

An onclick Event Handler for Radio Buttons

<html>
<head>

<title>Radio Button onClick Handler</title>
<script type=”text/javascript”>
var LoRes = false
function initValue() {

LoRes = document.forms[0].sizes[0].checked;
}
function showMegapixels(form) {

for (var i = 0; i < form.sizes.length; i++) {
if (form.sizes[i].checked) {

break;
}

}
alert(“That image size requires “ + form.sizes[i].value + “ megapixels.”);

}
function setLoRes(setting) {

LoRes = setting;
}
function exitMsg() {

if (LoRes) {
alert(“You should probably use a higher resolution image.”);

}
}
</script>

</head>
<body onload=”initValue()” onunload=”exitMsg()”>

<form>
Select your desired image size:

continued

687

document.formObject.radioObject.onclick

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 687

LISTING 22-6 (continued)

<p><input type=”radio” name=”sizes” value=”0.073”
checked=”checked” onclick=”setLoRes(true)” />320x240 <input
type=”radio” name=”sizes” value=”0.293”
onclick=”setLoRes(false)” />640x480 <input type=”radio”
name=”sizes” value=”0.75”
onclick=”setLoRes(false)” />1024x768 <input type=”radio”
name=”sizes” value=”1.25”
onclick=”setLoRes(false)” />1280x1024 </p>

<p><input type=”button” name=”Viewer” value=”View Megapixels...”
onclick=”showMegapixels(this.form)” /></p>

</form>
</body>

</html>

image Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

complete

form†

name†

src

type

† See Button object.

Syntax
Accessing image input object properties or methods:

(All) [window.]document.formName.imageName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |

method([parameters])
(All) [window.]document.forms[index].imageName.property |

method([parameters])
(All) [window.]document.forms[“formName”].imageName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

688

Document Objects Reference

document.formObject.imageObject

Part III

30_069165 ch22.qxp 3/1/07 3:49 PM Page 688

About this object
Modern browsers support the image input element among scriptable objects. The image input object most
closely resembles the button input object but replaces the value property (which defines the label for the
button) with the src property, which defines the URL for the image that is to be displayed in the form con-
trol. This is a much simpler way to define a clickable image icon, for example, than the way required for
compatibility with older browsers: wrapping an img element inside an a element so that you can use the a
element’s event handlers.

Although this element loads a regular Web image in the document, you have virtually no control over the
image, which the img element provides. Be sure the rendering is as you predict.

Properties
complete
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The complete property works as it does for an img element, reporting true if the image has finished load-
ing. Otherwise the property returns false. Interestingly, there is no onload event handler for this object.

Related Items: image.complete property.

src
Value: URL string. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Like the img element object, the image input element’s src property controls the URL of the image being
displayed in the element. The property can be used for image swapping in a form control, just as it is for a
regular img element. Because the image input element has all necessary mouse event handlers available (for
example, onmouseover, onmouseout, onmousedown) you can script rollovers, click-downs, or any other
user interface technique that you feel is appropriate for your buttons and images. To adapt code written for
link-wrapped images, move the event handlers from the a element to the image input element, and make
sure the name of the image input element is the same as your old img element.

Older browsers load images into an image input element, but no event handlers are recognized.

Related Items: image.src property.

type
Value: String (image). Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Use the type property to help you identify an image input object from an unknown group of form ele-
ments. Just look for the string image as the type of a form element to know if it is indeed an image input
object.

Related Items: form.elements property.

689

document.formObject.imageObject.type

Button Objects 22

30_069165 ch22.qxp 3/1/07 3:49 PM Page 689

30_069165 ch22.qxp 3/1/07 3:49 PM Page 690

The document object model for forms includes four text-related user inter-
face objects — text, password, and hidden input element objects, plus
the textarea element object. All four of these objects are used for entry,

display, or temporary storage of text data. Although all of these objects can have
text placed in them by default as the page loads, scripts can also modify the con-
tents of these objects. Importantly, all but the hidden objects retain their user- or
script-modified content during a soft reload (for example, clicking the Reload
button) in Mozilla and Internet Explorer; hidden objects revert to their default
values on all reloads.

A more obvious difference between the hidden object and the rest is that its
invisibility removes it from the realm of user events and actions. Therefore, the
range of scripted possibilities is much smaller for the hidden object.

The persistence of text and textarea object data through reloads (and window
resizes), however, is not reliable enough, nor consistent enough across all mod-
ern browsers to be used in lieu of a temporary cookie. This is a change from past
implementations.

Text Input Object
For HTML element properties, methods, and event handlers, see Chapter 15.

691

IN THIS CHAPTER
Capturing and modifying text
field contents

Triggering action by entering
text

Capturing individual keystroke
events

Text-Related Form Objects

31_069165 ch23.qxp 3/1/07 3:51 PM Page 691

Properties Methods Event Handlers

defaultValue select() onafterupdate

form onbeforeupdate

maxLength onchange

name onerrorupdate

readOnly onselect

size

type

value

Syntax
Accessing text input object properties or methods:

(All) [window.]document.formName.fieldName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |

method([parameters])
(All) [window.]document.forms[index].fieldName.property |

method([parameters])
(All) [window.]document.forms[“formName”].fieldName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
The text input object is the primary medium for capturing single-line, user-entered text. By default,
browsers tend to display entered text in a monospaced font (usually Courier or a derivative) so that you can
easily specify the width (size) of a field based on the anticipated number of characters that a user may put
into the field. Until you get to modern (IE4+ and W3C) browsers, the font is a fixed size and always is left-
aligned in the field. In those later browsers, stylesheets can control the font characteristics of a text field. If
your design requires multiple lines of text, use the textarea object that comes later in this chapter.

Text object methods and event handlers use terminology that may be known to Windows users but not to
Macintosh users. A field is said to have focus whenever the user clicks or tabs into the field. When a field
has focus, either the text insertion pointer flashes, or any text in the field may be selected. Only one text
object on a page can have focus at a time. The inverse user action — clicking or tabbing away from a text
object — is called a blur. Clicking another object, whether it is another field or a button of any kind, causes
a field that currently has focus to blur.

692

Document Objects Reference

document.formObject.textObject

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 692

If you don’t want the contents of a field to be changed by the user, you have three possibilities — depending
on the vintage of browsers you need to support: forcing the field to lose focus; disabling the field; or setting
the field’s readOnly property.

The tactic that is completely backward compatible uses the following event handler in a field you want to
protect:

onfocus=”this.blur()”

Starting with IE4 and NN6/Moz1, the object model provides a disabled property for form controls.
Setting the property to true leaves the element visible on the page, but the user cannot access the control.
The same browsers provide a readOnly property, which doesn’t dim the field, but prevents typing in the
field.

Text fields and events
Focus and blur also interact with other possible user actions to a text object: selecting and changing.
Selecting occurs when the user clicks and drags across any text in the field; changing occurs when the user
makes any alteration to the content of the field and then either tabs or clicks away from that field.

When you design event handlers for fields, be aware that a user’s interaction with a field may trigger more
than one event with a single action. For instance, clicking a field to select text may trigger both a focus and
select event. If you have conflicting actions in the onfocus and onselect event handlers, your scripts
can do some weird things to the user’s experience with your page. Displaying alert dialog boxes, for
instance, also triggers blur events, so a field that has both an onselect handler (which displays the alert)
and an onblur handler gets a nasty interaction from the two.

As a result, be very judicious with the number of event handlers you specify in any text object definition. If
possible, pick one user action that you want to use to initiate some JavaScript code execution and deploy it
consistently on the page. Not all fields require event handlers — only those you want to perform some
action as the result of user activity in that field.

Many newcomers also become confused by the behavior of the change event. To prevent this event from
being sent to the field for every character the user types, any change to a field is determined only after the
field loses focus by the user’s clicking or tabbing away from it. At that point, instead of a blur event being
sent to the field, only a change event is sent, triggering an onchange event handler if one is defined for the
field. This extra burden of having to click or tab away from a field may entice you to shift any onchange
event handler tasks to a separate button that the user must click to initiate action on the field contents.

Starting with version 4 browsers, text fields also have event handlers for keyboard actions, namely onkey-
down, onkeypress, and onkeyup. With these event handlers, you can intercept keystrokes before the char-
acters reach the text field. Thus, you can use keyboard events to prevent anything but numbers from being
entered into a text box while the user types the characters.

To extract the current content of a text object, summon the property
document.formName.fieldName.value. After you have the string value, you can use JavaScript’s string
object methods to parse or otherwise massage that text as needed for your script. If the field entry is a num-
ber and you need to pass that value to methods requiring numbers, you have to convert the text to a num-
ber with the help of the parseInt() or parseFloat() global functions.

693

document.formObject.textObject

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 693

694

Document Objects Reference

document.formObject.textObject

Part III

Text Boxes and the Enter/Return Key

Early browsers established a convention that continues to this day. When a form consists of only one text
box, a press of the Enter/Return key acts the same as clicking a Submit button for the form. You have prob-

ably experienced this many times when entering a value into a single search field of a form. Press the
Enter/Return key, and the search request goes off to the server.

The flip side is that if the form contains more than one text box, the Enter/Return key does no submission from
any of the text boxes (IE for the Mac and Safari are exceptions: they submit no matter how many text boxes
there are). But with the advent of keyboard events, you can script this action (or the invocation of a client-side
script) into any text boxes of the form you like. To make it work with all flavors of browsers capable of key-
board events requires a small conversion function that extracts the DOM-specific desired code from the key-
stroke. The following listing shows a sample page that demonstrates how to implement a function that
inspects each keystroke from a text field and initiates processing if the key pressed is the Enter/Return key:

<html>
<head>

<title>Enter/Return Event Trigger</title>
<script type=”text/javascript”>
// Event object processor
function isEnterKey(evt) {

evt = (evt) ? evt : ((window.event) ? window.event : null);
var keyCode;
if (evt) {

keyCode = (evt.keyCode) ? evt.keyCode : evt.which;
}
return (keyCode == 13);

}

function processOnEnter(fld, evt) {
if (isEnterKey(evt)) {

alert(“Ready to do some work with the form.”);
return false;

}
return true;

}
</script>

</head>
<body>

<h1>Enter/Return Event Trigger</h1>
<hr />
<form onsubmit=”return false”>

Field 1: <input type=”text” name=”field1”
onkeydown=”processOnEnter(this, event)” />
Field 2: <input type=”text” name=”field2”
onkeydown=”processOnEnter(this, event)” />
Field 3: <input type=”text” name=”field3”
onkeydown=”processOnEnter(this, event)” />

</form>
</body>

</html>

31_069165 ch23.qxp 3/1/07 3:51 PM Page 694

Properties
defaultValue
Value: String. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Though your users and your scripts are free to muck with the contents of a text object by assigning strings
to the value property, you can always extract (and thus restore, if necessary) the string assigned to the text
object in its <input> definition. The defaultValue property yields the string parameter of the value
attribute.

Listings 23-1, 23-2, and 23-3 feature a form with only one text input element. The rules of
HTML forms say that such a form submits itself if the user presses the Enter key whenever the

field has focus. Such a submission to a form whose action is undefined causes the page to reload, thus stop-
ping any scripts that are running at the time. form elements for these example listings contain an onsubmit
event handler that both blocks the submission and attempts to trigger the text box onchange event handler
to run the demonstration script. In some browsers, such as MacIE5, you may have to press the Tab key or
click outside of the text box to trigger the onchange event handler after you enter a new value.

Listing 23-1 has a simple form with a single field that has a default value set in its tag. A function
(resetField()) restores the contents of the page’s lone field to the value assigned to it in the <input> def-
inition. For a single-field page such as this, defining a type=”reset” button or calling form.reset()
works the same way because such buttons reestablish default values of all elements of a form. But if you
want to reset only a subset of fields in a form, follow the example button and function in Listing 23-1.

LISTING 23-1

Resetting a Text Object to Default Value

<html>
<head>

<title>Text Object DefaultValue</title>
<script type=”text/javascript”>
function upperMe(field) {

field.value = field.value.toUpperCase();
}
function resetField(form) {

form.converter.value = form.converter.defaultValue;
}
</script>

</head>
<body>

<form onsubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <input
type=”text” id=”convert” name=”converter” value=”sample”
onchange=”upperMe(this)” /> <input type=”button” id=”reset”
value=”Reset Field” onclick=”resetField(this.form)” />

</form>
</body>

</html>

NOTENOTE

695

document.formObject.textObject.defaultValue

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 695

The property assignment event handling technique used in this example and throughout the
chapter is a deliberate simplification to make the code more readable. It is generally better to

use the more modern approach of binding events using the addEventListener() (NN6+/Moz/W3C) or
attachEvent() (IE5+) methods. A modern cross-browser event handling technique is explained in detail in
Chapter 25.

Related Items: value property.

form
Value: Form object reference. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A property of every input element object is a reference to the form element that contains the control. This
property can be very convenient in a script when you are dealing with one form control that is passed as a
parameter to the function and you want to either access another control in the same form or invoke a
method of the form. An event handler of any input element can pass this as the parameter, and the func-
tion can still get access to the form without having to hard-wire the script to a particular form name or doc-
ument layout.

The following function fragment receives a reference to a text element as the parameter. The text element
reference is needed to decide which branch to follow; then the form is submitted.

function setAction(fld) {
if (fld.value.indexOf(“@”) != -1) {

fld.form.action = “mailto:” + fld.value;
} else {

fld.form.action = “cgi-bin/normal.pl”;
}
fld.form.submit();

}

Notice how this function doesn’t have to worry about the form reference, because its job is to work with
whatever form encloses the text field that triggers this function.

Related Items: form object.

maxLength
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The maxLength property controls the maximum number of characters allowed to be typed into the field.
There is no interaction between the maxLength and size properties. This value is normally set initially via
the maxlength attribute of the input element.

Use The Evaluator (Chapter 13) to experiment with the maxLength property. The top text field has no
default value, but you can temporarily set it to only a few characters and see how it affects entering new
values:

document.forms[0].input.maxLength = 3;

Try typing this into the field to see the results of the change. To restore the default value, reload the page.

Related Items: size property.

NOTENOTE

696

Document Objects Reference

document.formObject.textObject.maxLength

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 696

name
Value: Identifier string. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Text object names are important for two reasons. First, if your HTML page submits information to a CGI
script or server application, the input device passes the name of the text object along with the data to help
the server program identify the data being supplied by the form. Second, you can use a text object’s name
in its reference within JavaScript coding. If you assign distinctive, meaningful names to your fields, these
names will help you read and debug your JavaScript listings (and will help others follow your scripting
tactics).

Be as descriptive about your text object names as you can. Borrowing text from the field’s on-page label may
help you mentally map a scripted reference to a physical field on the page. Like all JavaScript object names,
text object names must begin with a letter and be followed by any number of letters or numbers. Avoid
punctuation symbols with the exception of the very safe underscore character.

Although I urge you to use distinctive names for all objects you define in a document, you can make a case
for assigning the same name to a series of interrelated fields — and JavaScript is ready to help. Within a sin-
gle form, any reused name for the same object type is placed in an indexed array for that name. For exam-
ple, if you define three fields with the name entry, the following statements retrieve the value property for
each field:

data = document.forms[0].entry[0].value;
data = document.forms[0].entry[1].value;
data = document.forms[0].entry[2].value;

This construction may be useful if you want to cycle through all of a form’s related fields to determine
which ones are blank. Elsewhere, your script probably needs to know what kind of information each field is
supposed to receive, so that it can process the data intelligently. I don’t often recommend reusing object
names, but you should be aware of how the object model handles them in case you need this construction.
See Chapter 21 for more details.

Consult Listing 23-2 later in this chapter, where I use the text object’s name, convertor, as part of the ref-
erence when assigning a value to the field. To extract the name of a text object, you can use the property ref-
erence. Therefore, assuming that your script doesn’t know the name of the first object in the first form of a
document, the statement is

var objectName = document.forms[0].elements[0].name;

Related Items: form.elements property; all other form element objects’ name property.

readOnly
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

To display text in a text field yet prevent users from modifying it, newer browsers offer the readOnly prop-
erty (and tag attribute). When set to true, the property prevents users from changing or removing the con-
tent of the text field. Unlike a disabled text field, a read-only text field looks just like an editable one.

Use The Evaluator (Chapter 13) to set the bottom text box to be read-only. Begin by typing anything you
want in the bottom text box. Then enter the following statement into the top text box:

document.forms[0].inspector.readOnly = true;

697

document.formObject.textObject.readOnly

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 697

Although existing text in the box is selectable (and therefore can be copied into the clipboard), it cannot be
modified or removed.

Related Items: disabled property.

size
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Unless otherwise directed, a text box is rendered to accommodate approximately 20 characters of text for
the font family and size assigned to the element’s stylesheet. You can adjust this under script control (in case
the size attribute of the tag wasn’t enough) via the size property, whose value is measured in characters
(not pixels). Be forewarned, however, that browsers don’t always make completely accurate estimates of the
space required to display a set number of characters. If you are setting the maxlength attribute of a text
box, making the size one or two characters larger is often a safe bet.

Resize the bottom text box of The Evaluator (Chapter 13) by entering the following statements into the top
text box:

document.forms[0].inspector.size = 20;
document.forms[0].inspector.size = 400;

Reload the page to return the size back to normal (or set the value to 80).

Related Items: maxLength property.

type
Value: String (text). Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Use the type property to help you identify a text input object from an unknown group of form elements.

Related Items: form.elements property.

value
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A text object’s value property is the two-way gateway to the content of the field. A reference to an object’s
value property returns the string currently showing in the field. Note that all values coming from a text
object are string values. If your field prompts a user to enter a number, your script may have to perform
data conversion to the number-as-string value (“42” instead of plain, old 42) before a script can perform
math operations on it. JavaScript tries to be as automatic about this data conversion as possible and follows
some rules about it (see Chapter 28). If you see an error message that says a value is not a number (for a
math operation), the value is still a string.

Your script places text of its own into a field for display to the user by assigning a string to the value prop-
erty of a text object. Use the simple assignment operator. For example:

document.forms[0].ZIP.value = “90210”;

698

Document Objects Reference

document.formObject.textObject.value

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 698

JavaScript is more forgiving about data types when assigning values to a text object. JavaScript does its best
to convert a value to a string on its way to a text object display. Even Boolean values get converted to their
string equivalents true or false. Scripts can place numeric values into fields without a hitch. But remem-
ber that if a script later retrieves these values from the text object, they will come back as strings. About the
only values that don’t get converted are objects. They typically show up in text boxes as [object] or, in
some browsers, a more descriptive label for the object.

Storing arrays in a field requires special processing. You need to use the array.join() method to convert
an array into a string. Each array entry is delimited by a character you establish in the array.join()
method. Later you can use the string.split() method to turn this delimited string into an array.

As a demonstration of how to retrieve and assign values to a text object, Listing 23-2 shows how the action
in an onchange event handler is triggered. Enter any lowercase letters into the field and click out of the
field. I pass a reference to the entire form object as a parameter to the event handler. The function extracts
the value, converts it to uppercase (using one of the JavaScript string object methods), and assigns it back to
the same field in that form.

LISTING 23-2

Getting and Setting a Text Object’s Value

<html>
<head>

<title>Text Object Value</title>
<script type=”text/javascript”>
function upperMe(form) {

inputStr = form.converter.value;
form.converter.value = inputStr.toUpperCase();

}
</script>

</head>
<body>

<form onsubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <input
type=”text” name=”converter” value=”sample”
onchange=”upperMe(this.form)” />

</form>
</body>

</html>

I also show two other ways to accomplish the same task, each one more efficient than the previous example.
Both utilize the shortcut object reference to get at the heart of the text object. Listing 23-3 passes the text
object — contained in the this reference — to the function handler. Because that text object contains a
complete reference to it (out of sight, but there just the same), you can access the value property of that
object and assign a string to that object’s value property in a simple assignment statement.

699

document.formObject.textObject.value

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 699

LISTING 23-3

Passing a Text Object (as this) to the Function

<html>
<head>

<title>Text Object Value</title>
<script type=”text/javascript”>
function upperMe(field) {

field.value = field.value.toUpperCase();
}
</script>

</head>
<body>

<form onsubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <input
type=”text” name=”converter” value=”sample”
onchange=”upperMe(this)” />

</form>
</body>

</html>

Yet another way is to deal with the field values directly in an embedded event handler — instead of calling
an external function (which is possibly a little cleaner since there is just a single line of code in the function
anyway). With the upperMe() function removed from the document, the event handler attribute of the
<input> tag changes to do all the work:

<input type=”text” name=”converter” value=”sample”
onchange=”this.value = this.value.toUpperCase()” />

The right-hand side of the assignment expression extracts the current contents of the field and (with the
help of the toUpperCase() method of the string object) converts the original string to all uppercase letters.
The result of this operation is assigned to the value property of the field.

The application of the this keyword in the previous examples may be confusing at first, but these exam-
ples represent the range of ways in which you can use such references effectively. Using this by itself as a
parameter to an object’s event handler refers only to that single object — a text object in Listing 23-3. If you
want to pass along a broader scope of objects that contain the current object, use the this keyword along
with the outer object layer that you want. In Listing 23-2, I sent a reference to the entire form along by
specifying this.form— meaning the form that contains “this” object, which is being defined in the line of
HTML code.

At the other end of the scale, you can use similar-looking syntax to specify a particular property of the this
object. Thus, in the last example, I zeroed in on just the value property of the current object being defined
— this.value. Although the formats of this.form and this.value appear the same, the fact that one is
a reference to an object and the other just a value can influence the way your functions work. When you
pass a reference to an object, the function can read and modify properties of that object (as well as invoke
its functions); but when the parameter passed to a function is just a property value, you cannot modify that
value without building a complete reference to the object and its value.

Related Items: form.defaultValue property.

700

Document Objects Reference

document.formObject.textObject.value

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 700

Methods
blur()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Just as a camera lens blurs when it goes out of focus, a text object blurs when it loses focus — when some-
one clicks or tabs out of the field. Under script control, blur() deselects whatever may be selected in the
field, and the text insertion pointer leaves the field. The pointer does not proceed to the next field in tab-
bing order, as it does if you perform a blur by tabbing out of the field manually.

The following statement invokes the blur() method on a text box named vanishText:

document.forms[0].vanishText.blur();

Related Items: focus() method; onblur event handler.

focus()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

For a text object, having focus means that the text insertion pointer is flashing in that text object’s field
(having focus means something different for buttons in a Windows environment). Giving a field focus is
like opening it up for human editing.

Setting the focus of a field containing text does not let you place the cursor at any specified location in the
field. The cursor usually appears at the beginning of the text (although in WinIE4+, you can use the
TextRange object to position the cursor wherever you want in the field, as shown in Chapter 36 on the
CD-ROM). To prepare a field for entry to remove the existing text, use both the focus() and select()
methods.

See Listing 23-4 for an example of an application of the focus() method in concert with the select()
method.

Related Items: select() method; onfocus event handler.

select()
Returns: Nothing.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Selecting a field under script control means selecting all text within the text object. A typical application is
one in which an entry validation script detects a mistake on the part of the user. After alerting the user to
the mistake (via a window.alert() dialog box), the script finishes its task by selecting the text of the field
in question. Not only does this action draw the user’s eye to the field needing attention (especially impor-
tant if the validation code is checking multiple fields), but it also keeps the old text there for the user to
examine for potential problems. With the text selected, the next key the user presses erases the former entry.

Trying to select a text object’s contents with a click of a button is problematic. One problem is that a click of
the button brings the document’s focus to the button, which disrupts the selection process. For more
ensured selection, the script should invoke both the focus() and the select() methods for the field, in
that order. No penalty exists for issuing both methods, and the extra insurance of the second method pro-
vides a more consistent user experience with the page.

701

document.formObject.textObject.select()

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 701

Some versions of WinIE are known to exhibit anomalous (meaning buggy) behavior when using the tech-
nique of focusing and selecting a text field after the appearance of an alert dialog box. The fix is not elegant,
but it works: inserting an artificial delay via the setTimeout() method before invoking a separate function
that focuses and selects the field. Better-behaved browsers accept the workaround with no penalty.

Selecting a text object via script does not trigger the same onselect event handler for that object as the one
that triggers if a user manually selects text in the field. Therefore, no event handler script is executed when
a user invokes the select() method.

A click of the Verify button in Listing 23-4 performs a validation on the contents of the text box, making
sure the entry consists of all numbers. All work is controlled by the checkNumeric() function, which
receives a reference to the field needing inspection as a parameter. Because of the way the delayed call to the
doSelection() function has to be configured, various parts of what will become a valid reference to the
form are extracted from the field’s and form’s properties. If the validation (performed in the isNumber()
function) fails, the setSelection() method is invoked after an artificial delay of zero milliseconds. As
goofy as this sounds, this method is all that IE needs to recover from the display and closure of the alert dia-
log box. Because the first parameter of the setTimeout() method must be a string, the example assembles
a string invocation of the setSelection() function via string versions of the form and field names. All
that the setSelection() function does is focus and select the field whose reference is passed as a parame-
ter. This function is now generalizable to work with multiple text boxes in a more complex form.

LISTING 23-4

Selecting a Field

<html>
<head>

<title>Text Object Select/Focus</title>
<script type=”text/javascript”>
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.charAt(i);
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numbers only.”);
return false;

}
}
return true;

}

function checkNumeric(fld) {
var inputStr = fld.value;
var fldName = fld.name;
var formName = fld.form.name;
if (isNumber(inputStr)) {

// statements if true
} else {

setTimeout(“doSelection(document.” + formName + “.” + fldName +
“)”, 0);

}

702

Document Objects Reference

document.formObject.textObject.select()

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 702

}

function doSelection(fld) {
fld.focus();
fld.select();

}

</script>
</head>
<body>

<form name=”entryForm” onsubmit=”return false”>
Enter any positive integer: <input type=”text” name=”numeric” />
<p><input type=”button” value=”Verify”

onclick=”checkNumeric(this.form.numeric)” /></p>
</form>

</body>
</html>

Related Items: focus() method; onselect event handler.

Event handlers
onafterupdate
onbeforeupdate
onerrorupdate
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

If you are using WinIE data binding on a text element, the element is subject to three possible events in the
course of retrieving updated data. The onbeforeupdate and onafterupdate events fire immediately
before and after (respectively) the update takes place. If an error occurs in the retrieval of data from the
database, the onerrorupdate event fires.

All three events may be used for advisory purposes. For example, an onafterupdate event handler may
temporarily change the font characteristics of the element to signify the arrival of fresh data. Or an
onerrorupdate event handler may fill the field with hyphens because no valid data exists for the field.
These events apply only to input elements of type text (meaning not password or hidden types).

Related Items: dataFld, dataSrc properties (Chapter 15).

onblur
onfocus
onselect
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

All three of these event handlers should be used only after you have a firm understanding of the interrela-
tionships of the events that reach text objects. You must use extreme care and conduct lots of user testing
before including more than one of these three event handlers in a text object. Because some events cannot
occur without triggering others either immediately before or after (for example, an onfocus occurs

703

document.formObject.textObject.onblur

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 703

immediately before an onselect if the field did not have focus before), whatever actions you script for
these events should be as distinct as possible to avoid interference or overlap.

In particular, be careful about displaying modal dialog boxes (for example, window.alert() dialog boxes)
in response to the onfocus event handler. Because the text field loses focus when the alert displays and
then regains focus after the alert is closed, you can get yourself into a loop that is difficult to break out of. If
you get trapped in this manner, try the keyboard shortcut for reloading the page (Ctrl+R or Ô-R) repeatedly
as you keep closing the dialog box window.

A question often arises about whether data-entry validation should be triggered by the onblur or
onchange event handler. An onblur validation cannot be fooled, whereas an onchange one can be (the
user simply doesn’t change the bad entry as he or she tabs out of the field). What I don’t like about the
onblur way is it can cause a frustrating experience for a user who wants to tab through a field now and
come back to it later (assuming your validation requires data be entered into the field before submission).
As in Chapter 43’s discussion (on the CD-ROM) about form data validation, I recommend using onchange
event handlers to trigger immediate data checking and then using another last-minute check in a function
called by the form’s onsubmit event handler.

To demonstrate one of these event handlers, Listing 23-5 shows how you may use the window’s status bar
as a prompt message area after a user activates any field of a form. When the user tabs to or clicks on a field,
the prompt message associated with that field appears in the status bar. In Figure 23-1, the user has tabbed
to the second text box, which caused the status bar message to display a prompt for the field.

Some people frown upon the idea of using the browser’s status bar to convey information via
JavaScript, with the logic being that you shouldn’t tamper with its built-in purpose of display-

ing status messages directly from the browser itself. In fact, Mozilla browsers by default prevent you from
altering the status text. You can easily change this setting by navigating to the about:config URL in your
Mozilla-based browser, and then changing the dom.disable_window_status_change preference to
false; just double-click a preference to change its value.

LISTING 23-5

The onfocus Event Handler

<html>
<head>

<title>Elements Array</title>
<script type=”text/javascript”>
function prompt(msg) {

window.status = “Please enter your “ + msg + “.”;
}
</script>

</head>
<body>

<form>
Enter your first name:<input type=”text” name=”firstName”
onfocus=”prompt(‘first name’)” />
<p>Enter your last name:<input type=”text” name=”lastName”
onfocus=”prompt(‘last name’)” /></p>
<p>Enter your address:<input type=”text” name=”address”

NOTENOTE

704

Document Objects Reference

document.formObject.textObject.onblur

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 704

onfocus=”prompt(‘address’)” /></p>
<p>Enter your city:<input type=”text” name=”city”
onfocus=”prompt(‘city’)” /></p>

</form>
</body>

</html>

FIGURE 23-1

An onfocus event handler triggers a status bar display.

onchange
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Of all the event handlers for a text object, you will probably use the onchange handler the most in your
forms (see Listing 23-6). This event is the one I prefer for triggering the validation of whatever entry the
user just typed in the field. The potential hazard of trying to do only a batch-mode data validation of all
entries before submitting an entire form is that the user’s mental focus is away from the entry of a given field
as well. When you immediately validate an entry, the user is already thinking about the information cate-
gory in question. See Chapter 43 on the CD-ROM for more about data-entry validation, including a tech-
nique that validates user input in real time as a user types each character.

705

document.formObject.textObject.onchange

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 705

LISTING 23-6

Data Validation via an onchange Event Handler

<html>
<head>

<title>Text Object Select/Focus</title>
<script type=”text/javascript”>
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.substring(i, i + 1);
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numbers only.”);
return false;

}
}
return true;

}

function checkIt(form) {
inputStr = form.numeric.value;
if (isNumber(inputStr)) {

// statements if true
} else {

form.numeric.focus();
form.numeric.select();

}
}
</script>

</head>
<body>

<form name=”entryForm” onsubmit=”checkIt(this); return false”>
Enter any positive integer: <input type=”text” name=”numeric”
onchange=”checkIt(this.form)” />

</form>
</body>

</html>

password Input Object

Properties Methods Event Handlers

See “Text Input Object” section earlier in this chapter.

706

Document Objects Reference

document.formObject.passwordObject

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 706

Syntax
See “Text Input Object” section earlier in this chapter.

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
A password-style field looks like a text object, but when the user types something into the field, only aster-
isks or bullets (depending on your operating system) appear in the field. For the sake of security, any pass-
word exchanges should be handled by a server-side program (CGI, Java servlet, and so on).

Scripts can treat a password object exactly like a text input object. This may lead a scripter to capture a
user’s Web site password for storage in the document.cookie of the client machine. A password object
value property is returned in plain language, so that such a captured password would be stored in the
cookie file the same way. Because a client machine’s cookie file can be examined on the local computer (per-
haps by a snoop during lunch hour), plain-language storage of passwords is a potential security risk.
Instead, develop a scripted encryption algorithm for your page for reading and writing the password in the
cookie. Most password-protected sites, however, usually have a server program (CGI, for example) encrypt
the password prior to sending it back to the cookie.

See the text object discussion for the behavior of password object’s properties, methods, and event handlers.
The type property for this object returns password.

hidden Input Object

Properties Methods Event Handlers

See “Text Input Object” section earlier in the chapter.

Syntax
See “Text Input Object” section earlier in the chapter.

Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

About this object
A hidden object is a simple string holder within a form object whose contents are not visible to the user of
your Web page. Despite the long list of properties, methods, and event handlers that this input element type
inherits by virtue of being an input element, you will be doing little with a hidden element beyond reading
and writing its value property.

The hidden object plays a vital role in applications that rely on CGI programs on the server. Very often, the
server has data that it needs to convey to itself the next time the client makes a submission (for example, a
user ID captured at the application’s login page). A CGI program can generate an HTML page with the nec-
essary data hidden from the user but located in a field transmitted to the server at submit time.

707

document.formObject.hiddenObject

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 707

Along the same lines, a page for a server application may present a user-friendly interface that makes data-
entry easy for the user. But on the server end, the database or other application requires that the data be in a
more esoteric format. A script located in the page generated for the user can use the onsubmit event han-
dler to perform the last-minute assembly of user-friendly data into database-friendly data in a hidden field.
When the CGI program receives the request from the client, it passes along the hidden field value to the
database.

I am not a fan of the hidden object for use on client-side-only JavaScript applications. If I want to deliver
with my JavaScript-enabled pages some default data collections or values, I do so in JavaScript variables and
arrays as part of the script.

Because scripted changes to the contents of a hidden field are fragile (for example, a soft reload erases the
changes), the only place you should consider making such changes is in the same script that submits a form
to a CGI program or in a function triggered by an onsubmit event handler. In effect, you’re just using the
hidden fields as holding pens for the scripted data to be submitted. For more persistent storage, use the
document.cookie property or genuine text fields in hidden frames, even if just for the duration of the visit
to the page.

For information about the properties of the hidden object, consult the earlier listing for the text input
object. The type property for this object returns hidden.

textarea Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

cols createTextRange() onafterupdate†

form† select()† onbeforeupdate†

name† onchange

readOnly† onerrorupdate†

rows

type†

wrap

† See “Text Input Object” section earlier in the chapter

Syntax
Accessing textarea element object properties or methods:

(All) [window.]document.formName.textareaName.property |
method([parameters])

(All) [window.]document.formName.elements[index].property |
method([parameters])

(All) [window.]document.forms[index].textareaName.property |
method([parameters])

708

Document Objects Reference

textarea

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 708

(All) [window.]document.forms[“formName”].textareaName.property |
method([parameters])

(All) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
Although not in the same HTML syntax family as other <input> elements of a form, a textarea object is
indeed a form input element, providing multiple-line text input facilities. Although some browsers let you
put a textarea element anywhere in a document, it really should be contained by a form element.

A textarea object closely resembles a text object, except for attributes that define its physical appearance
on the page. Because the intended use of a textarea object is for multiple-line text input, the attributes
include specifications for height (number of rows) and width (number of columns in the monospaced font).
No matter what size you specify, the browser displays a textarea with horizontal and vertical scrollbars in
older browsers; more recent browsers tend to be smarter about displaying scrollbars only when needed
(although there are exceptions). Text entered in the textarea wraps by default in all modern browsers,
although the wrapping can be adjusted via the wrap attribute in IE. The wrap attribute can be set to soft
(the default), hard, or off in IE. The soft and hard settings result in word wrapping, whereas the off
setting causes text to scroll for a significant distance horizontally (the horizontal scrollbar appears automati-
cally). This field is, indeed, a primitive text field by GUI computing standards in that font specifications
made possible in newer browsers by way of stylesheets apply to all text in the box.

Use The Evaluator Sr. (Chapter 13) to play with the cols and rows property settings for the Results textarea
on that page. Shrink the width of the textarea by entering the following statement into the top text box:

document.forms[0].output.cols = 30;

And make the textarea one row deeper:

document.forms[0].output.rows++;

All properties, methods, and event handlers of text objects apply to the textarea object. They all behave
exactly the same way (except, of course, for the type property, which is textarea). Therefore, refer to the
previous listings for the text object for scripting details for those items. Some additional properties that are
unique to the textarea object are discussed next.

Carriage returns inside textareas
The three classes of operating systems supported by modern browsers — Windows, Macintosh, and UNIX —
do not agree about what constitutes a carriage return character in a text string. This discrepancy carries over
to the textarea object and its contents on these platforms.

After a user enters text and uses Enter/Return on the keyboard, one or more unseen characters are inserted
into the string. In the parlance of JavaScript’s literal string characters, the carriage return consists of some
combination of the newline (\n) and return (\r) character. The following table shows the characters
inserted into the string for each operating system category.

709

textarea

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 709

Operating System Character String

Windows \r\n

Macintosh \r

UNIX \n

This tidbit is valuable if you need to remove carriage returns from a textarea for processing in a CGI or local
script. The problem is that you obviously need to perform platform-specific operations on each. For the situa-
tion in which you must preserve the carriage return locations, but your server-side database cannot accept the
carriage return values, I suggest you use the string.escape() method to URL-encode the string. The return
character is converted to %0D and the newline character is converted to %0A. Of course these characters occupy
extra character spaces in your database, so these additions must be accounted for in your database design.

As far as writing carriage returns into textareas, the situation is a bit easier. From NN3 and IE4 onward, if
you specify any one of the combinations in the preceding table, all platforms know how to automatically
convert the data to the form native to the operating system. Therefore, you can set the value of a textarea
object to 1\r\n2\r\n3 in all platforms, and a columnar list of the numbers 1, 2, and 3 will appear in those
fields. Or, if you URL-encoded the text for saving to a database, you can unescape that character string
before setting the textarea value, and no matter what platform the visitor has, the carriage returns are ren-
dered correctly. Upon reading those values again by script, you can see that the carriage returns are in the
form of the platform (shown in the previous table).

Properties
cols
rows
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The displayed size of a textarea element is defined by its cols and rows attributes, which are represented
in the object model by the cols and rows properties, respectively. Values for these properties are integers.
For cols, the number represents the number of characters that can be displayed without horizontal scroll-
ing of the textarea; for rows, the number is the number of lines of text that can be displayed without verti-
cal scrolling.

Related Items: wrap property.

wrap
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The wrap property represents the wrap attribute, which, surprisingly, is not a W3C-sanctioned attribute as
of HTML 4.01. In any case, IE4+ lets you adjust the property by scripting. Allowable string values are soft,
hard, and off. The browser adds soft returns (the default in IE) to word-wrap the content, but no carriage
return characters are actually inserted into the text. A setting for hard returns means that carriage return
characters are added to the text (and would be submitted with the value to a server application). With wrap
set to off, text continues to extend beyond the right edge of the textarea until the user manually presses the
Enter/Return key.

Related Items: cols property.

710

Document Objects Reference

textarea.wrap

Part III

31_069165 ch23.qxp 3/1/07 3:51 PM Page 710

Methods
createTextRange()
Returns: TextRange object.
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

The createTextRange() method for a textarea operates just as the document.createTextRange()
method, except that the range consists of text inside the textarea element, apart from the regular body
content. This version of the TextRange object comes in handy when you want a script to control the loca-
tion of the text insertion pointer inside a textarea element for the user.

See the example for the TextRange.move() method in Chapter 36 on the CD-ROM to see how to control
the text insertion pointer inside a textarea element.

Related Items: TextRange object (Chapter 36 on the CD-ROM).

711

textarea.createTextRange()

Text-Related Form Objects 23

31_069165 ch23.qxp 3/1/07 3:51 PM Page 711

31_069165 ch23.qxp 3/1/07 3:51 PM Page 712

Selection lists — whether in the form of pop-up menus or scrolling lists — are
space-saving form elements in HTML pages. They enable designers to pres-
ent a lot of information in a comparatively small space. At the same time,

users are familiar with the interface elements from working in their own operat-
ing systems’ preference dialog boxes and application windows.

However, selection lists are more difficult to script, especially in older browsers,
because the objects themselves are complicated entities. Scripts find all the real
data associated with the form control in option elements that are nested inside
select elements. As you can see throughout this chapter, backward-compatible
references necessary to extract information from a select element object and its
option objects can get pretty long. On the upside, the most painful backward
compatibility efforts are all but unnecessary given the proliferation of modern
browsers.

The other object covered in this chapter, the fileUpload input object, is fre-
quently misunderstood as being more powerful than it actually is. It is, alas, not
the great file transfer elixir desired by many page authors.

select Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

713

IN THIS CHAPTER
Triggering action based on a
user’s selection in a pop-up or
select list

Modifying the contents of select
objects

Using the fileUpload object

Select, Option, and
FileUpload Objects

32_069165 ch24.qxp 3/1/07 3:51 PM Page 713

Properties Methods Event Handlers

form† add() onchange

length options[i].add()

multiple item()

name† namedItem()

options[] remove()

selectedIndex options[i].remove()

size

type

value

†See “Text Input Object” (Chapter 23).

Syntax
Accessing select element object properties:

(All) [window.]document.formName.selectName.property | method([parameters])
(All) [window.]document.formName.elements[index].property |

method([parameters])
(All) [window.]document.forms[index].selectName.property |

method([parameters])
(All) [window.]document.forms[“formName”].selectName.property |

method([parameters])
(All) [window.]document.forms[“formName”].elements[index].property |

method([parameters])
(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
select element objects are perhaps the most visually interesting user interface elements among the stan-
dard built-in objects. In one format, they appear on the page as pop-up lists; in another format, they appear
as scrolling list boxes. Pop-up lists, in particular, offer efficient use of page real estate for presenting a list of
choices for the user. Moreover, only the choice selected by the user shows on the page, minimizing the clut-
ter of unneeded verbiage.

Compared with other JavaScript objects, select objects are difficult to script — mostly because of the com-
plexity of data that goes into a list of items. What the user sees as a select element on the page consists of
both that element and option elements that contain the actual choices from which the user makes a selec-
tion. Some properties that are of value to scripters belong to the select object, whereas others belong to
the nested option objects. For example, you can extract the number (index) of the currently selected
option in the list — a property of the entire select object. To get the displayed text of the selected option,

714

Document Objects Reference

select

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 714

however, you must zero in further to extract the text property of a single option among all options defined
for the object.

When you define a select object within a form, the construction of the <select>...</select> tag pair
is easy to inadvertently mess up. First, most attributes that define the entire object — such as name, size,
and event handlers — are attributes of the opening <select> tag. Between the end of the opening tag and
the closing </select> tag are additional tags for each option to be displayed in the list. The following
object definition creates a selection pop-up list containing three color choices:

<form>
<select name=”RGBColors” onchange=”changeColor(this)”>

<option selected=”selected”>Red</option>
<option>Green</option>
<option>Blue</option>

</select>
</form>

The indented formatting of the tags in the HTML document is not critical. I indent the lines of options
merely for the sake of readability, which is still a worthy cause even if it isn’t technically necessary.

By default, a select element is rendered as a pop-up list. To make it appear as a scrolled list, assign an
integer value greater than 1 to the size attribute to specify how many options should be visible in the list
without scrolling — how tall the list’s box should be, measured in lines. Because scrollbars in GUI environ-
ments tend to require a fair amount of space to display a minimum set of clickable areas (including sliding
“thumbs”), you should set list-box style sizes to no less than 4. If that makes the list box too tall for your
page design, consider using a pop-up menu instead.

Significant differences exist in the way each GUI platform presents pop-up menus. Because each browser
sometimes relies on the operating system to display its native pop-up menu style (and sometimes the
browser designers go their own way), considerable differences exist among the OS and browser platforms in
the size of a given pop-up menu. What fits nicely within a standard window width of one OS may not fit in
the window of another OS in a different browser. In other words, you cannot rely on any select object
having a precise dimension on a page (in case you’re trying to align a select object with an image).

In list-box form, you can set a select object to accept multiple, noncontiguous selections. Users typically
accomplish such selections by holding down a modifier key (the Shift, Ctrl, or Ô key, depending on the
operating system) while clicking additional options. To switch on this capability for a select object,
include the multiple attribute constant in the definition.

For each entry in a list, your <select> tag definition must include an <option> tag plus the text as you
want it to appear in the list. If you want a pop-up list to show a default selection when the page loads, you
must attach a selected attribute to that item’s <option> tag. Without this attribute, the default item may
be empty or the first item, depending on the browser. (I go more in depth about this in the option object
discussion later in this chapter.) You can also assign a string to each option’s value attribute. As with radio
buttons, this value can be text other than the wording displayed in the list. In essence, your script can act
on that “hidden” value rather than on the displayed text, such as letting a plain-language select listing actu-
ally refer to a complex URL. This string value is also the value sent to a CGI program (as part of the name-
value pair) when the user submits the select object’s form.

One behavioral aspect of the select object may influence your page design. The onchange event handler
triggers immediately when a user makes a new selection in a pop-up list. If you prefer to delay any action
until the user makes other settings in the form, omit an onchange event handler in the select object —
but be sure to create a button that enables users to initiate an action governed by those user settings.

715

select

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 715

Modifying select options (NN3+, IE4+)
Script control gives you considerable flexibility in modifying the contents and selection of a select object.
There are several techniques at your disposal when it comes to working with the select object, including
some whose support dates back to NN3 and IE4. I quickly show you how to approach the select object
from this backward-compatible perspective, and then move on to revealing a W3C standard approach a bit
later in the chapter. Some aspects of manipulating the select object are rather straightforward, such as
changing the selectObj.options[i].text property to alter the display of a single-option entry. The sit-
uation gets tricky, though, when the number of options in the select object changes. Your choices include

n Removing an individual option (and thus collapsing the list)

n Reducing an existing list to a fewer number of options

n Removing all options

n Adding new options to a select object

To remove an option from the list, set the specific option to null. For example, if a list contains five items
and you want to eliminate the third item altogether (reducing the list to four items), the syntax (from the
select object reference) for doing that task is this:

selectObj.options[2] = null;

After this statement, selectObj.options.length equals 4.

In another scenario, suppose that a select object has five options in it and you want to replace it with one
having only three options. You first must hard-code the length property to 3:

selectObj.options.length = 3;

Then, set individual text and value properties for index values 0 through 2.

Perhaps you want to start building a new list of contents by completely deleting the original list (without
harming the select object). To accomplish this, set the length to 0:

selectObj.options.length = 0;

From here, you have to create new options (as you do when you want to expand a list from, say, three to
seven options). The mechanism for creating a new option involves an object constructor: new Option().
This constructor accepts up to four parameters, which enable you to specify the equivalent of an <option>
tag’s attributes:

n Text to be displayed in the option

n Contents of the option’s value property

n Whether the item is the defaultSelected option (Boolean)

n Whether the item is selected (Boolean)

You can set any (or none) of these items as part of the constructor and return to other statements to set their
properties. I suggest setting the first two parameters (leave the others blank) and then setting the selected
property separately. The following is an example of a statement that creates a new, fifth entry, in a select
object and sets both its displayed text and value properties:

selectObj.options[4] = new Option(“Yahoo”,”http://www.yahoo.com”);

716

Document Objects Reference

select

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 716

To demonstrate all of these techniques, Listing 24-1 enables you to change the text of a select object —
first by adjusting the text properties in the same number of options and then by creating an entirely new set
of options. Radio button onclick event handlers trigger functions for making these changes — rare exam-
ples of when radio buttons can logically initiate visible action.

LISTING 24-1

Modifying select Options

<html>
<head>

<title>Changing Options On The Fly</title>
<script type=”text/javascript” language=”JavaScript”>
// flag to reload page for older NNs
var isPreNN6 = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) <= 4);

// initialize color list arrays
plainList = new Array(6);
hardList = new Array(6);
plainList[0] = “cyan”;
hardList[0] = “#00FFFF”;
plainList[1] = “magenta”;
hardList[1] = “#FF00FF”;
plainList[2] = “yellow”;
hardList[2] = “#FFFF00”;
plainList[3] = “lightgoldenrodyellow”;
hardList[3] = “#FAFAD2”;
plainList[4] = “salmon”;
hardList[4] = “#FA8072”;
plainList[5] = “dodgerblue”;
hardList[5] = “#1E90FF”;

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors;
// filter out old browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length;
// save selected index
var currSelected = listObj.selectedIndex;
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

if (which == “plain”) {
listObj.options[i].text = plainList[i];

} else {
listObj.options[i].text = hardList[i];

}

continued

717

select

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 717

LISTING 24-1 (continued)

}
if (isPreNN6) {

history.go(0);
} else {

listObj.selectedIndex = currSelected;
}

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors;
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ?

“plain” : “hard”;
// empty options from list
listObj.length = 0;
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

if (lang == “plain”) {
listObj.options[i] = new Option(plainList[i]);

} else {
listObj.options[i] = new Option(hardList[i]);

}
}
listObj.options[0].selected = true;
if (isPreNN6) {

history.go(0);
}

}
}
</script>

</head>
<body>

<h1>Flying Select Options</h1>
<form>

Choose a palette size: <input type=”radio” name=”paletteSize”
value=”3” onclick=”setCount(this)” checked=”checked” />Three <input
type=”radio” name=”paletteSize” value=”6”
onclick=”setCount(this)” />Six
<p>Choose geek level: <input type=”radio” name=”geekLevel” value=””

onclick=”setLang(‘plain’)” checked=”checked” />Plain-language
<input type=”radio” name=”geekLevel” value=””
onclick=”setLang(‘hard’)” />Gimme hex-triplets!</p>

<p>Select a color: <select name=”colors”>
<option selected=”selected”>cyan</option>
<option>magenta</option>
<option>yellow</option>

718

Document Objects Reference

select

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 718

</select></p>
</form>

</body>
</html>

The property assignment event handling technique used in this example and throughout the
chapter is a deliberate simplification to make the code more readable. It is generally better to

use the more modern approach of binding events using the addEventListener() (NN6+/Moz/W3C) or
attachEvent() (IE5+) methods. A modern cross-browser event handling technique is explained in detail in
Chapter 25.

In an effort to make this code easily maintainable, the color choice lists (one in plain language, the other in
hexadecimal triplet color specifications) are established as two separate arrays. Repeat loops in both large
functions can work with these arrays no matter how big they get.

The first two radio buttons (see Figure 24-1) trigger the setLang() function. This function’s first task is to
extract a reference to the select object to make additional references shorter (just listObj). Then by way
of the length property, you find out how many items are currently displayed in the list because you just
want to replace as many items as are already there. In the repeat loop, you set the text property of the
existing select options to corresponding entries in either of the two array listings.

FIGURE 24-1

Radio button choices alter the contents of the select object on the fly.

NOTENOTE

719

select

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 719

In the second pair of radio buttons, each button stores a value indicating how many items should be dis-
played when the user clicks the button. This number is picked up by the setCount() function and is used
in the repeat loop as a maximum counting point. In the meantime, the function finds the selected language
radio button and zeros out the select object entirely. Options are rebuilt from scratch using the new
Option() constructor for each option. The parameters are the corresponding display text entries from the
arrays. Because none of these new options have other properties set (such as which one should be selected
by default), the function sets that property of the first item in the list.

Notice that both functions call history.go(0) for legacy browsers after setting up their select objects.
The purpose of this call is to give these earlier Navigator versions an opportunity to resize the select
object to accommodate the contents of the list. The difference in size here is especially noticeable when you
switch from the six-color, plain-language list to any other list. Without resizing, some long items are not
readable. IE4+ and NN6+/Moz, on the other hand, automatically redraw the page to the newly sized form
element.

Modifying select options (IE4+)
Microsoft offers another way to modify select element options for IE4+, but the technique involves two
proprietary methods of the options array property of the select object. Because I cover all other ways of
modifying the select element in this section, I cover the IE way of doing things here as well.

The two options array methods are add() and remove(). The add() method takes one required parame-
ter and one optional parameter. The required parameter is a reference to an option element object that
your script creates in another statement (using the document.createElement() method). If you omit the
second parameter to add(), the new option element is appended to the current collection of items. But
you can also specify an index value as the second parameter. The index points to the position in the
options array where the new item is to be inserted.

Listing 24-2 shows how to modify the two main functions from Listing 24-1 using the IE approach exclu-
sively (changes and additions appear in bold). The script assumes that only IE browsers ever load the page
(in other words, there is no filtering for browser brand here). When replacing one set of options with
another, there are two approaches demonstrated. In the first (the setLang() function), the replacements
have the same number of items, so the length of existing options provides a counter and index value for the
remove() and add() methods. But when the number of items may change (as in the setCount() func-
tion), a tight loop removes all items before they are added back via the add() method without a second
parameter (items are appended to the list). The approach shown in Listing 24-2 has no specific benefit over
that of Listing 24-1.

LISTING 24-2

Modifying select Options (IE4+)

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old IE browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries

720

Document Objects Reference

select

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 720

var listLength = listObj.length;
// save selected index
var currSelected = listObj.selectedIndex;
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

newOpt = document.createElement(“option”);
newOpt.text = (which == “plain”) ? plainList[i] : hardList[i];
listObj.options.remove(i);
listObj.options.add(newOpt, i);

}
listObj.selectedIndex = currSelected;

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ? “plain” : “hard”;
// empty options from list
while (listObj.options.length) {

listObj.options.remove(0);
}
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

newOpt = document.createElement(“option”);
newOpt.text = (lang == “plain”) ? plainList[i] : hardList[i];
listObj.options.add(newOpt);

}
listObj.options[0].selected = true;

}
}

Modifying select options (W3C DOM)
Yet another approach is possible in browsers that closely adhere to the W3C DOM Level 2 standard. In
NN6+, Mozilla, and Safari, for example, you can use the add() and remove() methods of the select ele-
ment object. They work very much like the same-named methods for the options array in IE4+, but these
are methods of the select element object itself. The other main difference between the two syntaxes is that
the add() method does not use the index value as the second parameter but rather a reference to the
option element object before which the new option is inserted. The second parameter is required, so to
simply append the new item at the end of the current list, supply null as the parameter. Listing 24-3 shows
the W3C-compatible version of the select element modification scripts shown in Listings 24-1 and 24-2. I
highlight source code lines in bold that exhibit differences between the IE4+ and W3C DOM versions.

721

select

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 721

LISTING 24-3

Modifying select Options (W3C)

// change color language set
function setLang(which) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old IE browsers
if (listObj.type) {

// find out if it’s 3 or 6 entries
var listLength = listObj.length;
// save selected index
var currSelected = listObj.selectedIndex;
// replace individual existing entries
for (var i = 0; i < listLength; i++) {

newOpt = document.createElement(“option”);
newOpt.text = (which == “plain”) ? plainList[i] : hardList[i];
listObj.remove(i);
listObj.add(newOpt, listObj.options[i]);

}
listObj.selectedIndex = currSelected;

}
}

// create entirely new options list
function setCount(choice) {

var listObj = document.forms[0].colors;
var newOpt;
// filter out old browsers
if (listObj.type) {

// get language setting
var lang = (document.forms[0].geekLevel[0].checked) ? “plain” : “hard”;
// empty options from list
while (listObj.options.length) {

listObj.remove(0);
}
// create new option object for each entry
for (var i = 0; i < choice.value; i++) {

newOpt = document.createElement(“option”);
newOpt.text = (lang == “plain”) ? plainList[i] : hardList[i];
listObj.add(newOpt, null);

}
listObj.options[0].selected = true;

}
}

As with the IE4 version, the W3C version offers no specific benefit over the original, backward-compatible
approach. Choose the most modern one that fits the types of browsers you need to support with your page.

722

Document Objects Reference

select

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 722

Properties
length
Value: Integer. Read/Write (see text)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Like all JavaScript arrays, the options array has a length property of its own. But rather than having to
reference the options array to determine its length, the select object has its own length property that
you use to find out how many items are in the list. This value is the number of options in the object. A
select object with three choices in it has a length property value of 3.

In browsers dating back to NN3 and IE4 you can adjust this value downward after the document loads.
This is one way to decrease the number of options in a list. Setting the value to 0 causes the select object
to empty but not disappear.

See Listing 24-1 for an illustration of the way you use the length property to help determine how often to
cycle through the repeat loop in search of selected items. Because the loop counter, i, must start at 0, the
counting continues until the loop counter is one less than the actual length value (which starts its count
with 1).

Related Item: options property.

multiple
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The multiple property represents the multiple attribute setting for a select element object. If the value
is true, the element accepts multiple selections by the user (for example, Ctrl+clicking in Windows). If you
want to convert a pop-up list into a multiple select pick list, you must also adjust the size property to
direct the browser to render a set number of visible choices in the list.

The following statement toggles between single and multiple selections on a select element object whose
size attribute is set to a value greater than 1:

document.forms[0].mySelect.multiple = !document.forms[0].mySelect.multiple;

Related Item: size property.

options[index]
Value: Array of option element objects. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

You typically don’t summon this property by itself. Rather, it is part of a reference to a specific option’s
properties (or methods in later browsers) within the entire select object. In other words, the options
property is a kind of gateway to more specific properties, such as the value assigned to a single option
within the list.

In modern browsers (IE4+ and W3C), you can reference individual options as separate HTML element
objects. These references do not require the reference to the containing form or select element objects. If
backward compatibility is a priority, however, I recommend you stick with the long references through the
select objects.

723

select.options[index]

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 723

I list the next several properties here in the select object discussion because they are backward-compatible
with all browsers, including browsers that don’t treat the option element as a distinct object. Be aware that
all properties shown here that include options[index] as part of their references are also properties of the
option element object in IE4+ and W3C browsers.

See Listings 24-1 through 24-3 for examples of how the options array references information about the
options inside a select element.

Related Items: All options[index].property items.

options[index].defaultSelected
Value: Boolean. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

If your select object definition includes one option that features the selected attribute, that option’s
defaultSelected property is set to true. The defaultSelected property for all other options is false.
If you define a select object that allows multiple selections (and whose size attribute is greater than 1),
however, you can define the selected attribute for more than one option definition. When the page loads,
all items with that attribute are preselected for the user (even in noncontiguous groups).

The following statement preserves a Boolean value if the first option of the select list is the default selected
item:

var zeroIsDefault = document.forms[0].listName.options[0].defaultSelected;

Related Item: options[index].selected property.

options[index].index
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN6+, Moz+, Safari+

The index value of any single option in a select object likely is a redundant value in your scripting.
Because you cannot access the option without knowing the index anyway (in brackets as part of the
options[index] array reference), you have little need to extract the index value. The value is a property
of the item just the same.

The following statement assigns the index integer of the first option of a select element named listName
to a variable named itemIndex.

var itemIndex = document.forms[0].listName.options[0].index;

Related Item: options property.

options[index].selected
Value: Boolean. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

As mentioned earlier in the discussion of this object, better ways exist for determining which option a user
selects from a list than looping through all options and examining the selected property. An exception to
that “rule” occurs when you set up a list box to enable multiple selections. In this situation, the
selectedIndex property returns an integer of only the topmost item selected. Therefore, your script needs
to look at the true or false values of the selected property for each option in the list and determine
what to do with the text or value data.

724

Document Objects Reference

select.options[index].selected

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 724

To accumulate a list of all items selected by the user, the seeList() function in Listing 24-4 systematically
examines the options[index].selected property of each item in the list. The text of each item whose
selected property is true is appended to the list. I add the “\n” inline carriage returns and spaces to
make the list in the alert dialog box look nice and indented. If you assign other values to the value attri-
butes of each option, the script can extract the options[index].value property to collect those values
instead.

LISTING 24-4

Cycling through a Multiple-Selection List

<html>
<head>

<title>Accessories List</title>
<script type=”text/javascript”>
function seeList(form) {

var result = “”;
for (var i = 0; i < form.accList.length; i++) {

if (form.accList.options[i].selected) {
result += “\n “ + form.accList.options[i].text;

}
}
alert(“You have selected:” + result);

}
</script>

</head>
<body>

<form>
<p>Control/Command-click on all accessories you use: <select

name=”accList” size=”9” multiple=”multiple”>
<option selected=”selected”>Color Monitor</option>
<option>Modem</option>
<option>Scanner</option>
<option>Laser Printer</option>
<option>Tape Backup</option>
<option>MO Drive</option>
<option>Video Camera</option>

</select></p>
<p><input type=”button” value=”View Summary...”

onclick=”seeList(this.form)” />
</p>

</form>
</body>

</html>

Related Items: options[index].text, options[index].value, selectedIndex properties.

725

select.options[index].selected

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 725

options[index].text
Value: String. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The text property of an option is the text of the item as it appears in the list. If you can pass that wording
along with your script to perform appropriate tasks, this property is the one you want to extract for further
processing. But if your processing requires other strings associated with each option, assign a value attrib-
ute in the definition and extract the options[index].value property (see Listing 24-6).

To demonstrate the text property of an option, Listing 24-5 applies the text from a selected option to the
document.bgColor property of a document in the current window. The color names are part of the collec-
tion built into all scriptable browsers; fortunately, the values are case-insensitive so that you can capitalize
the color names displayed and assign them to the property.

LISTING 24-5

Using the options[index].text Property

<html>
<head>

<title>Color Changer 1</title>
<script type=”text/javascript”>
function seeColor(form) {

var newColor =
(form.colorsList.options[form.colorsList.selectedIndex].text);

document.bgColor = newColor;
}
</script>

</head>
<body>

<form>
<p>Choose a background color: <select name=”colorsList”>

<option selected=”selected”>Gray</option>
<option>Lime</option>
<option>Ivory</option>
<option>Red</option>

</select></p>
<p><input type=”button” value=”Change It”

onclick=”seeColor(this.form)” /></p>
</form>

</body>
</html>

Related Item: options[index].value property.

options[index].value
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

726

Document Objects Reference

select.options[index].value

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 726

In many instances, the words in the options list appear in a form that is convenient for the document’s users
but inconvenient for the scripts behind the page. Rather than set up an elaborate lookup routine to match
the selectedIndex or options[index].text values with the values your script needs, you can easily
store those values in the value attribute of each <option> definition of the select object. You can then
extract those values as needed.

You can store any string expression in the value attributes. That includes URLs, object properties, or even
entire page descriptions that you want to send to a parent.frames[index].document.write() method.

Starting with IE4 and W3C browsers, the select element object itself has a value property that returns
the value property of the selected option. But for backward compatibility, use the longer approach shown
in the example in Listing 24-6.

Listing 24-6 requires the option text that the user sees to be in familiar, multiple-word form. But to set the
color using the browser’s built-in color palette, you must use the one-word form. Those one-word values are
stored in the value attributes of each <option> definition. The function then reads the value property,
assigning it to the bgColor of the current document. If you prefer to use the hexadecimal triplet form of color
specifications, those values are assigned to the value attributes (<option value=”#e9967a”>Dark Salmon).

LISTING 24-6

Using the options[index].value Property

<html>
<head>

<title>Color Changer 2</title>
<script type=”text/javascript”>
function seeColor(form) {

var newColor =
(form.colorsList.options[form.colorsList.selectedIndex].value);

document.bgColor = newColor;
}
</script>

</head>
<body>

<form>
<p>Choose a background color: <select name=”colorsList”>

<option selected=”selected” value=”cornflowerblue”>
Cornflower Blue</option>
<option value=”darksalmon”>Dark Salmon</option>
<option value=”lightgoldenrodyellow”>
Light Goldenrod Yellow</option>
<option value=”seagreen”>Sea Green</option>
</select></p>

<p><input type=”button” value=”Change It”
onclick=”seeColor(this.form)” /></p>

</form>
</body>

</html>

Related Item: options[index].text property.

727

select.options[index].value

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 727

selectedIndex
Value: Integer. Read/Write
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

When a user clicks a choice in a selection list, the selectedIndex property changes to a zero-based num-
ber corresponding to that item in the list. The first item has a value of 0. This information is valuable to a
script that needs to extract the value or text of a selected item for further processing.

You can use this information as a shortcut to getting at a selected option’s properties. To examine a select
object’s selected property, rather than cycling through every option in a repeat loop, use the object’s
selectedIndex property to fill in the index value for the reference to the selected item. The wording gets
kind of long; but from an execution standpoint, this methodology is much more efficient. Note, however,
that when the select object is a multiple-style, the selectedIndex property value reflects the index of
only the topmost item selected in the list.

To script the selection of a particular item, assign an integer value to the select element object’s
selectedIndex property, as shown in Listings 24-1 through 24-3.

In the inspect() function of Listing 24-7, notice that the value inside the options property index brack-
ets is a reference to the object’s selectedIndex property. Because this property always returns an integer
value, it fulfills the needs of the index value for the options property. Therefore, if you select Green in the
pop-up menu, form.colorsList.selectedIndex returns a value of 1; that reduces the rest of the refer-
ence to form.colorsList.options[1].text, which equals “Green.”

LISTING 24-7

Using the selectedIndex Property

<html>
<head>

<title>Select Inspector</title>
<script type=”text/javascript”>
function inspect(form) {

alert(form.colorsList.options[form.colorsList.selectedIndex].text);
}
</script>

</head>
<body>

<form>
<p><select name=”colorsList”>

<option selected=”selected”>Red</option>
<option value=”Plants”>Green</option>
<option>Blue</option>

</select></p>
<p><input type=”button” value=”Show Selection”

onclick=”inspect(this.form)” /></p>
</form>

</body>
</html>

728

Document Objects Reference

select.selectedIndex

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 728

Related Item: options property.

size
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The size property represents the size attribute setting for a select element object. You can modify the
integer value of this property to change the number of options that are visible in a pick list without having
to scroll.

The following statement uses the size property to set the number of visible items to 5:

document.forms[0].mySelect.size = 5;

Related Item: multiple property.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Use the type property to help you identify a select object from an unknown group of form elements. The
precise string returned for this property depends on whether the select object is defined as a single-
(select-one) or multiple- (select-multiple) type.

Related Item: form.elements property.

value
Value: String. Read/Write (see text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The more recent browsers (and the W3C DOM) provide a value property for the select element object.
This property returns the string assigned to the value attribute (or value property) of the currently
selected option element. If you do not assign a string to the attribute or property, the value property
returns an empty string. For these browser generations, you can use this shortcut reference to the select
element object’s value property instead of the longer version that requires a reference to the
selectedIndex property and the options array of the element object.

The seeColor() function in Listing 24-6 that accesses the chosen value the long way can be simplified for
newer browsers only with the following construction:

function seeColor(form) {
document.bgColor = form.colorsList.value;

}

Related Item: options[index].value property.

729

select.value

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 729

Methods
add(newOptionElementRef[, index])
add(newOptionElementRef, optionElementRef)
remove(index)
Returns: Nothing.
Compatibility: WinIE5+, MacIE5+, NN6+, Moz+, Safari+

These methods represent the W3C approach to adding and removing option elements from a selection. The
first parameter to each of the add() methods is the new option element object to be added to the selec-
tion. The second parameters differ due to variances in IE and other W3C browsers. The first version of
add() is the IE version, which allows you to specify an optional index position for the new option; the
option is placed just before the index position or it is appended to the end of the selection list if no index is
provided. The W3C approach is represented by the second add() method, which requires an option
object reference as the second parameter. This reference is to an option already in the selection list; the new
option is added just before the option or it is appended to the end of the selection list if null is passed as
the second parameter.

The remove() method requires the index of the option to be removed, and simply removes the option
from the selection list.

options.add(elementRef[, index])
options.remove()
Returns: Nothing.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

These two IE-specific methods belong to the options array property of a select element object. See the
discussion at the opening of the select element object earlier in this chapter to see how to use these meth-
ods and their counterparts in other browser versions and object models.

item(index)
namedItem(“optionID”)
Returns: option element reference.
Compatibility: WinIE5+, MacIE5+, NN-, Moz-, Safari-

The item() and namedItem() methods are IE-specific convenience methods that access option element
objects nested inside a select object. In a sense, they provide shortcuts to referencing nested options with-
out having to use the options array property and the indexing within that array.

The parameter for the item() method is an index integer value. For example, the following two statements
refer to the same option element object:

document.forms[0].mySelect.options[2]
document.forms[0].mySelect.item(2)

If your script knows the ID of an option element, it can use the namedItem() method, supplying the
string version of the ID as the parameter, to return a reference to that option element.

730

Document Objects Reference

select.item()

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 730

The following statement assigns an option element reference to a variable:

var oneOption = document.forms[0].mySelect.namedItem(“option3_2”);

Related Item: options property.

Event handlers
onchange
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

As a user clicks a new choice in a select object, the object receives a change event that the onchange
event handler can capture. In examples earlier in this section (Listings 24-6 and 24-7, for example), the
action is handed over to a separate button. This design may make sense in some circumstances, especially
when you use multiple select lists or any list box. (Typically, clicking a list box item does not trigger any
action that the user sees.) There are also accessibility concerns for users who do not have JavaScript
enabled. Restricting action to scripted events (without a corresponding “Go” or similar explicit button adja-
cent to the select element) may mean that choosing an item in the list would have no effect. Therefore,
consider your users carefully before implementing actions exclusively via the change event.

To bring a pop-up menu to life, bind an onchange event handler to the <select> definition. If the user
makes the same choice as previously selected, the onchange event handler is not triggered. In this case, you
can still trigger an action via the onclick event handler; but this event works for the select object only in
modern browsers.

Listing 24-8 is a version of Listing 24-6 that invokes all action as the result of a user making a selection
from the pop-up menu. The onchange event handler for the <select> tag replaces the action button. For
this application — when you desire a direct response to user input — an appropriate method is to have the
action triggered from the pop-up menu rather than by a separate action button.

Notice two other important changes. First, the select element now contains a blank first option. When a
user visits the page, nothing is selected yet, so you should present a blank option to encourage the user to
make a selection. The function also makes sure that the user selects one of the color-valued items before it
attempts to change the background color.

Second, the onload event handler invokes the seeColor() method, passing as a parameter a reference to
the select element. This forces any color selection to be carried out when the page is initially loaded. As
an example, this might take place if you navigate to another page and then use the browser’s Back button to
return to the color page. Thus, if the select element choice persists, the background color is adjusted
accordingly after the page loads.

LISTING 24-8

Triggering a Color Change from a Pop-Up Menu

<html>
<head>

<title>Color Changer 2</title>
<script type=”text/javascript”>

continued

731

select.onchange

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 731

LISTING 24-8 (continued)

function seeColor(list) {
var newColor = (list.options[list.selectedIndex].value);
if (newColor) {

document.bgColor = newColor;
}

}
</script>

</head>
<body onload=”seeColor(document.getElementById(‘colorsList’))”>

<form>
<p>Choose a background color: <select name=”colorsList”

id=”colorsList” onchange=”seeColor(this)”>
<option selected=”selected” value=””></option>
<option value=”cornflowerblue”>Cornflower Blue</option>
<option value=”darksalmon”>Dark Salmon</option>
<option value=”lightgoldenrodyellow”>
Light Goldenrod Yellow</option>
<option value=”seagreen”>Sea Green</option>

</select></p>
</form>

</body>
</html>

option Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defaultSelected

form†

label

selected

text

value

†See “Text Input Object” (Chapter 23).

Syntax
Accessing option object properties:

(All) [window.]document.formName.selectName.options[index].property |
method([parameters])

732

Document Objects Reference

option

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 732

(All) [window.]document.formName.elements[index].options[index].property |
method([parameters])

(All) [window.]document.forms[index].selectName.options[index].property |
method([parameters])

(All) [window.]document.forms[“formName”].selectName.options[index].
property | method([parameters])

(All) [window.]document.forms[“formName”].elements[index].options[index].
property | method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])
(W3C) [window.]document.forms[index].selectName.item(index).property |

method([parameters])
(W3C) [window.]document.forms[“formName”].selectName.namedItem(elemID).

property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
option elements are nested inside select elements. Each option represents an item in the list of choices
presented by the select element. Properties of the option element object let scripts inspect whether a
particular option is currently selected or is the default selection. Other properties enable you to get or set
the hidden value associated with the option as well as the visible text. For more details about the interaction
between the select and option element objects, see the discussion about the select object earlier in this
chapter as well as the discussion of the properties and methods associated with the options array returned
by the select object’s options property.

I discuss all backward-compatible option object properties (defaultSelected, selected, text, and
value) among the options property descriptions in the select object section. The only items listed in
this section are those that are unique to the option element object defined in newer browsers.

In all browsers dating back to NN3 and IE4, there is a provision for creating a new option object via an
Option object constructor function. The syntax is as follows:

var newOption = new Option(“text”,”value”);

Here, text is the string that is displayed for the item in the list, and value is the string assigned to the value
property of the new option. This new option object is not added to a select object until you assign it to a
slot in the options array of the select object. You can see an example of this approach to modifying
options in Listing 24-1.

Properties
label
Value: String. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

The label property corresponds to the HTML 4.01 label attribute of an option element. This attribute
(and property) enables you to assign alternate text for an option. In MacIE5, any string assigned to the
label attribute or corresponding property overrides the display of text found between the start and end

733

option.label

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 733

tags of the option element. Therefore, you can assign content to both the attribute and tag, but only
browsers adhering to the HTML 4.01 standard for this element display the value assigned to the label.
Although the label property is implemented in NN6, the browser does not modify the option item’s text to
reflect the property’s setting. This problem is resolved in Moz+ browsers.

The following statement modifies the text that appears as the selected text in a pop-up list:

document.forms[0].mySelect.options[3].label = “Widget 9000”;

If this option is the currently selected one, the text on the pop-up list at rest changes to the new label.

Related Item: text property.

optgroup Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

form†

label

†See “Text Input Object” (Chapter 23).

Syntax
Accessing optgroup object properties:

(IE) [window.]document.all.elemID”.property | method([parameters])
(W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

About this object
An optgroup element in the HTML 4.01 specification enables authors to group options into subgroups
within a select list. The label assigned to the optgroup element is rendered in the list as a non-selectable
item, usually differentiated from the selectable items by some alternate display. In W3C browsers,
optgroup items by default are shown in bold italic, whereas all option elements nested within an
optgroup are indented but with normal font characteristics.

Browsers not recognizing this element ignore it. All options are presented as if the optgroup elements are
not there.

Properties
label
Value: String. Read/Write
Compatibility: WinIE6+, MacIE5+, NN6+, Moz+, Safari+

734

Document Objects Reference

optgroup.label

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 734

The label property corresponds to the HTML 4.01 label attribute of an optgroup element. This attribute
(and property) enables you to assign text to the label that encompasses a group of nested option elements
in the pop-up list display.

MacIE5 exhibits a bug that prevents scripts from assigning values to the last optgroup ele-
ment inside a select element.

Listing 24-9 demonstrates how a script can alter the text of option group labels. This page is an enhanced
version of the background color setters used in other examples of this chapter. Be aware that several ver-
sions of IE prior to IE7 do not alter the last optgroup element’s label, and NN6+ achieves only a partial
change to the text displayed in the select element. Newer Mozilla-based browsers such as Firefox 1.5 and
2.0 have no problems with the task.

LISTING 24-9

Modifying optgroup Element Labels

<html>
<head>

<title>Color Changer 3</title>
<script type=”text/javascript”>
var regularLabels = [“Reds”,”Greens”,”Blues”];
var naturalLabels = [“Apples”,”Leaves”,”Sea”];
function setRegularLabels(list) {

var optGrps = list.getElementsByTagName(“optgroup”);
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = regularLabels[i];
}

}
function setNaturalLabels(list) {

var optGrps = list.getElementsByTagName(“optgroup”);
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = naturalLabels[i];
}

}
function seeColor(list) {

var newColor = (list.options[list.selectedIndex].value);
if (newColor) {

document.bgColor = newColor;
}

}
</script>

</head>
<body onload=”seeColor(document.getElementById(‘colorsList’))”>

<form>
<p>Choose a background color: <select name=”colorsList”

id=”colorsList” onchange=”seeColor(this)”>
<optgroup id=”optGrp1” label=”Reds”>

<option value=”#ff9999”>Light Red</option>
<option value=”#ff3366”>Medium Red</option>

continued

NOTENOTE

735

optgroup.label

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 735

LISTING 24-9 (continued)

<option value=”#ff0000”>Bright Red</option>
<option value=”#660000”>Dark Red</option>

</optgroup>
<optgroup id=”optGrp2” label=”Greens”>

<option value=”#ccff66”>Light Green</option>
<option value=”#99ff33”>Medium Green</option>
<option value=”#00ff00”>Bright Green</option>
<option value=”#006600”>Dark Green</option>

</optgroup>
<optgroup id=”optGrp3” label=”Blues”>

<option value=”#ccffff”>Light Blue</option>
<option value=”#66ccff”>Medium Blue</option>
<option value=”#0000ff”>Bright Blue</option>
<option value=”#000066”>Dark Blue</option>

</optgroup>
</select></p>

<p><input type=”radio” name=”labels” checked=”checked”
onclick=”setRegularLabels(this.form.colorsList)” />Regular Label
Names <input type=”radio” name=”labels”
onclick=”setNaturalLabels(this.form.colorsList)” />Label Names from
Nature</p>

</form>
</body>

</html>

Related Item: option.label property.

file Input Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

defaultValue† select()† onchange†

form†

name†

readOnly†

size†

type†

value†

†See “Text Input Object” (Chapter 23).

736

Document Objects Reference

document.formObject.fileInputObject

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 736

Syntax
Accessing file input element object properties:

(NN3+/IE4+) [window.]document.formName.inputName.property |
method([parameters])

(NN3+/IE4+) [window.]document.formName.elements[index].property |
method([parameters])

(NN3+/IE4+) [window.]document.forms[index].inputName.property |
method([parameters])

(NN3+/IE4+) [window.]document.forms[“formName”].inputName.property |
method([parameters])

(NN3+/IE4+) [window.]document.forms[“formName”].elements[index].property |
method([parameters])

(IE4+) [window.]document.all.elemID.property | method([parameters])
(IE5+/W3C) [window.]document.getElementById(“elemID”).property |

method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

About this object
Some Web sites enable you to upload files from the client to the server, typically by using a form-style sub-
mission to a CGI program on the server. The input element whose type is set to “file” (also known as a
fileUpload object) is merely a user interface that enables users to specify which file on their PC they want
to upload. Without a server process capable of receiving the file, the file input element does nothing.
Moreover, you must also set two form element attributes as follows:

method=”POST”
enctype=”multipart/form-data”

This element displays a field and a Browse button. The Browse button leads to an Open File dialog box (in
the local operating system’s interface vernacular) where a user can select a file. After you make a selection,
the filename (or pathname, depending on the operating system) appears in the file input element’s field.
The value property of the object returns the filename.

You do not have to script much for this object on the client side. The value property, for example, is read-
only in earlier browsers; in addition, a form cannot surreptitiously upload a file to the server without the
user’s knowledge or consent.

Listing 24-10 helps you see what the file input element looks like in an example page.

737

document.formObject.fileInputObject

Select, Option, and FileUpload Objects 24

32_069165 ch24.qxp 3/1/07 3:51 PM Page 737

LISTING 24-10

file Input Element

<html>
<head>

<title>FileUpload Object</title>
</head>
<body>

<form method=”POST” action=”yourCGIURL” enctype=”multipart/form-data”>
File to be uploaded: <input type=”file” size=”40” name=”fileToGo” />
<p><input type=”button” value=”View Value”

onclick=”alert(this.form.fileToGo.value)” /></p>
</form>

</body>
</html>

In a true production environment, a Submit button and a URL to your CGI process are specified for the
action attribute of the <form> tag. You would also likely use the more modern (but more code intensive)
event binding approach to handle the onclick event, as you’ve seen in other examples in this chapter —
here it was more concise to stick with the simple attribute assignment technique.

738

Document Objects Reference

document.formObject.fileInputObject

Part III

32_069165 ch24.qxp 3/1/07 3:51 PM Page 738

Prior to version 4 browsers, user and system actions — events — were cap-
tured predominantly by event handlers defined as attributes inside HTML
tags. For instance, when a user clicked a button, the click event triggered

the onclick event handler in the tag. That handler may invoke a separate func-
tion or perform some inline JavaScript script. Even so, the events themselves
were rather dumb: Either an event occurred or it didn’t. Where an event
occurred (that is, the screen coordinates of the pointer at the moment the mouse
button was clicked) and other pertinent event tidbits (for example, whether a
keyboard modifier key was pressed at the same time) were not part of the equa-
tion. Until version 4 browsers, that is.

While remaining fully backward-compatible with the event handler mechanism
of old, version 4 browsers had the first event model that turned events into first-
class objects whose properties automatically carry a lot of relevant information
about the event when it occurs. These properties are fully exposed to scripts,
allowing pages to respond more intelligently about what the user does with the
page and its elements.

Another new aspect of version 4 event models was the notion of “event propaga-
tion.” It was possible to have an event processed by an object higher up the ele-
ment containment hierarchy whenever it made sense to have multiple objects share
one event handler. That the event being processed carried along with it information
about the intended target, plus other golden information nuggets, made it possible
for event handler functions to be smart about processing the event without requir-
ing an event handler call to pass all kinds of target-specific information.

Unfortunately, the joy of this newly found power is tempered by the forces of
object model incompatibility. Event object models are clearly divided along two
fronts: the IE4+ model and the model adopted by the W3C DOM Level 2 as
implemented in NN6+/Moz/Safari. Many of these distinctions are addressed in
the overviews of the object models in Chapter 15. In this chapter, you find out
more about the actual event objects that contain all the “goodies.” Where possi-
ble, cross-browser concerns are addressed.

739

IN THIS CHAPTER
The “life” of an event object

Event support in different
browser generations

Retrieving information from an
event

Event Objects

33_069165 ch25.qxp 3/1/07 3:52 PM Page 739

Why “Events”?
Graphical user interfaces are more difficult to program than the “old-fashioned” command-line interface.
With a command-line or menu-driven system, users were intentionally restricted in the types of actions
they could take at any given moment. The world was very modal, primarily as a convenience to program-
mers who led users through rigid program structures.

That all changed in a graphical user interface, such as Windows, MacOS, XWindow System, and all others
derived from the pioneering work of the Xerox Star system. The challenge for programmers is that a good
user interface in this realm must make it possible for users to perform all kinds of actions at any given
moment: roll the mouse, click a button, type a key, select text, choose a pull-down menu item, and so on.
To accommodate this, a program (or, better yet, the operating system) must be on the lookout for any possi-
ble activity coming from all input ports, whether it be the mouse, keyboard, or network connection.

A common methodology to accomplish this at the operating system level is to look for any kind of event,
whether it comes from user action or some machine-generated activity. The operating system or program
then looks up how it should process each kind of event. Such events, however, must have some smarts
about them so that the program knows what and where on the screen the event is.

What an event knows (and when it knows it)
Although the way to reference an event object varies a bit among the three event models, the one concept
they all share is that an event object is created the instant the event action occurs. For instance, if you click
a button, an event object is created in the browser’s memory. As the object is created, the browser assigns
values to the object’s properties — properties that reflect numerous characteristics of that specific event. For
a click event, that information includes the coordinates of the click and which mouse button was used to
generate the event. To be even more helpful, the browser does some quick calculations to determine that
the coordinates of the click event coincide with the rectangular space of a button element on the screen.
Therefore, the event object has as one of its properties a reference to the “screen thing” that you clicked on.

Most event object properties (all of them in some event models) are read-only, because an event object is
like a snapshot of an event action. If the event model were to allow modification of event properties, per-
forming both potentially useful and potentially unfriendly actions would be possible. For example, how
frustrating would it be to a user to attempt to type into a text box only to have a keystroke modified after
the actual key press and then have a totally different character appear in the text box? On the other hand,
perhaps it may be useful in some situations to make sure that anything typed into a text box is converted to
uppercase characters, no matter what is typed. Each event model brings its own philosophy to the table in
this regard. For example, the IE4+ event model allows keyboard character events to be modified by script;
the W3C DOM event model does not.

Perhaps the most important aspect of an event object to keep in mind is that it exists only as long as scripts
process the event. An event can trigger an event handler — usually a function. That function, of course, can
invoke other functions. As long as statements are still executing in response to the event handler, the event
object and all its properties are still “alive” and available to your scripts. But after the last script statement
runs, the event object reverts to an empty object.

The reason an event object has such a brief life is that there can be only one event object at a time. In other
words, no matter how complex your event handler functions are or how rapidly events fire, they are exe-
cuted serially (for experienced programmers: there is one execution thread). The operating system buffers
events that start to bunch up on each other. Except in rare cases in which the buffer gets full and events are
not recorded, event handlers are executed in the order in which the events occur.

740

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 740

The static Event object
Up to this point, the discussion has been about the event object (with a lowercase “e”), which is one
instance of an event, with all the properties associated with that specific event action. In the W3C DOM
event model, there is also a static Event object (with an uppercase “E”) that includes additional subcate-
gories within. These subcategories are all covered later in this chapter, but they are introduced here to draw
the contrast between the event and Event objects. The former, as you’ve seen, is a transient object with
details about a specific event action; the latter serves primarily as a holder of event-related constant values
that scripts can use. The static Event object is always available to scripts inside any window or frame. If
you want to see a list of all Event object properties in NN6+/Moz, use The Evaluator (Chapter 13): enter
Event into the bottom text box (also check out the KeyEvent object in NN6+/Moz).

The static Event object also turns out to be the object from which event objects are cloned. Thus, the static
Event object has a number of properties and methods that apply to (are inherited by) the event objects cre-
ated by event actions. These relationships are more important in the W3C DOM event model, which builds
upon the DOM’s object-oriented tendencies to implement the event model.

Event Propagation
Prior to version 4 browsers, an event fired on an object. If an event handler was defined for that event and
that object, the handler executed; if there was no event handler, the event just disappeared into the ether.
Newer browsers, however, send events on a longer ride, causing them to propagate through the document
object models. As you know by now, two propagation models exist, one for each of the event models in use
today: IE4+ and W3C DOM as implemented in NN6+/Moz/Safari. It’s also worth mentioning the event
model that is unique to NN4, which served as a third model prior to NN4 succumbing to modern
browsers. The NN4 event model has historical relevance because it aids in understanding the latter two
models. Conceptually, the NN4 and IE4+ propagation models are diametrically opposite each other — any
NN4 event propagates inward toward the target, whereas an IE event starts at the target and propagates out-
ward. But the W3C DOM model manages to implement both models simultaneously, albeit with all new
syntax so as not to step on the older models.

At the root of all three models is the notion that every event has a target. For user-initiated actions, this is
fairly obvious. If you click a button or type in a text box, that button is the target of your mouse-related
event; the text box is the target of your keyboard event. System-generated events are not so obvious, such as
the onload event after a page finishes loading. In all event models, this event fires on the window object.
What distinguishes the event propagation models is how an event reaches its target, and what, if anything,
happens to the event after it finishes executing the event handler associated with the target.

NN4-only event propagation
Although NN4 has given way to newer browsers, its propagation model initiated some concepts that are
found in the modern W3C DOM event propagation model. The name for the NN4 model is event capture.

In NN4, all events propagate from the top of the document object hierarchy (starting with the window
object) downward to the target object. For example, if you click a button in a form, the click event passes
through the window and document (and, if available, layer) objects before reaching the button (the form
object is not part of the propagation path). This propagation happens instantaneously, so that there is no
performance penalty by this extra journey.

741

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 741

The event that passes through the window, document, and layer objects is a fully formed event object,
complete with all properties relevant to that event action. Therefore, if the event were processed at the win-
dow level, one of the event object’s properties is a reference to the target object, so that the event handler
scripts at the window level can find out information, such as the name of the button, and even get a refer-
ence to its enclosing form.

By default, event capture is turned off. To instruct the window, document, or layer object levels to process
that passing click object requires turning on event capture for the window, document, and/or layer object.

Enabling NN4 event capture
All three objects just mentioned — window, document, and layer — have a captureEvents() method.
You use this method to enable event capture at any of those object levels. The method requires one or more
parameters, which are the event types (as supplied by Event object constants) that the object should cap-
ture, while letting all others pass untouched. For example, if you want the window object to capture all
keypress events, you include the following statement in a script that executes as the page loads:

window.captureEvents(Event.KEYPRESS);

Defining event handlers in the intended targets is also a good idea, even if they are empty (for example,
onkeypress=””) to help NN4 generate the event in the first place. If you want the window to capture mul-
tiple event types, string the event type constants together, separated by the pipe character:

window.captureEvents(Event.KEYPRESS | Event.CLICK);

Now you must assign an action to the event at the window’s level for each event type. More than likely, you
have defined functions to execute for the event. Assign a function reference to the event handler by setting
the handler property of the window object:

window.onkeypress = processKeyEvent;
window.onclick = processClickEvent;

Hereafter, if a user clicks a button or types into a field inside that window, the events are processed by their
respective window-level event handler functions.

Turning off event capture
As soon as you enable event capture for a particular event type in a document, that capture remains in effect
until the page unloads or you specifically disable the capture. You can turn off event capture for each event
via the window, document, or layer releaseEvents() method. The releaseEvents() method takes
the same kind of parameters — Event object type constants — as the captureEvents() method.

The act of releasing an event type simply means that events go directly to their intended targets without
stopping elsewhere for processing, even if an event handler for the higher-level object is still defined. And
because you can release individual event types based on parameters set for the releaseEvents() method,
other events being captured are not affected by the release of others.

Passing events toward their targets
If you capture a particular event type in NN4, your script may need to perform some limited processing on
that event before letting it reach its intended target. For example, perhaps you want to do something special
if a user clicks an element with the Shift meta key pressed. In that case, the function that handles the event
at the document level inspects the event’s modifiers property to determine if the Shift key was pressed at
the time of the event. If the Shift key was not pressed, you want the event to continue on its way to the ele-
ment that the user clicked.

742

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 742

To let an event pass through the object hierarchy to its target, you use the routeEvent() method, passing
as a parameter the event object being handled in the current function. A routeEvent() method does not
guarantee that the event will reach its intended destination, because another object in between may have
event capturing for that event type turned on and will intercept the event. That object, too, can let the event
pass through with its own routeEvent() method.

In some cases, your scripts need to know if an event that is passed onward by the routeEvent() method
activated a function that returns a value. This knowledge is especially valuable if your event must return a
true or false value to let an object know if it should proceed with its default behavior (for example,
whether a link should activate its href attribute URL or cancel after the event handler evaluates to return
true or return false). When a function is invoked by the action of a routeEvent() method, the return
value of the destination function is passed back to the routeEvent() method. That value, in turn, can be
returned to the object that originally captured the event.

Event traffic cop
The last scenario is one in which a higher-level object captures an event and directs the event to a particular
object elsewhere in the hierarchy. For example, you could have a document-level event handler function
direct every click event whose modifiers property indicates that the Alt key was pressed to a Help but-
ton object whose own onclick event handler displays a help panel (perhaps shows an otherwise hidden
layer).

You can redirect an event to any object via the handleEvent() method. This method works differently
from the others described in this chapter, because the object reference of this method is the reference of the
object to handle the event (with the event object being passed as a parameter, such as the other methods).
As long as the target object has an event handler defined for that event, it will process the event as if it had
received the event directly from the system (even though the event object’s target property may be some
other object entirely).

IE4+ event propagation
IE’s event propagation model is called event bubbling, in which events “bubble” upward from the target
object through the HTML element containment hierarchy. It’s important to distinguish between the old-
fashioned document object hierarchy (followed in the NN4 event capture model) and the more modern
notion of HTML element containment — a concept that carries over to the W3C DOM as well.

A good way to demonstrate the effect of event bubbling — a behavior that is turned on by default — is to
populate a simple document with lots of event handlers to see which ones fire and in what order. Listing
25-1 has onclick event handlers defined for a button inside a form, the form itself, and other elements and
objects all the way up the hierarchy out to the window.

LISTING 25-1

Event Bubbling Demonstration

<html onclick=”alert(‘Event is now at the HTML element.’)”>
<head>

<title>Event Bubbles</title>
<script type=”text/javascript”>
function init() {

continued

743

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 743

LISTING 25-1 (continued)

window.onclick = winEvent
document.onclick = docEvent;
document.body.onclick = docBodEvent;

}
function winEvent() {

alert(“Event is now at the window object level.”);
}
function docEvent() {

alert(“Event is now at the document object level.”);
}
function docBodEvent() {

alert(“Event is now at the BODY element.”);
}
</script>

</head>
<body onload=”init()”>

<h1>Event Bubbles</h1>
<hr />
<form onclick=”alert(‘Event is now at the FORM element.’)”>

<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event started at Button: ‘ + this.name)” />

</form>
</body>

</html>

You can try this listing in IE4+ and even NN6+/Moz or Safari, because W3C DOM browsers also observe
event bubbling. But you will notice differences in the precise propagation among WinIE4+, MacIE4+, and
W3C DOM browsers. But first, notice that after you click the button in Listing 25-1, the event first fires at
the target: the button. Then the event bubbles upward through the HTML containment to fire at the enclos-
ing form element; next to the enclosing body element; and so on. Where the differences occur are after the
body element. Table 25-1 shows the objects for which event handlers are defined in Listing 25-1 and which
objects have the click event bubble to them in the three classes of browsers.

TABLE 25-1

Event Bubbling Variations for Listing 25-1

Event Handler Location WinIE4+ MacIE4+ NN6+/Moz/Safari

button Yes Yes Yes

form Yes Yes Yes

body Yes Yes Yes

HTML Yes No Yes

document Yes Yes Yes

window No No Yes

744

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 744

Despite the discrepancies in Table 25-1, events do bubble through the most likely HTML containers that
come to mind. The object level with the most global scope and that works in all browser categories shown
in the table is the document object.

Preventing IE event bubbling
Because bubbling occurs by default, there are times when you may prefer to prevent an event from bubbling
up the hierarchy. For example, if you have one handler at the document level whose job is to deal with the
click event from a related series of buttons, any other object that receives click events will allow those
events to bubble upward to the document level unless the bubbling is cancelled. Having the event bubble
up could conflict with the document-level event handler.

Each event object in IE has a property called cancelBubble. The default value of this property is false,
which means that the event bubbles to the next outermost container that has an event handler for that
event. But if, in the execution of an event handler, that property is set to true, the processing of that han-
dler finishes its job, but the event does not bubble up any higher. Therefore, to stop an event from bubbling
beyond the current event handler, include the following statement somewhere in the handler function:

event.cancelBubble = true;

You can prove this to yourself by modifying the page in Listing 25-1 to cancel bubbling at any level. For
example, if you change the event handler of the form element to include a statement that cancels bubbling,
the event goes no further than the form in IE (the syntax is different for NN6+/Moz, as discussed later in
this chapter):

<form onclick=”alert(‘Event is now at the form element.’);
event.cancelBubble=true”>

Preventing IE event default action
In the days when events were almost always bound to elements by way of attributes in tags, the technique
to block the event’s default action was to make sure the event handler evaluated to return false. This is
how, for instance, a form element’s onsubmit event handler could prevent the form from carrying out the
submission if client-side form validation failed.

To enhance that capability — especially when events are bound by other means, such as object element
properties — IE’s event object includes a returnValue property. Assign false to this property in the
event handler function to block the element’s default action to the event:

event.returnValue = false;

This way of blocking default actions in IE is often more effective than the old return false technique.

Redirecting events
Starting with IE5.5, you can redirect an event to another element, but with some limitations. The mecha-
nism that makes this possible is the fireEvent() method of all HTML element objects (see Chapter 15).
This method isn’t so much redirecting an event as causing a brand-new event to be fired. But you can pass
most of the properties of the original event object with the new event by specifying a reference to the old
event object as the optional second parameter to the fireEvent() method.

The big limitation in this technique, however, is that the reference to the target element gets lost in this
hand-off to the new event. The srcElement property of the old event gets overwritten with a reference to

745

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 745

the object that is the target of the call to fireEvent(). For example, consider the following onclick event
handler function for a button inside a form element:

function buttonEvent() {
event.cancelBubble = true;
document.body.fireEvent(“onclick”, event);

}

By cancelling event bubbling, the event does not propagate upward to the enclosing form element. Instead,
the event is explicitly redirected to the body element, passing the current event object as the second
parameter. When the event handler function for the body element runs, its event object has information
about the original event, such as the mouse button used for the click and the coordinates. But the
event.srcElement property points to the document.body object. As the event bubbles upward from the
body element, the srcElement property continues to point to the document.body object. You can see this
at work in Listing 25-2 for IE5.5+.

LISTING 25-2

Cancelling and Redirecting Events in IE5.5+

<html onclick=”revealEvent(‘HTML’, event)”>
<head>

<title>Event Cancelling & Redirecting</title>
<script type=”text/javascript”>
// display alert with event object info
function revealEvent(elem, evt) {

var msg = “Event (from “ + evt.srcElement.tagName + “ at “;
msg += event.clientX + “,” + event.clientY + “) is now at the “;
msg += elem + “ element.”;
alert(msg);

}
function init() {

document.onclick = docEvent;
document.body.onclick = docBodEvent;

}
function docEvent() {

revealEvent(“document”, event);
}
function docBodEvent() {

revealEvent(“BODY”, event);
}
function buttonEvent(form) {

revealEvent(“BUTTON”, event);
// cancel if checked (IE4+)
event.cancelBubble = form.bubbleCancelState.checked;
// redirect if checked (IE5.5+)
if (form.redirect.checked) {

document.body.fireEvent(“onclick”, event);
}

}

746

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 746

</script>
</head>
<body onload=”init()”>

<h1>Event Cancelling & Redirecting</h1>
<hr />
<form onclick=”revealEvent(‘FORM’, event)”>

<p><button name=”main1” onclick=”buttonEvent(this.form)”>Button
‘main1’</button></p>

<p><input type=”checkbox” name=”bubbleCancelState”
onclick=”event.cancelBubble=true” />Cancel Bubbling at BUTTON

<input type=”checkbox” name=”redirect”
onclick=”event.cancelBubble=true” /> Redirect Event to BODY</p>

</form>
</body>

</html>

Listing 25-2 is a modified version of Listing 25-1. Major additions are enhanced event handlers at each level
so that you can see the tag name of the event that is regarded as the srcElement of the event as well as the
coordinates of the click event. With both check boxes unchecked, events bubble upward from the button,
and the button element is then shown to be the original target all the way up the bubble hierarchy. If you
check the Cancel Bubbling check box, the event goes no further than the button element, because that’s
where event bubbling is turned off. If you then check the Redirect Event to body check box, the original
event is cancelled at the button level, but a new event is fired at the body element. But notice that by pass-
ing the old event object as the second parameter, the click location properties of the old event are applied
to the new event directed at the body. This event then continues to bubble upward from the body.

As a side note, if you uncheck the Cancel Bubbling check box but leave the Redirect Event box checked,
you can see how the redirection is observed at the end of the button’s event handler, and something special
goes on. The original event is held aside by the browser while the redirected event bubbles upward. As soon
as that event-processing branch finishes, the original bubbling propagation carries on with the form.
Notice, though, that the event object still knows that it was targeted at the button element, and the other
properties are intact. This means that for a time, two event objects were in the browser’s memory, but only
one is “active” at a time. While the redirected event is propagating, the window.event object refers to that
event object only.

Applying event capture
WinIE 5 and later also provide a kind of event capture, which overrides all other event propagation.
Intended primarily for temporary capture of mouse events, it is controlled not through the event object but
via the setCapture() and releaseCapture() methods of all HTML element objects (described in
Chapter 15).

When you engage capture mode, all mouse events are directed to the element object that invoked the
setCapture() method, regardless of the actual target of the event. This action facilitates such activities as
element dragging so that mouse events that might fire outside of the intended target (for example, when
dragging the cursor too fast for the animation to track) continue to go to the target. When the drag mode is
no longer needed, invoke the releaseCapture() method to allow mouse events to propagate normally.

747

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 747

W3C event propagation
Yielding to arguments in favor of both NN4’s event capture and IE’s event bubbling, the W3C DOM group
managed to assemble an event model that employs both propagation systems. Although forced to use new
syntax so as not to conflict with older browsers, the W3C DOM propagation model works like the NN4 one
for capture and like IE4+ for bubbling. In other words, an event bubbles by default, but you can also turn
on event capture if you want. Thus, an event first trickles down the element containment hierarchy to the
target; then it bubbles up through the reverse path.

Event bubbling is on by default, just as in IE4+. To enable capture, you must apply a W3C DOM event lis-
tener to an object at some higher container. Use the addEventListener() method (see Chapter 15) for
any visible HTML element or node. One of the parameters of the addEventListener() method deter-
mines whether the event listener function should be triggered while the event is bubbling or is captured.

Listing 25-3 is a simplified example for NN6+/Moz/W3C that demonstrates how a click event aimed at a
button can be both captured and allowed to bubble. Most event handling functions are assigned inside the
init() function. Borrowing code from Listing 25-1, event handlers are assigned to the window, document,
and body objects as property assignments. These are automatically treated as bubble-type event listeners.
Next, two objects — the document and a form — are given capture-type event listeners for the click event.
The document object event listener invokes the same function as the bubble-type event handler (the alert
text includes some asterisks to remind you that it is the same alert being displayed in both the capture and
bubble phases of the event). For the form object, however, the capture-type event listener is directed to one
function, while a bubble-type listener for the same object is directed at a separate function. In other words,
the form object invokes one function as the event trickles down to the target and another function when
the event starts bubbling back up. Many of the event handler functions dynamically read the eventPhase
property of the event object to reveal which phase of event propagation is in force at the instance the event
handler is invoked (although an apparent bug reports the incorrect phase at the document object during
event capture).

LISTING 25-3

W3C Event Capture and Bubble

<html>
<head>

<title>W3C DOM Event Propagation</title>
<script type=”text/javascript”>
function init() {

// using old syntax to assign bubble-type event handlers
window.onclick = winEvent;
document.onclick = docEvent;
document.body.onclick = docBodEvent;
// turn on click event capture for document and form objects
document.addEventListener(“click”, docEvent, true);
document.forms[0].addEventListener(“click”, formCaptureEvent, true);
// set event listener for bubble
document.forms[0].addEventListener(“click”, formBubbleEvent, false);

}
function winEvent(evt) {

alert(“Event is now at the window object level (“ +

748

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 748

getPhase(evt) + “).”);
}
function docEvent(evt) {

alert(“Event is now at the **document** object level (“ +
getPhase(evt) + “).”);

}
function docBodEvent(evt) {

alert(“Event is now at the BODY level (“ + getPhase(evt) + “).”);
}
function formCaptureEvent(evt) {

alert(“This alert triggered by FORM only on CAPTURE.”);
}
function formBubbleEvent(evt) {

alert(“This alert triggered by FORM only on BUBBLE.”);
}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”;
break;

case 2:
return “AT TARGET”;
break;

case 3:
return “BUBBLING”;
break;

default:
return “”;

}
}
</script>

</head>
<body onload=”init()”>

<h1>W3C DOM Event Propagation</h1>
<hr />
<form>

<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event is now at the button object level (‘ +
getPhase(event) + ‘).’)” />

</form>
</body>

</html>

If you want to remove event capture after it has been enabled, use the removeEventListener() method
on the same object as the event listener that was originally added (see Chapter 15). And, because multiple
event listeners can be attached to the same object, specify the exact same three parameters to the
removeEventListener() method as applied to the addEventListener() method.

749

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 749

Preventing W3C event bubbling or capture
Corresponding to the cancelBubble property of the IE4+ event object is an event object method in the
W3C DOM. The method that prevents propagation in any event phase is the stopPropagation()
method. Invoke this method anywhere within an event listener function. The current function executes to
completion, but the event propagates no further.

Listing 25-4 extends the example of Listing 25-3 to include two check boxes that let you stop propagation
type at the form element in your choice of the capture or bubble phase.

LISTING 25-4

Preventing Bubble and Capture

<html>
<head>

<title>W3C DOM Event Propagation</title>
<script type=”text/javascript”>
function init() {

// using old syntax to assign bubble-type event handlers
window.onclick = winEvent;
document.onclick = docEvent;
document.body.onclick = docBodEvent;
// turn on click event capture for two objects
document.addEventListener(“click”, docEvent, true);
document.forms[0].addEventListener(“click”, formCaptureEvent, true);
// set event listener for bubble
document.forms[0].addEventListener(“click”, formBubbleEvent, false);

}
function winEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the window object level (“ +

getPhase(evt) + “).”);
}

}
function docEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the **document** object level (“ +

getPhase(evt) + “).”);
}

}
function docBodEvent(evt) {

if (evt.target.type == “button”) {
alert(“Event is now at the BODY level (“ + getPhase(evt) + “).”);

}
}
function formCaptureEvent(evt) {

if (evt.target.type == “button”) {
alert(“This alert triggered by FORM only on CAPTURE.”);
if (document.forms[0].stopAllProp.checked) {

750

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 750

evt.stopPropagation();
}

}
}
function formBubbleEvent(evt) {

if (evt.target.type == “button”) {
alert(“This alert triggered by FORM only on BUBBLE.”);
if (document.forms[0].stopDuringBubble.checked) {

evt.preventBubble();
}

}
}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”;
break;

case 2:
return “AT TARGET”;
break;

case 3:
return “BUBBLING”;
break;

default:
return “”;

}
}
</script>

</head>
<body onload=”init()”>

<h1>W3C DOM Event Propagation</h1>
<hr />
<form>

<input type=”checkbox” name=”stopAllProp” />Stop all propagation at
FORM

<input type=”checkbox” name=”stopDuringBubble” />Prevent bubbling past
FORM
<hr />
<input type=”button” value=”Button ‘main1’” name=”main1”
onclick=”alert(‘Event is now at the button object level (‘ +
getPhase(event) + ‘).’)” />

</form>
</body>

</html>

In addition to the W3C DOM stopPropagation() method, NN6+, Moz, and Safari also support IE’s
cancelBubble property for syntactical convenience.

751

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 751

Preventing W3C event default action
The W3C DOM counterpart to IE’s returnValue property is the event object’s preventDefault()
method. Invoke this method in an event handler function when you wish to block the element’s default
action to the event:

evt.preventDefault();

Redirecting W3C DOM events
The mechanism for sending an event to an object outside the normal propagation pattern in W3C is similar
to that of IE4+, although with different syntax and an important requirement. In place of the IE4+
fireEvent() method, NN6+/Moz/Safari uses the W3C DOM dispatchEvent() method. The sole
parameter of the method is an event object, but it cannot be an event object that is already propagating
through the element hierarchy. Instead, you must create a new event object via a W3C DOM event object
constructor (described later in this chapter). Listing 25-5 is the same as the IE4+ Listing 25-2, but with just
a few modifications to run in the W3C event model. Notice that the dispatchEvent() method passes a
newly created event object as its sole parameter.

LISTING 25-5

Cancelling and Redirecting Events in the W3C DOM

<html onclick=”revealEvent(‘HTML’, event)”>
<head>

<title>Event Cancelling & Redirecting</title>
<script type=”text/javascript”>
// display alert with event object info
function revealEvent(elem, evt) {

var msg = “Event (from “ + evt.target.tagName + “ at “;
msg += evt.clientX + “,” + evt.clientY + “) is now at the “;
msg += elem + “ element.”;
alert(msg);

}
function init() {

document.onclick = docEvent;
document.body.onclick = docBodEvent;

}
function docEvent(evt) {

revealEvent(“document”, evt);
}
function docBodEvent(evt) {

revealEvent(“BODY”, evt);
}
function buttonEvent(form, evt) {

revealEvent(“BUTTON”, evt);
// redirect if checked
if (form.redirect.checked) {

var newEvt = document.createEvent(“MouseEvents”);
newEvt.initMouseEvent(“click”, true, true, window, 0, 0, 0, 0,

0, false, false, false, false, 0, null);

752

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 752

document.body.dispatchEvent(newEvt);
}
// cancel if checked
if (form.bubbleCancelState.checked) {

evt.stopPropagation();
}

}
</script>

</head>
<body onload=”init()”>

<h1>Event Cancelling & Redirecting</h1>
<hr />
<form onclick=”revealEvent(‘FORM’, event)”>

<p><button name=”main1” onclick=”buttonEvent(this.form, event)”>Button
‘main1’</button></p>

<p><input type=”checkbox” name=”bubbleCancelState”
onclick=”event.stopPropagation()” />Cancel Bubbling at BUTTON

<input type=”checkbox” name=”redirect”
onclick=”event.stopPropagation()” /> Redirect Event to BODY</p>

</form>
</body>

</html>

Referencing the event object
Just as there are two different event object models in today’s browsers, the way your scripts access those
objects is divided into two camps: the IE way and the W3C (NN4+/Moz/Safari) way. I start with the simpler,
IE way.

In IE4+, the event object is accessible as a property of the window object:

window.event

But, as you are well aware, the window part of references is optional, so your scripts can treat the event
object as if it were a global reference:

event.propertyName

Thus, any statement in an event handler function can access the event object without any special prepara-
tion or initializations.

The situation is a bit more complicated in the W3C event model. In some cases you must explicitly pass the
event object as a parameter to an event handler function, whereas in other cases, the event object is deliv-
ered as a parameter automatically. The difference depends on how the event handler function is bound to
the object.

753

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 753

Binding Events
Perhaps the most important facet of event handling in any script is binding an event to an element on the
page. There are several different ways that you can carry out this event binding, and as you might expect,
they aren’t all compatible across different browsers. Furthermore, some of the techniques are considered
passé in the sense that they have been improved upon by more modern approaches. Following are the four
main techniques that can be used to bind events to elements:

n Assignment through tag attributes

n Assignment through object properties

n Attachment in IE

n Event listeners in NN/Moz/W3C

The following sections explore these event binding options in more detail, with an emphasis on showing
you how to craft a modern, cross-browser event binding function based upon the last two techniques listed.

Binding events through tag attributes
Dating back to some of the earliest JavaScript-powered browsers, the original way of binding event handlers
to objects is through an attribute in the element’s tag. To bind an event in this manner, you simply assign
inline JavaScript code in the attribute of an element, as in the following:

<input type=”button” value=”Click Me” onclick=”handleClick();” />

The attribute name is the name of the event being handled, and its value is inline JavaScript code that is
executed upon the event firing. You can include multiple statements in the event attribute, as this code
reveals:

<input type=”button” value=”Click Me”
onclick=”doSomething(this); doSomethingElse(this.form);” />

For modern browsers that support the W3C event model (NN6+/Moz/Safari/Opera), if you intend to
inspect properties of the event within the event handler function, you must specify the event object as a
parameter by passing event as a parameter, as in:

<input type=”button” value=”Click Me” onclick=”handleClick(event);” />

This is the only time in the W3C model that you see an explicit reference to the event (lowercase e) object
as if it were a global reference. This reference does not work in any other context — only as a parameter to
an event handler function. If you have multiple parameters, the event reference can go in any order, but I
tend to put it last:

<input type=”button” value=”Click Me” onclick=”doSomething(this, event);” />

The function definition that is bound to the element should therefore have a parameter variable in place to
catch the event object parameter:

function doSomething(widget, evt) {...}

You have no restrictions on how you name this parameter variable. In some examples of this book, you may
see the variable assigned as event or, more commonly, evt. When working with cross-browser scripts,
avoid using event as a parameter variable name so as not to interfere with the Internet Explorer
window.event property.

754

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 754

The good news is that binding an event through an event tag attribute works well across all browsers. The
bad news is that it goes against the prevailing trend in web design, which is to separate HTML content from
the code that makes it interactive. In other words, there is a concerted effort among web developers to
clearly delineate JavaScript code from HTML code.

This concept is closely related to the notion of separating content from presentation, which is afforded by
style sheets. In this way, you could think of a web page as having three distinct components: HTML con-
tent, CSS, and JavaScript code. Keeping these three components as compartmentalized as possible results in
cleaner, more manageable code.

You see many examples of event tag attribute binding throughout this book while demonstrat-
ing various objects, properties, and methods. The usage is intentional because it is generally

easier to understand the concepts under discussion when the events are bound closely to the elements.

The trick to maintaining a clean separation between JavaScript event binding and HTML code is to bind the
events purely within script code as opposed to within attributes of HTML elements. The latter three event
binding approaches mentioned earlier all offer this separation.

Binding events through object properties
Dating back as far as NN3 and IE4, element objects have event properties that can be used to bind events
by assignment. For every event that an element is capable of receiving and responding to, there is a suitably
named property, in all lowercase. For example, the button element object has a property named onclick
that corresponds to the onclick event. You can bind an event handler to a button element by assigning a
function reference to the onclick property:

document.forms[0].myButton.onclick = handleClick;

Although event properties should be specified in all lowercase (onclick), some browsers also
recognize mixed case event names (onClick).

One catch to binding events as object properties is that at first glance it doesn’t appear to be possible to pass
your own parameters to the invoked handler functions. W3C browsers pass an event object as the only
parameter to event handler functions, but this doesn’t exactly leave room for you to include your own
parameters. Without any further trickery, this means that your functions should receive the passed event
object in a parameter variable:

function doSomething(evt) {...}

Recall that the event object contains a reference to the object that was the target of the event. From that,
you can access any properties of that object, such as the form object that contains a form control object.

It is in fact perfectly possible to pass along your own parameters; it just takes an intermediary anonymous
function to do the go-between work. For example, the following code demonstrates how to pass a single
custom parameter along with the standard event object:

document.forms[0].myButton.onclick =
function(evt) {doSomething(“Cornelius”, evt);};

In this example, a name string is passed along as the first parameter to the event handler, whereas the
event object (automatically passed to the anonymous function as its sole parameter, and assigned to the
parameter variable evt) is routed along as the second parameter. The actual handler code would look some-
thing like this:

function doSomething(firstName, evt) {...}

NOTENOTE

NOTENOTE

755

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 755

The evt parameter variable in the doSomething() event handler function acts as a reference to the event
object for statements within the function. If you need to invoke other functions from there, you can pass
the event object reference further along as needed. The event object retains its properties as long as the
chain of execution triggered by the event action continues.

Binding events through IE attachments
In IE5 Microsoft set out to establish a new means of binding events to elements through attachments, which
were originally intended for use with IE behaviors (see Chapter 48 on the CD-ROM). Eventually, the attach-
ment approach to event binding expanded beyond behaviors and became the de facto IE standard for event
binding. Seeing as how IE (as of version 7) still does not support the W3C approach to binding events,
which you see in the next section, you should consider attachments the preferred way of handling events in
IE for the foreseeable future.

IE event attachments are managed through the attachEvent() and detachEvent() methods, which are
supported by all element objects that are capable of receiving events. By using both of these methods, you
can bind and unbind events throughout the course of an application as needed.

The attachEvent() method takes the following form:

elementReference.attachEvent(“event”, functionReference);

To put this form in perspective, the following is an example of binding an event using the attachEvent()
method in IE:

document.getElementById(“myButton”).attachEvent(“onclick”, doSomething);

The first parameter to the attachEvent() is the string name of the event, including the “on” prefix, as in
“onclick”. The second parameter is a reference to the event handler function for the event.

One new power afforded by IE event attachment is the ability to attach the same event to the same element
multiple times (presumably pointing to different event handler functions). Just remember that if you choose
to bind multiple events of the same type to the same element, they will be processed in the reverse order
that they were assigned. This means the first event added is processed last.

Since the IE event model is predicated on the event object, which is a property of the window object, there
is no event object passed into the event handler function. To access event properties, you just access the
window’s event object using either window.event or just event. The latter approach works because the
window object is always assumed in client-side scripting. The upcoming section “event Object
Compatibility” shows how to reconcile the IE window.event property and the W3C event event handler
parameter.

The IE event binding approach also offers the ability to unbind an event, which means the targeted element
will no longer receive event notifications. You unbind an IE event by calling the detachEvent() method
on the element, like this:

document.getElementById(“myButton”).detachEvent(“onclick”, doSomething);

This example reveals how the detachEvent() method relies on the exact same syntax as attachEvent().

Binding events through W3C listeners
The W3C approach to binding events is logically similar to IE event attachment in that it revolves around
two methods: addEventListener() and removeEventListener(). These two methods give elements

756

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 756

the ability to listen for events and then respond accordingly. Also similarly to the IE attachEvent() and
detachEvent() methods, addEventListener() and removeEventListener() work as a pair for
adding and removing event listeners, respectively.

The addEventListener() method takes the following form:

elementReference.addEventListener(“eventType”, functionReference,
captureSwitch);

The following example should help to reveal the practical usage of the method:

document.getElementById(“myButton”).addEventListener(“click”, doSomething,
false);

Note how the event name is specified without the on prefix, which is different from the name used in IE
event attachments. The other notable difference in W3C event listeners as compared to IE event attach-
ments involves the third parameter to addEventListener(), captureSwitch, which determines whether
the element should listen for the event during the capture phase of event propagation. Later in the chapter
you learn about event propagation and how this parameter might be used to tweak the propagation of an
event. For now, just know that the parameter is typically set to false.

Similar to IE event attachments, you can add the same event listener to the same element multiple times.
Unlike the IE approach, however, is the fact that W3C events added in this manner are processed in the
same order that they were assigned. This means the first event added is processed first.

Another similarity the W3C event model has to IE event handling is the ability to unbind an event from an
element. The W3C version of event unbinding involves the removeEventListener() method, which is
demonstrated in this example:

document.getElementById(“myButton”).removeEventListener(“click”, doSomething,
false);

This example shows how the removeEventListener() method accepts the same parameters as
addEventListener().

A cross-browser event binding solution
Pulling together what you’ve learned about modern event handling, you know it must be possible to recon-
cile the IE and W3C approaches to event binding. In fact, it doesn’t take all that much extra code to bind
events in a manner that cleanly attempts to use the latest event binding techniques while still gracefully
falling back on an older technique (object properties) for legacy browsers.

Following is a cross-browser function you can use to add an event binding to an element:

function addEvent(elem, evtType, func) {
if (elem.addEventListener) {

elem.addEventListener(evtType, func, false);
} else if (elem.attachEvent) {

elem.attachEvent(“on” + evtType, func);
} else {

elem[“on” + evtType] = func;
}

}

757

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 757

Parameters for the function are a reference to the element, a string of the event type (that is, the version
without the on prefix), and a reference to the function to be invoked when the event fires on the element.
The addEvent() function first attempts to use the addEventListener() method on the supplied ele-
ment, which satisfies modern W3C browsers (NN6+/Mozilla/Safari/Opera). If that fails, attachEvent() is
tried, which accommodates modern IE browsers (IE5+). If that’s a bust, the function falls back on simply
assigning the event handler function to the event object property, which works on the vast majority of
browsers.

You could easily extend the addEvent() function to allow for the captureSwitch parame-
ter of the addEventListener() method by adding a fourth parameter and passing it to

addEventListener() instead of passing false.

Of course, the addEvent() function has to get called in order to bind events for a page. The onload event
provides a great opportunity for binding events but, as you know, it’s not a good idea to just call the
addEvent() function in the onload HTML attribute. That would go against everything you’ve just learned.
The trick is to first add an anonymous event handler for the onload event, and then carry out your other
event bindings within that function. Here’s an example of how you might do this:

addEvent(window, “load”, function() {
addEvent(document.getElementById(“myButton”), “click”, handleClick);
addEvent(document.body, “mouseup”,

function(evt) {handleClick(evt);});
});

In case you need to unbind an event, here is a suitable cross-browser function for unbinding events:

function removeEvent(elem, evtType, func) {
if (elem.removeEventListener) {

elem.removeEventListener(evtType, func, false);
} else if (elem.detachEvent) {

elem.detachEvent(“on” + evtType, func);
} else {

elem[“on” + evtType] = null;
}

}

event Object Compatibility
Despite the incompatible ways that W3C DOM and IE event objects arrive at an event handler function,
you can easily stuff the object into one variable that both browser types can use. For example, the following
function fragment receives a W3C DOM event object but also accommodates the IE event object:

function doSomething(evt) {
evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

// browser has an event to process
...

}
}

NOTENOTE

758

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 758

If an event object arrives as a parameter, it continues to be available as evt; but if not, the function makes
sure that a window.event object is available and assigns it to the evt variable; finally, if the browser doesn’t
know about an event object, the evt variable is made null. Processing continues only if evt contains an
event object.

That’s the easy part. The madness comes in the details: reading properties of the event object when the
property names can vary widely across the two event object models. Sections later in this chapter provide
details of each property and method of both event object models, but seeing an overview of the property
terminology on a comparative basis is helpful. Table 25-2 lists the common information bits and actions
you are likely to want from an event object and the property or method names used in the event object
models.

TABLE 25-2

Common event Object Properties and Methods

Property/Action IE4+ W3C DOM

Target element srcElement target

Event type type type

X coordinate in element offsetX n/a†

Y coordinate in element offsetY n/a†

X coordinate on page n/a† pageX††

Y coordinate on page n/a† pageY††

X coordinate in window clientX clientX

Y coordinate in window clientY clientY

X coordinate on screen screenX screenX

Y coordinate on screen screenY screenY

Mouse button button button

Keyboard key keyCode keyCode††

Shift key pressed shiftKey shiftKey

Alt key pressed altKey altKey

Ctrl key pressed ctrlKey ctrlKey

Previous Element fromElement relatedTarget

Next Element toElement relatedTarget

Cancel bubbling cancelBubble preventBubble()

Prevent default action returnValue preventDefault()

†Value can be derived through calculations with other properties.

††Not an official W3C DOM property, but is supported in Mozilla, Safari, and Opera.

759

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 759

As you can see in Table 25-2, properties for the IE4+ and W3C event objects have a lot in common. Perhaps
the most important incompatibility to overcome is referencing the element that is the intended target of the
event. This, too, can be branched in your code to achieve a common variable that references the element.
For example, embedded within the previous function fragment can be a statement, such as the following:

var elem = (evt.target) ? evt.target : ((evt.srcElement) ?
evt.srcElement : null);

Each event model has additional properties that are not shared by the other. Details about these are covered
in the rest of this chapter.

Dueling Event Models
Despite the sometimes widely divergent ways event object models treat their properties, accommodating a
wide range of browsers for event manipulation is not difficult. In this section, you see two scripts that
examine important event properties. The first script reveals which, if any, modifier keys are held down dur-
ing an event; the second script extracts the codes for both mouse buttons and keyboard keys. Both scripts
work with all modern browsers that have event objects.

Cross-platform modifier key check
Listing 25-6 demonstrates branching techniques for examining the modifier key(s) being held down while
an event fires. You can find details of the event object properties, such as modifiers and altKey, later in
this chapter. To see the page in action, click a link, type into a text box, and click a button while holding
down any combination of modifier keys. A series of four check boxes representing the four modifier keys is
at the bottom. As you click or type, the check box(es) of the pressed modifier key(s) become checked.

LISTING 25-6

Checking Events for Modifier Keys

<html>
<head>

<title>Event Modifiers</title>
<script type=”text/javascript”>
function checkMods(evt) {

evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement;
var form = document.output;
form.modifier[0].checked = evt.altKey;
form.modifier[1].checked = evt.ctrlKey;
form.modifier[2].checked = evt.shiftKey;
form.modifier[3].checked = false;

}
return false;

}

// bind the event handlers

760

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 760

function addEvent(elem, evtType, func) {
if (elem.addEventListener) {

elem.addEventListener(evtType, func, false);
} else if (elem.attachEvent) {

elem.attachEvent(“on” + evtType, func);
} else {

elem[“on” + evtType] = func;
}

}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“link”), “mousedown”,
function(evt) {return checkMods(evt);});

addEvent(document.getElementById(“text”), “keyup”,
function(evt) {checkMods(evt);});

addEvent(document.getElementById(“button”), “click”,
function(evt) {checkMods(evt);});

});
</script>

</head>
<body>

<h1>Event Modifiers</h1>
<hr />
<p>Hold one or more modifier keys and click on this link to see which
keys you are holding.</p>

<form name=”output”>
<p>Enter some text with uppercase and lowercase letters: <input

id=”text” type=”text” size=”40” /></p>
<p><input id=”button” type=”button” value=”Click Here With Modifier Keys”

/></p>
<p><input type=”checkbox” name=”modifier” />Alt <input type=”checkbox”

name=”modifier” />Control <input type=”checkbox”
name=”modifier” />Shift <input type=”checkbox”
name=”modifier” />Meta</p>

</form>
</body>

</html>

The script checks the event object property for each of three modifiers to determine which, if any, modifier
keys are being pressed.

Cross-platform key capture
To demonstrate keyboard events in both event capture models, Listing 25-7 captures the key character
being typed into a text box, as well as the mouse button used to click a button.

761

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 761

LISTING 25-7

Checking Events for Key and Mouse Button Pressed

<html>
<head>

<title>Button and Key Properties</title>
<script type=”text/javascript”>
function checkWhich(evt) {

evt = (evt) ? evt : ((event) ? event : null);
if (evt) {

var thingPressed = “”;
var elem = (evt.target) ? evt.target : evt.srcElement;
if (elem.type == “textarea”) {

thingPressed = (evt.charCode) ? evt.charCode : evt.keyCode;
} else if (elem.type == “button”) {

thingPressed = (typeof evt.button != “undefined”) ? evt.button :
“n/a”;

}
window.status = thingPressed;

}
return false;

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“button”), “mousedown”,
function(evt) {checkWhich(evt);});

addEvent(document.getElementById(“text”), “keypress”,
function(evt) {checkWhich(evt);});

});
</script>

</head>
<body>

<h1>Button and Key Properties</h1>
(results in the status bar)
<hr />
<form>

<p>Mouse down atop this <input id=”button” type=”button” value=”Button”
/> with either mouse button (if you have more than one).</p>

<p>Enter some text with uppercase and lowercase letters: <textarea
id=”text” cols=”40” rows=”4” wrap=”virtual”></textarea>

762

Document Objects ReferencePart III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 762

</p>
</form>

</body>
</html>

The codes displayed for the keyboard event are equivalent to the ASCII values of character keys. If you need
the codes of other keys, the onkeydown and onkeyup event handlers provide Unicode values for any key
that you press on the keyboard. See the charCode and keyCode property listings for event objects later in
this chapter for more details.

Event Types
Although browsers prior to version 4 did not have an accessible event object, this is a good time to summa-
rize the evolution of what in today’s browsers is known as the type property. The type property reveals the
kind of event that generates an event object (the event handler name minus the “on”). Object models in
IE4+ and NN6+/W3C provide event handlers for virtually every HTML element, so that it’s possible, for
example, to define an onclick event handler for not only a clickable button but also a p or even an arbi-
trary span element.

763

Event Objects 25

Older Browsers

Earlier browsers tended to limit the number of event handlers for any particular element to just those that
made sense for the kind of element it was. Even so, many scripters wanted more event handlers on more

objects. But until that became a reality in IE4+ and NN6+/W3C, authors had to know the limits of the object
models. Table 25-3 shows the event handlers available for objects within three generations of early browsers.
Each column represents the version in which the event type was introduced. For example, the window object
started out with four event types and gained three more when NN4 was released. In contrast, the area object
was exposed as an object for the first time in NN3, which is where the first event types for that object are
listed.

With the exception of the NN4 layer object, all objects shown in Table 25-3 have survived into the newer
browsers, so that you can use these event handlers with confidence. Again, keep in mind that of the browsers
listed in Table 25-3, only NN4 has an event object of any kind exposed to scripts.

TABLE 25-3

Event Types through the Early Ages

Object NN2/IE3 NN3 NN4

window blur dragdrop

focus move

load resize

continued

33_069165 ch25.qxp 3/1/07 3:52 PM Page 763

764

Document Objects ReferencePart III

continued

TABLE 25-3 (continued)

Object NN2/IE3 NN3 NN4

unload

layer blur

focus

load

mouseout

mouseover

mouseup

link click mouseout dblclick

mouseover mousedown

onmouseup

area mouseout click

mouseover

image abort

error

load

Form submit reset

text, textarea, password

blur keydown

change keypress

focus keyup

select

all buttons click mousedown

mouseup

select blur

change

focus

fileUpload blur

focus

select

33_069165 ch25.qxp 3/1/07 3:52 PM Page 764

Event types in IE4+ and NN6+/W3C
By now you should have at least scanned the list of event handlers defined for elements in common, as
shown in Chapter 15. This list of event types is enormous. A sizable number of the event types are unique
to IE4, IE5, and IE5.5+, and in some cases, just the Windows version at that.

If you compose pages for both IE4+ and NN6+/W3C, however, you need to know which event types these
browser families and generations have in common. Event types for NN6+/Moz/Safari are based primarily on
the W3C DOM Level 2 specification, although they also include keyboard events, whose formal standards
are still under development for DOM Level 3. Table 25-4 lists a common denominator of event types for
modern browsers and the objects that support them. Although not as long as the IE event list, the event
types in Table 25-4 are the basic set you should get to know for all browsers.

TABLE 25-4

IE4+ and W3C DOM Event Types in Common

Event type Applicable Elements

abort object

blur window, button, text, password, label, select, textarea

change text, password, textarea, select

click All elements

error window, frameset, object

focus window, button, text, password, label, select, textarea

keydown text, password, textarea

keypress text, password, textarea

keyup text, password, textarea

load window, frameset, object

mousedown All elements

mousemove All elements

mouseout All elements

mouseover All elements

mouseup All elements

reset form

resize window

scroll window

select text, password, textarea

submit form

unload window, frameset

765

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 765

IE4+ event Object

Properties Methods Event Handlers

altKey

altLeft

behaviorCookie

behaviorPart

bookmarks

boundElements

button

cancelBubble

clientX

clientY

contentOverflow

ctrlKey

ctrlLeft

dataFld

dataTransfer

fromElement

keyCode

nextPage

offsetX

offsetY

propertyName

qualifier

reason

recordset

repeat

returnValue

saveType

screenX

screenY

shiftKey

shiftLeft

srcElement

srcFilter

766

Document Objects Reference

(IE) event

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 766

Properties Methods Event Handlers

srcUrn

toElement

type

wheelData

x

y

Syntax
Accessing IE4+ event object properties:

[window.]event.property

Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

About this object
The IE4+ event object is a property of the window object. Its basic operation is covered earlier in this
chapter.

You can see a little of what the event object is about with the help of The Evaluator (see Chapter 13). If
you type event into the bottom text box, you can examine the properties of the event object for the event
that triggers the function that displays the event object properties. If you press the Enter key in the text
box, you see properties of the keypress event that caused the internal script to run; click the List
Properties button to see the properties of the click event fired at the button. Hold down some of the modi-
fier keys while clicking to see how this affects some of the properties.

As you review the properties for the event object, make special note of the compatibility rating for each
property. The list of properties for this object has grown over the evolution of the IE4+ event object model.
Also, most properties are listed here as being read-only, which they were in IE4. But for IE5+, these
properties are also Read/Write if the event is created artificially via methods, such as IE5.5+’s document
.createEventObject() method. Event objects that are created by user or system action have very few
properties that can be modified on the fly (to prevent your scripts from altering user actions). Notice, too,
that some properties are the same as for the W3C DOM event object, as revealed in the compatibility ratings.

Properties
altKey
ctrlKey
shiftKey
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

767

(IE) event.altKey

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 767

When an event object is created in response to a user or system action, these three properties are set based
on whether their corresponding keys were being held down at the time — a Shift-click, for example. If the
key was held down, the property is assigned a value of true; otherwise the value is false.

Most commonly, you use expressions consisting of this property as if construction condition statements.
Because these are Boolean values, you can combine multiple properties in a single condition. For example,
if you have a branch of a function that is to execute only if the event occurred with both the Shift and
Control keys held down, the condition looks as the following:

if (event.shiftKey && event.ctrlKey) {
// statements to execute

}

Conversely, you can take a more user-friendly approach to provide special processing if the user holds down
any one of the three modifier keys:

if (event.shiftKey || event.ctrlKey || event.altKey) {
// statements to execute

}

The rationale behind this approach is to offer perhaps some shortcut operation for users, but not force them
to memorize a specific modifier key combination.

Example
See Listing 25-6, where the values of these three properties are used to set the checked properties of corre-
sponding check boxes for a variety of event types.

Related Items: altLeft, ctrlLeft, shiftLeft properties.

altLeft
ctrlLeft
shiftLeft
Value: Boolean. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

Some versions of Windows allow events to be modified by only the left-hand Alt, Ctrl, and Shift keys when
using IE5.5+. For these modifiers to be recorded by the event object, focus must be on the document
(body), and not in any form control. If the left-key version is false and the regular version is true, then
your script knows that the right-hand key had been held down during the event.

Related Items: altKey, ctrlKey, shiftKey properties.

behaviorCookie
behaviorPart
Value: Integer. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

These two properties are related to a Windows technology that Microsoft calls rendering behaviors. Unlike
the behaviors discussed under the addBehavior() method in Chapter 15, rendering behaviors are written
in C++ and provide services for custom drawing on your web page. For more details, consult the document
“Implementing Rendering Behaviors” at http://msdn.microsoft.com/workshop/browser/editing/
imprendbehav.asp.

768

Document Objects Reference

(IE) event.behaviorCookie

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 768

bookmarks
boundElements
dataFld
qualifier
reason
recordset
Value: See text. Read-Only
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari-

This group of event object properties is tied to using Data Binding in Windows versions of IE4+. Extensive
details of Data Binding lie outside the scope of this book, but Table 25-5 provides a summary of these event
object properties within that context (much of the terminology is used in Data Binding, but doesn’t affect other
scripting). For more details, search for ActiveX Data Objects (ADO) at http://msdn.microsoft.com/
workshop/.

Although still supported in IE, Microsoft’s original ADO technology has given way to
ADO.NET, which is designed for tighter integration with Microsoft’s .NET architecture. To

learn more about the differences between the two technologies, visit http://msdn.microsoft.com/
library/en-us/dndotnet/html/adonetprogmsdn.asp.

TABLE 25-5

ADO-Related event Object Properties

Property Value First Implemented Description

bookmarks Array IE4 Array of ADO bookmarks (saved positions) for
records within a recordset associated with the
object that received the event.

boundElements Array IE5 Array of element references for all elements bound
to the same data set that was touched by the
current event.

dataFld String IE5 Name of the data source column that is bound to a
table cell that receives a cellchange event.

qualifier String IE5 Name of the data member associated with a data
source that receives a data-related event. Available
only if the data source object (DSO) allows
multiple-named data members or a qualifier has
been explicitly set via the datasrc attribute of the
bound element. Read-write in IE5+.

reason Integer IE4 Set only from onDataSetComplete event,
provides the result code of the data set loading
(0=successful; 1=transfer aborted; 2=other error).

recordset Object IE4 Reference to the current recordset in a data source
object.

NOTENOTE

769

(IE) event.bookmarks

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 769

button
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The button property reveals which button or buttons were pressed to activate a mouse event. If no mouse
button is pressed to generate an event, this property is zero in IE. But integers 1 through 7 reveal single and
multiple button presses, including three-button mice when they are recognized by the operating system.
Integer values in IE correspond to buttons according to the following scheme:

Value Description

0 No button

1 Left (primary) button

2 Right button

3 Left and right buttons together

4 Middle button

5 Left and middle buttons together

6 Right and middle buttons together

7 Left, middle, and right buttons together

Mouse buttons other than the primary one are easier to look for in mousedown or mouseup events rather
than onclick events. Be aware that as the user works toward pressing multiple buttons, each press fires a
mousedown event. Therefore, if the user presses the left button first, the mousedown event fires, with the
event.button property bearing the 1 value; as soon as the right button is pressed, the mousedown event
fires again, but this time with an event.button value of 3. If your script intends to perform special action
with both buttons pressed, it should ignore and not perform any action for a single mouse button, because
that one-button event will very likely fire in the process, disturbing the intended action.

Exercise caution when scripting the event.button property for both IE4+ and NN6+/Moz/W3C. The
W3C DOM event model defines different button values for mouse buttons (0, 1, and 2 for left, middle, and
right) and no values for multiple buttons.

Example
See Listing 25-7, where the event.button property is revealed in the status bar. Try pressing individual
mouse buttons on, for example, the screen button. Then try combinations, watching the results very closely
in the status bar.

Related Items: None.

cancelBubble
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The cancelBubble property (which sounds more as if it should be a method name) determines whether
the current event object bubbles up any higher in the element containment hierarchy of the document. By
default, this property is false, meaning that if the event is supposed to bubble, it will do so automatically.

770

Document Objects Reference

(IE) event.cancelBubble

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 770

To prevent event bubbling for the current event, set the property to true anywhere within the event han-
dler function. As an alternative, you can cancel bubbling directly in an element’s event handler attribute, as
in the following:

onclick=”doButtonClick(this); event.cancelBubble = true”

Cancelling event bubbling works only for the current event. The very next event to fire will have bubbling
enabled (provided the event bubbles).

Example
See Listing 25-2 to see the cancelBubble property in action. Even though that listing has some features
that apply to IE5.5+, the bubble cancelling demonstration works all the way back to IE4.

Related Items: returnValue property.

clientX
clientY
offsetX
offsetY
screenX
screenY
x
y
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

An IE event object provides coordinates for an event in as many as four coordinate spaces: the element
itself, the parent element of the event’s target, the viewable area of the browser window, and the entire video
screen. Unfortunately, misleading values can be returned by some of the properties that correspond to these
coordinate spaces, as discussed in this section. Note that no properties provide the explicit position of an
event relative to the entire page, in case the user has scrolled the window.

Starting with the innermost space — that of the element that is the target of the event — the offsetX and
offsetY properties should provide pixel coordinates within the target element. This is how, for example,
you could determine the click point on an image, regardless of whether the image is embedded in the body
or floating around in a positioned div. Windows versions through IE7 produce the correct values in most
cases. But for some elements that are child elements of the body element, the vertical (y) value may be rela-
tive to the viewable window, rather than just the element itself. You can see an example of this when you
work with Listing 25-8 and click the h1 or p elements near the top of the page. This problem does not
affect MacIE, but there is another problem on Mac versions: If the page is scrolled away from its normal
original position, the scrolled values are subtracted from the clientX and clientY values. This is an
incompatibility bug, and you must take this error into account if you need click coordinates inside an ele-
ment for a potentially scrolled page. This error correction must be done only for the Mac, because Windows
works okay.

Extending scope to the offset parent element of the event’s target, the x and y properties in IE5+ for
Windows should return the coordinates for the event relative to the target’s offset parent element (the ele-
ment that can be found via the offsetParent property). For most non-positioned elements, these values
are the same as the clientX and clientY properties because, as discussed in a moment, the offset parent

771

(IE) event.clientX

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 771

element has a zero offset with its parent, the body. Observe an important caution about the x and y proper-
ties: In WinIE4 and through MacIE5, the properties do not take into account any offset parent locations
other than the body. Even in WinIE5+, this property can give false readings in some circumstances. By and
large, these two properties should not be used.

The next set of coordinates, clientX and clientY, are relative to the visible document area of the browser
window. When the document is scrolled all the way to the top (or the document doesn’t scroll at all), these
coordinates are the same as the coordinates on the entire page. But because the page can scroll “underneath”
the viewable window, the coordinates on the page can change if the page scrolls. Also, in the Windows ver-
sions of IE, you can actually register mouse events that are up to 2 pixels outside of the body element,
which seems weird, but true. Therefore, in WinIE, if you click the background of the body, the event fires
on the body element, but the clientX/clientY values will be 2 pixels greater than offsetX/offsetY
(they’re equal in MacIE). Despite this slight discrepancy, you should rely on the clientX and clientY
properties if you are trying to get the coordinates of an event that may be in a positioned element, but have
those coordinates relative to the entire viewable window, rather than just the positioning context.

Taking the page’s scrolling into account for an event coordinate is often important. After all, unless you gen-
erate a fixed-size window for a user, you don’t know how the browser window will be oriented. If you’re
looking for a click within a specific region of the page, you must take page scrolling into account. The
scrolling factor can be retrieved from the document.body.scrollLeft and document.body.scrollTop
properties. When reading the clientX and clientY properties, be sure to add the corresponding scroll
properties to get the position on the page:

var coordX = event.clientX + document.body.scrollLeft;
var coordY = event.clientY + document.body.scrollTop;

Do this in your production work without fail.

Finally, the screenX and screenY properties return the pixel coordinates of the event on the entire video
screen. These properties may be more useful if IE provided more window dimension properties. In any
case, because mouse events fire only when the cursor is somewhere in the content region of the browser
window, don’t expect to get screen values of anywhere outside this region.

If these descriptions seem confusing to you, you are not alone. Throw in a few bugs, and it may seem like
quite a mess. But think how you may use event coordinates in scripts. By and large, you want to know one
of two types of mouse event coordinates: within the element itself and within the page. Use the offsetX/
offsetY properties for the former; use clientX/clientY (plus the scroll property values) for the latter.

Although the coordinate properties are used primarily for mouse events, there is a little quirk that may let
you determine if the user has resized the window via the maximize icon in the title bar (on the Mac, this is
called the zoom box) or the resize handle at the bottom-right corner of the screen. Mouse event coordinates
are recorded in the event object for a resize event. In the case of the maximize icon, the clientY coordi-
nate is a negative value (above the client space) and the clientX coordinate is within about 45 pixels of the
previous width of the window (document.body.clientWidth). This, of course, happens after the win-
dow has resized, so it is not a way to prevent window resizing.

Example
Listing 25-8 provides readings of all event coordinate properties in an interactive way. An onmousedown
event handler triggers all event handling, and you can click the mouse anywhere on the page to see what
happens. You see the tag of the element targeted by the mouse event to help you visualize how some of the
coordinate properties are determined. An image is encased inside a positioned div element to help you see
what happens to some of the properties when the event is targeted inside a positioned element.

772

Document Objects Reference

(IE) event.clientX

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 772

LISTING 25-8

IE4+ Event Coordinate Properties

<html>
<head>

<title>X and Y Event Properties (IE4+ Syntax)</title>
<script type=”text/javascript”>
function checkCoords(evt) {

evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement;
var form = document.forms[0];
form.srcElemTag.value = “<” + elem.tagName + “>”;
form.clientCoords.value = evt.clientX + “,” + evt.clientY;
if (typeof document.body.scrollLeft != “undefined”) {

form.pageCoords.value = (evt.clientX + document.body.scrollLeft) +
“,” + (evt.clientY + document.body.scrollTop);

}
form.offsetCoords.value = evt.offsetX + “,” + evt.offsetY;
form.screenCoords.value = evt.screenX + “,” + evt.screenY;
form.xyCoords.value = evt.x + “,” + evt.y;
if (elem.offsetParent) {

form.parElem.value = “<” + elem.offsetParent.tagName + “>”;
}
return false;

}
}
function handleSize(evt) {

evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {

document.forms[0].resizeCoords.value = evt.clientX + “,” + evt.clientY;
}

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.body, “mousedown”,
function(evt) {checkCoords(evt);});

addEvent(document.body, “resize”,
function(evt) {handleSize(evt);});

});

continued

773

(IE) event.clientX

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 773

LISTING 25-8 (continued)

</script>
</head>
<body>

<h1>X and Y Event Properties (IE4+ Syntax)</h1>
<hr />
<p>Click on any element to see the coordinate values

for the event object.</p>
<form name=”output”>

<table>
<tr>

<td colspan=”2”>IE Mouse Event Coordinates:</td>
</tr>
<tr>

<td align=”right”>srcElement:</td>
<td><input type=”text” name=”srcElemTag” size=”10” /></td>

</tr>
<tr>

<td align=”right”>clientX, clientY:</td>
<td><input type=”text” name=”clientCoords” size=”10” /></td>
<td align=”right”>...With scrolling:</td>
<td><input type=”text” name=”pageCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>offsetX, offsetY:</td>
<td><input type=”text” name=”offsetCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>screenX, screenY:</td>
<td><input type=”text” name=”screenCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>x, y:</td>
<td><input type=”text” name=”xyCoords” size=”10” /></td>
<td align=”right”>...Relative to:</td>
<td><input type=”text” name=”parElem” size=”10” /></td>

</tr>
<tr>

<td align=”right”><input type=”button” value=”Click Here” /></td>
</tr>
<tr>

<td colspan=”2”><hr /></td>
</tr>
<tr>

<td colspan=”2”>Window Resize Coordinates:</td>
</tr>
<tr>

<td align=”right”>clientX, clientY:</td>
<td><input type=”text” name=”resizeCoords” size=”10” /></td>

</tr>

774

Document Objects Reference

(IE) event.clientX

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 774

</table>
</form>
<div id=”display” style=”position:relative; left:100”>

</div>

</body>
</html>

Here are some tasks to try in IE with the page that loads from Listing 25-8 to help you understand the rela-
tionships among the various pairs of coordinate properties:

1. Click the dot above the “i” on the “Click Here” button label. The target element is the button
(input) element, whose offsetParent is a table cell element. The offsetY value is very low
because you are near the top of the element’s own coordinate space. The client coordinates (and x
and y), however, are relative to the viewable area in the window. If your browser window is maxi-
mized in Windows, the screenX and clientX values will be the same; the difference between
screenY and clientY is the height of all the window chrome above the content region. With the
window not scrolled at all, the client coordinates are the same with and without scrolling taken
into account.

2. Jot down the various coordinate values and then scroll the page down slightly (clicking the scroll-
bar fires an event) and click the dot on the button again. The clientY value shrinks because the
page has moved upward relative to the viewable area, making the measure between the top of the
area smaller with respect to the button. The Windows version does the right thing with the offset
properties, by continuing to return values relative to the element’s own coordinate space; the Mac,
unfortunately, subtracts the scrolled amount from the offset properties.

3. Click the large image. The client properties perform as expected for both Windows and Mac, as
do the screen properties. For Windows, the x and y properties correctly return the event coordi-
nates relative to the img element’s offsetParent, which is the div element that surrounds it.
Note, however, that the browser “sees” the div as starting 10 pixels to the left of the image. In
WinIE5.5+, you can click within those 10 transparent pixels to the left of the image to click the
div element. This padding is inserted automatically and impacts the coordinates of the x and y
properties. A more reliable measure of the event inside the image is the offset properties. The
same is true in the Macintosh version, as long as the page isn’t scrolled, in which case the scroll,
just as in Step 2, affects the values above.

4. Click the top hr element under the heading. It may take a couple of tries to actually hit the ele-
ment (you’ve made it when the hr element shows up in the srcElement box). This is to rein-
force the way the client properties provide coordinates within the element itself (again, except on
the Mac when the page is scrolled). Clicking at the very left end of the rule, you eventually find
the 0,0 coordinate.

Finally, if you are a Windows user, here are two examples to try to see some of the unexpected behavior of
coordinate properties.

1. With the page not scrolled, click anywhere along the right side of the page, away from any text so
that the body element is srcElement. Because the body element theoretically fills the entire con-
tent region of the browser window, all coordinate pairs except for the screen coordinates should
be the same. But offset properties are 2 pixels less than all the others. By and large, this difference
won’t matter in your scripts, but you should be aware of this potential discrepancy if precise

775

(IE) event.clientX

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 775

positioning is important. For inexplicable reasons, the offset properties are measured in a space
that is inset 2 pixels from the left and top of the window. This is not the case in the Macintosh
version, where all value pairs are the same from the body perspective.

2. Click the text of the h1 or p elements (just above and below the long horizontal rule at the top of
the page). In theory, the offset properties should be relative to the rectangles occupied by these
elements (they’re block elements, after all). But instead, they’re measured in the same space as the
client properties (plus the 2 pixels). This unexpected behavior doesn’t have anything to do with
the cursor being a text cursor, because if you click inside any of the text box elements, their offset
properties are properly relative to their own rectangles. This problem does not afflict the
Macintosh version.

Many of these properties are also in the W3C DOM and are therefore supported in W3C DOM browsers.
Unsupported properties display their values as undefined when you run Listing 25-8 in those browsers.

You can see further examples of important event coordinate properties in action in the discussion of drag-
ging elements around the IE page in Chapter 40 on the CD-ROM.

Related Items: fromElement, toElement properties.

dataTransfer
Value: Object. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari2+

The dataTransfer property is a reference to the dataTransfer object. Use this object in drag-and-drop
operations (that is, with drag-and-drop-related events) to control not only the data that gets transferred
from the source to the target but also to control the look of the cursor along the way.

Table 25-6 lists the properties and methods of the dataTransfer object.

TABLE 25-6

dataTransfer object Properties and Methods

Property/Method Returns Description

dropEffect String An element that is a potential recipient of a drop action can use the
ondragenter, ondragover, or ondrop event handler to set the
cursor style to be displayed when the cursor is atop the element.
Before this can work, the source element’s ondragstart event
handler must assign a value to the event.effectAllowed
property. Possible string values for both properties are copy, link,
move, or none. These properties correspond to the Windows system
cursors for the operations users typically do with files and in other
documents. You must also cancel the default action (meaning set
event.returnValue to false) for all of these drop element event
handlers: ondragenter, ondragover, and ondrop.

776

Document Objects Reference

(IE) event.dataTransfer

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 776

Property/Method Returns Description

effectAllowed String Set in response to an ondragstart event of the source element,
this property determines which kind of drag-and-drop action will be
taking place. Possible string values are copy, link, move, or none.
This property value must match the dropEffect property value for
the target element’s event object. Also, cancel the default action
(meaning, set event.returnValue to false) in the
ondragstart event handler.

clearData([format]) Nothing Removes data in the clipboard. If no format parameters are supplied,
all data are cleared. Data formats can be one or more of the
following strings: Text, URL, File, HTML, Image.

getData(format) String Retrieves data of the specified format from the clipboard. The format
is one of the following strings: Text, URL, File, HTML, Image. The
clipboard is not emptied after you get the data, so that it can be
retrieved in several sequential operations.

setData(format, data) Boolean Stores string data in the clipboard. The format is one of the following
strings: Text, URL, File, HTML, Image. For non-text data formats,
the data must be a string that specifies the path or URL to the
content. Returns true if the transfer to the clipboard is successful.

The dataTransfer object acts as a conduit and controller of data that your scripts need to transfer from
one element to another in response to a user’s drag-and-drop action. You need to adhere to a well-defined
sequence of actions triggered by a handful of event handlers. This means that the object is invoked on dif-
ferent instances of the event object as different events fire in the process of dragging and dropping.

The sequence begins at the source element, where an ondragstart event handler typically assigns a value
to the dropEffect property and uses the getData() method to explicitly capture whatever data it is about
the source object that gets transferred to the eventual target. For example, if you drag an image, the infor-
mation being transferred may simply be the URL of the image — data that is extractable from the
event.srcElement.src property of that event (the src property of the image, that is).

At the target element(s), three event handlers must be defined: ondragenter, ondragover, and ondrop.
Most commonly, the first two event handlers do nothing more than mark the element for a particular
dropEffect (which must match the effectAllowed set at the source during the drag’s start) and set
event.returnValue to false so that the cursor displays the desired cursor. These actions are also carried
out in the ondrop event handler, but that is also the handler that does the processing of the destination
action at the target element. This is when the dataTransfer object’s getData() method is invoked to
pick up the data that has been “stored” away by getData() at the start of the drag. If you also want to
make sure that the data is not picked up accidentally by another event, invoke the clearData() method to
remove that data from memory.

Note that the style of dragging being discussed here is not the kind in which you see the source element
actually moving on the screen (although you could script it that way). The intention is to treat drag-and-
drop operations just as Windows does in, say, the Windows Explorer window or on the Desktop. To the
user, the draggable component becomes encapsulated in the cursor. That’s why the properties of the
dataTransfer object control the appearance of the cursor at the drop point as a way of conveying to the
user the type of action that will occur with the impending drop. Apple implements the same behavior in
Safari 2.

777

(IE) event.dataTransfer

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 777

Example
An extensive example of the dataTransfer property in action can be found in Listing 15-37 in the section
for the ondrag event handler.

Related Items: ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop event
handlers.

fromElement
toElement
Value: Element object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The fromElement and toElement properties allow an element to uncover where the cursor rolled in from
or has rolled out to. These properties extend the power of the onmouseover and onmouseout event han-
dlers by expanding their scope to outside the current element (usually to an adjacent element).

When the onmouseover event fires on an element, the cursor had to be over some other element just
beforehand. The fromElement property holds a reference to that element. Conversely, when the onmouse
out event fires, the cursor is already over some other element. The toElement property holds a reference
to that element.

Example
Listing 25-9 provides an example of how the fromElement and toElement properties can reveal the life of
the cursor action before and after it rolls into an element. When you roll the cursor to the center box (a
table cell), its onmouseover event handler displays the text from the table cell from which the cursor
arrived.

LISTING 25-9

Using the toElement and fromElement Properties

<html>
<head>

<title>fromElement and toElement Properties</title>
<style type=”text/css”>
.direction {background-color:#00FFFF; width:100; height:50;
text-align:center}
#main {background-color:#FF6666; text-align:center}
</style>
<script type=”text/javascript”>
function showArrival() {

var direction = (event.fromElement.innerText) ?
event.fromElement.innerText : “parts unknown”;

status = “Arrived from: “ + direction;
}
function showDeparture() {

var direction = (event.toElement.innerText) ?
event.toElement.innerText : “parts unknown”;

status = “Departed to: “ + direction;
}

778

Document Objects Reference

(IE) event.fromElement

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 778

</script>
</head>
<body>

<h1>fromElement and toElement Properties</h1>
<hr />
<p>Roll the mouse to the center box and look for arrival information in

the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</p>

<table cellspacing=”0” cellpadding=”5”>
<tr>

<td></td>
<td class=”direction”>North</td>
<td></td></tr>

<tr>
<td class=”direction”>West</td>
<td id=”main” onmouseover=”showArrival()”
onmouseout=”showDeparture()”>Roll</td>
<td class=”direction”>East</td>

</tr>
<tr>

<td></td>
<td class=”direction”>South</td>
<td></td>

</tr>
</table>

</body>
</html>

This is a good example to experiment with in the browser, because it also reveals a potential limitation. The
element registered as the toElement or fromElement must fire a mouse event to register itself with the
browser. If not, the next element in the sequence that registers itself is the one acknowledged by these prop-
erties. For example, if you roll the mouse into the center box and then extremely quickly roll the cursor to
the bottom of the page, you may bypass the South box entirely. The text that appears in the status bar is
actually the inner text of the body element, which is the element that caught the first mouse event to regis-
ter itself as the toElement for the center table cell.

Related Items: srcElement property.

keyCode
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

For keyboard events, the keyCode property returns an integer corresponding to the Unicode value of the
character (for onkeypress events) or the keyboard character key (for onkeydown and onkeyup events).
There is a significant distinction between these numbering code systems.

If you want the Unicode values (the same as ASCII values for the Latin character set) for the key that a user
pressed, get the keyCode property from the onkeypress event handler. For example, a lowercase “a”
returns 97, while an uppercase “A” returns 65. Non-character keys, such as arrows, page navigation, and
function keys, return a null value for the keyCode property during onkeypress events. In other words,
the keyCode property for onkeypress events is more like a character code than a key code.

779

(IE) event.keyCode

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 779

To capture the exact keyboard key that the user presses, use either the onkeydown or onkeyup event han-
dler. For these events, the event object captures a numeric code associated with a particular key on the
keyboard. For the character keys, this varies with the language assigned as the system language.
Importantly, there is no distinction between uppercase or lowercase: The “A” key on the Latin keyboard
returns a value of 65, regardless of the state of the Shift key. At the same time, however, the press of the
Shift key fired its own onkeydown and onkeyup events, setting the keyCode value to 16. Other non-
character keys — arrows, page navigation, function, and similar — have their own codes as well. This gets
very detailed, including special key codes for the numeric keyboard keys that are different from their corre-
sponding numbers along the top row of the alphanumeric keyboard.

Be sure to see the extensive section on keyboard events in Chapter 15 for examples of how to apply the
keyCode property in applications.

Example
Listing 25-10 provides an additional play area to view the keyCode property for all three keyboard events
while you type into a textarea. You can use this page later as an authoring tool to grab the precise codes
for keyboard keys you may not be familiar with.

LISTING 25-10

Displaying keyCode Property Values

<html>
<head>

<title>keyCode Property</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function showCode(which, evt) {

evt = (evt) ? evt : ((event) ? event : null);
if (evt) {

document.forms[0].elements[which].value = evt.keyCode;
}

}

function clearEm() {
for (var i = 1; i < document.forms[0].elements.length; i++) {

document.forms[0].elements[i].value = “”;
}

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

780

Document Objects Reference

(IE) event.keyCode

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 780

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“scratchpad”), “keydown”,
function(evt) {clearEm(); showCode(“down”, evt);});

addEvent(document.getElementById(“scratchpad”), “keypress”,
function(evt) {showCode(“press”, evt);});

addEvent(document.getElementById(“scratchpad”), “keyup”,
function(evt) {showCode(“up”, evt);});

});
</script>

</head>
<body>

<h1>keyCode Property</h1>
<hr />
<form>

<p><textarea id=”scratchpad” name=”scratchpad” cols=”40” rows=”5”
wrap=”hard”></textarea></p>
<table cellpadding=”5”>

<tr>
<th>Event</th>
<th>event.keyCode</th>

</tr>
<tr>

<td>onKeyDown:</td>
<td><input type=”text” name=”down” size=”3” /></td>

</tr>
<tr>

<td>onKeyPress:</td>
<td><input type=”text” name=”press” size=”3” /></td>

</tr>
<tr>

<td>onKeyUp:</td>
<td><input type=”text” name=”up” size=”3” /></td>

</tr>
</table>

</form>
</body>

</html>

The following are some specific tasks to try with the page to examine key codes (if you are not using a
browser set for English and a Latin-based keyboard, your results may vary):

1. Enter a lowercase “a”. Notice how the onkeypress event handler shows the code to be 97, which
is the Unicode (and ASCII) value for the first of the lowercase letters of the Latin alphabet. But the
other two events record just the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the Shift key, itself, gen-
erates the code 16 for the onkeydown and onkeyup events. But the character key then shows the
value 65 for all three events, because the ASCII value of the uppercase letter happens to match the
keyboard key code for that letter.

781

(IE) event.keyCode

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 781

3. Press and release the Down Arrow key (be sure the cursor still flashes in the textarea, because
that’s where the keyboard events are being monitored). As a non-character key, it does not fire an
onkeypress event. But it does fire the other events, and assigns 40 as the code for this key.

4. Poke around with other non-character keys. Some may produce dialog boxes or menus, but their
key codes are recorded nonetheless. Note that not all keys on a Macintosh keyboard register with
MacIE.

Notice also that the keyCode property doesn’t work properly for the onkeypress event in Mozilla-based
browsers. This is because Mozilla uses the charCode property for the onkeypress event instead of
keyCode. You could make the code in the listing work for all modern browsers with the following modifi-
cation in the showCode() function:

if (evt) {
var charCode = (evt.charCode) ? evt.charCode : evt.keyCode;
document.forms[0].elements[which].value = charCode;

}

Related Items: onkeydown, onkeypress, onkeyup event handlers.

nextPage
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The nextPage property is applicable only if your WinIE5.5+ page uses a TemplatePrinter behavior. Values
of this property are one of the following strings: left, right, or an empty string. For more information
about the TemplatePrinter behavior for WinIE5.5+, see the following:

http://msdn.microsoft.com/workshop/browser/hosting/printpreview/reference/behavior
s/TemplatePrinter.asp

propertyName
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The propertyName property is filled only after an onpropertychange event fires.

If a script modifies a property, the onpropertychange event handler fires, and the string name of the prop-
erty is stuffed into the event.propertyName property. If the property happens to be a property of the
style object associated with the element, the propertyName is the full property reference, as in
style.backgroundColor.

Example
See Listing 15-45 in the section about the onpropertychange event handler for an example of the values
returned by this property.

Related Items: onpropertychange event handler (Chapter 15).

782

Document Objects Reference

(IE) event.propertyName

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 782

repeat
Value: Boolean. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The repeat property reveals for onkeydown events only whether the key is in repeat mode (as determined
by the Keyboard control panel settings in the system). With this information, you can prevent the automatic
triggering of repeat mode from causing multiple characters from being recognized by the browser. This
property can come in handy if users may be physically challenged and may occasionally and accidentally
hold down a key too long. The following script fragment in an onkeydown event handler for a text box or
textarea prevents multiple characters from appearing even if the system goes into repeat mode:

if (event.repeat) {
event.returnValue = false;

}

By disabling the default action while in repeat mode, no further characters reach the text box until repeat
mode goes away (meaning, with the press of another key).

Related Items: onkeydown event handler.

returnValue
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1.2+

While IE4+ continues to honor the original way of preventing default action for an event handler (that is,
having the last statement of the event handler evaluate to return false), the IE4+ event model provides a
property that lets the cancellation of default action take place entirely within a function invoked by an event
handler. By default, the returnValue property of the event object is true, meaning that the element
processes the event after the scripted handler completes its job, just as if the script weren’t there. Normal
processing, for example, is displaying a typed character, navigating to a link’s href URL upon being clicked,
or submitting a form after the Submit button is clicked.

But you don’t always want the default action to occur. For example, consider a text box that is supposed to
allow only numbers to be typed in it. The onkeypress event handler can invoke a function that inspects each
typed character. If the character is not a numeric character, it should not reach the text box for display. The
following validation function may be invoked from the onkeypress event handler of just such a text box:

function checkIt() {
var charCode = event.keyCode;
if (charCode < 48 || charCode > 57) {

alert(“Please make sure entries are numerals only.”);
event.returnValue = false;

}
}

By using this event handler, the errant character won’t appear in the text box.

Note that this property is not a substitute for the return statement of a function. If you need a value to be
returned to the invoking statement, you can use a return statement in addition to setting the event
.returnValue property.

783

(IE) event.returnValue

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 783

Example
You can find several examples of the returnValue property at work in Chapter 15 and Chapter 1. Look at
Listings 15-30, 15-33, 15-36, 15-37, 15-38, and 15-44. Moreover, many of the other examples in Chapter
15 can substitute the returnValue property way of cancelling the default action if the scripts were to be
run exclusively on IE4+.

Related Items: return statement (Chapter 34).

saveType
Value: String. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The saveType property is assigned a value only when an oncontentsave event is bound to a WinIE
DHTML behavior (.htc). For more information about behaviors, see the following:

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Related Items: addBehavior() method.

srcElement
Value: Element object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1.2+

The srcElement property is a reference to the HTML element object that is the original target of the event.
Because an event may bubble up through the element containment hierarchy and be processed at any level
along the way, having a property that points back to the element from which the event originated is com-
forting. After you have a reference to that element, you can read or write any properties that belong to that
element or invoke any of its methods.

Example
As a simplified demonstration of the power of the srcElement property, Listing 25-11 has but two event
handlers defined for the body element, each invoking a single function. The idea is that the onmousedown
and onmouseup events will bubble up from whatever their targets are, and the event handler functions will
find out which element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the className property of the target
element. If the className is bold— a class name shared by three span elements in the paragraph — the
stylesheet rule for that class is modified so that all items share the same color. Your scripts can do even more
in the way of filtering objects that arrive at the functions to perform special operations on certain objects or
groups of objects.

Notice that the scripts don’t have to know anything about the objects on the page to address each clicked
one individually. That’s because the srcElement property provides all of the specificity needed for acting
on the target element.

784

Document Objects Reference

(IE) event.srcElement

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 784

LISTING 25-11

Using the srcElement Property

<html>
<head>

<title>srcElement Property</title>
<style type=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</style>
<script type=”text/javascript”>
function highlight() {

var elem = event.srcElement;
if (elem.className == “bold”) {

document.styleSheets[0].rules[0].style.color = “red”;
} else {

elem.style.color = “#FFCC00”;
}

}
function restore() {

var elem = event.srcElement;
if (elem.className == “bold”) {

document.styleSheets[0].rules[0].style.color = “”;
} else {

elem.style.color = “”;
}

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.body, “mousedown”, highlight);
addEvent(document.body, “mouseup”, restore);

});
</script>

</head>
<body>

<h1>srcElement Property</h1>
<hr />
<p>One event handler...</p>

continued

785

(IE) event.srcElement

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 785

LISTING 25-11 (continued)

Can
Cover
Many
Objects

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, <span

class=”bold”>sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

Related Items: fromElement, toElement properties.

srcFilter
Value: String. Read-Only
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

According to Microsoft, the srcFilter property should return a string of the name of the filter that was
applied to trigger an onfilterchange event handler. While the property exists in the event object, its
value is always null, at least through WinIE7.

Related Items: onfilterchange event handler; style.filter object.

srcUrn
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

If an event is fired in a WinIE behavior attached to an element, and the behavior has a URN identifier
defined for it, the srcUrn property returns the string from the URN identifier. For more information about
behaviors, see

http://msdn.microsoft.com/workshop/author/behaviors/overview.asp

Related Items: addBehavior() method.

toElement
(See fromElement)

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

786

Document Objects Reference

(IE) event.type

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 786

You can find out what kind of event fired to create the current event object by way of the type property.
The value is a string version of the event name — just the name of the event without the “on” prefix that is
normally associated with event names in IE. This property can be helpful when you designate one event
handler function to process different kinds of events. For example, both the onmousedown and onclick
event handlers for an object can invoke one function. Inside the function, a branch is written for whether
the type comes in as mousedown or click, with different processing for each event type. That is not to
endorse such event handler function sharing, but for you to be aware of this power should your script con-
structions find the property helpful.

This property and its values are fully compatible with the NN6+/Moz/W3C event models.

Example
Use The Evaluator (Chapter 13) to see values returned by the type property. Enter the following object
name into the bottom text box and press Enter/Return:

event

If necessary, scroll the Results box to view the type property, which should read keypress. Now click the
List Properties button. The type changes to click. The reason for these types is that the event object
whose properties are being shown here is the event that triggers the function to show the properties. From
the text box, an onkeypress event handler triggers that process; from the button, an onclick event han-
dler does the job.

Related Items: All event handlers (Chapter 15).

wheelData
Value: Integer. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

The wheelData property returns an integer indicating which direction the mouse wheel was rolled for an
onmousewheel event. The values returned are typically either 120 or –120, with a positive value indicating
that the mouse wheel was rolled toward the screen and a negative value indicating that the wheel was rolled
the opposite direction.

NN6+/Moz/Safari event Object

Properties Methods Event Handlers

altKey initEvent()

bubbles initKeyEvent()

button initMouseEvent()

cancelBubble initMutationEvent()

cancelable initUIEvent()

charCode preventDefault()

clientX stopPropagation()

continued

787

(NN6/Moz/Safari) eventObject

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 787

Properties Methods Event Handlers

clientY

ctrlKey

currentTarget

detail

eventPhase

isChar

keyCode

layerX

layerY

metaKey

originalTarget

pageX

pageY

relatedTarget

screenX

screenY

shiftKey

target

timeStamp

type

view

Syntax
Accessing NN6+/Moz event object properties and methods:

eventObject.property | method([parameters])

Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

About this object
Although it is based largely on the event object as defined by the W3C DOM Level 2, the NN6+/Moz event
object also carries forward several characteristics from the NN4 event object. A few properties are continued
primarily for backward compatibility. But because future Mozilla development will likely forego the peculi-
arities of the NN4 DOM and event models, you should ignore these items (as highlighted below). Wherever
possible, look forward and embrace the W3C DOM aspects of the event model. Safari, for example, imple-
ments a lot of the W3C DOM event model, but excludes all old NN4 properties.

Although the NN6+/Moz event model provides a bubbling event propagation model just as IE4+, the
incompatibility of referencing event objects between the event models is still there. In the W3C DOM (as in

788

Document Objects Reference

(NN6/Moz/Safari) eventObject

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 788

NN4), an event object is explicitly passed as a parameter to event handler (or, rather, event listener) func-
tions. But after you have a browser-specific event object assigned to a variable inside a function, a few
important properties have the same names between the IE4+ and W3C DOM event models. If Microsoft
adopts more of the W3C DOM event model in future versions of IE, the compatibility situation should
improve.

The event object discussed in this section is the instance of an event that is created as the result of a user or
system event action. The W3C DOM includes an additional static Event object. Many of the properties of
the static Event object are inherited by the event instances, so the detailed coverage of those shared proper-
ties is in this section because it is the event object you’ll be scripting for the most part.

In many code fragments in the following detail sections, you will see references that begin with the evt ref-
erence. This assumes that the statement(s) resides inside a function that has assigned the incoming event
object to the evt parameter variable:

function myFunction(evt) {...}

As shown earlier in this chapter, you can equalize W3C DOM and IE4+ event object references when it is
practical to do so because the scripts work on identical (or similar) event object properties. The results of
this equalization are typically stored in the evt variable.

Properties
altKey
ctrlKey
metaKey
shiftKey
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

When an event object is created in response to a user or system action, these four properties are set based
on whether their corresponding keys were being held down at the time — a Shift-click, for example. If the
key was held down, the property is assigned a value of true; otherwise the value is false. The metaKey
property corresponds to the Command key on the Macintosh keyboard but does not register for the
Windows key on Wintel computers.

Most commonly, you use expressions consisting of this property as if construction condition statements.
Because these are Boolean values, you can combine multiple properties in a single condition. For example,
if you have a branch of a function that is to execute only if the event occurred with both the Shift and
Control keys held down, the condition looks as the following:

if (evt.shiftKey && evt.ctrlKey) {
// statements to execute

}

Conversely, you can take a more user-friendly approach to provide special processing if the user holds down
any one of the four modifier keys:

if (evt.shiftKey || evt.ctrlKey || evt.metaKey || evt.altKey) {
// statements to execute

}

789

(NN6/Moz/Safari) eventObject.altKey

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 789

The rationale behind this approach is to offer perhaps some shortcut operation for users, but not force them
to memorize a specific modifier key combination.

Example
See Listing 25-6, where the values of these properties are used to set the checked properties of correspon-
ding check boxes for a variety of event types.

Related Items: None.

bubbles
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

Not every event bubbles. For example, an onsubmit event propagates no further than the form object with
which the event is associated. Events that do not bubble have their event object’s bubbles property set to
false; all others have the property set to true. You use this property in the rare circumstance of a single
event handler function processing a wide variety of events. You may want to perform special operations
only on events that can bubble and handle the others without special treatment. For this branch, you can
use the property in an if condition statement:

if (evt.bubbles) {
// special processing for bubble-able events

}

You do not have to branch, however, just to cancel bubbling. A non-propagating event doesn’t mind if you
tell it not to propagate.

Related Items: cancelBubble property.

button
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The button property reveals the button that was pressed to activate the mouse event. In the W3C DOM,
the left (primary) button returns a value of 0. If the mouse is a three-button mouse, the middle button
returns 1. The right button (on any multibutton mouse) returns a value of 2.

Mouse buttons other than the primary one are easier to look for in mousedown or mouseup events, rather
than onclick events. In the case of a user pressing multiple buttons, only the most recent button is regis-
tered.

Exercise caution when scripting the button property across browsers. The respective event models define
different button values for mouse buttons.

Example
See Listing 25-7, where the button property is revealed in the status bar. Try pressing individual mouse
buttons on, say, the screen button.

Related Items: None.

790

Document Objects Reference

(NN6/Moz/Safari) eventObject.button

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 790

cancelable
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

If an event is cancelable, then its default action can be prevented from occurring with the help of a script.
Although most events are cancelable, some are not. The cancelable property lets you inquire about a partic-
ular event object to see if its event type is cancelable. Values for the property are Booleans. You may want
to perform special operations only on events that are cancelable and handle the others without special treat-
ment. For this branch, you can use the property in an if condition statement:

if (evt.cancelable) {
// special processing for cancelable events

}

You do not have to branch, however, just to prevent an event’s default action. A non-cancelable event does-
n’t mind if you tell it to prevent the default action.

Related Items: preventDefault() method.

cancelBubble
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The cancelBubble property is a rare instance of an IE4+ event property being implemented in
NN6+/Moz/Safari even though the property is not defined in the W3C DOM. The property operates the
same as in IE4+ in that it determines whether the current event object bubbles up any higher in the element
containment hierarchy of the document. By default, this property is false, meaning that if the event is sup-
posed to bubble, it will do so automatically.

To prevent event bubbling for the current event, set the property to true anywhere within the event han-
dler function. Cancelling event bubbling works only for the current event. The very next event to fire will
have bubbling enabled (provided the event bubbles).

If you are trying to migrate your code as much as possible to the W3C DOM, use the stopPropagation()
method instead of cancelBubble. For cross-browser compatibility, however, cancelBubble is a safe bet.

Example
See Listing 25-2 to see the cancelBubble property in action in an IE environment. Even though that list-
ing has some features that apply to WinIE5.5+, the bubble cancelling demonstration works all the way back
to IE4.

Related Items: stopPropagation() method.

charCode
keyCode
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The W3C DOM event object model clearly distinguishes between the Unicode character attached to the
alphanumeric keys of the keyboard and the code attached to each of the keyboard keys (regardless of its
character). To inspect the character of a key, use the onkeypress event to create the event object, and then

791

(NN6/Moz/Safari) eventObject.charCode

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 791

look at the event object’s charCode property. This is the property that returns 97 for “a” and 65 for “A”
because it’s concerned with the character associated with the key action. This property’s value is zero for
onkeydown and onkeyup events.

In contrast, the keyCode property is filled with a non-zero value only from onkeydown and onkeyup
events (onkeypress sets the property to zero) when alphanumeric keys are pressed; for most other non-
character keys, all three events fill the keyCode property. Through this property you can look for non-char-
acter keys, such as arrows, page navigation, and function keys. For the character keys, there is no
distinction between uppercase or lowercase: The “A” key on the Latin keyboard returns a value of 65,
regardless of the state of the Shift key. At the same time, however, the press of the Shift key fires its own
onkeydown and onkeyup events, setting the keyCode value to 16 (except in Safari, which does not register
modifier keys in this way). Other non-character keys — arrows, page navigation, function, and similar —
have their own codes as well. This gets very detailed, including special key codes for the numeric keyboard
keys that are different from their corresponding numbers along the top row of the alphanumeric keyboard.

Be sure to see the extensive section on keyboard events in Chapter 15 for examples of how to apply the
keyCode property in applications.

Example
Listing 25-12 provides a play area to view the charCode and keyCode properties for all three keyboard
events while you type into a textarea. You can use this later as an authoring tool to grab the precise codes
for keyboard keys you may not be familiar with.

LISTING 25-12

Displaying charCode and keyCode Property Values

<html>
<head>

<title>charCode and keyCode Properties</title>
<style type=”text/css”>
td {text-align:center}
</style>
<script type=”text/javascript”>
function showCode(which, evt) {

document.forms[0].elements[which + “Char”].value = evt.charCode;
document.forms[0].elements[which + “Key”].value = evt.keyCode;

}
function clearEm() {

for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = “”;

}
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

792

Document Objects Reference

(NN6/Moz/Safari) eventObject.charCode

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 792

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“scratchpad”), “keydown”,
function(evt) {clearEm(); showCode(“down”, evt);});

addEvent(document.getElementById(“scratchpad”), “keypress”,
function(evt) {showCode(“press”, evt);});

addEvent(document.getElementById(“scratchpad”), “keyup”,
function(evt) {showCode(“up”, evt);});

});
</script>

</head>
<body>

<h1>charCode and keyCode Properties</h1>
<hr />
<form>

<p><textarea id=”scratchpad” name=”scratchpad” cols=”40” rows=”5”
wrap=”hard”></textarea></p>
<table cellpadding=”5”>

<tr>
<th>Event</th>
<th>event.charCode</th>
<th>event.keyCode</th>

</tr>
<tr>

<td>onKeyDown:</td>
<td><input type=”text” name=”downChar” size=”3” /></td>
<td><input type=”text” name=”downKey” size=”3” /></td>

</tr>
<tr>

<td>onKeyPress:</td>
<td><input type=”text” name=”pressChar” size=”3” /></td>
<td><input type=”text” name=”pressKey” size=”3” /></td>

</tr>
<tr>

<td>onKeyUp:</td>
<td><input type=”text” name=”upChar” size=”3” /></td>
<td><input type=”text” name=”upKey” size=”3” /></td>

</tr>
</table>

</form>
</body>

</html>

Here are some specific tasks to try with the page in NN6+/Moz to examine key codes (if you are not using a
browser set for English and a Latin-based keyboard, your results may vary):

1. Enter a lowercase “a”. Notice how the onkeypress event handler shows the charCode to be 97,
which is the Unicode (and ASCII) value for the first of the lowercase letters of the Latin alphabet.
But the other two event types record just the key’s code: 65.

793

(NN6/Moz/Safari) eventObject.charCode

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 793

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the Shift key, itself, gen-
erates the key code 16 for the onkeydown and onkeyup events. But the character key then shows
the value 65 for all three events (until you release the Shift key), because the ASCII value of the
uppercase letter happens to match the keyboard key code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the textarea, because
that’s where the keyboard events are being monitored). As a non-character key, all three events stuff
a value into the keyCode property, but zero into charCode. The keyCode value for this key is 40.

4. Poke around with other non-character keys. Some may produce dialog boxes or menus, but their
key codes are recorded nonetheless.

Related Items: onkeydown, onkeypress, onkeyup event handlers.

clientX
clientY
layerX
layerY
pageX
pageY
screenX
screenY
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The W3C DOM event object borrows mouse coordinate properties from both the NN4 and IE4+ event
models. If you have worked with event coordinates in these other browsers, you have nothing new to learn
for W3C DOM-compatible browsers.

Like the IE4+ event object, the W3C DOM event object’s clientX and clientY properties are the coor-
dinates within the viewable content region of the window. These values are relative to the window space,
not the document. But unlike IE4+, you don’t have to calculate the position of the coordinates within the
document because another pair of NN/Moz/Safari properties, pageX and pageY, provide that information
automatically. If the page has not scrolled, the values of the client and page coordinates are the same.
Because it is usually more important to know an event’s coordinates with respect to the document than the
window, the pageX and pageY properties are used most often.

Another NN/Moz/Safari property pair, layerX and layerY, borrow terminology from the now defunct
layer schemes of NN4, but the properties can still be quite valuable nonetheless. These coordinates are
measured relative to the positioning context of the element that received the event. For regular, unposi-
tioned elements in the body part of a document, that positioning context is the body element. Thus, for
those elements, the values of the page and layer coordinates will be the same. But if you create a positioned
element, the coordinate space is measured from the top-left corner of that space. Thus, if you are using the
coordinates to assist in scripted dragging of positioned elements, you can confine your scope to just the
positioned element.

One coordinate system missing from the NN6+/Moz repertoire, but present in Safari, is that of the target
element itself (comparable to the offsetX and offsetY properties of IE4+). These values, however, can be
calculated in NN/Moz by subtracting from the page coordinate properties the offsetLeft and offsetTop
properties of both the target element and its positioning context. For example, if you want to get the coordi-
nates of a mouse event inside an image, the event handler can calculate those values as follows:

794

Document Objects Reference

(NN6/Moz/Safari) eventObject.clientX

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 794

var clickOffsetX = evt.pageX - evt.target.offsetLeft –
document.body.offsetLeft;

var clickOffsetY = evt.pageY - evt.target.offsetTop –
document.body.offsetTop;

The last set of coordinate properties, screenX and screenY, provide values relative to the entire video dis-
play. Of all these properties, only the client and screen coordinates are defined in the W3C DOM Level 2
standard.

Keep in mind that in most W3C DOM–compatible browsers, event targets include text nodes inside ele-
ments. Because nodes do not have all the properties of elements (for example, they have no offset properties
signifying their location in the document), you may sometimes have to go to the target node’s parent node
to get an element object whose offset properties provide the necessary page geography. This matters, of
course, only if your scripts need to concern themselves with mouse events on text.

Example
You can see the effects of the coordinate systems and associated NN6+/Moz properties with the page in
Listing 25-13. You can view coordinate values for all four measuring systems, as well as some calculated
value. Two clickable objects are provided so that you can see the differences between an object not in any
layer and an object residing within a layer (although anything you see is clickable, including text nodes).
Figure 25-1 shows the results of a click inside the positioned layer.

FIGURE 25-1

NN6+/Moz event coordinates for a click inside a positioned element.

795

(NN6/Moz/Safari) eventObject.clientX

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 795

One of the calculated fields applies window scrolling values to the client coordinates. But, as you will see,
these calculated values are the same as the more convenient page coordinates. The other calculated field
shows the coordinates relative to the rectangular space of the target element. Notice in the code that if the
nodeType of the target indicates a text node, that node’s parent node (an element) is used for the calcula-
tion.

LISTING 25-13

NN6+/Moz/Safari Event Coordinate Properties

<html>
<head>

<title>X and Y Event Properties (NN6+/Moz)</title>
<script type=”text/javascript”>
function checkCoords(evt) {

var form = document.forms[“output”];
var targText, targElem;
if (evt.target.nodeType == 3) {

targText = “[textnode] inside <” + evt.target.parentNode.tagName + “>”;
targElem = evt.target.parentNode;

} else {
targText = “<” + evt.target.tagName + “>”;
targElem = evt.target;

}
form.srcElemTag.value = targText;
form.clientCoords.value = evt.clientX + “,” + evt.clientY;
form.clientScrollCoords.value = (evt.clientX + window.scrollX) +

“,” + (evt.clientY + window.scrollY);
form.layerCoords.value = evt.layerX + “,” + evt.layerY;
form.pageCoords.value = evt.pageX + “,” + evt.pageY;
form.inElemCoords.value =

(evt.pageX - targElem.offsetLeft - document.body.offsetLeft) +
“,” + (evt.pageY - targElem.offsetTop - document.body.offsetTop);

form.screenCoords.value = evt.screenX + “,” + evt.screenY;
return false;

}

// bind the event handler
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.body, “mousedown”,
function(evt) {checkCoords(evt);});

796

Document Objects Reference

(NN6/Moz/Safari) eventObject.clientX

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 796

});
</script>

</head>
<body>

<h1>X and Y Event Properties (NN6+/Moz)</h1>
<hr />
<p>Click on the button and in the DIV/image to see the coordinate values

for the event object.</p>
<form name=”output”>

<table>
<tr>

<td colspan=”2”>NN6 Mouse Event Coordinates:</td>
</tr>
<tr>

<td align=”right”>target:</td>
<td colspan=”3”><input type=”text” name=”srcElemTag” size=”25”
/></td>

</tr>
<tr>

<td align=”right”>clientX, clientY:</td>
<td><input type=”text” name=”clientCoords” size=”10” /></td>
<td align=”right”>...With scrolling:</td>
<td><input type=”text” name=”clientScrollCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>layerX, layerY:</td>
<td><input type=”text” name=”layerCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>pageX, pageY:</td>
<td><input type=”text” name=”pageCoords” size=”10” /></td>
<td aligh=”right”>Within Element:</td>
<td><input type=”text” name=”inElemCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”>screenX, screenY:</td>
<td><input type=”text” name=”screenCoords” size=”10” /></td>

</tr>
<tr>

<td align=”right”><input type=”button” value=”Click Here” /></td>
</tr>

</table>
</form>
<div id=”display” style=”position:relative; left:100”>

</div>

</body>
</html>

Related Items: target property.

797

(NN6/Moz/Safari) eventObject.clientX

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 797

currentTarget
Value: Element object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

As an event courses its way through its propagation paths, an event listener may process that event along
the way. Though the event knows what the target is, it can also be helpful for the event listener function to
know which element’s event listener is now processing the event. The currentTarget property provides a
reference to the element object whose event listener is processing the event. This allows one listener func-
tion to potentially process the event from different levels, branching the code to accommodate different ele-
ment levels that process the event.

A valuable companion piece of information about the event is the eventPhase property, which helps your
event listener function determine if the event is in capture mode, bubble mode, or is at the target. This
property is demonstrated in the next section.

Example
Listing 25-14 shows the power of the currentTarget property in revealing the element that is processing
an event during event propagation. Similar to the code in Listing 25-3, this example is made simpler
because it lets the event object’s properties do more of the work to reveal the identity of each element that
processes the event. Event listeners assigned for various propagation modes are assigned to a variety of
nodes in the document. After you click the button, each listener in the propagation chain fires in sequence.
The alert dialog box shows which node is processing the event. And, as in Listing 25-3, the eventPhase
property is used to help display the propagation mode in force at the time the event is processed by each
node.

LISTING 25-14

currentTarget and eventPhase Properties

<html>
<head>

<title>currentTarget and eventPhase Properties</title>
<script type=”text/javascript”>
function processEvent(evt) {

var currTargTag, msg;
if (evt.currentTarget.nodeType == 1) {

currTargTag = “<” + evt.currentTarget.tagName + “>”;
} else {

currTargTag = evt.currentTarget.nodeName;
}
msg = “Event is now at the “ + currTargTag + “ level “;
msg += “(“ + getPhase(evt) + “).”;
alert(msg);

}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”;
break;

798

Document Objects Reference

(NN6/Moz/Safari) eventObject.currentTarget

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 798

case 2:
return “AT TARGET”;
break;

case 3:
return “BUBBLING”;
break;

default:
return “”;

}
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

// using old syntax to assign bubble-type event handlers
document.onclick = processEvent;
document.body.onclick = processEvent;
// turn on click event capture for document and form
document.addEventListener(“click”, processEvent, true);
document.forms[0].addEventListener(“click”, processEvent, true);
// set bubble event listener for form
document.forms[0].addEventListener(“click”, processEvent, false);
// turn on event capture for the button
document.getElementById(“main1”).addEventListener(“click”,

processEvent, true);
});
</script>

</head>
<body>

<h1>currentTarget and eventPhase Properties</h1>
<hr />
<form>

<input type=”button” value=”A Button” id=”main1” name=”main1” />
</form>

</body>
</html>

You can also click other places on the page. For example, if you click to the right of the button, you will be
clicking the form element. Event propagation and processing adjusts accordingly. Similarly, if you click the
header text, the only event listeners that see the event are in the document and body levels.

Related Items: eventPhase property.

799

(NN6/Moz/Safari) eventObject.currentTarget

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 799

detail
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari2+

The detail property is included in the W3C DOM specification as an extra property whose purpose can
be determined by the browser maker. Mozilla-based browsers and Safari 2 increment a numeric value for
rapid instances of click events on an object.

Related Items: None.

eventPhase
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

An event fires in one of three possible event phases: event capture, at the target, or bubbling. Because the
same event listener function may be processing an event in multiple phases, it can inspect the value of the
eventPhase property of the event object to see in which phase the event was when the function was
invoked. Values for this property are integers 1 (capture), 2 (at target), or 3 (bubbling).

Example
See Listing 25-14 earlier in this chapter for an example of how you can use a switch construction to
branch function processing based on the event phase of the current event object.

Related Items: currentTarget property.

isChar
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

You can find out from each keyboard event whether the key being pressed is a character key by examining
the isChar property. Most typically, however, you are already filtering for character or non-character
keys by virtue of the event handlers used to capture keyboard actions: onkeypress for character keys;
onkeydown or onkeyup for non-character keys. Be aware that the isChar property returns inconsistent
values (even for the same key) in the first release of NN6.

Related Items: charCode, keyCode properties.

isTrusted
Value: Boolean. Read-Only
Compatibility: WinIE-, MacIE-, NN8+, Moz1.7.5+, Safari-

Because an event can be generated by user action or script, the isTrusted property enables you to deter-
mine how the event was created. Any event triggered by user action is considered to be trusted from a secu-
rity point of view. Therefore, when this property returns true, it means that the event came to life as the
result of user activity (clicking, keyboarding, and so on).

800

Document Objects Reference

(NN6/Moz) eventObject.isTrusted

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 800

originalTarget
Value: Node object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The originalTarget property provides a reference to the node object that serves as the genuine first tar-
get of the event. This information is typically associated with the internal construction of certain elements,
which makes it less useful for scripting purposes. Additionally, in many cases the originalTarget prop-
erty holds the same value as the target property.

relatedTarget
Value: Element object. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The relatedTarget property allows an element to uncover where the cursor rolled in from or has rolled
out to. This property extends the power of the onmouseover and onmouseout event handlers by expand-
ing their scope to outside the current element (usually to an adjacent element). This one W3C DOM prop-
erty does the same duty as the fromElement and toElement properties of the IE4+ event object.

When the onmouseover event fires on an element, the cursor had to be over some other element just
beforehand. The relatedTarget property holds a reference to that element. Conversely, when the
onmouseout event fires, the cursor is already over some other element. The relatedTarget property
holds a reference to that element.

Example
Listing 25-15 provides an example of how the relatedTarget property can reveal the life of the cursor
action before and after it rolls into an element. When you roll the cursor to the center box (a table cell), its
onmouseover event handler displays the text from the table cell from which the cursor arrived (the
nodeValue of the text node inside the table cell). If the cursor comes in from one of the corners (not easy
to do), a different message is displayed.

The two functions that report the results employ a bit of filtering to make sure that they process the event
object only if the event occurs on an element and if the relatedTarget element is anything other than a
nested text node of the central table cell element. Because nodes respond to events in W3C DOM browsers,
this extra filtering prevents processing whenever the cursor makes the transition from the central td ele-
ment to its nested text node.

LISTING 25-15

Using the relatedTarget Property

<html>
<head>

<title>relatedTarget Properties</title>
<style type=”text/css”>
.direction {background-color:#00FFFF; width:100; height:50;
text-align:center}
#main {background-color:#FF6666; text-align:center}
</style>

continued

801

(NN6/Moz/Safari) eventObject.relatedTarget

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 801

LISTING 25-15 (continued)

<script type=”text/javascript”>
function showArrival(evt) {

if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : “parts unknown”;

window.status = “Arrived from: “ + direction;
}

}
}
function showDeparture(evt) {

if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : “parts unknown”;

window.status = “Departed to: “ + direction;
}

}
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“main”), “mouseover”,
function(evt) {showArrival(evt);});

addEvent(document.getElementById(“main”), “mouseout”,
function(evt) {showDeparture(evt);});

});
</script>

</head>
<body>

<h1>relatedTarget Properties</h1>
<hr />
<p>Roll the mouse to the center box and look for arrival information in

the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</p>

<table cellspacing=”0” cellpadding=”5”>

802

Document Objects Reference

(NN6/Moz/Safari) eventObject.relatedTarget

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 802

<tr>
<td></td>
<td class=”direction”>North</td>
<td></td>

</tr>
<tr>

<td class=”direction”>West</td>
<td id=”main”>Roll</td>
<td class=”direction”>East</td>

</tr>
<tr>

<td></td>
<td class=”direction”>South</td>
<td></td>

</tr>
</table>

</body>
</html>

Related Items: target property.

target
Value: Element object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The target property is a reference to the HTML element object that is the original target of the event.
Because an event may trickle down and bubble up through the element containment hierarchy and be
processed at any level along the way, having a property that points back to the element from which the
event originated is comforting. As soon as you have a reference to that element, you can read or write any
properties that belong to that element or invoke any of its methods.

Example
As a simplified demonstration of the power of the target property, Listing 25-16 has but two event han-
dlers defined for the body element, each invoking a single function. The idea is that the onmousedown and
onmouseup events will bubble up from whatever their targets are, and the event handler functions will find
out which element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the className property of the target
element. If the className is bold— a class name shared by three span elements in the paragraph — the
stylesheet rule for that class is modified so that all items share the same color. Your scripts can do even more
in the way of filtering objects that arrive at the functions to perform special operations on certain objects or
groups of objects.

Notice that the scripts don’t have to know anything about the objects on the page to address each clicked
one individually. That’s because the target property provides all of the specificity needed for acting on the
target element.

803

(NN6/Moz/Safari) eventObject.target

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 803

LISTING 25-16

Using the target Property

<html>
<head>

<title>target Property</title>
<style type=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</style>
<script type=”text/javascript”>
function highlight(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode :
evt.target;

if (elem.className == “bold”) {
document.styleSheets[0].cssRules[0].style.color = “red”;

} else {
elem.style.color = “#FFCC00”;

}
}
function restore(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode :
evt.target;

if (elem.className == “bold”) {
document.styleSheets[0].cssRules[0].style.color = “black”;

} else {
elem.style.color = “black”;

}
}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.body, “mousedown”,
function(evt) {highlight(evt);});

addEvent(document.body, “mouseup”,
function(evt) {restore(evt);});

});
</script>

</head>
<body>

<h1>target Property</h1>

804

Document Objects Reference

(NN6/Moz/Safari) eventObject.target

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 804

<hr />
<p>One event handler...</p>

Can
Cover
Many
Objects

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, <span

class=”bold”>sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

Related Items: relatedTarget property.

timeStamp
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

Each event receives a time stamp in milliseconds, based on the same date epoch as the Date object (1
January 1970). Just as with the Date object, accuracy is wholly dependent on the accuracy of the system
clock of the client computer.

Although the precise time of an event may be of value in only some situations, the time between events can
be useful for applications, such as timed exercises or action games. You can preserve the time of the most
recent event in a global variable, and compare the time of the current time stamp against the stored value to
determine the elapsed time between events.

Example
Listing 25-17 uses the timeStamp property to calculate the instantaneous typing speed when you type into
a textarea. The calculations are pretty raw, and work only on intra-keystroke times without any averaging
or smoothing that a more sophisticated typing tutor might perform. Calculated values are rounded to the
nearest integer.

LISTING 25-17

Using the timeStamp Property

<html>
<head>

<title>timeStamp Property</title>
<script type=”text/javascript”>
var stamp;

continued

805

(NN6/Moz/Safari) eventObject.timeStamp

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 805

LISTING 25-17 (continued)

function calcSpeed(evt) {
if (stamp) {

var gross = evt.timeStamp - stamp;
var wpm = Math.round(6000/gross);
document.getElementById(“wpm”).firstChild.nodeValue = wpm + “ wpm.”;

}
stamp = evt.timeStamp;

}

// bind the event handlers
function addEvent(elem, evtType, func) {

if (elem.addEventListener) {
elem.addEventListener(evtType, func, false);

} else if (elem.attachEvent) {
elem.attachEvent(“on” + evtType, func);

} else {
elem[“on” + evtType] = func;

}
}
addEvent(window, “load”, function() {

addEvent(document.getElementById(“scratchpad”), “keypress”,
function(evt) {calcSpeed(evt);});

addEvent(document.body, “mouseup”,
function(evt) {restore(evt);});

});
</script>

</head>
<body>

<h1>timeStamp Property</h1>
<hr />
<p>Start typing, and watch your instantaneous typing speed below:</p>
<p><textarea id=”scratchpad” cols=”60” rows=”10” wrap=”hard”></textarea></p>
<p>Typing Speed: </p>

</body>
</html>

Related Items: Date object.

type
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

You can find out what kind of event fired to create the current event object by way of the type property.
The value is a string version of the event name — just the name of the event without the “on” prefix that
is normally associated with event listener names in NN6+/Moz/W3C. This property can be helpful when
you designate one event handler function to process different kinds of events. For example, both the
onmousedown and onclick event listeners for an object can invoke one function. Inside the function, a

806

Document Objects Reference

(NN6/Moz/Safari) eventObject.type

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 806

branch is written for whether the type comes in as mousedown or click, with different processing for each
event type. That is not to endorse such event handler function sharing, but be aware of this power should
your script constructions find the property helpful.

This property and its values are fully compatible with the NN4 and IE4+ event models.

Keyboard events in Safari report their types as khtml_keydown, khtml_keypress, and
khtml_keyup, using the prefix referring to the name of the rendering engine on which Safari is

built. This is probably to avoid committing to an unfinished W3C DOM Level 3 keyboard event specification.

Related Items: All event handlers (Chapter 15).

view
Value: Window object reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The closest that the W3C DOM Level 2 specification comes to acknowledging the browser window is an
abstract object called an abstract view (AbstractView class). The object’s only property is a reference to the
document that it contains — the root document node that you’ve come to know and love. User events
always occur within the confines of one of these views, and this is reflected in the event object’s view
property. This property holds a reference to the window object (which can be a frame) in which the event
occurs. This reference allows an event object to be passed to scripts in other frames and those scripts can
then gain access to the document object of the target element’s window.

Related Items: window object.

Methods
initEvent(“eventType”, bubblesFlag, cancelableFlag)
initKeyEvent(“eventType”, bubblesFlag, cancelableFlag,
view, ctrlKeyFlag, altKeyFlag, shiftKeyFlag, metaKeyFlag,
keyCode, charCode)
initMouseEvent(“eventType”, bubblesFlag, cancelableFlag,
view, detailVal, screenX, screenY, clientX, clientY,
ctrlKeyFlag, altKeyFlag, shiftKeyFlag, metaKeyFlag,
buttonCode, relatedTargetNodeRef)
initMutationEvent(“eventType”, bubblesFlag, cancelableFlag,
relatedNodeRef, prevValue, newValue, attrName,
attrChangeCode)
initUIEvent(“eventType”, bubblesFlag, cancelableFlag, view,
detailVal)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The W3C DOM event object initialization methods provide a means of initializing a newly created event
with a complete set of property values associated with that particular event. The parameters to each of the

CAUTION CAUTION

807

(NN6/Moz/Safari) eventObject.initEvent()

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 807

initialization methods vary according to the type of event being initialized. However, all of the initialization
methods share the first three parameters: eventType, bubblesFlag, and cancelableFlag. The
eventType parameter is a string identifier for the event’s type, such as “mousedown” or “keypress”. The
bubblesFlag parameter is a Boolean value that specifies whether the event’s default propagation behavior
is to bubble (true) or not (false). The cancelableFlag parameter is also a Boolean value, and its job is
to specify if the event’s default action may be prevented with a call to the preventDefault() method
(true) or not (false).

A few of the methods also include view and detailVal parameters, which correspond to the window or
frame in which the event occurred and the integer code of detail data associated with the event, respectively.
Additional parameters are specified for some of the methods, and are unique to the event being initialized.

You don’t have to use the more detailed methods if you need a simple event. For example, if you want a
simple mouseup event, you can initialize a generic event with initEvent(), and dispatch the event to the
desired element, without having to fill in all of the coordinate, button, and other parameters of the
initMouseEvent() method:

var evt = document.createEvent(“MouseEvents”);
evt.initEvent(“mouseup”, true, true);
document.getElementById(“myButton”).dispatchEvent(evt);

For more details about W3C DOM event types and the values expected for each of the more complex ini-
tialization methods, visit http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-
eventgroupings.

Related Items: document.createEvent() method.

preventDefault()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

While NN6+ continues to honor the original way of preventing default action for an event handler (that is,
having the last statement of the event handler evaluate to return false), the W3C DOM event model pro-
vides a method that lets the cancellation of default action take place entirely within a function invoked by
an event handler. For example, consider a text box that is supposed to allow only numbers to be typed in it.
The onkeypress event handler can invoke a function that inspects each typed character. If the character is
not a numeric character, it does not reach the text box for display. The following validation function may be
invoked from the onkeypress event handler of just such a text box:

function checkIt(evt) {
var charCode = evt.charCode;
if (charCode < 48 || charCode > 57) {

alert(“Please make sure entries are numbers only.”);
evt.preventDefault();

}
}

This way, the errant character won’t appear in the text box.

Invoking the preventDefault() method in NN6+/Moz/Safari is the equivalent of assigning true to
event.returnValue in IE5+.

Related Items: cancelable property.

808

Document Objects Reference

(NN6/Moz/Safari) eventObject.preventDefault()

Part III

33_069165 ch25.qxp 3/1/07 3:52 PM Page 808

stopPropagation()
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

Use the stopPropagation() method to stop events from trickling down or bubbling up further through
the element containment hierarchy. A statement in the event listener function that invokes

evt.stopPropagation();

is all that is needed. As an alternative, you can cancel bubbling directly in an element’s event handler attrib-
ute, as in the following:

onclick=”doButtonClick(this); event.stopPropagation()”

If you are writing cross-browser scripts, you also have the option of using the cancelBubble property,
which is compatible with IE4+.

Related Items: bubbles, cancelBubble properties.

809

(NN6/Moz/Safari) eventObject.stopPropagation()

Event Objects 25

33_069165 ch25.qxp 3/1/07 3:52 PM Page 809

33_069165 ch25.qxp 3/1/07 3:52 PM Page 810

Stylesheets promote a concept that makes excellent sense in the fast-paced,
high-volume content creation environment that is today’s World Wide
Web: separating content from the rendering details of the content. Textual

content may come from any number of electronic sources, but it may need to be
dropped into different contexts — just like an online news feed that becomes
amalgamated into dozens of web portal sites, each with its own look and feel. All
the content author cares about is the text and its meaning; the web page designer
then decides how that content should be rendered on the page.

The stylesheet concept has other advantages. Consider the large corporate web site
that wants to promote its identity through a distinct style. A family of stylesheets
can dictate the font face, font size, the look of emphasized text, and the margin
width of all body text. To apply these styles on an element-by-element basis would
not only be a tedious page-authoring task, it is fraught with peril. If the style is
omitted from the tags of one page, the uniformity of the look is destroyed. Worse
yet, if the corporate design changes to use a different font face, the task of chang-
ing every style in every tag — even with a highly powered search-and-replace
operation — is risky. But if a single external stylesheet file dictates the styles, then
the designer need make only one change in that one file to cause the new look to
ripple through the entire web site.

Learning how to create and apply stylesheets is beyond the scope of this book,
and this chapter assumes you already are familiar with stylesheet terminology,
such as a stylesheet rule and a selector. If these terms are not in your vocabulary,
you can find numerous tutorials on the subject both online and in books.
Although IE, Firefox, Camino, Safari, and other recent browsers adhere fairly
closely to W3C standards for stylesheets (called Cascading Style Sheets, or CSS
for short), your first learning experience should come from sources that focus on
standards, rather than browser-specific features. Microsoft includes some extras
in the stylesheet vocabulary that work only on IE4+ for Windows; Firefox and
other Mozilla-based browsers have specially named, preliminary properties that
offer future CSS3 capabilities in advance of the final standards. Unless you

811

IN THIS CHAPTER
Managing stylesheets by script

Changing element styles
on the fly

Distinguishing among style,
styleSheet, and style objects

Style Sheet and
Style Objects

34_069165 ch26.qxp 3/1/07 4:05 PM Page 811

develop for a single target browser brand and client operating system, learning the common denominator of
stylesheet features is the right way to go. Details in this chapter cover all versions, so pay close attention to
compatibility listings for each item.

Making Sense of the Object Names
The first task in this chapter is to clarify the seemingly overlapping terminology for the stylesheet-related
objects that you will be scripting. Some objects are more abstract than others, but they are all important.
The objects in question are

n style element object

n styleSheet object (a member of the styleSheets array)

n rule or cssRule object (a member of the rules or cssRules array)

n style object

A style element object is the object that represents the <style> tag in your document. Most of its proper-
ties are inherited from the basic HTML element objects you see detailed in Chapter 15. By and large, you
won’t be reading or writing stylesheet properties via the style element object.

A stylesheet can be embedded in a document via the <style> tag or it may be linked in via a <link> tag.
One property of the document object, the styleSheets property, returns an array (collection) of all
styleSheet objects that are currently “visible” to the document, whether or not they are disabled.
Included in the collection are stylesheets defined by a <style> tag or linked in via a <link> tag. Even
though the <style> tag, for example, contains lines of code that make up the rules for a stylesheet, the
style element object is not the path to reach the individual rules. The styleSheet object is. It is through
the styleSheet object that you can enable or disable an entire sheet, access individual rules (via the rules
or cssRules property array), and add or delete rules for that stylesheet.

The meat of any stylesheet is the rules that define how elements are to be rendered. At this object level, the
terminology forks in IE4 and NN6/Moz. The IE4+ object model calls each stylesheet rule a rule object; the
W3C DOM Level 2 model (in NN6+/Moz), calls each rule a cssRule object. MacIE5 and Safari support
both references to the same object. Despite the incompatible object names, the two objects share key prop-
erty names. Assembling a reference to a rule requires array references. For example, the reference to the first
rule of the first styleSheet object in the document is as follows for various browsers:

var oneRule = document.styleSheets[0].rules[0]; // IE4+, MacIE5, Safari
var oneRule = document.styleSheets[0].cssRules[0]; // NN6+/Moz, MacIE5, Safari

The last object of this quartet of style-related objects is the style object. This object is the mother lode,
where actual style definitions take place. In earlier chapters, you have seen countless examples of modifying
one or more style properties of an element. Most typically, this modification is accomplished through the
style property of the HTML element. For example, you would set the font color of a span element whose
ID is “hot” as follows:

document.getElementById(“hot”).style.color = “red”;

The style object is also a property of a rule/cssRule object. Thus, if you need to modify the style of ele-
ments affected by an existing stylesheet rule, you approach the style object through a different reference
path, but the style object is treated just as it is for elements:

document.styleSheets[0].rules[0].style.color = “red”; // IE4+, MacIE5, Safari
document.styleSheets[0].cssRules[0].style.color = “red”; // NN6+/Moz, MacIE5, Safari

812

Document Objects ReferencePart III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 812

Many scripters concern themselves solely with the style object, and at that, a style object associated with
a particular element object. Rare are instances that require manipulation of styleSheet objects beyond
perhaps enabling and disabling them under script control. Therefore, if you are learning about these objects
for the first time, pay closest attention to the style object details rather than to the other related objects.

Imported Stylesheets
Stylesheets embedded in a document via the style element can import additional stylesheets via the
@import selector:

<style type=”text/css”>
@import url(externalStyle.css);
p {font-size:16pt}
</style>

In this example scenario, the document sees just one styleSheet object. But that object has a stylesheet
nested inside — the stylesheet defined by the external file. IE4+ calls one of these imported stylesheets an
import object. An import object has all the properties of any styleSheet object, but its parentStyle
property is a reference to the styleSheet that “owns” the @import rule. In fact, the @import statement
does not even appear among the rules collection of the IE styleSheet object. Therefore, to access the first
rule of the imported stylesheet, the reference is as the following:

document.styleSheets[0].imports[0].rules[0]

The W3C DOM and NN6+/Moz treat import rule objects differently from the IE model. To the W3C DOM,
even an at-rule is considered one of the cssRules collections of a styleSheet object. One of the proper-
ties of a cssRule object is type, which conveys an integer code value revealing whether the rule is a plain
CSS rule or one of several other types, including an import rule. Of course, an imported rule object then
has as one of its properties the styleSheet object that, in turn, contains the rules defined in the external
stylesheet file. The parent-child relationship exists here, as well, whereby the stylesheet that contains the
@import rule is referenced by the imported styleSheet object’s parentStyle property (just as in IE4+).

Reading Style Properties
Both the IE4+ and W3C object models exhibit a behavior that at first glance may seem disconcerting. On
the one hand, the W3C and good HTML practice encourage defining styles remotely (that is, embedded via
<style> or <link> tags) rather than as values assigned to the style attribute of individual element tags
throughout the document. This more closely adheres to the notion of separating style from content.

On the other hand, object models can be very literal beasts. Strictly speaking, if an element object presents
a scriptable property that reflects an attribute for that element’s tag, the first time a script tries to read that
property, a value will be associated with that property only if the attribute is explicitly assigned in the HTML
code. But if you assign stylesheet settings via remote stylesheets, the values are not explicitly set in the tag.
Therefore, the style property of such an element comes up empty, even though the element is under the
stylistic control of the remote stylesheet. If all you want to do is assign a new value to a style property, that’s
not a problem, because your assignment to the element object’s style property overrides whatever style is
assigned to that property in the remote stylesheet (and then that new value is subsequently readable from
the style property). But if you want to see what the current setting is, the initial value won’t be in the ele-
ment’s style object.

813

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 813

Microsoft (in IE5+) and the W3C DOM provide competing (and incompatible) solutions so this problem.

IE5+ provides an extra, read-only property — currentStyle— that reveals the stylesheet values that are
currently being applied to the element, regardless of where the stylesheet definitions are. The currentStyle
property returns an object that is in the same format and has most of the same properties as the regular
style property. If your audience runs browsers no earlier than IE5, you should make a habit of reading
styles for an element via its currentStyle property. If you want a change to a style object’s property to
apply to only one element, use the element’s style property to set that value; but if the change is to apply to
all elements covered by the same remote stylesheet rule, modify the style property of the rule object.

The W3C DOM solution is the getComputedStyle() method. Although the W3C DOM doesn’t (yet) talk
about a window object, it does describe an object (called the defaultView) which Mozilla-based browsers
channel through the window object. The truly W3C standard way to access this method (supported by both
Mozilla-based browsers and Safari 1.3+) is via the document.defaultView object. To read the value of a
particular style property being applied to an element, you first retrieve a computed style value for the ele-
ment, and then read the desired CSS style property. For example, to read the font-family currently
applied to an element whose ID is myP, use the following sequence:

var elem = document.getElementById(“myP”);
var computedStyle = document.defaultView.getComputedStyle(elem, “”);
var fontFam = computedStyle.getPropertyValue(“font-family”);

Note that you must use the CSS property name (for example, font-family) and not the scripted equiva-
lent of that property (for example, fontFamily).

style Element Object
See Chapter 15 for items shared by all HTML elements.

Properties Methods Event Handlers

media

type

Syntax
Accessing style element object properties and methods:

(IE4+) document.all.objectID.property | method([parameters])
(IE5+/W3C) document.getElementById(objectID).property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

814

Document Objects Reference

style

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 814

About this object
The style element is among the classification of HTML directive elements (see Chapter 37 on the
CD-ROM) in that it goes in the head portion of a document and does not have any of its own content ren-
dered in the page. But the contents obviously have a great amount of control over the rendering of other
elements. Most of the properties, methods, and event handlers that the style element inherits from all
HTML elements are irrelevant.

One exception is the Boolean disabled property. Although there are additional ways to disable a stylesheet
(the disabled property of the styleSheet object), it may be easier to disable or enable a stylesheet by
way of the style element object. Because you can assign an ID to this element and reference it explicitly,
doing so may be more convenient than trying to identify which styleSheet object among the document’s
styleSheets collection you intend to enable or disable.

Properties
media
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The media property represents the media attribute of a style element. This attribute can define what kind
of output device is governed by the stylesheet. The HTML 4.0 specification has lofty goals for this attribute,
but most browsers are limited to the following values: screen, print, and all. Thus, you can design one
set of styles to apply when the page is viewed on the computer screen and a different set for when it’s
printed.

Other types that may eventually enter the picture with the media property include braille, embossed,
handheld, projection, speech, tty, and tv. Web development tools have already begun offering sup-
port for these property values. For example, Dreamweaver 8 has a special toolbar that allows you to access
all of the previously listed media types except for aural, braille, and embossed. Opera is currently the
only browser to support media property settings beyond screen, print, and all. In Opera, you can also
specify projection, handheld, speech, and tv.

type
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+ , Safari+

The type property represents the type attribute of the style element. For Cascading Style Sheets, this
property is always set to text/css. If your scripts assign some other value to this property and the browser
does not support that stylesheet type, the stylesheet no longer functions as a Cascading Style Sheet, and any
styles it controls revert to their default styles.

815

style.type

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 815

styleSheet Object

Properties Methods Event Handlers

cssRules addImport()

cssText addRule()

disabled deleteRule()

href insertRule()

id removeRule()

imports

media

ownerNode

ownerRule

owningElement

pages

parentStyleSheet

readOnly

rules

title

type

Syntax
Accessing styleSheet object properties and methods:

(IE4+/W3C) document.styleSheets[index].property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

About this object
If the style element object is the concrete incarnation of a stylesheet, then the styleSheet object is its
abstract equivalent. A styleSheet object exists by virtue of a stylesheet definition being embedded in the
current document either by way of the <style> tag or linked in from an external file via the <link> tag.
Each element that introduces a stylesheet into a document creates a separate styleSheet object. Access to
a styleSheet object is via the document.styleSheets array. If the document contains no stylesheet defi-
nitions, then the array has a length of zero. Styles that are introduced into a document by way of an ele-
ment’s style attribute are not considered styleSheet objects.

Although both IE4+ and W3C DOM browsers present styleSheet objects — and the object represents the
same “thing” in both browser families — the set of properties and methods diverges widely between
browsers. In many cases, the object provides the same information but through differently named properties
in the two families. Interestingly, on some important properties, such as the ones that return the array of

816

Document Objects Reference

styleSheetObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 816

style rules and a reference to the HTML element that is responsible for the stylesheet’s being in the docu-
ment, MacIE5 and Safari provide both the Microsoft and W3C terminology. Methods for this object focus
on adding rules to and deleting rules from the stylesheet. For the most part, however, your use of the
styleSheet object will be as a reference gateway to individual rules (via the rules or cssRules array).

Properties
cssRules
Value: Array of rule objects. Read-Only
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari+

The cssRules property returns an array of stylesheet rule objects. Strictly speaking, the objects are called
cssRule objects in the W3C DOM terminology. This property is implemented in MacIE5, but not in the
Windows version as of IE7. The list of rule objects is in source code order. The corresponding WinIE4+
property is rules.

Example
Use The Evaluator (Chapter 13) to look at the cssRules property in W3C/Moz browsers or MacIE5. First,
view how many rules are in the first styleSheet object of the page by entering the following statement
into the top text box:

document.styleSheets[0].cssRules.length

Now use the array with an index value to access one of the rule objects to view the rule object’s properties
list. Enter the following statement into the bottom text box:

document.styleSheets[0].cssRules[1]

You use this syntax to modify the style details of an individual rule belonging to the styleSheet object.

Keep in mind that you can access the same information in WinIE by changing the example code to use the
rules property instead of cssRules.

Related Items: rules property, cssRule, rule objects.

cssText
Value: String. Read/Write
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-

The cssText property contains a string of all stylesheet rules contained by the styleSheet object. Parsing
this text in search of particular strings is not wise because the text returned by this property can have car-
riage returns and other formatting that is not obvious from the text that is assigned to the rules in the
stylesheet. But you can use this property as a way to completely rewrite the rules of a stylesheet in a rather
brute-force manner: Assemble a string consisting of all the new rules and assign that string to the cssText
property. The more formal way of modifying rules (adding and removing them) is perhaps better form, but
there is no penalty for using the cssText property if your audience is strictly IE5+.

Example
Use The Evaluator (Chapter 13) in WinIE to replace the style rules in one blast via the cssText property.
Begin by examining the value returned from the property for the initially disabled stylesheet by entering the
following statement into the top text box:

document.styleSheets[0].cssText

817

styleSheetObject.cssText

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 817

Next, enable the stylesheet so that its rules are applied to the document:

document.styleSheets[0].disabled = false

Finally, enter the following statement into the top text box to overwrite the stylesheet with entirely new rules.

document.styleSheets[0].cssText = “p {color:red}”

Reload the page after you are finished to restore the original state.

Related Items: addRule(), deleteRule(), insertRule(), removeRule() methods.

disabled
Value: Boolean. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

While the disabled property of the style element object works with that element only, the styleSheet
object’s disabled property works with a styleSheet object that comes into the document by a link ele-
ment as well.

Enabling and disabling stylesheets is one way to swap different appearance styles for a page, allowing the
user to select the preferred style. The page can contain multiple stylesheets that control the same selectors,
but your script can enable one and disable another to change the overall style. You can even perform this
action via the onload event handler. For example, if you have separate stylesheets for Windows and Mac
browsers, you can put both of them in the document, initially both disabled. An onload event handler
determines the operating system and enables the stylesheet tailored for that OS. Unless your stylesheets are
very extensive, there is little download performance penalty for having both stylesheets in the document.

Example
Use The Evaluator (Chapter 13) to toggle between the enabled and disabled state of the first styleSheet
object on the page. Enter the following statement into the top text box:

document.styleSheets[0].disabled = (!document.styleSheets[0].disabled)

The inclusion of the NOT operator (!) forces the state to change from true to false or false to true
with each click of the Evaluate button.

Related Items: disabled property of the style element object.

href
Value: String. Read/Write (See Text)
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

When a stylesheet is linked into a document via a link element, the href property of the styleSheet
object contains a string with the URL to that file. Essentially, the href property of the link element is
passed along to the styleSheet object that loads as a result. In WinIE4+ only, this property is read/write,
allowing you to dynamically link in an external stylesheet file after the page has loaded. In MacIE and
NN6+/Moz, this property is read-only.

Related Items: link element object.

818

Document Objects Reference

styleSheetObject.href

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 818

id
Value: String. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The id property of a styleSheet object inherits the id property of its containing element (style or link
element). This can get confusing, because it may appear as though two objects in the document have the
same ID. The id string, however, can be used as an index to the document.styleSheets array in IE4+
(for example, document.styleSheets[“myStyle”]). NN/Moz does not provide a comparable identifier
associated with a styleSheet object.

Related Items: id property of all element objects.

imports
Value: Array of styleSheet objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

A stylesheet can contain one or more @import rules to import an external stylesheet file into the document.
Each imported styleSheet object is treated as an import object. The imports property is a collection of
all imported styleSheet objects that belong to the current styleSheet object. Imported stylesheets are
not added to the document.styleSheets collection, so that references to an imported styleSheet object
must be through the document.styleSheets[i].imports[i] array.

An import object is, itself, a styleSheet object. All properties and methods applicable to a styleSheet
object also apply to an import object. Therefore, if you want to load a different external stylesheet into the
page, you can assign the new URL to the imported styleSheet object’s href property:

document.styleSheets[0].imports[0].href = “alternate.css”;

Modifications of this nature work in IE for Windows, but not in MacIE.

Related Items: styleSheet object.

media
Value: See text. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

Cascading Style Sheets can be defined to apply to specific output media, such as the video display screen,
printer, and, in the future, devices such as speech synthesizers or Braille generators. A stylesheet gets this
direction from the media attribute of a style or link element. That value is represented in the media
property of the styleSheet object.

In IE4+, the media property value is a string with one of three possible values: screen, printer, all. The
W3C DOM and NN6+ take this one step further by allowing for potentially multiple values being assigned
to the media attribute. The NN6+/Moz/Safari value is an array of string media names (returned in an object
called a mediaList).

Related Items: type property of the style element object.

819

styleSheetObject.media

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 819

ownerNode
Value: Node reference. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The ownerNode property is a reference to the document node in which the styleSheet object is defined.
For styleSheet objects defined inside style and link elements, the ownerNode property is a reference
to that element. The corresponding property in IE4+ is owningElement. Oddly, MacIE5 has an additional,
misnamed property called owningNode, whose value equals that of the owningElement property.

Example
Use The Evaluator (Chapter 13) with NN6+/Moz/Safari to inspect the ownerNode of the first styleSheet
object in the document. Enter the following statement into the top text box:

document.styleSheets[0].ownerNode.tagName

The returned value is the style element tag name.

Related Items: ownerRule, owningElement property.

ownerRule
Value: cssRule object. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The ownerRule property applies to a styleSheet object that has been imported into a document via the
@import rule. The property returns a reference to the @import rule responsible for loading the external
stylesheet. There is an interaction between the ownerRule and ownerNode properties in that an imported
rule has an ownerRule but its ownerNode property is null; conversely, a regular styleSheet has an
ownerNode, but its ownerRule property is null.

Related Items: ownerNode property.

owningElement
Value: Element reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The owningElement property is a reference to the element object in which the styleSheet object is
defined. For styleSheet objects defined inside style and link elements, the owningElement property
is a reference to that element. The corresponding property in NN6+/Moz is ownerNode. Oddly, MacIE5 has
an additional, misnamed property called owningNode, whose value equals that of the owningElement
property.

Example
Use The Evaluator (Chapter 13) with IE4+ to inspect the owningElement of the first styleSheet object in
the document. Enter the following statement into the top text box:

document.styleSheets[0].owningElement.tagName

The returned value is the style element tag name.

Related Items: ownerNode property.

820

Document Objects Reference

styleSheetObject.owningElement

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 820

pages
Value: Array of @page rules. Read-Only
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-

An @page style rule defines the dimensions and margins for printed versions of a web page. The pages
property returns a collection of @page rules contained by the current styleSheet object. If no @page rules
are defined in the stylesheet, the array has a length of zero.

While an @page rule has the same properties as any rule object, it has one more read-only property, the
pseudoClass property, which returns any pseudo-class definitions in the rule. For example, the following
@page rules define different rectangle specifications for the left and right printed pages:

@page :left {margin-left:4cm; margin-right:3cm;}
@page :right {margin-left:3cm; margin-right:4cm;}

Values for the pseudoClass property of these two page rules are :left and :right, respectively.

To the W3C DOM, an @page rule is just another rule object, but one whose type property returns page.

For more information about the paged media specification, see http://www.w3.org/TR/REC-CSS2/
page.html.

Related Items: None.

parentStyleSheet
Value: styleSheet object. Read-Only
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

An imported stylesheet is present thanks to the hosting of a styleSheet object created by a style or link
element. That host styleSheet object is referenced by the parentStyleSheet property. For most
styleSheet objects (that is, those not imported via the @import rule), the parentStyleSheet property is
null. Take note of the distinction between the parentStyleSheet property, which points to a styleSheet
object, and the various properties that refer to the HTML element that “owns” the styleSheet object.

Related Items: None.

readOnly
Value: Boolean. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The readOnly property’s name is a bit misleading. Its Boolean value lets your script know whether the cur-
rent stylesheet was embedded in the document by way of the style element or brought in from an external
file via the link element or @import rule. When embedded by a style element, the readOnly property is
false; for stylesheets defined outside the page, the property is true. But a value of true doesn’t mean that
your scripts cannot modify the style properties. Style properties can still be modified on the fly, but of
course the changes will not be reflected in the external file from which the initial settings came.

Related Items: owningElement property.

821

styleSheetObject.readOnly

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 821

rules
Value: Array of rule objects. Read-Only
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari+

The rules property returns an array of all rule objects (other than @ rules) defined in the current stylesheet.
The order of rule objects in the array is based on source code order of the rules defined in the style ele-
ment or in the external file.

Use the rules array as the primary way to reference an individual rule inside a stylesheet. If you use a for
loop to iterate through all rules in search of a particular rule, you will most likely be looking for a match of
the rule object’s selectorText property. This assumes, of course, that each selector is unique within the
stylesheet. Using unique selectors is good practice, but no restrictions prevent you from reusing a selector
name in a stylesheet for additional style information applied to the same selector elements.

The corresponding property name for NN6+/Moz is cssRules. MacIE5 and Safari respond to both the
rules and cssRules properties.

Example
Use The Evaluator (Chapter 13) with IE4+ to examine the rules property of the first styleSheet object in
the page. First, find out how many rules are in the first styleSheet object by entering the following state-
ment into the top text box:

document.styleSheets[0].rules.length

Next, examine the properties of one of the rules by entering the following statement into the bottom text box:

document.styleSheets[0].rules[1]

You now see all the properties that IE4+ exposes for a rule object.

Related Items: rule object; cssRules property.

title
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

If you assign a value to the title attribute of a style element or a link element that loads a stylesheet, that
string value filters down to the title property of the styleSheet object. You can use the string value as a kind
of identifier, but it is not usable as a true identifier that you can use as an index to the styleSheets array. In
visible HTML elements, the title attribute usually sets the text that displays with the tooltip over the element.
But for the unseen style and link elements, the attribute has no impact on the rendered display of the page.
Therefore, you can use this attribute and corresponding property to convey any string value you want.

Related Items: title property of all HTML elements.

type
Value: String. Read/Write
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+

The type property of a styleSheet object picks up the type attribute of the style or link element that
embeds a stylesheet into the page. Unless you are experimenting with some new types of stylesheet lan-
guage (assuming it is even supported in the browser), the value of the type property is text/css.

Related Items: None.

822

Document Objects Reference

styleSheetObject.type

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 822

Methods
addImport(“URL”[, index])
Returns: Integer.
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The addImport() method lets you add an @import rule to a styleSheet object. A required first parame-
ter is the URL of the external .css file that contains one or more stylesheet rules. If you omit the second
parameter, the @import rule is appended to the end of rules in the styleSheet object. Or you can specify
an integer as the index of the position within the rules collection where the rule should be inserted. The
order of rules in a styleSheet object can influence the cascading order of overlapping stylesheet rules
(that is, multiple rules that apply to the same elements).

The value returned by the method is an integer representing the index position of the new rule within the
rules collection of the styleSheet. If you need subsequent access to the new rule, you can preserve the
value returned by the addImport() method and use it as the index to the rules collection.

Related Items: addRule() method.

addRule(“selector”, “styleSpec”[, index])
removeRule(index)
Returns: Integer (for addRule()).
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

The addRule() method appends or inserts a stylesheet rule into the current styleSheet object. The first
two parameters are strings for the two components of every rule: the selector and the style specification.
Any valid selector, including multiple, space-delimited selectors, is permitted. For the style specification,
the string should contain the semicolon-delimited list of style attribute:value pairs, but without the
curly braces that surround the specification in a regular stylesheet rule.

If you omit the last parameter, the rule is appended to the end of the rules collection for the stylesheet. Or,
you can specify an integer index value signifying the position within the rules collection where the new
rule should go. The order of rules in a styleSheet object can influence the cascading order of overlapping
stylesheet rules (meaning multiple rules that apply to the same elements).

The return value conveys no meaningful information.

To remove a rule from a styleSheet object’s rules collection, invoke the removeRule() method.
Exercise some care here, because you must have the correct index value for the rule that you want to
remove. Your script can use a for loop to iterate through the rules collection, looking for a match of the
selectorText property (assuming that you have unique selectors). The index for the matching rule can
then be used as the parameter to removeRule(). This method returns no value.

For NN6+/Moz, the corresponding methods are called insertRule() and deleteRule().

Example
Use The Evaluator (Chapter 13) with IE4+ to add a stylesheet rule to the first styleSheet object of the
page. First, make sure the stylesheet is enabled by entering the following statement into the top text box:

document.styleSheets[0].disabled = false

Next, append a style that sets the color of the textarea element:

document.styleSheets[0].addRule(“textarea”, “color:red”)

823

styleSheetObject.addRule()

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 823

Enter any valid object (such as document.body) into the bottom text box to see how the style has been
applied to the textarea element on the page.

Now remove the style, using the index of the last item of the rules collection as the index:

document.styleSheets[0].removeRule(document.styleSheets[0].rules.length - 1)

The text in the textarea returns to its default color.

Related Items: deleteRule(), insertRule() methods.

deleteRule(index)
insertRule(“rule”, index)
Returns: Integer (for insertRule()).
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari+

The insertRule() method appends or inserts a stylesheet rule into the current styleSheet object. The
first parameter is a string containing the style rule as it would normally appear in a stylesheet, including the
selector and curly braces surrounding the semicolon-delimited list of style attribute:value pairs.

You must supply an index location within the cssRules array where the new rule is to be inserted. If you
want to append the rule to the end of the list, use the length property of the cssRules collection for the
parameter. The order of rules in a styleSheet object can influence the cascading order of overlapping
stylesheet rules (meaning multiple rules that apply to the same elements).

The return value is an index for the position of the inserted rule.

To remove a rule from a styleSheet object’s cssRules collection, invoke the deleteRule() method.
Exercise some care here, because you must have the correct index value for the rule that you want to
remove. Your script could use a for loop to iterate through the cssRules collection, looking for a match of
the selectorText property (assuming that you have unique selectors). The index for the matching rule
can then be used as the parameter to deleteRule(). This method returns no value.

For IE4+, the corresponding methods are called addRule() and removeRule().

Example
Use The Evaluator (Chapter 13) with NN6+/Moz to add a stylesheet rule to the first styleSheet object
of the page. First, make sure the stylesheet is enabled by entering the following statement into the top
text box:

document.styleSheets[0].disabled = false

Next, append a style that sets the color of the textarea element:

document.styleSheets[0].insertRule(“textarea {color:red}”,
document.styleSheets[0].cssRules.length)

Enter any valid object (such as document.body) into the bottom text box to see how the style has been
applied to the textarea element on the page.

Now remove the style, using the index of the last item of the rules collection as the index:

document.styleSheets[0].deleteRule(document.styleSheets[0].cssRules.length - 1)

Related Items: addRule(), removeRule() methods.

824

Document Objects Reference

styleSheetObject.deleteRule()

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 824

cssRule and rule Objects

Properties Methods Event Handlers

cssText

parentStyleSheet

readOnly

selectorText

style

type

Syntax
Accessing rule or cssRule object properties:

(IE4+) document.styleSheets[index].rules[index].property
(MacIE5/W3C) document.styleSheets[index].cssRules[index].property

About these objects
The rule and cssRule objects are different object model names for the same objects. For IE4+, the object is
known as a rule (and a collection of them the rules collection); for NN6+/Moz/Safari (and MacIE5), the
object follows the W3C DOM recommendation, calling the object a cssRule (and a collection of them the
cssRules collection). For the remainder of this section, they will be referred to generically as the rule object.

A rule object has two major components. The first is the selector text, which governs which element(s) are
to be influenced by the style rule. The second component is the style definition, with its set of semicolon-
delimited attribute:value pairs. In both the IE4+ and NN6+/Moz/W3C object models, the style defini-
tion is treated as an object: the style object, which has tons of properties representing the style attributes
available in the browser. The style object that belongs to a rule object is precisely the same style object
that is associated with every HTML element object. Accessing style properties of a stylesheet rule requires
a fairly long reference, as in

document.styleSheets[0].rules[0].style.color = “red”;

but the format follows the logic of JavaScript’s dot-syntax to the letter.

Properties
cssText
Value: String. Read/Write
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari+

The cssText property returns the full text of the current cssRule object. While the text returned from this
property can be parsed to locate particular strings, it is easier and more reliable to access individual style
properties and their values via the style property of a cssRule object.

Related Items: style property.

825

ruleObject.cssText

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 825

parentStyleSheet
Value: styleSheet object. Read-Only
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari+

The parentStyleSheet property is a reference to the styleSheet object that contains the current
cssRule object. The return value is a reference to a styleSheet object, from which scripts can read and
write properties related to the entire stylesheet.

Related Items: parentRule property.

readOnly
Value: Boolean. Read-Only
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-

The readOnly property’s name is a bit misleading. Its Boolean value lets your script know whether the cur-
rent rule’s styleSheet was embedded in the document by way of the style element or brought in from
an external file via the link element or @import rule. When embedded by a style element, the readOnly
property is false; for stylesheets defined outside the page, the property is true. But a value of true doesn’t
mean that your scripts cannot modify the style properties. Style properties can still be modified on the fly,
but of course the changes are not reflected in the external file from which the initial settings came.

Related Items: styleSheet.readOnly property.

selectorText
Value: String. Read-Only
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari+

The selectorText property returns only the selector portion of a stylesheet rule. The value is a string, and
if the selector contains multiple, space-delimited items, the selectorText value returns the same space-
delimited string. For selectors that are applied to classes (preceded by a period) or ids (preceded by a cross-
hatch), those leading characters are returned as part of the string as well.

If you want to change the selector for a rule, removing the original rule and adding a new one in its place is
better. You can always preserve the style property of the original rule and assign the style to the new rule.

Example
Use The Evaluator (Chapter 13) to examine the selectorText property of rules in the first styleSheet
object of the page. Enter each of the following statements in the top text box:

document.styleSheets[0].rules[0].selectorText
document.styleSheets[0].rules[1].selectorText

Compare these values against the source code view for the style element in the page.

Related Items: style property.

style
Value: style object. Read/Write
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari+

826

Document Objects Reference

ruleObject.style

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 826

The style property of a rule (or cssRule) is, itself, an object whose properties consist of the CSS style
properties supported by the browser. Modifying a property of the style object requires a fairly long refer-
ence, as in

document.styleSheets[0].rules[0].style.color = “red”;

Any change you make to the rule’s style properties is reflected in the rendered style of whatever elements
are denoted by the rule’s selector. If you want to change the style of just one element, access the style
property of just that element. Style values applied directly to an element override whatever stylesheet style
values are associated with the element.

Example
Use The Evaluator (Chapter 13) to modify a style property of one of the styleSheet rules in the page.
The syntax shown here is for IE4+, but you can substitute the cssRules reference for the rules collection
reference in NN6+/Moz, MacIE5, and W3C browsers if you like.

Begin by reloading the page and making sure the stylesheet is enabled. Enter the following statement into
the top text box:

document.styleSheets[0].disabled = false

The first rule is for the myP element on the page. Change the rule’s font-size style:

document.styleSheets[0].rules[0].style.fontSize = “20pt”

Look over the style object properties in the discussion of the style object later in this chapter and have
fun experimenting with different style properties. After you are finished, reload the page to restore the styles
to their default states.

Related Items: style object.

type
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari+

The W3C DOM defines several classes of stylesheet rules. To make it easier for a script to identify the kind
of cssRule it is working with, the type property returns an integer whose value is associated with one of
the known cssRule types. While not all of these rule types may be implemented in current browsers, the
complete W3C DOM list is as follows:

Type Description

0 Unknown type

1 Regular style rule

2 @charset rule

3 @import rule

4 @media rule

5 @font-face rule

6 @page rule

827

ruleObject.type

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 827

Most of the stylesheet rules you work with are type 1. To learn more about these rule types, consult the
W3C specification for CSS at http://www.w3.org/TR/REC-CSS2.

Related Items: None.

currentStyle, runtimeStyle, and style Objects
Properties Methods Event Handlers

(See the following text)

Syntax
Accessing currentStyle, runtimeStyle, or style object properties:

(IE4+/W3C) elementReference.style.property
(IE4+/W3C) document.styleSheets[index].style.property
(IE5+) elementReference.currentStyle.property
(IE5.5+) elementReference.runtimeStyle.property

About these objects
All three of these objects — currentStyle, runtimeStyle, and style— return an object that contains
dozens of properties related to stylesheet specifications associated either with a styleSheet object (for the
style object only) or any rendered HTML element object. With the browser page reflow facilities of mod-
ern browsers, changes made to the properties of the style and IE-specific runtimeStyle objects are
reflected immediately by the rendered content on the page.

The primary object, the style object, is accessed as a property of an HTML element object. It is vital to
remember that style properties of an HTML element are reflected by the style object only if the specifica-
tions are made via the style attribute inside the element’s tag. If your coding style requires that stylesheets
be applied via style or link tags, and if your scripts need to access the style property values as set by
those stylesheets, then you must read the properties of the effective stylesheet through the read-only
currentStyle property (available in IE5+) or the W3C DOM window.getComputedStyle() method
(NN6+/Moz).

IE’s currentStyle object does not have precisely the same properties as its style object. Missing from the
currentStyle object are the properties that contain combination values, such as border or
borderBottom. On the other hand, currentStyle provides separate properties for each of the sides of a
clipping rectangle (clipTop, clipRight, clipBottom, and clipLeft), which the clip property does not
provide.

Microsoft introduced one more flavor of style object — the runtimeStyle object — in IE5.5. This object
lets scripts override any style property that is set in a stylesheet or via the style attribute. In other words,
the runtimeStyle object is like a read/write version of currentStyle except that assigning a new value
to one of its properties does not modify the stylesheet definition or the value assigned in a style attribute.
By and large, however, your scripts will modify the style property of an element to make changes, unless
you modify styles by enabling and disabling stylesheets (or changing the className property of an element
so that it is under the control of a different selector).

828

Document Objects Reference

elementRef.style

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 828

Style properties
If you add up all the style object properties available in browsers starting with IE4 and NN6/Moz, you
have a list approximately 180 properties long. A sizable percentage are in common among all browsers and
are scriptable versions of W3C Cascading Style Sheet properties. The actual CSS property names are fre-
quently script-unfriendly in that multiple-worded properties have hyphens in them, such as font-size.
JavaScript identifiers do not allow hyphens, so multiple-worded properties are converted to interCap ver-
sions, such as fontSize.

Not all style properties are supported by all browsers that have the style object in their object models.
Microsoft, in particular, has added many properties that are sometimes unique to IE and sometimes unique
to just IE for Windows. On the Mozilla side, you find some properties that appear to be supported by the
style object, but the browser doesn’t genuinely support the attributes. For example, the CSS specification
defines several attributes that enhance the delivery of content that is rendered through a speech synthesizer.
Although Firefox doesn’t qualify, the Gecko browser engine at its core could be adapted to such a browser.
Therefore, if you see a property in the following listings that doesn’t make sense to you, test it out in the
compatible browsers to verify that it works as you need it. You will also find some properties that are pro-
prietary to Mozilla-based browsers — properties that begin with moz. These properties are preliminary
implementations of as yet unreleased CSS Level 3 properties. The moz prefix lets you use these properties
today without conflicting with future, sanctioned implementations of the properties (which won’t have the
moz prefix). When specifying these properties in CSS syntax for your stylesheets, the properties begin with
the special prefix -moz-, as in -moz-opacity (and the scripted equivalent, mozOpacity).

Some browsers also expose advanced style object properties to scripters, when, in fact, they are not gen-
uinely supported in the browser. For example, an inspection of the style object for MacIE5 and
NN6+/Moz shows a quotes property, which matches the quotes style property in the W3C CSS2 specifi-
cation. But in truth, the quotes style property cannot be set by script in these browsers. When you see that
a property is supported by MacIE5 and NN6+/Moz but not others, testing out the style property (and the
stylesheet attribute as well) in The Evaluator is a good idea before attempting to employ the property in
your application.

With so many properties associated with an object, it may be difficult to locate the specific property you
need for a particular style effect. To help you locate properties, the listings that follow are divided into func-
tional categories, ordered by popularity:

Category Description

Text & Fonts Font specifications, text rendering, text alignment

Inline Display & Layout Element flow, alignment, and display

Positioning Explicit positioning of “layers”

Background Background images and colors

Borders & Edges Borders, padding, and margins around elements

Lists Details for ul and ol elements

Scroll bars Scroll bar colors (WinIE5.5+ only)

Tables Details for table elements and components

Printing Page breaks and alignment for printed pages

Miscellaneous Odds and ends

Aural For rendering via speech-synthesis

829

elementRef.style

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 829

Property values
All style object property values are strings. Moreover, many groups of style properties share the same for-
mat for their values. Knowing the formats for the frequently used values is helpful. The purpose of this
chapter is not to teach you about stylesheets but to show you how to script them. Therefore, if you see
unfamiliar terminology here, consult online or print instructional material about Cascading Style Sheets.

Length
Values for length cover a wide range, but they all define an amount of physical space in the document.
Because content can be displayed on a video monitor or printed on a sheet of paper, any kind of length value
should include a unit of measure as well as the quantity. One group of units (px, em, ex) are considered rela-
tive units, because the precise size depends on factors beyond the control of the stylesheet (for example, the
pixel density of the display) or units set by elements with more global scope (for example, a p element’s mar-
gin em length dependent upon the body element’s font-size setting). Absolute units (in, cm, mm, pi, pt) are
more appropriate for printed output. Length units are referred in script according to the following table:

Unit Script Version Example

pixel px 14px

em em 1.5em

ex ex 1.5ex

inch in 3.0in

centimeter cm 4.0cm

millimeter mm 40mm

pica pi 72pi

point pt 14pt

A length value can also be represented by a percentage as a string. For example, the lineHeight style for a
paragraph would be set to 120% of the font size established for the paragraph by the following statement:

document.getElementById(“myP”).style.lineHeight = “120%”;

Style inheritance — an important CSS concept — often has significant impact on style properties whose val-
ues are lengths.

Color
Values for colors can be one of three types:

n RGB values (in a few different formats)

n plain-language versions of the color names

n plain-language names of system user interface items

RGB values can be expressed as hexadecimal values. The most common way is with a crosshatch character
followed by six hex numbers, as in #ff00ff (letters can be uppercase or lowercase). A special shortcut is
also available to let you specify three numbers with the assumption that they will be expanded to pairs of
numbers. For example, a color of #f0f is expanded internally to be #ff00ff.

830

Document Objects Reference

elementRef.style

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 830

An alternative RGB expression is with the rgb() prefix and three numbers (from 0 to 255) or percentages
corresponding to the red, green, and blue components of the color. Here are a couple of examples:

document.styleSheets[0].rules[0].style.color = “rgb(0, 255, 0)”;
document.styleSheets[0].rules[0].style.color = “rgb(0%, 100%, 0%)”;

Browsers also respond to a long list of plain-language color names originally adopted from the X Window
System palette by Netscape and now known as X11 colors. You can see the list with sample colors at
http://en.wikipedia.org/wiki/X11_color_names. Not all of those colors are necessarily part of
what are known as “web safe” colors. For a demonstration of web safe colors, visit http://www
.lynda.com/hexh.html. Of course, it’s worth noting that “web safe” colors only enter the picture when
a user is limited to an 8-bit (256) color display, which is rare these days.

The last category of color values references user interface pieces, many of which are determined by the
user’s control panel for video display. The string values correspond to recognizable UI components (also
called system colors), as follows:

831

elementRef.style

Style Sheet and Style Objects 26

activeborder

activecaption

appworkspace

background

buttonface

buttonhighlight

buttonshadow

buttontext

captiontext

graytext

highlight

highlighttext

inactiveborder

inactivecaption

inactivecaptiontext

infobackground

infotext

menu

menutext

scrollbar

threeddarkshadow

threedface

threedhighlight

threedlightshadow

threedshadow

window

windowframe

windowtext

Using these color settings may be risky for public sites, because you are at the mercy of the color settings
the user has chosen. For a corporate environment where system installations and preferences are strictly
controlled, these values could help define a safe color scheme for your pages.

Rectangle sides
Many style properties control the look of sides of rectangles (for example, thickness of a border around a
block element). In most cases, the style values can be applied to individual sides or combinations of sides,
depending on the number of values supplied to the property. The number of values affects the four sides of
the rectangle according to the following matrix:

Number of Values Impact

1 All four sides set to the one value

2 Top and bottom sides set to first value; left and right sides set to second value

3 Top side set to first value; left and right sides set to second value; bottom side set to third value

4 Top, right, bottom, and left sides set to individual values in that order

34_069165 ch26.qxp 3/1/07 4:05 PM Page 831

For example, to set the border color of an element so that all sides are red, the syntax is

elementRef.style.borderColor = “red”;

To set the top and bottom to red but the left and right to green, the syntax is

elementRef.style.borderColor = “red green”;

Properties that accept these multiple values cover a wide range of styles. Values may be colors, lengths, or
selections from a fixed list of possible values.

Combination values
Another category of style values includes properties that act as shortcuts for several related properties. For
example, the border property encompasses the borderWidth, borderStyle, and borderColor proper-
ties. This is possible because very different classes of values represent the three component properties:
borderWidth is a length; borderStyle is based on a fixed list of values; and borderColor is a color
value. Therefore, you can specify one or more of these property values (in any order), and the browser
knows how to apply the values to the detailed subproperty. Only one value is permitted for any one of these
subproperties, which means that if the property is one of the four-sided styles described in the previous sec-
tion, the value is applied to all four sides equally.

For example, setting the border property to a single value, as in

elementRef.style.border = “blue”;

is the same as setting

elementRef.style.borderColor = “blue”;

But if you set multiple items, as in

elementRef.style.border = “groove blue 3px”;

then you have set the equivalent of the following three statements:

elementRef.style.borderStyle = “groove”
elementRef.style.borderColor = “blue”;
elementRef.style.borderWidth = “3px”;

In the property descriptions that follow, these combination values are denoted by their scripted property
names and the OR (||) operator, as in

border = “borderStyle || borderColor || borderWidth”;

URLs
Unlike other property values containing URLs, a style property requires a slightly different format. This
format includes the url() prefix, with the actual URL (relative or absolute) located inside the parentheses.
The URL itself is not quoted, but the entire property value is, as in

elementRef.style.backgroundImage = “url(chainlink.jpg)”;

URLs should not have any spaces in them, but if they do, use the URL-encoded version for the file specifica-
tion: convert spaces to %20. This format distinguishes a URL value from some other string value for shortcut
properties.

832

Document Objects Reference

elementRef.style

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 832

Text and font properties
color
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Foreground color of an element, primarily used to assign color to text. May also affect edges and
highlights of other elements in some browsers.
Value: Color specification.
Example: elementRef.style.color = “rgb(#22FF00)”;

font
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Up to six font-related style properties.
Value: Combination values: fontStyle || fontVariant || fontWeight || fontSize || lineHeight ||
fontFamily. See individual properties for their value formats.
Example: elementRef.style.font = “bold sans-serif 16px”;

fontFamily
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Font family to be applied to an element in order of priority.
Value: Comma-delimited list of font families to be applied to element, starting with the most preferred font
family name. You can also use one of several generic family names that rely on the browser to choose the
optimal font to match the class: serif | sans-serif | cursive | fantasy | monospace. Not all browsers
support all constants, but serif, sans-serif, and monospace are commonly implemented.
Example: elementRef.style.fontFamily = “Bauhaus 93, Arial, monospace”;

fontSize
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Size of the characters of the current font family.
Value: Lengths (generally px or pt values); relative size constants: larger | smaller; absolute size
constants: xx-small | x-small | small | medium | large | x-large | xx-large
Examples: elementRef.style.fontSize = “16px”; elementRef.style.fontSize = “small”;

fontSizeAdjust
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari-
Controls: Aspect value of a secondary font family so that it maintains a similar character height as the
primary font family.
Value: Number (including floating-point value) or none
Example: elementRef.style.fontSizeAdjust = “1.05”;

fontStretch
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari-
Controls: Rendered width of a font’s characters.
Value: Constant ultra-condensed | extra-condensed | condensed | semi-condensed | semi-
expanded | expanded | extra-expanded | ultra-expanded or wider | narrower | inherit | normal
Example: elementRef.style.fontStretch = “expanded”;

833

elementRef.style.fontStretch

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 833

fontStyle
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Italic style of characters.
Value: Constant normal | italic | oblique | inherit
Example: elementRef.style.fontStyle = “italic”;

fontVariant
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari1.3+
Controls: Rendering characters as small caps.
Value: Constant normal | small-caps | inherit
Example: elementRef.style.fontVariant = “small-caps”;

fontWeight
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Rendering characters in bold or light weights. Fonts that support numbered gradations can be
controlled by those numbers. Normal = 400; Bold = 700.
Value: Constant bold | bolder | lighter | normal | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | inherit
Example: elementRef.style.fontWeight = “bold”;

letterSpacing
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Spacing between characters. Used to override a font family’s own characteristics.
Value: Length (usually em units, relative to current font size); Constant normal | inherit
Example: elementRef.style.letterSpacing = “1.2em”;

lineBreak
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Line-break rules for Japanese text content.
Value: Constant normal | strict
Example: elementRef.style.lineBreak = “strict”;

lineHeight
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Height of the rectangular space that holds a line of text characters.
Value: Length (usually em units, relative to current font size); number (a multiplier on the inherited line
height); percentage (relative to inherited line height); constant normal | inherit
Example: elementRef.style.lineHeight = “1.1”;

quotes
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari-
Controls: Characters to be used for quotation marks.
Value: Space-delimited pairs of open and close quotation symbols; Constant none | inherit
Example: elementRef.style.quotes = “« »”;

834

Document Objects Reference

elementRef.style.quotes

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 834

rubyAlign
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Alignment of ruby text within a ruby element.
Value: Constant auto | left | center | right | distribute-letter | distribute-space | line-edge
Example: RUBYelementRef.style.rubyAlign = “distribute=letter”;

rubyOverhang
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Overhang of ruby text within a ruby element.
Value: Constant auto | whitespace | none
Example: RUBYelementRef.style.rubyOverhang = “whitespace”;

rubyPosition
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Placement of ruby text with respect to the ruby element’s base text.
Value: Constant above | inline
Example: RUBYelementRef.style.rubyPosition = “inline”;

textAlign
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Horizontal alignment of text with respect to its containing element.
Value: Constant center | justify | left | right
Example: elementRef.style.textAlign = “center”;

textAlignLast
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Horizontal alignment of last line of text in a paragraph.
Value: Constant auto | center | justify | left | right
Example: elementRef.style.textAlignLast = “justify”;

textAutospace
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Extra spacing between ideographic and non-ideographic text.
Value: Constant none | ideograph-alpha | ideograph-numeric | ideograph-parenthesis |
ideograph-space
Example: elementRef.style.textAutospace = “ideograph=alpha”;

textDecoration
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Display of underline, overline, or line-through with text.
Value: Constant none | blink | line-through | overline | underline
Example: elementRef.style.textDecoration = “underline”;

835

elementRef.style.textDecoration

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 835

textDecorationBlink
textDecorationLineThrough
textDecorationNone
textDecorationOverline
textDecorationUnderline
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-
Controls: Individual text decoration characteristics for text, allowing for multiple decorations to be applied
to the same text.
Value: Boolean (not strings) true | false
Example: elementRef.style.textDecorationUnderline = true;

textIndent
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Amount of indentation for the first line of a block text element (for example, p).
Value: Length (negative values for outdenting); percentage (relative to inherited value)
Example: elementRef.style.textIndent = “2.5em”;

textJustify
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Controls: Additional detailed specifications for an element whose textAlign property is set to justify.
Value: Constant auto | distribute | distribute-all-lines | distribute-center-last |
inter-cluster | inter-ideograph | inter-word | kashida | newspaper
Example: elementRef.style.textJustify = “distribute”;

textJustifyTrim
Compatibility: WinIE5+, MacIE5, NN-, Moz-, Safari-
Reserved for future use.

textKashidaSpace
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Ratio of kashida expansion to white space expansion for Arabic writing systems.
Value: Percentage
Example: elementRef.style.textKashidaSpace = “90%”;

textOverflow
Compatibility: WinIE6+, MacIE-, NN-, Moz-, Safari1.3+
Controls: Whether an ellipsis (...) is displayed at the end of a line of overflowed text to indicate that more
text is available.
Value: Constant clip | ellipsis

836

Document Objects Reference

elementRef.style.textOverflow

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 836

textShadow
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari1.2+
Controls: Shadow rendering around text characters. Note: The style attribute for this property is not
implemented in MacIE5 or NN6+/Moz, but the property is listed as valid for a style object.
Value: Each shadow specification consists of an optional color and three space-delimited length values
(horizontal shadow offset, vertical shadow offset, blur radius length). Multiple shadow specifications are
comma-delimited.

textTransform
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Case rendering of the text (meaning without altering the case of the original text).
Value: Constant none | capitalize | lowercase | uppercase
Example: elementRef.style.textTransform = “uppercase”;

textUnderlinePosition
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Whether an underline text decoration is displayed above or below the text. Seems redundant
with textDecorationUnderline and textDecorationOverline.
Value: Constant above | below
Example: elementRef.style.textUnderlinePosition = “above”;

unicodeBidi
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari+
Controls: Within bidirectional text (for example, English and Arabic), to what extent an alternate direction
text block is embedded within the outer element.
Value: Constant normal | embed | bidi-override
Example: elementRef.style.unicodeBidi = “embed”;

whiteSpace
Compatibility: WinIE5.5+, MacIE5, NN6+, Moz+, Safari+
Controls: Treatment of white space characters within an element’s source code.
Value: Constant normal | nowrap | pre
Example: elementRef.style.whiteSpace = “nowrap”;

wordBreak
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Word breaking characteristics, primarily for Asian-language text or text containing a mixture of
Asian and Latin characters.
Value: Constant normal | break-all | keep-all
Example: elementRef.style.wordBreak = “break-all”;

837

elementRef.style.wordBreak

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 837

wordSpacing
Compatibility: WinIE6+, MacIE4+, NN6+, Moz+, Safari+
Controls: Spacing between words.
Value: Length (usually in em units); Constant normal
Example: elementRef.style.wordSpacing = “1em”;

wordWrap
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari1.3+
Controls: Word wrapping characteristics of text in a block element, explicitly sized inline element, or
positioned element.
Value: Constant normal | break-word
Example: elementRef.style.wordWrap = “break-word”;

writingMode
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Direction of content flow (left-to-right/top-to-bottom or top-to-bottom/right-to-left, as in some
Asian languages).
Value: Constant lr-tb | tb-rl
Example: elementRef.style.writingMode = “tb-rl”;

Inline display and layout properties
clear
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Layout orientation of an element with respect to a neighboring floating element.
Value: Constant both | left | none | right
Example: elementRef.style.clear = “right”;

clip
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: The clipping rectangle of an element (that is, the position of the rectangle through which the user
sees an element’s content).
Value: rect(topLength, rightLength, bottomLength, leftLength) | auto
Example: elementRef.style.clip = “rect(10px, 300px, 200px, 0px)”;

clipBottom
clipLeft
clipRight
clipTop
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Individual edges of the clipping rectangle of an element. These properties are read-only
properties of the currentStyle object.
Value: Length | auto
Example: var leftEdge = elementRef.currentStyle.clipLeft;

838

Document Objects Reference

elementRef.style.clipBottom

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 838

content
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari1.3+
Controls: The content rendered in addition to the element, usually to be applied with a :before or
:after pseudo-class. This feature will become more useful when CSS counters are implemented in
browsers. They’ll provide automatic section or paragraph numbering. While the CSS equivalent is
implemented in NN7/Moz/Safari, changes to the scripted property are not rendered.
Value: See http://www.w3.org/TR/REC-CSS2/generate.html#propdef-content.

counterIncrement
Compatibility: WinIE-, MacIE5, NN6+, Moz1.8+, Safari-
Controls: The jumps in counter values to be displayed via the content style property.
Value: One or more pairs of counter identifier and integers.

counterReset
Compatibility: WinIE-, MacIE5, NN6+, Moz1.8+, Safari-
Controls: Resets a named counter for content to be displayed via the content style property.
Value: One or more pairs of counter identifier and integers.

cssFloat
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari+
Controls: Horizontal alignment of an element that allows other content to wrap around the element
(usually text wrapping around an image). Corresponds to the CSS float style attribute. See also the
floatStyle property, later in this chapter. Floating (non-positioned) elements follow a long sequence of
rules for their behavior, detailed at http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-
float.
Value: Constant left | right | none
Example: elementRef.style.cssFloat = “right”;

cursor
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari1.3+
Controls: The icon used for the cursor on the screen from a library of system-generated cursors. The CSS2
specification defines syntax for downloadable cursors, but this feature is not implemented in NN6+/Moz.
You can change this style property only if a :hover pseudo-class is initially defined for the element.
Value: Constant auto | crosshair | default | e-resize | help | move | n-resize | ne-resize | nw-
resize | pointer | s-resize | se-resize | sw-resize | text | w-resize | wait. New values for IE6
are: all-scroll | col-resize | no-drop | not-allowed | progress | row-resize | url | vertical-
text. Mozilla-based browsers include: alias | cell | context-menu | copy | count-down | count-up |
count-up-down | grab | grabbing | spinning.
Example: elementRef.style.cursor = “hand”;

839

elementRef.style.cursor

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 839

direction
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari+
Controls: Layout direction (left-to-right or right-to-left) of inline text (same as dir attribute of an element).
Value: Constant ltr | rtl
Example: elementRef.style.direction = “rtl”;

display
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Whether an element is displayed on the page and in which display mode. Content surrounding
an undisplayed element cinches up to occupy the undisplayed element’s space — as if the element didn’t
exist for rendering purposes (see the visibility property for a different approach). Commonly used to
hide or show segments of a graphical tree structure. Also used to direct the browser to display an element as
inline or block-level element. Some special-purpose values are associated with specific element types (for
example, lists, table cells, and so on).
Value: Constant block | compact | inline | inline-table | list-item | none | run-in | table |
table-caption | table-cell | table-column-group | table-footer-group | table-header-group
| table-row | table-row-group
Example: elementRef.style.display = “none”; // removes element from page

filter
Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-
Controls: Rendering effects on static content and on transitions between hiding and showing elements.
Microsoft made a massive overhaul of the filter stylesheet syntax in WinIE5.5 (using the
DXImageTransform ActiveX control). Scripting transitions require several steps to load the transition and
actions before playing the transition. Use style.filter to read or write the entire filter specification
string; use the elem.styles[i] object to access individual filter properties. See the discussion of the
filter object later in this chapter.
Value: Filter specification as string.
Example: var filterSpec = elementRef.style.filter = “alpha(opacity=50) flipH()”;

layoutGrid
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Page grid properties (primarily for Asian-language pages).
Value: Combination values: layoutGridMode || layoutGridType || layoutGridLine ||
layoutGridChar. See individual properties for their value formats.
Example: elementRef.style.layoutGrid = “2em fixed”;

layoutGridChar
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Size of the character grid (Asian languages).
Value: Length; Percentage; Constant none | auto
Example: elementRef.style.layoutGridChar = “2em”;

840

Document Objects Reference

elementRef.style.layoutGridChar

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 840

layoutGridLine
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Line height of the grid (Asian languages).
Value: Length; Percentage; Constant none | auto
Example: elementRef.style.layoutGridLine = “110%”;

layoutGridMode
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: One- or two-dimensional grid (Asian languages).
Value: Constant both | none | line | char
Example: elementRef.style.layoutGridMode = “both”;

layoutGridType
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Type of grid for text content (Asian languages).
Value: Constant loose | strict | fixed
Example: elementRef.style.layoutGridType = “strict”;

markerOffset
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-
Controls: Distance between the edges of a marker box (content whose display is of a marker type) and a
block-level element’s box. Note: The CSS property is not implemented in MacIE5 or NN6+/Moz, but the
property is listed as valid for a style object.
Value: Length; Constant auto
Example: elementRef.style.markerOffset = “2em”;

marks
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari-
Controls: Rendering of crop marks and the like on the printed page. Note: The CSS property is not
implemented in MacIE5 or NN6+/Moz, but the property is listed as valid for a style object.
Value: Constant crop || cross | none
Example: elementRef.style.marks = “crop”;

maxHeight
maxWidth
minHeight
minWidth
Compatibility: WinIE (see text), MacIE-, NN6+, Moz+, Safari1+
Controls: Maximum or minimum height or width of an element. Microsoft supports maxHeight only
starting with IE7.
Value: Length; Percentage; Constant (for max properties only) none
Example: elementRef.style.maxWidth = “300px”;

841

elementRef.style.maxHeight

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 841

mozOpacity
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-
Controls: The level of opacity (transparency) of the element as a percentage; the lower the value, the more
transparent the element becomes (0% or 0.0 is completely transparent, while 100% or 1.0 is completely
opaque).
Value: Percentage, or numeric value between 0.0 and 1.0.
Example: elementRef.style.mozOpacity = “75%”;

opacity
Compatibility: WinIE-, MacIE-, NN-, Moz1.7.2+, Safari1.2+
Controls: The level of opacity (transparency) of the element as a percentage; the lower the value, the more
transparent the element becomes (0% or 0.0 is completely transparent, while 100% or 1.0 is completely
opaque). Unlike mozOpacity, which is unique to Mozilla, opacity is the official W3C standard for
opacity.
Value: Percentage, or numeric value between 0.0 and 1.0.
Example: elementRef.style.opacity = “25%”;

overflow
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: The rendering of a block-level element’s content when its native rectangle exceeds that of its next
outermost rectangular space. A hidden overflow clips the block-level content; a scrolled overflow forces
the outermost rectangle to display scroll bars so that users can scroll around the block-level element’s
content; a visible overflow causes the block-level element to extend beyond the outermost container’s
rectangle (indeed, “overflowing” the container).
Value: Constant auto | hidden | scroll | visible
Example: elementRef.style.overflow = “scroll”;

overflowX
overflowY
Compatibility: WinIE5+, MacIE-, NN-, Moz1.8+, Safari1.2
Controls: The rendering of a block-level element’s content when its native rectangle exceeds the width
(overflowX) or height (overflowY) of its next outermost rectangular space. A hidden overflow clips the
block-level content; a scrolled overflow forces the outermost rectangle to display scroll bars so that users
can scroll around the block-level element’s content; a visible overflow causes the block-level element to
extend beyond the outermost container’s rectangle (indeed, “overflowing” the container).
Value: Constant auto | hidden | scroll | visible
Example: elementRef.style.overflowX = “scroll”;

styleFloat
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-
Controls: Horizontal alignment of an element that allows other content to wrap around the element (usually
text wrapping around an image). Corresponds to the CSS float style attribute. See also the cssFloat
property, earlier in the chapter. Floating (non-positioned) elements follow a long sequence of rules for their
behavior, detailed at http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-float.
Value: Constant left | right | none
Example: elementRef.style.styleFloat = “right”;

842

Document Objects Reference

elementRef.style.styleFloat

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 842

verticalAlign
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari1.2+
Controls: How inline and table cell content aligns vertically with surrounding content. Not all constant
values are supported by all browsers.
Value: Constant baseline | bottom | middle | sub | super | text-bottom | text-top | top; Length;
Percentage.
Example: elementRef.style.verticalAlign = “baseline”;

visibility
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Whether an element is displayed on the page. The element’s space is preserved as empty space
when the element is hidden. To cinch up surrounding content, see the display property. This property is
used frequently for hiding and showing positioned element under script control.
Value: Constant collapse | hidden | visible
Example: elementRef.style.visibility = “hidden”;

width
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Horizontal dimension of a block-level element. Earlier browsers exhibit unexpected behavior
when nesting elements that have their width style properties set.
Value: Length; Percentage; Constant auto
Example: elementRef.style.width = “200px”;

zoom
Compatibility: WinIE5.5+, MacIE-, NN-, Moz-, Safari-
Controls: Magnification factor of a rendered element.
Value: Constant normal; Percentage (where 100% is normal); floating-point number (scale multiplier,
where 1.0 is normal)
Example: elementRef.style.zoom = “.9”;

Positioning properties
See Chapter 40 on the CD-ROM for coding examples of positioned elements and their style properties.

bottom
right
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari+
Controls: The offset measure of a positioned element from its containing rectangle’s bottom and right
edges, respectively. In practice, you should adjust the size of a positioned element via the style’s height and
width properties.
Value: Length; Percentage; Constant auto
Example: elementRef.style.bottom = “20px”;

843

elementRef.style.bottom

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 843

left
top
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: The offset measure of a positioned element from its containing rectangle’s left and top edges,
respectively. In practice, use these properties to position an element under script control. To position an
absolute-positioned element atop an inline element, calculate the position of the inline element via the
offsetTop and offsetLeft properties with some browser-specific adjustments, as shown in Chapter 40
on the CD-ROM.
Value: Length; Percentage; Constant auto
Example: elementRef.style.top = “250px”;

height
width
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Height and width of a block-level element’s box. Used most commonly to adjust the dimensions
of a positioned element (Chapter 40 on the CD-ROM).
Value: Length; Percentage; Constant auto
Example: elementRef.style.height = “300px”;

pixelBottom
pixelHeight
pixelLeft
pixelRight
pixelTop
pixelWidth
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari+
Controls: Integer pixel values for (primarily positioned) elements. Because the non-pixel versions of these
properties return strings that also contain the unit measure (for example, 30px), these properties let you
work exclusively in integers for pixel units. The same can be done cross-platform by using parseInt() on
the non-pixel versions of these properties. The pixelBottom and pixelRight properties are not in
MacIE4.
Value: Integer
Example: elementRef.style.pixelTop = elementRef.style.pixelTop + 20;

posBottom
posHeight
posLeft
posRight
posTop
posWidth
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-
Controls: Numeric values for (primarily positioned) elements in whatever unit was specified by the
corresponding style attribute. Because the non-pos versions of these properties return strings that also

844

Document Objects Reference

elementRef.style.posBottom

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 844

contain the unit measure (for example, 1.2em), these properties let you work exclusively in numbers in the
same units as the style was originally defined. The same can be done cross-platform by using
parseFloat() on the non-pixel versions of these properties.
Value: Integer
Example: elementRef.style.posTop = elementRef.style.posTop + 0.5;

position
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: The type of positioning to be applied to the element. An element that is not explicitly positioned
is said to be static. A relative-positioned element appears in its normal page flow location but can be
explicitly positioned relative to that location. An absolute-positioned element must have its top and left
style attributes set to give the element a set of coordinates for its location. MacIE5 and NN6+/Moz/Safari
also allow for a fixed positioned element, which remains at its designated position in the browser window,
even if the page scrolls (for example, for a watermark effect). You cannot use scripts to change between
positioned and non-positioned style settings. See Chapter 40 on the CD-ROM for more information on
positioned elements.
Value: Constant absolute | fixed | relative | static
Example: elementRef.style.position = “absolute”;

zIndex
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Front-to-back layering of positioned elements. Multiple items with the same zIndex value are
layered in source code order (earliest item at the bottom). The higher the value, the closer to the user’s eye
the element is.
Value: Integer number; Constant auto
Example: elementRef.style.zIndex = “3”;

Background properties
background
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Up to five background style properties for an element.
Value: Combination values: backgroundAttachment || backgroundColor || backgroundImage ||
backgroundPosition || backgroundRepeat
Example: elementRef.style.background = “scroll url(bricks.jpg) repeat-x”;

backgroundAttachment
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari1.2+
Controls: Whether the background image remains fixed or scrolls with the content. Default is scroll.
Value: Constant fixed | scroll
Example: elementRef.style.backgroundAttachment = “fixed”;

845

elementRef.style.backgroundAttachment

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 845

backgroundColor
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Solid, opaque color for the background, or completely transparent. If you assign a background
image, the color is layered behind the image so that any transparent spots of the image show the
background color.
Value: Color value; Constant transparent
Example: elementRef.style.backgroundColor = “salmon”;

backgroundImage
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: The URL (if any) of an image to be used for the background for the element.
Value: URL value; Constant none
Example: elementRef.style.backgroundImage = “url(bricks.jpg)”;

backgroundPosition
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: The left-top location of the background image. Any offset from the left-top corner (default value
“0% 0%”) allows background color to show through along left and top edges of the element.
Value: Length values; Percentages; Constant left | center | right || top | center | bottom. While single
values are accepted, their behavior may not be as expected. Providing space-delimited pairs of values is
more reliable.
Example: elementRef.style.backgroundPosition = “left top”;

backgroundPositionX
backgroundPositionY
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari1.3+
Controls: The left (backgroundPositionX) and top (backgroundPositionY) locations of the
background image. Any offset from the left-top corner (default value “0%”) allows background color to
show through along left and top edges of the element.
Value: Length value; Percentage; Constant left | center | right (for backgroundPositionX); Constant
top | center | bottom (for backgroundPositionY).
Example: elementRef.style.backgroundPositionX = “5px”;

backgroundRepeat
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Image repetition characteristics of a background image. You can force the image to repeat along a
single axis, if you want.
Value: Constant repeat | repeat-x | repeat-y | no-repeat
Example: elementRef.style.backgroundRepeat = “repeat-y”;

846

Document Objects Reference

elementRef.style.backgroundRepeat

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 846

Border and edge properties
border
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Up to three border characteristics (color, style, and width) for all four edges of an element.
Value: Combination values borderColor || borderStyle || borderWidth
Example: elementRef.style.border = “green groove 2px”;

borderBottom
borderLeft
borderRight
borderTop
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Up to three border characteristics (color, style, and width) for a single edge of an element.
Value: Combination values

(for borderBottom) borderBottomColor || borderBottomStyle || borderBottomWidth
(for borderLeft) borderLeftColor || borderLeftStyle || borderLeftWidth
(for borderRight) borderRightColor || borderRightStyle || borderRightWidth
(for borderTop) borderTopColor || borderTopStyle || borderTopWidth

Example: elementRef.style.borderLeft = “#3300ff solid 2px”;

borderBottomColor
borderLeftColor
borderRightColor
borderTopColor
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Color for a single border edge of an element.
Value: Color values; Constant transparent
Example: elementRef.style.borderTopColor = “rgb(30%, 50%, 0%)”;

borderBottomStyle
borderLeftStyle
borderRightStyle
borderTopStyle
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Rendered style for a border edge of an element.
Value: Constant none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset.
WinIE versions prior to IE5.5 do not respond to the dotted or dashed types; MacIE does not respond to
the hidden type.
Example: elementRef.style.borderRightStyle = “double”;

847

elementRef.style.borderBottomStyle

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 847

borderBottomWidth
borderLeftWidth
borderRightWidth
borderTopWidth
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Thickness of a border edge of an element.
Value: Length value; Constant thin | medium | thick (precise measure is at browser’s discretion).
Example: elementRef.style.borderBottomWidth = “5px”;

borderColor
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Rendered color for one to four sides of an element.
Value: Color values for one to four rectangle sides.
Example: elementRef.style.borderColor = “green black”;

borderStyle
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Rendered style for one to four sides of an element.
Value: One to four rectangle side constants none | hidden | dotted | dashed | solid | double | groove |
ridge | inset | outset. WinIE versions prior to IE5.5 do not respond to the dotted or dashed types;
MacIE does not respond to the hidden type.
Example: elementRef.style.borderStyle = “ridge”;

borderWidth
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Thickness of border for one to four sides of an element.
Value: One to four rectangle side length value or constants thin | medium | thick (precise dimension is at
browser’s discretion).
Example: elementRef.style.borderWidth = “5px 4px 5px 3px”;

margin
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Thickness of transparent margin space outside the element’s borders for one to four edges.
Value: One to four rectangle side length values.
Example: elementRef.style.margin = “10px 5px”;

marginBottom
marginLeft
marginRight
marginTop
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Thickness of transparent margin space outside the element’s borders for a single border edge.

848

Document Objects Reference

elementRef.style.marginBottom

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 848

Value: Length value
Example: elementRef.style.marginBottom = “50px”;

mozBorderRadius
mozBorderRadiusBottomLeft
mozBorderRadiusBottomRight
mozBorderRadiusTopLeft
mozBorderRadiusTopRight
Compatibility: WinIE-, MacIE-, NN7+, Moz+, Safari-
Controls: Radius of the border around the element. You can specify each radius corner as a series of values
in the mozBorderRadius style (one value for all four corners; two values for top-left/bottom-right and top-
right/bottom-left; three values for top-left, top-right/bottom-left, and bottom-right; four values for top-left,
top-right, bottom-right, bottom-left), or set each corner radius individually with its own property.
Value: Radius length value
Example: elementRef.style.mozBorderRadius = “20px 10px 20px 10px”;

outline
Compatibility: WinIE-, MacIE5, NN-, Moz1.8.1+, Safari1.2+
Controls: Up to three characteristics of an outline surrounding an element (similar to a border, but not
shifting the location of internal content).
Value: Combination values: outlineColor || outlineStyle || outlineWidth
Example: elementRef.style.outline = “red groove 2px”;

outlineColor
Compatibility: WinIE-, MacIE5, NN-, Moz1.8.1+, Safari1.2+
Controls: Color of all four edges of an outline.
Value: Color values; Constant invert
Example: elementRef.style.outlineColor = “cornflowerblue”;

outlineOffset
Compatibility: WinIE-, MacIE5, NN-, Moz1.8.1+, Safari1.2+
Controls: The space between an outline surrounding an element and the border of the element.
Value: Length value
Example: elementRef.style.outlineOffset = “3px”;

outlineStyle
Compatibility: WinIE-, MacIE5, NN-, Moz1.8.1+, Safari1.2+
Controls: Rendered style for all four sides of an element outline.
Value: Constant none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset
Example: elementRef.style.outlineStyle = “ridge”;

849

elementRef.style.outlineStyle

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 849

outlineWidth
Compatibility: WinIE-, MacIE5, NN-, Moz1.8.1+, Safari1.2+
Controls: Thickness of all four sides of an element outline.
Value: Length value or constant thin | medium | thick (precise dimension is at browser’s discretion)
Example: elementRef.style.outlineWidth = “4px”;

padding
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Thickness of space between an element’s content and its borders for one to four edges.
Value: One to four rectangle side length values.
Example: elementRef.style.padding = “5px”;

paddingBottom
paddingLeft
paddingRight
paddingTop
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Thickness of space between an element’s content and its borders for a single edge.
Value: Length value
Example: elementRef.style.paddingBottom = “20px”;

List properties
listStyle
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Up to three characteristics of a list (ol or ul) presentation. Also applies to dd, dt, and li elements.
Value: Combination values listStyleImage || listStylePosition || listStyleType
Example: elementRef.style.listStyle = “none inside lower-alpha”;

listStyleImage
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: URL of the image to be used as a marker for a list item.
Value: URL value; Constant none
Example: elementRef.style.listStyleImage = “url(custombullet.jpg)”;

listStylePosition
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Whether the marker should be formatted inside the wrapped text of its content or dangle outside
the wrapped text (default).
Value: Constant inside | outside
Example: elementRef.style.listStylePosition = “inside”;

850

Document Objects Reference

elementRef.style.listStylePosition

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 850

listStyleType
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari+
Controls: Which of the standard marker sets should be used for items in the list. A change to this property
for a single li element causes succeeding items to be in the same style.
Value: For ul elements, constant circle | disc | square
For ol elements, constant decimal | decimal-leading-zero | lower-alpha | lower-greek |
lower-latin | lower-roman | upper-alpha | upper-greek | upper-latin | upper-roman, and
non-Roman formats when supported by the operating system (as in Mozilla for MacOS X): armenian |
georgian | hebrew | cjk-ideographic | hiragana | hiragana-iroha | katakana | katakana-iroha.
Example: elementRef.style.listStyleType = “upper-roman”;

Scroll bar properties
scrollbar3dLightColor
scrollbarArrowColor
scrollbarBaseColor
scrollbarDarkShadowColor
scrollbarFaceColor
scrollbarHighlightColor
scrollbarShadowColor
scrollbarTrackColor
Compatibility: WinIE5.5, Mac-, NN-, Moz-, Safari-
Controls: Colors of individual components of scroll bars when they are displayed for applet, body, div,
embed, object, or textarea elements. To experiment with how different colors can affect the individual
components, visit http://msdn.microsoft.com/workshop/samples/author/dhtml/refs/
scrollbarColor.htm.
Value: Color values; Constant none
Example: elementRef.style.scrollbarTrackColor = “hotpink”;

Table properties
borderCollapse
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari1.3+
Controls: Whether a table element adheres to the CSS2 separated borders model or the collapsed borders
model. Style is not fully supported in MacIE5.
Value: Constant collapse | separate
Example: elementRef.style.borderCollapse = “separate”;

borderSpacing
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari+
Controls: For a table following the separated borders model, the thickness of the spacing between cell
rectangles (akin to the cellspacing attribute of table elements). Style is not fully supported in MacIE5.
Value: One length value (for horizontal and vertical spacing) or comma-delimited list of two length values
(the first for horizontal; the second for vertical).
Example: elementRef.style.borderSpacing = “10px”;

851

elementRef.style.borderSpacing

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 851

captionSide
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari+
Controls: Position of the caption element inside a table element. Style is not implemented in MacIE5
and is only partially implemented in Safari.
Value: Constant top | right | bottom | left
Example: elementRef.style.captionSide = “bottom”;

emptyCells
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari1.3+
Controls: Rendering of cells and their borders when the cells have no content. Default behavior is to not
render borders around empty cells. Style is not implemented in MacIE5.
Value: Constant show | hide
Example: elementRef.style.emptyCells = “show”;

tableLayout
Compatibility: WinIE5+, MacIE5, NN6+, Moz+, Safari+
Controls: Whether table is rendered progressively based on fixed width settings of the first row of cells or is
rendered after the widths of all row content can be determined. Modifying this property after a table loads
has no effect on the table.
Value: Constant auto | fixed
Example: elementRef.style.tableLayout = “auto”;

Page and printing properties
orphans
widows
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari-
Controls: The minimum number of lines of a paragraph to be displayed at the bottom of a page (orphans)
or top of a page (widows) when a page break occurs.
Value: Integer
Example: elementRef.style.orphans = “4”;

page
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari-
Controls: The page (defined in an @page rule) with which the current element should be associated for
printing.
Value: Identifier assigned to an existing @page rule
Example: elementRef.style.page = “landscape”;

pageBreakAfter
pageBreakBefore
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari1.3+
Controls: Whether a printed page break should be before or after the current element and the page
break type.

852

Document Objects Reference

elementRef.style.pageBreakAfter

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 852

Value: Constant auto | always | avoid | left | right
Example: elementRef.style.pageBreakBefore = “always”;

pageBreakInside
Compatibility: WinIE-, MacIE5, NN6+, Moz+, Safari-
Controls: Whether a printed page break is allowed inside an element.
Value: Constant auto | avoid
Example: elementRef.style.pageBreakInside = “avoid”;

size
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-
Controls: The size or orientation of the page box (linked to the style rule via the page property) used to
determine printed pages.
Value: One (same value for width and height) or two space-delimited (width and height) length values;
constant auto | portrait | landscape
Example: elementRef.style.size = “portrait”;

Miscellaneous properties
accelerator
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Whether an accelerator key is defined for an element.
Value: Boolean
Example: elementRef.style.accelerator = “true”;

behavior
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: The external behavior to be applied to the current element.
Value: Space-delimited list of URL values. URLs can be a file location, an object element ID, or one of the
built-in (default) behaviors.
Example: elementRef.style.behavior = “url(#default#anchorClick)”;

cssText
Compatibility: WinIE4+, MacIE4+, NN6+, Moz+, Safari1.3+
Controls: Actual CSS rule text (read-only). This property exists by virtue of the browser’s object model and
is not part of the CSS specification. There is no corresponding CSS attribute.
Value: String
Example: var cssRuleText = elementRef.style.cssText;

imeMode
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-
Controls: Whether text is entered into a text input or textarea element through the Input Method
Editor (for languages, such as Chinese, Japanese, or Korean).
Value: Constant auto | active | inactive | disabled
Example: elementRef.style.imeMode = “active”;

853

elementRef.style.imeMode

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 853

Aural properties
Although these properties are defined in the CSS2 specification and placeholders exist for them in Mozilla-
based browsers, the styles are not implemented. The script equivalent properties are listed here for the sake
of completeness only.

azimuth
cue
cueAfter
cueBefore
elevation
pause
pauseAfter
pauseBefore
pitch
pitchRange
playDuring
richness
speak
speakHeader
speakNumeral
speakPunctuation
speechRate
stress
voiceFamily
volume
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-
Controls: A variety of styles primarily for browsers that support speech synthesis output.
Value: Consult http://www.w3.org/TR/REC-CSS2/aural.html for details on aural stylesheets.

filter Object

Properties Methods Event Handlers

See text

854

Document Objects Reference

elementRef.style.filterObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 854

Syntax
Accessing filter object properties and methods:

(IE4+) document.all.objectID.filters[i].property | method([parameters])
(IE5.5+) document.all.objectID.filters[filterName].property |

method([parameters])

Compatibility: WinIE4+, MacIE-, NN-, Moz-, Safari-

About this object
Earlier in this chapter, the style.filter property was shown to allow reading and writing of the string
value that is assigned to an element’s style.filter property. Filters are available in WinIE only, even
though MacIE5 returns the style.filter property value. The purpose of this section is to teach you not
how to use filters but rather, how to script them.

Multiple filters are merely part of the space-delimited list of filters. Some filter types have additional specifi-
cations. For example, the glow() filter has three properties that more clearly define how the element
should be rendered with a glow effect. The stylesheet rule for an element whose ID is glower looks like the
following:

#glower {filter:glow(color=yellow, strength=5, enabled=true)}

Accessing the currentStyle.filter property for that element yields the string value:

glow(color=yellow, strength=5, enabled=true)

Attempting to modify a single subproperty of the glow() filter by way of string parsing would be cumber-
some and hazardous at best. For example, imagine trying to increment the glow filter’s strength property
by 5.

Reading and writing subproperties
A cleaner way to work with individual properties of a filter is to access the filter as an object belonging to
the element affected by the filter. Each type of filter object has as its properties the individual sub-properties
that you set in the stylesheet. Continuing with the glow() filter example, you could access just the color
property of the filter as follows:

var currColor = document.all.glower.filters[“glow”].color;

To modify the color, assign a new value to the filter object’s property:

document.all.glower.filters[“glow”].color = “green”;

To increment a numeric value, such as increasing the glow() filter’s strength property by 5, use a con-
struction such as the following (long-winded though it may be):

document.all.glower.filters[“glow”].strength =
document.all.glower.filters[“glow”].strength + 5;

Table 26-1 lists the filter object names that work all the way back to IE4 and the properties associated with
each filter type.

855

elementRef.style.filterObject

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 855

TABLE 26-1

IE4-Compatible Static Filter Types

Filter Name Description and Properties

alpha() Transparency level

Properties: opacity (0 to 100)

finishopacity (0 to 100)

style (gradient shape 0 to 3)

startX (coordinate integer)

startY (coordinate integer)

finishX (coordinate integer)

finishY (coordinate integer)

blur() Simulating blurred motion

Properties: add (1 or 0)

direction (0, 45, 90, 135, 180, 225,
270, 315)

strength (pixel count)

chroma() Color transparency

Properties: color (color value)

dropShadow() Shadow effect

Properties: color (color value)

offx (horizontal offset pixels)

offy (vertical offset pixels)

positive (1 or 0)

flipH() Horizontally mirrored image

Properties: None

flipV() Vertically mirrored image

Properties: None

glow() Outer edge radiance

Properties: color (color value)

strength (intensity 1 to 255)

gray() Eliminate color

Properties: None

invert() Opposite hue, saturation,
brightness levels

Properties: None

856

Document Objects Reference

elementRef.style.filterObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 856

Filter Name Description and Properties

light() Add light source (controlled
by methods)

Properties: None

mask() Overlay transparent mask

Properties: color (color value)

shadow() Render as silhouette

Properties: color (color value)

direction (0, 45, 90, 135, 180, 225,
270, 315)

wave() Add sine-wave distortion

Properties: add (1 or 0)

freq (integer number of waves)

light (strength 0 to 100)

phase (percentage offset 0 to 100)

strength (intensity 0 to 255)

xRay() Render edges only

Properties: None

In addition to the static filter types, which are applied to content and sit there unless modified by script, the
IE4+ filter object also provides types for blends and reveals for transitions between visible and invisible
elements. Scripting transitions to act when a script hides or shows an element requires a few lines of code,
including calls to some of the filter object’s methods. First, Table 26-2 shows the IE4+ syntax for transi-
tion filters.

TABLE 26-2

IE4+ Transition Filters

Filter Name Description and Properties

blendTrans() Fades out old element, fades
in new element

Properties: duration (floating-point number of
seconds)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

continued

857

elementRef.style.filterObject

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 857

TABLE 26-2 (continued)

Filter Name Description and Properties

revealTrans() Reveals element to be shown
through an effect

Properties: duration (floating-point number of seconds)

transition (code number for effect)

0 Box in

1 Box out

2 Circle in

3 Circle out

4 Wipe up

5 Wipe down

6 Wipe right

7 Wipe left

8 Vertical blinds

9 Horizontal blinds

10 Checkerboard across

11 Checkerboard down

12 Random dissolve

13 Split vertical in

14 Split vertical out

15 Split horizontal in

16 Split horizontal out

17 Strips left down

18 Strips left up

19 Strips right down

20 Strips right up

21 Random bars horizontally

22 Random bars vertically

23 Random effect

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

858

Document Objects Reference

elementRef.style.filterObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 858

To make a transition work under script control, a filter must be applied to the element that you want the
transition to work on. That can be done by script or by assigning a filter style to the element. As for the
scripting, you begin by invoking the apply() method of the desired filter object. Next, script the
change, such as assigning a new URL to the src property of an img element. While you do this, the
apply() method freezes the image until you invoke the play() method on the filter. Listing 26-1 effects a
checkerboard transition between two images after you click the image.

LISTING 26-1

A Reveal Transition Between Images

<html>
<head>

<title>IE Transition</title>
<style type=”text/css”>
img {filter:revealTrans(transition=10)}
</style>
<script type=”text/javascript”>
function doReveal() {

document.getElementById(“myIMG”).filters[“revealTrans”].apply();
if (document.getElementById(“myIMG”).src.indexOf(“desk1”) != -1) {

document.getElementById(“myIMG”).src = “desk3.gif”;
} else {

document.getElementById(“myIMG”).src = “desk1.gif”;
}
document.getElementById(“myIMG”).filters[“revealTrans”].play();

}
</script>

</head>
<body>

<h1>IE Transition</h1>
<hr />
<p>Click on the image to cause a reveal transition.</p>
<img id=”myIMG” alt=”image” src=”desk1.gif” height=”90” width=”120”
onclick=”doReveal()” />

</body>
</html>

The property assignment event handling technique used in this example and the next is a delib-
erate simplification to make the code more readable. It is generally better to use the more mod-

ern approach of binding events using the addEventListener() (NN6+/Moz/W3C) or attachEvent()
(IE5+) methods. A modern cross-browser event handling technique is explained in detail in Chapter 25.

Building on the example in Listing 26-1, the next example in Listing 26-2 demonstrates how a script can
also modify a filter object’s property, including a transition filter. Before the transition filter has its
apply() method invoked, the script sets the transition type based on a user choice in a select list.

NOTENOTE

859

elementRef.style.filterObject

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 859

LISTING 26-2

Choosing Reveal Transitions Between Images

<html>
<head>

<title>IE Transition and Choices</title>
<style type=”text/css”>
img {filter:revealTrans(transition=10)}
</style>
<script type=”text/javascript”>
function doReveal() {

document.getElementById(“myIMG”).filters[“revealTrans”].transition =
document.forms[0].transChoice.value;

document.getElementById(“myIMG”).filters[“revealTrans”].apply();
if (document.getElementById(“myIMG”).src.indexOf(“desk1”) != -1) {

document.getElementById(“myIMG”).src = “desk3.gif”;
} else {

document.getElementById(“myIMG”).src = “desk1.gif”;
}
document.getElementById(“myIMG”).filters[“revealTrans”].play();

}
</script>

</head>
<body>

<h1>IE Transition and Choices</h1>
<hr />
<form>

<p>Choose the desired transition type: <select name=”transChoice”>
<option value=”0”>Box in</option>
<option value=”1”>Box out</option>
<option value=”2”>Circle in</option>
<option value=”3”>Circle out</option>
<option value=”4”>Wipe up</option>
<option value=”5”>Wipe down</option>
<option value=”6”>Wipe right</option>
<option value=”7”>Wipe left</option>
<option value=”8”>Vertical blinds</option>
<option value=”9”>Horizontal blinds</option>
<option value=”10”>Checkerboard across</option>
<option value=”11”>Checkerboard down</option>
<option value=”12”>Random dissolve</option>
<option value=”13”>Split vertical in</option>
<option value=”14”>Split vertical out</option>
<option value=”15”>Split horizontal in</option>
<option value=”16”>Split horizontal out</option>
<option value=”17”>Strips left down</option>

860

Document Objects Reference

elementRef.style.filterObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 860

<option value=”18”>Strips left up</option>
<option value=”19”>Strips right down</option>
<option value=”20”>Strips right up</option>
<option value=”21”>Random bars horizontally</option>
<option value=”22”>Random bars vertically</option>
<option value=”23”>Random effect</option>

</select></p>
</form>
<p>Click on the image to cause a reveal transition.</p>
<img alt=”image” id=”myIMG” src=”desk1.gif” height=”90” width=”120”
onclick=”doReveal()” />

</body>
</html>

WinIE5.5+ filter syntax changes
While WinIE5.5+ still supports the original IE4 way of controlling filters, the browser also implements a
new filter component, which Microsoft strongly encourages authors to use (as evidenced by the difficulty in
finding documentation for the IE4 syntax at its developer web site). In the process of implementing this
new filter component, the names of many filters change, as do their individual properties. Moreover, the
way the filter component is invoked in the stylesheet is also quite different from the original component.

The stylesheet syntax requires a reference to the new component as well as the filter name. Here is the old way:

#glower {filter:glow(color=yellow, strength=5, enabled=true)}

And here is the new way:

#glower {filter:progid:DXImageTransform.Microsoft.Glow(color=yellow,
strength=5, enabled=true)}

Don’t overlook the extra progid: pointer in the reference. This program identifier becomes part of the filter
name that your scripts use to reference the filter:

document.getElementById(“glower”).filters[
“DXImageTransform.Microsoft.Glow”].color = “green”;

While some of the filter names and properties stay the same (except for the huge prefix), several older prop-
erties are subsumed by new filters whose properties help identify the specific effect. The former
revealTrans() filter is now divided among several new filters dedicated to transition effects. Table 26-3
shows the IE5.5+ syntax.

Using the filter syntax introduced in IE5.5+ can cause frequent crashes of the browser (at least
early released versions), especially transition filters. If you implement the new syntax, be sure

to torture-test your pages extensively. Ideally, you should encourage users of these pages to run IE6+.

NOTENOTE

861

elementRef.style.filterObject

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 861

TABLE 26-3

IE5.5 DXImageTransform.Microsoft Filter Names

Filter Name Description and Properties

Alpha() Transparency level

Properties: opacity (0 to 100)

finishopacity (0 to 100)

style (gradient shape 0 to 3)

startX (coordinate integer)

startY (coordinate integer)

finishX (coordinate integer)

finishY (coordinate integer)

Barn() Barn-door style transition

Properties: duration (floating-point number of seconds)

motion (in or out)

orientation (horizontal or vertical)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2
(playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

BasicImage() Element rotation, flip,
color effects, and opacity

Properties: grayScale (1 or 0)

invert (1 or 0)

mask (1 or 0)

maskColor (color value)

mirror (1 or 0)

opacity (0.0 to 1.0)

rotation 0 (no rotation), 1 (90°), 2 (180°),
3 (270°)

xRay (1 or 0)

862

Document Objects Reference

elementRef.style.filterObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 862

Filter Name Description and Properties

Blinds() Action transition with
Venetian blind effect

Properties: direction (up, down, right, left)

squaresX (integer column count)

squaresY (integer row count)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Checkerboard() Action transition with
checkerboard effect

Properties: bands (1 to 100)

direction (up, down, right, left)

duration (floating-point number of seconds)

percent (0 to 100)

slideStyle (HIDE, PUSH, SWAP)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Chroma() Color transparency

Properties: color (color value)

DropShadow() Shadow effect

Properties: color (color value)

offx (horizontal offset pixels)

offy (vertical offset pixels)

positive (1 or 0)

Fade() Blend transition

Properties: duration (floating-point number of seconds)

overlap (0.0 to 1.0 seconds)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

continued

863

elementRef.style.filterObject

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 863

TABLE 26-3 (continued)

Filter Name Description and Properties

Glow() Outer edge radiance

Properties: color (color value)

strength (intensity 1 to 255)

Iris() Action transition with zoom effect

Properties: duration (floating-point number of seconds)

irisStyle (CIRCLE, CROSS, DIAMOND,
PLUS, SQUARE, STAR)

motion (in or out)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Light() Add light source (controlled
by methods)

Properties: None

Methods: addAmbient (red, green, blue, strength)

addCone (sourceLeft, sourceTop, sourceZAxis,
targetLeft, targetTop, red, green, blue,
strength, spreadAngle)

addPoint (sourceLeft, sourceTop,
sourceZAxis, red, green, blue, strength)

changeColor (lightID, red, green, blue,
absoluteColorFlag)

changeStrength (lightID, strength,
absoluteIntensityFlag)

clear()

moveLight (lightID, sourceLeft, sourceTop,
sourceZAxis, absoluteMovementFlag)

MaskFilter() Overlay transparent mask

Properties: color (color value)

MotionBlur() Simulating blurred motion

Properties: add (1 or 0)

direction (0, 45, 90, 135, 180, 225,
270, 315)

strength (pixel count)

864

Document Objects Reference

elementRef.style.filterObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 864

Filter Name Description and Properties

RandomDissolve() Pixelated dissolve transition

Properties: duration (floating-point number of seconds)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

RandomBars() Bar style transition

Properties: duration (floating-point number of seconds)

orientation (horizontal or vertical)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Shadow() Render as silhouette

Properties: color (color value)

direction (0, 45, 90, 135, 180, 225,
270, 315)

Stripes() Striped style transition

Properties: duration (floating-point number of seconds)

motion (in or out)

percent (0 to 100)

status 0 (stopped), 1 (applied), 2 (playing)

Methods: apply() (freezes current display)

play() (plays the transition)

stop() (stops transition mid-stream)

Wave() Add sine-wave distortion

Properties: add (1 or 0)

freq (integer number of waves)

light (strength 0 to 100)

phase (percentage offset 0 to 100)

strength (intensity 0 to 255)

xRay() Render edges only

Properties: None

865

elementRef.style.filterObject

Style Sheet and Style Objects 26

34_069165 ch26.qxp 3/1/07 4:05 PM Page 865

For more details on deploying filters in IE for Windows, visit http://msdn.microsoft.com/library/
default.asp?url=/workshop/author/filter/filters.asp. Because most of the live examples
require WinIE5.5+, be sure to use that version for the best experience at that page.

866

Document Objects Reference

elementRef.style.filterObject

Part III

34_069165 ch26.qxp 3/1/07 4:05 PM Page 866

XML (eXtensible Markup Language) is an undeniably hot topic in the
Internet world, and has been for the past few years. Not only has the
W3C organization formed multiple working groups and recommenda-

tions for XML and its offshoots, but the W3C DOM recommendation also
has XML in mind when it comes to defining how elements, attributes, and data
of any kind — not just the HTML vocabulary — are exposed to browsers as an
object model. Most of the arcana of the W3C DOM Core specification —
especially the structure based on the node — are in direct response to the XML
possibilities of documents that are beginning to travel the Internet.

During its early explorations into XML and browsers, Microsoft devised a custom
HTML element — the <xml> tag — that allowed authors to embed XML data into
an HTML document. These tags created what were called XML data islands. A
more practical solution came slightly later with the creation of an ActiveX control
that could retrieve XML data (from either a static .xml file or a web service that
returns XML-structured data) into a web page without disturbing the HTML por-
tion. Scripts could then use W3C DOM methods and properties to read the node
tree as needed. Mozilla, Opera, and Safari browsers emulate the behavior of this
XMLHttpRequest control in a native object so that modern web applications can
load external XML data into a page for script inspection and manipulation. In an
unusual turn of events, Microsoft has also now implemented the native
XMLHttpRequest object in IE7 to match the implementation of other browsers

The functionality made possible by the XMLHttpRequest object encapsulates
the much-hyped buzzword Ajax, which stands for Asynchronous JavaScript
And XML. This chapter covers both WinIE XML data islands and the client-side
aspects of Ajax (the XMLHttpRequest object). Out of necessity, this book
assumes that you are already familiar with XML such that your server-based
applications serve up XML data exclusively, embed XML islands into HTML doc-
uments, or convert database data into XML. The focus of this chapter, and appli-
cation examples in Chapters 52 and 57, is how to access XML data and apply
that data to rendered HTML content.

867

IN THIS CHAPTER
Treating XML elements as
objects

Creating XML data islands

Accessing XML element
attributes

Using the XMLHttpRequest
object

Ajax and XML

35_069165 ch27.qxp 3/1/07 3:52 PM Page 867

Elements and Nodes
When you leave the specialized DOM vocabulary of HTML elements, the world can appear rather primitive —
a highly granular world of node hierarchies, elements, element attributes, and node data. This granularity is a
necessity in an environment in which the elements are far from generic and the structure of data in a docu-
ment does not have to follow a format handed down from above. One web application can describe an indi-
vidual’s contact information with one set of elements, whereas another application uses a completely different
approach to element names, element nesting, and their sequence.

Fortunately, most, if not all, scripting you do on XML data is on data served up by your own applications.
Therefore, you know what the structure of the data is — or you know enough of it to let your scripts access
the data.

The discussion of the W3C DOM in Chapter 14 should serve as a good introduction to the way you need to
think about elements and their content. All relevant properties and methods are listed among the items
shared by all elements in Chapter 15.

XML data, whether delivered raw or embedded in a WinIE HTML document as a data island is a hierarchy
of nodes. Typically, the outermost nodes are elements. Some elements have attributes, each of which is a
typical name/value pair. Some elements have data that goes between the start and end tags of the element
(such data is a text node nested inside the element node). And some elements can have both attributes and
data. When an XML data collection contains the equivalent of multiple database records, an element con-
tainer whose tag name is the same as each of the other records surrounds each record. Thus, the
getElementsByTagName() method frequently accesses a collection of like-named elements.

When you have a reference to an element node, you can reference that element’s attributes as properties;
however, a more formal access route is through the getAttribute() method of the element. If the element
has text data between its start and end tags, you can access that data from the element’s reference by calling
the firstChild.nodeValue property (although you may want to verify that the element has a child node
of the text type before committing to retrieving the data).

Of course, your specific approach to xml elements and their data varies with what you intend to script with
the data. For example, you may wish to do nothing more with scripting than enable a different style sheet
for the data based on a user choice. The XSL (eXtensible Stylesheet Language) standard is a kind of (non-
JavaScript) scripting language for transforming raw xml data into a variety of presentations. But you can still
use JavaScript to connect user-interface elements that control which of several style sheets renders the data.
Or, as demonstrated in Chapters 52 and 57, you may want to use JavaScript for more explicit control over
the data and its rendering, taking advantage of JavaScript sorting and data manipulation facilities along
the way.

Table 27-1 summarizes the W3C DOM Core objects, properties, and methods that you are most likely to
use in extracting data from xml elements. You can find details of all of these items in Chapter 15.

TABLE 27-1

Properties and Methods for XML Element Reading

Property or Method Description

Node.nodeValue Data of a text node

Node.nodeType Which node type

868

Document Objects ReferencePart III

35_069165 ch27.qxp 3/1/07 3:52 PM Page 868

Property or Method Description

Node.parentNode Reference to parent node

Node.childNodes Array of child nodes

Node.firstChild First of all child nodes

Node.lastChild Last of all child nodes

Node.previousSibling Previous node at same level

Node.nextSibling Next node at same level

Element.parentNode Reference to parent node

Element.childNodes Array of child nodes

Element.firstChild First of all child nodes

Element.lastChild Last of all child nodes

Element.previousSibling Previous node at same level

Element.nextSibling Next node at same level

Element.tagName Tag name

Element.getAttribute(name) Retrieves attribute (Attr) object

Element.getElementsByTagName(name) Array of nested, named elements

Attr.name Name part of attribute object’s name/value pair

Attr.value Value part of attribute object’s name/value pair

xml Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

src

XMLDocument

Syntax
Accessing xml element object properties or methods:

(IE5+) [window.]document.all.elementID.property | method([parameters])

Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

About this object
The xml element object is the primary container of an xml data island within an HTML page. If your scripts
intend to traverse the node hierarchy within the element, or simply access properties of nested elements,

869

xml

Ajax and XML 27

35_069165 ch27.qxp 3/1/07 3:52 PM Page 869

you should assign an identifier to the id attribute of the XML element. For example, if the XML data con-
tains results from a database query for music recordings that match some user-entered criteria, each
returned record might be denoted as a recording element as follows:

<xml id=”results”>
<searchresults>

<recording>
...elements with details...

</recording>
<recording>

...elements with details...
</recording>
<recording>

...elements with details...
</recording>

</searchresults>
</xml>

Your script can now obtain an array of references to recording elements as follows:

var recs =
document.getElementById(“results”).getElementsByTagName(“recording”);

Although it is also true that there is no known HTML element with the tag name recording (which
enables you to use document.getElementsByTagName(“recording”)), the unpredictability of xml data
element names is reason enough to limit the scope of the getElementsByTagName() method to the xml
data island.

The W3C DOM Level 2 does not define an xml element object within the HTML section. However, you can
embed an XML document inside an HTML document in Mozilla even though the standards clearly indicate
that a document can be one or the other, but not both. Of course, the browser understandably gets con-
fused when custom elements have tag names that already belong to the HTML DTD. Therefore, I do not
recommend attempting to embed custom elements into an HTML document for NN6+/Moz unless you are
very careful to use entirely unique tag names that don’t clash in any way with HTML or know how to use
XML namespaces within an XHTML document.

Properties
src
Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

The src property represents the src attribute of the xml element. The attribute points to the URL of an
external xml document whose data is embedded within the current HTML document.

XMLDocument
Value: Object reference. Read-Only
Compatibility: WinIE5+, MacIE-, NN-, Moz-, Safari-

870

Document Objects Reference

xml.XMLDocument

Part III

35_069165 ch27.qxp 3/1/07 3:52 PM Page 870

The XMLDocument property returns a reference to Microsoft’s proprietary XML document object and the
object model associated with it (the so-called XML DOM). A lot of this object model is patterned after the
W3C DOM model, but access to these properties is through a rather roundabout way. For more details, visit

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference
/objects/xml.asp

XMLHttpRequest Object

Properties Methods Event Handlers

readyState abort() onreadystatechange

responseText getAllResponseHeaders()

responseXML getResponseHeader()

status open()

statusText send()

setRequestHeader()

Syntax
Accessing XMLHttpRequest object properties or methods:

(IE5+/Moz) XMLHttpRequestObjectRef.property | method([parameters])

Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

About this object
The XMLHttpRequest object is an abstract object that lets your scripts retrieve XML data from, or send
XML data to, any URL designed for that purpose. All of the action occurs invisibly to the user, and it is the
responsibility of your scripts to make the connection with the server and process the XML data either after
retrieval or prior to submission. This object was originally designed by Microsoft as part of its XML Core
Services (MSXML), as first released as part of Internet Explorer 5 for Windows. Mozilla engineers imple-
mented much of the same functionality in Mozilla browsers, with almost identical syntax. Similar function-
ality entered the Safari equation in Safari 1.2, not to mention the Opera browser in Opera 8. These latter
implementations follow very closely to the Mozilla XMLHttpRequest implementation.

Where the IE and Mozilla variations differ is how you create the object to begin. Because the IE version is
an ActiveX control, you create the object using the ActiveXObject constructor function. At least that’s the
case with versions of IE prior to version 7. In IE7, Microsoft finally got around to supporting the Mozilla
object creation approach, which involves using a constructor for the XMLHttpRequest object. If you plan
on using the XMLHttpRequest object in versions of IE prior to version 7, which is likely, you must equalize
the creation of the two object versions in a single document and branch your code accordingly. Use object
detection to handle the branching most effectively:

var req = null;
// branch for native XMLHttpRequest object

871

XMLHttpRequest

Ajax and XML 27

35_069165 ch27.qxp 3/1/07 3:52 PM Page 871

if (window.XMLHttpRequest) {
try {

req = new XMLHttpRequest();
} catch(e) {

req = null;
}

// branch for IE/Windows ActiveX version
} else if (window.ActiveXObject) {

try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

} catch(e) {
try {

req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch(e) {

req = null;
}

}
}

Notice in the code how there are actually two different ActiveX objects that support the XMLHttpRequest
functionality in IE. The first ActiveX object, Microsoft.XMLHTTP, represents the first incarnation of
XMLHttpRequest as found in IE5. IE5.5 supplanted this ActiveX object with a newer one called
Msxml2.XMLHTTP, which continued to be the IE-preferred means of accessing XMLHttpRequest through
IE6. IE7 added support for the Mozilla-style approach of instantiating an actual XMLHttpRequest object
without ActiveX. The example code, therefore, demonstrates how to gracefully create an XMLHttpRequest
object while taking into consideration the various browser inconsistencies dating back to
IE5/NN6/Moz1/Safari1.2/Opera8.

After the object is created, the basic syntax for opening a connection, sending the request, and retrieving the
response data is the same for both WinIE and other browsers. To retrieve an XML document (node tree)
from a URL source, the basic conceptual sequence is as follows:

1. Open the request object, specifying the request type and URL.

2. Bind an event handler function to the request object; this function is called when the request fin-
ishes.

3. Send the request.

4. Process the results of the request.

Let’s take a look at each of these steps and the JavaScript code involved. Following is the code required to
open the request object:

req.open(“GET”, “sourceURL”, true);

This line of code opens the request object by passing along the GET request type, the URL of the data source,
and whether or not the request is synchronous or asynchronous. The last argument is undoubtedly the most
important because it directly controls whether or not the request is allowed to place in the background (asyn-
chronously) or if the script should wait on the request (synchronously). Seeing as how the word asynchronous
is in the acronym Ajax, it stands to reason that all Ajax requests pass true as the third parameter to the
open() method. The asynchronous nature of Ajax is what gives Ajax applications such a unique feel in that
work can be carried out on the server and dynamically reflected on the client as it finishes.

872

Document Objects Reference

XMLHttpRequest

Part III

35_069165 ch27.qxp 3/1/07 3:52 PM Page 872

The event handler binding in Step 2 of the previous list involves setting a function reference to the
onreadystatechange property:

req.onreadystatechange = processRequest;

The function you assign here is called when the status of the request changes. You will typically only be
concerned with the status changing to “complete.”

An intermediate step that isn’t strictly required involves setting the content type of the request header. The
XMLHttpRequest object isn’t limited to opening XML documents. Because of this, you may want to explic-
itly set the header type to text/xml just to make sure there is no confusion when you are opening XML
data; some browsers act very strict with respect to the content type of the header. Following is the code that
sets the header’s content type:

req.setRequestHeader(“Content-Type”, “text/xml”);

Step 3, sending the request, is perhaps the simplest step in performing an Ajax request:

req.send(“”);

At this point, the request has been issued and you can begin to check and see if it has completed. Control
has returned to the browser thanks to the asynchronous nature of the request. The job of checking the sta-
tus of the request and processing any results falls to the processRequest() handler function that was set a
moment ago.

The request handler function is automatically called when a change occurs in the state of the request. It is
possible for the request to cycle through any of the following states:

n Uninitialized (0)

n Loading (1)

n Loaded (2)

n Interactive (3)

n Complete (4)

The number beside each of the states corresponds to possible values for the readyState property of the
request object. This is the property you use to find out if the request has finished and is ready for process-
ing. There is one other property, however, that is important before charging into the XML processing. I’m
referring to the status property, which really has only one value of concern to you, 200, which means the
request was successful.

Pulling this information together enables you to assemble a skeletal request event handling function:

function processRequest(req) {
if (req.readyState == 4 && req.status == 200) {

var xmlDoc = req.responseXML;
// further processing of document here

}
}

At this point, scripts can inspect the contents of the xmlDoc value by way of W3C DOM node properties
and methods.

The XMLHttpRequest object in some browsers must reference pages served from a web
server, and not a local file. You can experiment successfully from a personal web server run-

ning on your PC, but not with files accessed through the file: protocol.

NOTENOTE

873

XMLHttpRequest

Ajax and XML 27

35_069165 ch27.qxp 3/1/07 3:52 PM Page 873

Listing 27-1 shows a utility script that retrieves XML content from a URL (passed as a parameter to the
loadXML() function) in a cross-browser manner. Additional error checking verifies that the retrieval is suc-
cessful before moving forward. Notice that this code is more of an Ajax template than a functioning example.
You have to plug in your own code inside the processRequest() function once the xmlDoc variable is set.

LISTING 27-1

Utility XML Data Reading Script

var req = null;

// retrieve XML document as document object
function loadXMLDoc(url) {

// branch for native XMLHttpRequest object
if (window.XMLHttpRequest) {

try {
req = new XMLHttpRequest();

} catch(e) {
req = null;

}
// branch for IE/Windows ActiveX version
} else if (window.ActiveXObject) {

try {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

} catch(e) {
try {

req = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch(e) {

req = null;
}

}
}

if (req) {
req.open(“GET”, url, true);
req.onreadystatechange = processRequest;
req.setRequestHeader(“Content-Type”, “text/xml”);
req.send(“”);

}
}

function processRequest() {
if (req.readyState == 4 && req.status == 200) {

var xmlDoc = req.responseXML;
if (xmlDoc) {

// get busy processing XML
}

}
}

874

Document Objects Reference

XMLHttpRequest

Part III

35_069165 ch27.qxp 3/1/07 3:52 PM Page 874

Properties and methods described in this chapter are those that the object has in common for both WinIE
and Mozilla browsers, as well as Safari and Opera. You can see examples of this object and the template in
Listing 27-1 within the applications of Chapters 52 and 57.

Properties
readyState
Value: Integer. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

Your scripts can read the value of the readyState property to determine the state of the XMLHttpRequest
object, particularly while it is operating during its initialization or data transfer. Values are the same as for
other objects that offer this property. See the bulleted list earlier in this chapter as well as Table 15-6 for
integer values and their meanings. When carrying out asynchronous (Ajax) requests, you assign an
onreadystatechange event handler to the XMLHttpRequest object; the event function then inspects the
readyState property for further processing.

Related Items: status property.

responseText
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

After the send() method executes, and if the server returns any data (as it will with a GET operation), you
can access a string version of the returned data through the responseText property. If the returned data is
an XML document, this property provides a string-only version of the entire content.

Related Items: responseXML property.

responseXML
Value: XML document object. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

After the send() method executes, and if the server returns any data (as it will with a GET operation), you
can access the returned W3C DOM–compliant document object through the responseXML property. The
object to which this property points is a genuine document node (nodeType of 9), which gives your scripts
the power to walk the node tree, and retrieve tags, attributes, and text nodes inside elements, as you would
with any DOM document.

As the examples in Chapters 52 and 57 demonstrate, you can use the data from the XML document to build
HTML that displays the XML content in the format of your choice (using JavaScript as a more flexible alter-
native to XSL). If your page is interactive to the extent that users can modify the content, you may then
modify the document tree stored in your script variable and send the revised XML back to the server by
opening a new XMLHttpRequest connection pointing to the URL that accepts the posted data.

Related Items: responseText property; open() method.

875

xmlHttpRequest.responseXML

Ajax and XML 27

35_069165 ch27.qxp 3/1/07 3:52 PM Page 875

status
Value: Integer. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

After the send() method executes, you can read the status of the transaction through the status property.
The value is an integer corresponding to the response issued by the server at the end of the transaction. A
successful transaction value is 200 (corresponding to the OK statusText property value). Perhaps the
other most common status value is 404, which occurs if the URL you supply to the open() method points
to a file or source not found on the server. As shown in Listing 27-1, you can use the 200 value as the key
to determining if the transaction is a success. You might consider reporting any other value to the user
(although inexperienced users may not understand the meaning of the status text).

A complete list of status values and related descriptions (status text) is shown in Table 27-2. Keep in mind
that the vast majority of the time you will be concerned only with whether or not the status code is 200
(OK).

TABLE 27-2

HTTP Status Codes for the status Property

Status Code Status Text

100 Continue

101 Switching Protocols

200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

304 Not Modified

305 Use Proxy

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

876

Document Objects Reference

xmlHttpRequest.status

Part III

35_069165 ch27.qxp 3/1/07 3:52 PM Page 876

Status Code Status Text

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Long

415 Unsupported Media Type

416 Requested Range Not Suitable

417 Expectation Failed

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

Related Items: statusText property.

statusText
Value: String. Read-Only
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

After the send() method executes, you can read the plain-language status of the transaction through the
statusText property. The value is a string corresponding to the response integer by the server at the end
of the transaction. A successful transaction value is OK (corresponding to the 200 status property value).
Use the status property for testing the results in your script, and the statusText property to report
errors to users. Table 27-2 contains a list of the possible status text values that may be stored in the
statusText property. See Listing 27-1.

Related Items: status property.

877

xmlHttpRequest.statusText

Ajax and XML 27

35_069165 ch27.qxp 3/1/07 3:52 PM Page 877

Methods
abort()
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

The abort() method stops any transaction currently in progress. This method is the scripted equivalent of
clicking a browser’s Stop button while it retrieves contents of a web page.

Related Items: readyState property; send() method.

getAllResponseHeaders()
getResponseHeader(“headerName”)
Returns: String.
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

For each transaction, the server transmits a series of name/value pairs as a header to the actual data. The
getAllResponseHeaders() method returns the complete set as received by the XMLHttpRequest object.
Such a header set may look like the following:

Date: Mon, 12 Feb 2007 03:12:59 GMT
Server: Apache/1.3.27 (Darwin)
Last-Modified: Sun, 28 Jan 2007 22:13:04 GMT
Etag: “12babe-3a2-3f809770”
Accept-Ranges: bytes
Content-Length: 930
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/xml

If you want to retrieve the value of just one of the headers, use the getResponseHeader() method and
pass as a parameter a string with only the name portion of one of the headers. For example:

var size = req.getResponseHeader(“Content-Length”);

The parameter is not case-sensitive, but the spelling (along with any hyphen in the name) is critical.

Related Items: readyState property; send() method.

open(“method”, “URL”[, asyncFlag[, “userName”[,
“password”]]])
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

Use the open() method to specify the transaction type and URL of the destination of the request. The
method parameter may be either GET (for retrieving data from a server) or POST (for sending XML to a
server). The URL may be either relative to the current page, or a complete http: URL.

Three additional parameters are optional. The first is a Boolean value for whether the request should be
asynchronous. If true (the default), the XMLHttpRequest object does not wait for a response (after the
send() method) before continuing with script processing. By setting this parameter to false, you ensure
that processing continues only after the transaction has completed or timed out. Of course, this also ensures

878

Document Objects Reference

xmlHttpRequest.abort()

Part III

35_069165 ch27.qxp 3/1/07 3:52 PM Page 878

that the user can’t do anything while you wait for the server to process your request and may feel as though
the browser has frozen. The preferred approach is to set the parameter to true and carry out all requests
asynchronously. All of the XMLHttpRequest examples in this book (Chapters 52 and 57 primarily) utilize
this latter asynchronous (Ajax) approach.

The other optional parameters are strings for a username and password if one is needed to access the URL.

Note that the open() method merely fills various properties of the request, and that the request does not
occur until the send() method is invoked.

Related Items: open() method.

send(content)
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

After setting the characteristics of the request through the open() method and its parameters, invoke the
send() method to trigger the actual request over the network. For a GET operation, specify “” or null as
the parameter. But for a POST operation, the parameter should be a reference to a DOM document that has
been assembled in script. You may also specify a string as the value being posted to the request’s URL.

Related Items: open() method.

setRequestHeader(“name”, “value”)
Returns: Nothing.
Compatibility: WinIE5+, MacIE-, NN7+, Moz+, Safari1.2+

The setRequestHeader() method enables you to specify a name/value pair for the header being sent with
the HTTP request. For this method to succeed, it must be called only when readyState is set to 1
(Loading); see Table 15-6 for more details. In practical coding terms, this equates to you setting the request
header after the call to open() but before the call to send().

Related Items: readyState property.

879

xmlHttpRequest.setRequestHeader()

Ajax and XML 27

35_069165 ch27.qxp 3/1/07 3:52 PM Page 879

35_069165 ch27.qxp 3/1/07 3:52 PM Page 880

JavaScript Core
Language Reference

IN THIS PART
Chapter 28
The String Object

Chapter 29
The Math, Number, and Boolean
Objects

Chapter 30
The Date Object

Chapter 31
The Array Object

Chapter 32
Control Structures and Exception
Handling

Chapter 33
JavaScript Operators

Chapter 34
Functions and Custom Objects

Chapter 35
Global Functions and Statements

36_069165 pt04.qxp 3/1/07 3:53 PM Page 881

36_069165 pt04.qxp 3/1/07 3:53 PM Page 882

Chapter 6’s tutorial introduced you to the concepts of values and the types
of values that JavaScript works with — features, such as strings, numbers,
and Boolean values. In this chapter, you look more closely at the very

important String data type, as well as its relationship to the Number data type.
Along the way, you encounter the many ways in which JavaScript enables
scripters to manipulate strings.

Much of the syntax that you see in this chapter is identical to that
of the Java programming language. Because the scope of JavaScript

activity is much narrower than that of Java, you don’t have nearly as much to
learn for JavaScript as for Java.

String and Number Data Types
Although JavaScript is what is known as a “loosely typed” language, you still
need to be aware of several data types because of their impact on the way you
work with the information in those forms. In this section, I focus on strings and
two types of numbers.

Simple strings
A string consists of one or more standard text characters placed between match-
ing quote marks. JavaScript is forgiving in one regard: You can use single or dou-
ble quotes, as long as you match two single quotes or two double quotes around
a string. A major benefit of this scheme becomes apparent when you try to
include quoted text inside a string. For example, say that you’re assembling a line
of HTML code in a variable that you will eventually write to a new window com-
pletely controlled by JavaScript. The line of text that you want to assign to a vari-
able is the following:

<input type=”checkbox” name=”candy” />Chocolate

NOTENOTE

883

IN THIS CHAPTER
How to parse and work with text

Performing search-and-replace
operations

Scripted alternatives to text
formatting

The String Object

37_069165 ch28.qxp 3/1/07 3:53 PM Page 883

To assign this entire line of text to a variable, you have to surround the line in quotes. But because quotes
appear inside the string, JavaScript (or any language) has problems deciphering where the string begins or
ends. By carefully placing the other kind of quote pairs, however, you can make the assignment work. Here
are two equally valid ways:

result = ‘<input type=”checkbox” name=”candy” />Chocolate’;
result = “<input type=’checkbox’ name=’candy’ />Chocolate”;

Notice that in both cases, the same unique pair of quotes surrounds the entire string. Inside the string, two
quoted strings appear that are treated as such by JavaScript. It is helpful stylistically if you settle on one
form or the other, and then use that form consistently throughout your scripts.

Building long string variables
The act of joining strings together — concatenation — enables you to assemble long strings out of several
little pieces. This feature is very important for some scripting — for example, when you need to build an
HTML page’s specifications entirely within a variable before writing the page to another frame with one
document.write() statement. It is often unwieldy and impractical to include such lengthy information in
a single string on one line of code, which is why you will likely need to build the large string out of
substrings.

One tactic that I use keeps the length of each statement in this building process short enough so that it’s
easily readable in your text editor. This method uses the add-by-value assignment operator (+=) that
appends the right-hand side of the equation to the left-hand side. Here is a simple example, which begins
by initializing a variable, newDocument, as an empty string:

var newDocument = “”;
newDocument += “<html><head><title>Glory Enough for All</title></head>”;
newDocument += “<body><h1>The Battle of the Crater</h1>”;
newDocument += “by Duane Schultz<hr />”;

Starting with the second line, each statement adds more data to the string being stored in newDocument.
You can continue appending string data until the entire page’s specification is contained in the
newDocument variable.

Excessive use of the add-by-value operator involving large quantities of text can become ineffi-
cient. If you are experiencing slow performance when accumulating large strings, try pushing

your string segments into items of an array (see Chapter 31). Then use the array’s join() method to gener-
ate the resulting large string value.

Joining string literals and variables
In some cases, you need to create a string out of literal strings (characters with quote marks around them)
and string variable values. The methodology for concatenating these types of strings is no different from that
of multiple string literals. The plus-sign operator does the job. Therefore, in the following example, a variable
contains a name. That variable value is made a part of a larger string whose other parts are string literals:

teamName = prompt(“Please enter your favorite team:”,””);
var msg = “The “ + teamName + “are victorious!”;
alert(msg);

NOTENOTE

884

JavaScript Core Language ReferencePart IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 884

Some common problems that you may encounter while attempting this kind of concatenation include the
following:

n Accidentally omitting one of the quotes around a literal string

n Failing to insert blank spaces in the string literals to accommodate word spacing

n Forgetting to concatenate punctuation after a variable value

Also, don’t forget that what I show here as variable values can be any expression that evaluates to a string,
including property references and the results of some methods. For example:

var msg = “The name of this document is “ + document.title + “.”;
alert(msg);

Special inline characters
The way string literals are created in JavaScript makes adding certain characters to strings difficult. I’m talk-
ing primarily about adding quotes, carriage returns, apostrophes, and tab characters to strings. Fortunately,
JavaScript provides a mechanism for entering such characters into string literals. A backslash symbol, fol-
lowed by the character that you want to appear as inline, makes that task happen. For the “invisible” char-
acters, a special set of letters following the backslash tells JavaScript what to do.

The most common backslash pairs are as follows:

n \” Double quote

n \’ Single quote (apostrophe)

n \\ Backslash

n \b Backspace

n \t Tab

n \n New line

n \r Carriage return

n \f Form feed

Use these “inline characters” (also known as “escaped characters,” but this terminology has a different con-
notation for Internet strings) inside quoted string literals to make JavaScript recognize them. When assem-
bling a block of text that needs a new paragraph, insert the \n character pair. Here are some examples of
syntax using these special characters:

msg = “You\’re doing fine.”;
msg = “This is the first line.\nThis is the second line.”;
msg = document.title + “\n” + document.links.length + “ links present.”;

Technically speaking, a complete carriage return, as known from typewriting days, is both a line feed
(advance the line by one) and a carriage return (move the carriage all the way to the left margin). Although
JavaScript strings treat a line feed (\n new line) as a full carriage return, you may have to construct \r\n
breaks when assembling strings that go back to a cgi script on a server. The format that you use all
depends on the string-parsing capabilities of the cgi program. (Also see the special requirements for the
textarea object in Chapter 20.)

Confusing the strings assembled for display in textarea objects or alert boxes with strings to be written as
HTML is easy. For HTML strings, make sure that you use the standard HTML tags for line-breaks (
)
and paragraph breaks (<p>) rather than the inline return or line feed symbols.

885

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 885

String Object

Properties Methods

constructor anchor()

length big()

prototype† blink()

bold()

charAt()

charCodeAt()

concat()

fixed()

fontcolor()

fontsize()

fromCharCode()†

indexOf()

italics()

lastIndexOf()

link()

localeCompare()

match()

replace()

search()

slice()

small()

split()

strike()

sub()

substr()

substring()

sup()

toLocaleLowerCase()

toLocaleUpperCase()

toLowerCase()

toString()

toUpperCase()

valueOf()

†Member of the static String object

886

JavaScript Core Language Reference

stringObject

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 886

Syntax
Creating a string object:

var myString = new String(“characters”);

Creating a string value:

var myString = “characters”;

Accessing static String object properties and methods:

String.property | method([parameters])

Accessing string object properties and methods:

string.property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
JavaScript draws a fine line between a string value and a string object. Both let you use the same methods
on their contents, so that by and large, you do not have to create a string object (with the new String()
constructor) every time you want to assign a string value to a variable. A simple assignment operation (var
myString = “fred”) is all you need to create a string value that behaves on the surface very much like a
full-fledged string object.

Where the difference comes into play is when you want to exploit the “object-ness” of a genuine string
object, which I explain further in the discussion of the string.prototype property later in this chapter.
You may also encounter the need to use a full-fledged string object when passing string data to Java applets.
If you find that your applet doesn’t receive a string value as a Java String data type, then create a new
string object via the JavaScript constructor function before passing the value onto the applet.

With string data often comes the need to massage that text in scripts. In addition to concatenating strings, you
at times need to extract segments of strings, delete parts of strings, and replace one part of a string with some
other text. Unlike many plain-language scripting languages, JavaScript is fairly low-level in its built-in facilities
for string manipulation. This characteristic means that unless you can take advantage of the regular expression
powers of IE4+/Moz1+ or advanced array techniques, you must fashion your own string handling routines out
of very elemental powers built into JavaScript. Later in this chapter, I provide several functions that you can
use in your own scripts for common string handling in a manner fully compatible with older browsers.

As you work with string values, visualize every string value as an object with properties and methods like
other JavaScript objects. JavaScript defines a few properties and a slew of methods for any string value (and
one extra property for the static String object that is always present in the context of the browser win-
dow). The syntax is the same for string methods as it is for any other object method:

stringObject.method()

What may seem odd at first is that the stringObject part of this reference can be any expression that eval-
uates to a string, including string literals, variables containing strings, methods or functions that return
strings, or other object properties. Therefore, the following examples of calling the toUpperCase() method
are all valid:

“blah blah blah”.toUpperCase()
yourName.toUpperCase() // yourName is a variable containing a string
window.prompt(“Enter your name”,””).toUpperCase()
document.forms[0].entry.value.toUpperCase() // entry is a text field object

887

stringObject

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 887

A very important (and often misunderstood) concept to remember is that invoking a string method does
not change the string object that is part of the reference. Rather, the method returns a string value, which
can be used as a parameter to another method or function call, or assigned to a variable.

Therefore, to change the contents of a string variable to the results of a method, you must use an assign-
ment operator, as in:

yourName = yourName.toUpperCase(); // variable is now all uppercase

Properties
constructor
Value: Function reference. Read/Write
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The constructor property is a reference to the function that was invoked to create the current string. For
a native JavaScript string object, the constructor function is the built-in String() constructor.

When you use the new String() constructor to create a string object, the type of the value returned by
the constructor is object (meaning the typeof operator returns object). Therefore, you can use the
constructor property on an object value to see if it is a string object:

if (typeof someValue == “object”) {
if (someValue.constructor == String) {

// statements to deal with string object
}

}

Although the property is read/write, and you can assign a different constructor to the String.prototype,
the native behavior of a String object persists through the new constructor.

Example
Use The Evaluator (Chapter 13) to test the value of the constructor property. One line at a time, enter
and evaluate the following statements into the top text box:

a = new String(“abcd”)
a.constructor == String
a.constructor == Number

Related Items: prototype property.

length
Value: Integer. Read-Only
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The most frequently used property of a string is length. To derive the length of a string, read its property
as you would read the length property of any object:

string.length

The length value represents an integer count of the number of characters within the string. Spaces and
punctuation symbols count as characters. Any backslash special characters embedded in a string count as
one character, including such characters as newline and tab. Here are some examples:

888

JavaScript Core Language Reference

stringObject.length

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 888

“Lincoln”.length // result = 7
“Four score”.length // result = 10
“One\ntwo”.length // result = 7
“”.length // result = 0

The length property is commonly summoned when dealing with detailed string manipulation in repeat
loops. For example, if you want to iterate through every character in a string and somehow examine or
modify each character, you would use the string’s length as the basis for the loop counter.

prototype
Value: String object. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

String objects defined with the new String(“stringValue”) constructor are robust objects compared
to run-of-the-mill variables that are assigned string values. You certainly don’t have to create this kind of
string object for every string in your scripts, but these objects do come in handy if you find that strings in
variables go awry. This happens occasionally while trying to preserve string information as script variables
in other frames or windows. By using the string object constructor, you can be relatively assured that the
string value will be available in the distant frame when needed.

Another benefit to using true string objects is that you can assign prototype properties and methods to all
string objects in the document. A prototype is a property or method that becomes a part of every new object
created after the prototype items are added. For strings, as an example, you may want to define a new
method for converting a string into styled HTML content that isn’t already defined by the JavaScript string
object. Listing 28-1 shows how to create and use such a prototype.

LISTING 28-1

A String Object Prototype

<html>
<head>

<title>String Object Prototype</title>
<script type=”text/javascript”>
function makeItHot() {

return “” + this.toString() + “<\/span>”;
}
String.prototype.hot = makeItHot;
</script>

</head>
<body>

<script type=”text/javascript”>
document.write(“<h1>This site is on “ + “FIRE”.hot() + “!!<\/h1>”);
</script>

</body>
</html>

889

stringObject.prototype

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 889

A function definition (makeItHot()) accumulates string data to be returned to the object when the func-
tion is invoked as the object’s method. The this keyword refers to the object making the call, which you
convert to a string for concatenation with the rest of the strings to be returned. In the page’s Body, that pro-
totype method is invoked in the same way one invokes existing String methods that turn strings into
HTML tags (discussed later in this chapter).

In the next sections, I divide string object methods into two distinct categories. The first, parsing methods,
focuses on string analysis and character manipulation within strings. The second group, formatting meth-
ods, is devoted entirely to assembling strings in HTML syntax for those scripts that assemble the text to be
written into new documents or other frames.

Parsing methods
string.charAt(index)
Returns: One-character string.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Use the string.charAt() method to read a single character from a string when you know the position of
that character. For this method, you specify an index value in the string as a parameter to the method. The
index value of the first character of the string is 0. To grab the last character of a string, mix string methods:

myString.charAt(myString.length - 1)

If your script needs to get a range of characters, use the string.substring() method. Using
string.substring() to extract a character from inside a string is a common mistake — the
string.charAt() method is more efficient.

Example
Enter each of the following statements into the top text box of The Evaluator:

a = “banana daiquiri”
a.charAt(0)
a.charAt(5)
a.charAt(6)
a.charAt(20)

Results from each of the charAt() methods should be b, a (the third “a” in “banana”), a space character,
and an empty string, respectively.

Related Items: string.lastIndexOf(), string.indexOf(), string.substring() methods.

string.charCodeAt([index])
String.fromCharCode(num1 [, num2 [, ... numn]])
Returns: Integer code number for a character; concatenated string value of code numbers supplied as
parameters.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Conversions from plain language characters to their numeric equivalents have a long tradition in computer
programming. For a long time, the most common numbering scheme was the ASCII standard, which covers
the basic English, alphanumeric characters and punctuation within 128 values (numbered 0 through 127).

890

JavaScript Core Language Reference

stringObject.charCodeAt()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 890

An extended version with a total of 256 characters, with some variations depending on the operating sys-
tem, accounts for other roman characters in other languages, particularly vowels with umlauts and other
pronunciation marks. To bring all languages, including pictographic languages and other non-Roman alpha-
bets, into the computer age, a world standard called Unicode provides space for thousands of characters. All
modern browsers work with the Unicode system.

In JavaScript, character conversions are handled by string methods. The two methods that perform charac-
ter conversions work in very different ways syntactically. The first, string.charCodeAt(), converts a sin-
gle string character to its numerical equivalent. The string being converted is the one to the left of the
method name — and the string may be a literal string or any other expression that evaluates to a string
value. If no parameter is passed, the character being converted is by default the first character of the string.
However, you can also specify a different character as an index value into the string (first character is 0), as
demonstrated here:

“abc”.charCodeAt() // result = 97
“abc”.charCodeAt(0) // result = 97
“abc”.charCodeAt(1) // result = 98

If the string value is an empty string or the index value is beyond the last character, the result is NaN.

To convert numeric values to their characters, use the String.fromCharCode() method. Notice that the
object beginning the method call is the static String object, not a string value. Then, as parameters, you
can include one or more integers separated by commas. In the conversion process, the method combines
the characters for all of the parameters into one string, an example of which is shown here:

String.fromCharCode(97, 98, 99) // result “abc”

Although most modern browsers support character values across the entire Unicode range, the
browser won’t render characters above 255 unless the computer is equipped with language

and font support for the designated language.

Example
Listing 28-2 provides examples of both methods on one page. Moreover, because one of the demonstrations
relies on the automatic capture of selected text on the page, the scripts include code to accommodate the
different handling of selection events and capture of the selected text in a variety of browsers.

After you load the page, select part of the body text anywhere on the page. If you start the selection with the
lowercase letter “a,” the character code displays as 97. If you select no text, the result is NaN.

Try entering numeric values in the three fields at the bottom of the page. Values below 32 are ASCII control
characters that most fonts represent as hollow squares. But try all other values to see what you get. Notice
that the script passes all three values as a group to the String.fromCharCode() method, and the result is
a combined string. Thus, Figure 28-1 shows what happens when you enter the uppercase ASCII values for a
three-letter animal name.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

NOTENOTE

NOTENOTE

891

stringObject.charCodeAt()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 891

LISTING 28-2

Character Conversions

<html>
<head>

<title>Character Codes</title>
<script type=”text/javascript”>
function showCharCode() {

var theText = “”;
if (window.getSelection) {

theText = window.getSelection().toString();
} else if (document.getSelection) {

theText = document.getSelection();
} else if (document.selection && document.selection.createRange) {

theText = document.selection.createRange().text;
}
if (theText) {

document.forms[0].charCodeDisplay.value = theText.charCodeAt();
} else {

document.forms[0].charCodeDisplay.value = “ “;
}

}
function showString(form) {

form.result.value = String.fromCharCode(
form.entry1.value,form.entry2.value,form.entry3.value);

}
document.onmouseup = showCharCode;
</script>

</head>
<body onmouseup=”showCharCode()”>

Capturing Character Codes
<form>

Select any of this text, and see the character code of the first
character.
<p>Character Code:<input type=”text” name=”charCodeDisplay”

size=”3” />
</p>
<hr />
Converting Codes to Characters

Enter a value 0-255:<input type=”text” name=”entry1” size=”6” />

Enter a value 0-255:<input type=”text” name=”entry2” size=”6” />

Enter a value 0-255:<input type=”text” name=”entry3” size=”6” />

<input type=”button” id=”showstr” value=”Show String”
onclick=”showString(this.form)” /> Result:<input type=”text”
name=”result” size=”5” />

</form>
</body>

</html>

892

JavaScript Core Language Reference

stringObject.charCodeAt()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 892

FIGURE 28-1

Conversions from text characters to ASCII values and vice versa.

Related Items: None.

string.concat(string2)
Returns: Combined string.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

JavaScript’s add-by-value operator (+=) provides a convenient way to concatenate strings. Most browsers,
however, include a string object method that performs the same task. The base string to which more text is
appended is the object or value to the left of the period. The string to be appended is the parameter of the
method, as the following example demonstrates:

“abc”.concat(“def”) // result: “abcdef”

As with the add-by-value operator, the concat() method doesn’t know about word spacing. You are
responsible for including the necessary space between words if the two strings require a space between
them in the result.

Related Items: Add-by-value (+=) operator.

893

stringObject.concat()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 893

string.indexOf(searchString [, startIndex])
Returns: Index value of the character within string where searchString begins.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Like some languages’ offset string function, JavaScript’s indexOf() method enables your script to obtain
the number of the character in the main string where a search string begins. Optionally, you can specify
where in the main string the search should begin — but the returned value is always relative to the very first
character of the main string. Such as all string object methods, index values start their count with 0. If no
match occurs within the main string, the returned value is -1. Thus, this method is a convenient way to
determine whether one string contains another, regardless of position.

Example
Enter each of the following statements (up to but not including the “//” comment symbols) into the top text
box of The Evaluator (you can simply replace the parameters of the indexOf() method for each statement
after the first one). Compare your results with the results shown below.

a = “bananas”
a.indexOf(“b”) // result = 0 (index of 1st letter is zero)
a.indexOf(“a”) // result = 1
a.indexOf(“a”,1) // result = 1 (start from 2nd letter)
a.indexOf(“a”,2) // result = 3 (start from 3rd letter)
a.indexOf(“a”,4) // result = 5 (start from 5th letter)
a.indexOf(“nan”) // result = 2
a.indexOf(“nas”) // result = 4
a.indexOf(“s”) // result = 6
a.indexOf(“z”) // result = -1 (no “z” in string)

Related Items: string.lastIndexOf(), string.charAt(), string.substring() methods.

string.lastIndexOf(searchString[, startIndex])
Returns: Index value of the last character within string where searchString begins.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The string.lastIndexOf() method is closely related to the method string.indexOf(). The only dif-
ference is that this method starts its search for a match from the end of the string (string.length - 1) and
works its way backward through the string. All index values are still counted, starting with 0, from the front
of the string. The examples that follow use the same values as in the examples for string.indexOf() so
that you can compare the results. In cases where only one instance of the search string is found, the results
are the same; but when multiple instances of the search string exist, the results can vary widely — hence the
need for this method.

Example
Enter each of the following statements (up to, but not including the “//” comment symbols) into the top text
box of The Evaluator (you can simply replace the parameters of the lastIndexOf() method for each state-
ment after the first one). Compare your results with the results shown below.

a = “bananas”
a.lastIndexOf(“b”) // result = 0 (index of 1st letter is zero)
a.lastIndexOf(“a”) // result = 5
a.lastIndexOf(“a”,1) // result = 1 (from 2nd letter toward the front)

894

JavaScript Core Language Reference

stringObject.lastIndexOf()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 894

a.lastIndexOf(“a”,2) // result = 1 (start from 3rd letter working toward front)
a.lastIndexOf(“a”,4) // result = 3 (start from 5th letter)
a.lastIndexOf(“nan”) // result = 2 [except for -1 Nav 2.0 bug]
a.lastIndexOf(“nas”) // result = 4
a.lastIndexOf(“s”) // result = 6
a.lastIndexOf(“z”) // result = -1 (no “z” in string)

Related Items: string.lastIndexOf(), string.charAt(), string.substring() methods.

string.localeCompare(string2)
Returns: Integer.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari+

The localeCompare() method lets a script compare the cumulative Unicode values of two strings, taking
into account the language system for the browser. The need for this method affects only some language sys-
tems (Turkish is said to be one). If the two strings, adjusted for the language system, are equal, the value
returned is zero. If the string value on which the method is invoked (meaning the string to the left of the
period) sorts ahead of the parameter string, the value returned is a negative integer; otherwise the returned
value is a positive integer.

The ECMA standard for this method leaves the precise positive or negative values up to the browser
designer. NN6+ calculates the cumulative Unicode values for both strings and subtracts the string parame-
ter’s sum from the string value’s sum. IE5.5+ and FF1+, on the other hand, return -1 or 1 if the strings are
not colloquially equal.

Related Items: string.toLocaleLowerCase(), string.toLocaleUpperCase() methods.

string.match(regExpression)
Returns: Array of matching strings.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The string.match() method relies on the RegExp (regular expression) object to carry out a match within
a string. The string value under scrutiny is to the left of the dot, whereas the regular expression to be used
by the method is passed as a parameter. The parameter must be a regular expression object, created accord-
ing to the two ways these objects can be generated.

This method returns an array value when at least one match turns up; otherwise the returned value is null.
Each entry in the array is a copy of the string segment that matches the specifications of the regular expres-
sion. You can use this method to uncover how many times a substring or sequence of characters appears in
a larger string. Finding the offset locations of the matches requires other string parsing.

Example
To help you understand the string.match() method, Listing 28-3 provides a workshop area for experi-
mentation. Two fields occur for data entry: the first is for the long string to be examined by the method; the
second is for a regular expression. Some default values are provided in case you’re not yet familiar with the
syntax of regular expressions (see Chapter 42 on the CD-ROM). A checkbox lets you specify whether the
search through the string for matches should be case-sensitive. After you click the “Execute match()” but-
ton, the script creates a regular expression object out of your input, performs the string.match() method
on the big string, and reports two kinds of results to the page. The primary result is a string version of the
array returned by the method; the other is a count of items returned.

895

stringObject.match()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 895

LISTING 28-3

Regular Expression Match Workshop

<html>
<head>

<title>Regular Expression Match</title>
<script type=”text/javascript”>
function doMatch(form) {

var str = form.entry.value;
var delim = (form.caseSens.checked) ? “/g” : “/gi”;
var regexp = eval(“/” + form.regexp.value + delim);
var resultArray = str.match(regexp);
if (resultArray) {

form.result.value = resultArray.toString();
form.count.value = resultArray.length;

} else {
form.result.value = “<no matches>”;
form.count.value = “”;

}
}
</script>

</head>
<body>

String Match with Regular Expressions
<hr />
<form>

Enter a main string:<input type=”text” name=”entry” size=”60”
value=”Many a maN and womAN have meant to visit GerMAny.” />

Enter a regular expression to match:<input type=”text” name=”regexp”
size=”25” value=”\wa\w” /> <input type=”checkbox”
name=”caseSens” />Case-sensitive
<p><input type=”button” value=”Execute match()”

onclick=”doMatch(this.form)” /> <input type=”reset” /></p>
<p>Result:<input type=”text” name=”result” size=”40” />

Count:<input type=”text” name=”count” size=”3” />
</p>
</form>

</body>
</html>

The default value for the main string has unusual capitalization intentionally. The capitalization lets you see
more clearly where some of the matches come from. For example, the default regular expression looks for
any three-character string that has the letter “a” in the middle. Six string segments match that expression.
With the help of capitalization, you can see where each of the four strings containing “man” is extracted
from the main string. The following table lists some other regular expressions to try with the default main
string.

896

JavaScript Core Language Reference

stringObject.match()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 896

RegExp Description

man Both case-sensitive and not

man\b Where “man” is at the end of a word

\bman Where “man” is at the start of a word

me*an Where zero or more “e” letters occur between “m” and “a”

.a. Where “a” is surrounded by any one character (including space)

\sa\s Where “a” is surrounded by a space on both sides

z Where a “z” occurs (none in the default string)

In the scripts for Listing 28-3, if the string.match() method returns null, you are informed politely, and
the count field is emptied.

Related Items: RegExp object (Chapter 42 on the CD-ROM).

string.replace(regExpression, replaceString)
Returns: Changed string.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Regular expressions are commonly used to perform search-and-replace operations. In conjunction with the
string.search() method, JavaScript’s string.replace() method provides a simple framework in
which to perform this kind of operation on any string.

Searching and replacing requires three components. The first is the main string that is the target of the opera-
tion. Second is the regular expression to search for. And third is the string to replace each instance of the text
found by the operation. For the string.replace() method, the main string is the string value or object ref-
erenced to the left of the period. This string can also be a literal string (that is, text surrounded by quotes). The
regular expression to search for is the first parameter, whereas the replacement string is the second parameter.

The regular expression definition determines whether the replacement is of just the first match encountered in
the main string or all matches in the string. If you add the g parameter to the end of the regular expression, then
one invocation of the replace() method performs global search-and-replace through the entire main string.

As long as you know how to generate a regular expression, you don’t have to be a whiz to use the
string.replace() method to perform simple replacement operations. But using regular expressions can
make the operation more powerful. Consider these soliloquy lines by Hamlet:

To be, or not to be: that is the question:
Whether ‘tis nobler in the mind to suffer

If you wanted to replace both instances of “be” with “exist,” you can do it in this case by specifying

var regexp = /be/g;
soliloquy.replace(regexp, “exist”);

But you can’t always be assured that the letters “b” and “e” will be standing alone as a word. What happens if the
main string contains the word “being” or “saber”? The above example replaces the “be” letters in them as well.

The regular expression help comes from the special characters to better define what to search for. In the
example here, the search is for the word “be.” Therefore, the regular expression surrounds the search text
with word boundaries (the \b special character), as in

897

stringObject.replace()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 897

var regexp = /\bbe\b/g;
soliloquy.replace(regexp, “exist”);

This syntax also takes care of the fact that the first two “be” words are followed by punctuation, rather than
a space, as you may expect for a freestanding word. For more about regular expression syntax, see Chapter
42 on the CD-ROM.

Example
The page in Listing 28-4 lets you practice with the string.replace() and string.search() methods
and regular expressions in a friendly environment. The source text is a five-line excerpt from Hamlet. You
can enter the regular expression to search for, and the replacement text as well. Note that the script com-
pletes the job of creating the regular expression object, so that you can focus on the other special characters
used to define the matching string. All replacement activities act globally, because the g parameter is auto-
matically appended to any expression you enter.

Default values in the fields replace the contraction ‘tis with “it is” after you click the “Execute replace()” button
(see Figure 28-2). Notice that the backslash character in front of the apostrophe of ‘tis (in the string assembled
in mainString) makes the apostophe a non-word boundary, and thus allows the \B’t regular expression to
find a match there. As described in the section on the string.search() method, the button connected to
that method returns the offset character number of the matching string (or -1 if no match occurs).

FIGURE 28-2

Using the default replacement regular expression.

898

JavaScript Core Language Reference

stringObject.replace()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 898

You could modify the listing so that it actually replaces text in the HTML paragraph for modern browsers.
The steps include wrapping the paragraph in its own element (for example, a span) and invoking the
replace() method on the innerHTML of that element. Assign the results to the innerHTML property of
that element to complete the job.

LISTING 28-4

Lab for string.replace() and string.search()

<html>
<head>

<title>Regular Expression Replace and Search</title>
<script type=”text/javascript”>
var mainString = “To be, or not to be: that is the question:\n”;
mainString += “Whether \’tis nobler in the mind to suffer\n”;
mainString += “The slings and arrows of outrageous fortune,\n”;
mainString += “Or to take arms against a sea of troubles,\n”;
mainString += “And by opposing end them.”;

function doReplace(form) {
var replaceStr = form.replaceEntry.value;
var delim = (form.caseSens.checked) ? “/g” : “/gi”;
var regexp = eval(“/” + form.regexp.value + delim);
form.result.value = mainString.replace(regexp, replaceStr);

}
function doSearch(form) {

var replaceStr = form.replaceEntry.value;
var delim = (form.caseSens.checked) ? “/g” : “/gi”;
var regexp = eval(“/” + form.regexp.value + delim);
form.result.value = mainString.search(regexp);

}
</script>

</head>
<body>

String Replace and Search with Regular Expressions
<hr />
Text used for string.replace() and string.search() methods:

To be, or not to be: that is the question:

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them.
<form>

Enter a regular expression to match:<input type=”text” name=”regexp”
size=”25” value=”\B’t” /> <input type=”checkbox”
name=”caseSens” />Case-sensitive

Enter a string to replace the matching strings:<input type=”text”
name=”replaceEntry” size=”30” value=”it “ />

continued

899

stringObject.replace()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 899

LISTING 28-4 (continued)

<p><input type=”button” value=”Execute replace()”
onclick=”doReplace(this.form)” /> <input type=”reset” /> <input
type=”button” value=”Execute search()”
onclick=”doSearch(this.form)” /></p>

<p>Result:

<textarea name=”result” cols=”60” rows=”5” wrap=”virtual”>
</textarea></p>

</form>
</body>

</html>

Related Items: string.match() method; RegExp object.

string.search(regExpression)
Returns: Offset integer.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The results of the string.search() method may remind you of the string.indexOf() method. In both
cases, the returned value is the character number where the matching string first appears in the main string,
or -1 if no match occurs. The big difference, of course, is that the matching string for string.search() is
a regular expression.

Example
Listing 28-4, for the string.replace() method, also provides a laboratory to experiment with the
string.search() method.

Related Items: string.match() method; RegExp object.

string.slice(startIndex [, endIndex])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The string.slice() method resembles the method string.substring() in that both let you extract a
portion of one string and create a new string as a result (without modifying the original string). A helpful
improvement in string.slice(), however, is that specifying an ending index value relative to the end of
the main string is easier.

Using string.substring() to extract a substring that ends before the end of the string requires machina-
tions, such as the following:

string.substring(4, (string.length-2))

Instead, you can assign a negative number to the second parameter of string.slice() to indicate an off-
set from the end of the string:

string.slice(4, -2)

The second parameter is optional. If you omit the second parameter, the returned value is a string from the
starting offset to the end of the main string.

900

JavaScript Core Language Reference

stringObject.slice()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 900

Example
With Listing 28-5, you can try several combinations of parameters with the string.slice() method (see
Figure 28-3). A base string is provided (along with character measurements). Select from the different
choices available for parameters and study the outcome of the slice.

LISTING 28-5

Slicing a String

<html>
<head>

<title>String Slicing and Dicing, Part I</title>
<script type=”text/javascript”>
var mainString = “Electroencephalograph”;
function showResults() {

var form = document.forms[0];
var param1 =

parseInt(form.param1.options[form.param1.selectedIndex].value);
var param2 =

parseInt(form.param2.options[form.param2.selectedIndex].value);
if (!param2) {

form.result1.value = mainString.slice(param1);
} else {

form.result1.value = mainString.slice(param1, param2);
}

}
</script>

</head>
<body>

String slice() Method
<hr />
Text used for the methods:

<tt>Electroencephalograph

----5----5----5----5-</tt>
<form>

<table>
<tr>

<th>String Method</th>
<th>Method Parameters</th>
<th>Results</th>

</tr>
<tr>

<td>string.slice()</td>
<td rowspan=”3” valign=”middle”>
(<select name=”param1” onchange=”showResults()”>

<option value=”0”>0</option>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”5”>5</option>

continued

901

stringObject.slice()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 901

LISTING 28-5 (continued)

</select>, <select name=”param2” onchange=”showResults()”>
<option>(None)</option>
<option value=”5”>5</option>
<option value=”10”>10</option>
<option value=”-1”>-1</option>
<option value=”-5”>-5</option>
<option value=”-10”>-10</option>

</select>)
</td>
<td><input type=”text” name=”result1” size=”25” /></td>

</tr>
</table>

</form>
</body>

</html>

FIGURE 28-3

Lab for exploring the string.slice() method.

Related Items: string.substr(), string.substring() methods.

902

JavaScript Core Language Reference

stringObject.slice()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 902

string.split(“delimiterCharacter” [, limitInteger])
Returns: Array of delimited items.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The split() method is the functional opposite of the array.join() method (see Chapter 31). From the
string object point of view, JavaScript splits a long string into pieces delimited by a specific character and
then creates a dense array with those pieces. You do not need to initialize the array via the new Array()
constructor. Given the powers of array object methods, such as array.sort(), you may want to convert a
series of string items to an array to take advantage of those powers. Also, if your goal is to divide a string
into an array of single characters, you can still use the split() method, but specify an empty string as a
parameter. For some older browsers such as NN3 and IE4, only the first parameter is observed.

In modern browsers, you can use a regular expression object for the first parameter, enhancing the powers
of finding delimiters in strings. For example, consider the following string:

var nameList = “1.Fred,2.Jane,3.Steve”;

To convert that string into a three-element array of only the names takes a lot of parsing without regular
expressions before you can even use string.split(). However, with a regular expression as a parameter,

var regexp = /,*\d.\b/;
var newArray = nameList.split(regexp);

// result = an array “Fred”, “Jane”, “Steve”

the new array entries hold only the names and not the leading numbers or periods. A second addition is an
optional second parameter. This integer value allows you to specify a limit to the number of array elements
generated by the method.

Example
Use The Evaluator (Chapter 13) to see how the string.split() method works. Begin by assigning a
comma-delimited string to a variable:

a = “Anderson,Smith,Johnson,Washington”

Now split the string at comma positions so that the string pieces become items in an array, saved as b:

b = a.split(“,”)

To prove that the array contains four items, inspect the array’s length property:

b.length // result: 4

Related Items: array.join() method.

string.substr(start [, length])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The string.substr() method offers a variation of the string.substring() method that has been in
the JavaScript language since the beginning. The distinction is that the string.substr() method’s param-
eters specify the starting index and a number of characters to be included from that start point. In contrast,
the string.substring() method parameters specify index points for the start and end characters within
the main string.

903

stringObject.substr()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 903

As with all string methods requiring an index value, the string.substr() first parameter is zero-based. If
you do not specify a second parameter, the returned substring starts at the indexed point and extends to the
end of the string. A second parameter value that exceeds the end point of the string means that the method
returns a substring to the end of the string.

Even though this method is newer than its partner, it is not part of the ECMA standard as of Edition 3 of
the language spec. But because the method is so widely used, the standard does acknowledge it so that
other scripting contexts can implement the method consistent with browser practice.

Example
Listing 28-6 lets you experiment with a variety of values to see how the string.substr() method works.

LISTING 28-6

Reading a Portion of a String

<html>
<head>

<title>String Slicing and Dicing, Part II</title>
<script type=”text/javascript”>
var mainString = “Electroencephalograph”;
function showResults() {

var form = document.forms[0];
var param1 =

parseInt(form.param1.options[form.param1.selectedIndex].value);
var param2 =

parseInt(form.param2.options[form.param2.selectedIndex].value);
if (!param2) {

form.result1.value = mainString.substr(param1);
} else {

form.result1.value = mainString.substr(param1, param2);
}

}
</script>

</head>
<body>

String substr() Method
<hr />
Text used for the methods:

<tt>Electroencephalograph

----5----5----5----5-</tt>
<form>

<table>
<tr>

<th>String Method</th>
<th>Method Parameters</th>
<th>Results</th>

904

JavaScript Core Language Reference

stringObject.substr()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 904

</tr>
<tr>

<td>string.substr()</td>
<td rowspan=”3” valign=”middle”>
(<select name=”param1” onchange=”showResults()”>

<option value=”0”>0</option>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”5”>5</option>

</select>, <select name=”param2” onchange=”showResults()”>
<option>(None)</option>
<option value=”5”>5</option>
<option value=”10”>10</option>
<option value=”20”>20</option>

</select>)
</td>
<td><input type=”text” name=”result1” size=”25” /></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: string.substring() method.

string.substring(indexA, indexB)
Returns: String of characters between index values indexA and indexB.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The string.substring() method enables your scripts to extract a copy of a contiguous range of charac-
ters from any string. The parameters to this method are the starting and ending index values (first character
of the string object is index value 0) of the main string from which the excerpt should be taken. An impor-
tant item to note is that the excerpt goes up to, but does not include, the character pointed to by the higher
index value.

It makes no difference which index value in the parameters is larger than the other: The method starts the
excerpt from the lowest value and continues to (but does not include) the highest value. If both index val-
ues are the same, the method returns an empty string; and if you omit the second parameter, the end of the
string is assumed to be the endpoint.

Example
Listing 28-7 lets you experiment with a variety of values to see how the string.substring() method
works.

905

stringObject.substring()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 905

LISTING 28-7

Reading a Portion of a String

<html>
<head>

<title>String Slicing and Dicing, Part III</title>
<script type=”text/javascript”>
var mainString = “Electroencephalograph”;
function showResults() {

var form = document.forms[0];
var param1 =

parseInt(form.param1.options[form.param1.selectedIndex].value);
var param2 =

parseInt(form.param2.options[form.param2.selectedIndex].value);
if (!param2) {

form.result1.value = mainString.substring(param1);
} else {

form.result1.value = mainString.substring(param1, param2);
}

}
</script>

</head>
<body>

String substr() Method
<hr />
Text used for the methods:

<tt>Electroencephalograph

----5----5----5----5-</tt>
<form>

<table>
<tr>

<th>String Method</th>
<th>Method Parameters</th>
<th>Results</th>

</tr>
<tr>

<td>string.substring()</td>
<td>(<select name=”param1” onchange=”showResults()”>

<option value=”0”>0</option>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”5”>5</option>

</select>, <select name=”param2” onchange=”showResults()”>
<option>(None)</option>
<option value=”3”>3</option>
<option value=”5”>5</option>
<option value=”10”>10</option>

</select>)

906

JavaScript Core Language Reference

stringObject.substring()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 906

</td>
<td><input type=”text” name=”result1” size=”25” /></td>

</tr>
</table>

</form>
</body>

</html>

Related Items: string.substr(), string.slice() methods.

string.toLocaleLowerCase()
string.toLocaleUpperCase()
Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

These two methods are variations on the standard methods for changing the case of a string. They take into
account some language systems whose cases for a particular character don’t necessarily map to the Latin
alphabet character mappings.

Related Items: string.toLowerCase(), string.toUpperCase() methods.

string.toLowerCase()
string.toUpperCase()
Returns: The string in all lower- or uppercase, depending on which method you invoke.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

A great deal of what takes place on the Internet (and in JavaScript) is case-sensitive. URLs on some servers,
for instance, are case-sensitive for directory names and filenames. These two methods, the simplest of the
string methods, return a copy of a string converted to either all lowercase or all uppercase. Any mixed-case
strings get converted to a uniform case. If you want to compare user input from a field against some coded
string without worrying about matching case, you can convert both strings to the same case for the compar-
ison.

Example
You can use the toLowerCase() and toUpperCase() methods on literal strings, as follows:

var newString = “HTTP://www.Netscape.COM”.toLowerCase();
// result = “http://www.netscape.com”

The methods are also helpful in comparing strings when case is not important, as follows:

if (guess.toUpperCase() == answer.toUpperCase()) {...}
// comparing strings without case sensitivity

Related Items: string.toLocaleLowerCase(), string.toLocaleUpperCase() methods.

907

stringObject.toLowerCase()

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 907

string.toString()
string.valueOf()
Returns: String value.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Both of these methods return string values (as opposed to full-fledged string objects). If you have created a
string object via the new String() constructor, the type of that item is object. Therefore, if you want to
examine more precisely what kind of value is held by the object, you can use the valueOf() method to get
the value and then examine it via the typeof operator. The toString() method is present for this object
primarily because a string object inherits the method from the root object of JavaScript.

Example
Use The Evaluator (Chapter 13) to test the valueOf() method. Enter the following statements into the top
text box and examine the values that appear in the Results field:

a = new String(“hello”)
typeof a
b = a.valueOf()
typeof b

Because all other JavaScript core objects also have the valueOf() method, you can build generic functions
that receive a variety of object types as parameters, and the script can branch its code based on the type of
value that is stored in the object.

Related Items: typeof operator (Chapter 33).

String Utility Functions
Figuring out how to apply the various string object methods to a string manipulation challenge is not
always an easy task. The situation is only made worse if you’ve been tasked to support legacy or mobile
browsers with limited JavaScript support. It’s also difficult to anticipate every possible way you may need to
massage strings in your scripts. But to help you get started, Listing 28-8 contains a fully backward-compati-
ble library of string functions for inserting, deleting, and replacing chunks of text in a string. If your audi-
ence uses browsers capable of including external .js library files, that would be an excellent way to make
these functions available to your scripts.

LISTING 28-8

Utility String Handlers

// extract front part of string prior to searchString
function getFront(mainStr,searchStr){

foundOffset = mainStr.indexOf(searchStr);
if (foundOffset == -1) {

return null;
}
return mainStr.substring(0,foundOffset);

}

908

JavaScript Core Language Reference

stringObject.toString()

Part IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 908

// extract back end of string after searchString
function getEnd(mainStr,searchStr) {

foundOffset = mainStr.indexOf(searchStr);
if (foundOffset == -1) {

return null;
}
return mainStr.substring(foundOffset+searchStr.length,mainStr.length);

}

// insert insertString immediately before searchString
function insertString(mainStr,searchStr,insertStr) {

var front = getFront(mainStr,searchStr);
var end = getEnd(mainStr,searchStr);
if (front != null && end != null) {

return front + insertStr + searchStr + end;
}
return null;

}

// remove deleteString
function deleteString(mainStr,deleteStr) {

return replaceString(mainStr,deleteStr,””);
}

// replace searchString with replaceString
function replaceString(mainStr,searchStr,replaceStr) {

var front = getFront(mainStr,searchStr);
var end = getEnd(mainStr,searchStr);
if (front != null && end != null) {

return front + replaceStr + end;
}
return null;

}

The first two functions extract the front or end components of strings as needed for some of the other func-
tions in this suite. The final three functions are the core of these string-handling functions. If you plan to
use these functions in your scripts, be sure to notice the dependence that some functions have on others.
Including all five functions as a group ensures that they work as designed.

A modern alternative to Listing 28-8 utilizes a combination of string and array methods to perform a global
replace operation in a one-statement function:

function replaceString(mainStr, searchStr, replaceStr) {
return mainStr.split(searchStr).join(replaceStr);

}

Going one step further, you can create a custom method to use with all string values or objects in your
scripts. Simply let the following statement execute as the page loads:

String.prototype.replaceString = function(mainStr, searchStr, replaceStr) {
return mainStr.split(searchStr).join(replaceStr);

}

909

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 909

Then invoke this method of any string value in other scripts on the page, as in:

myString = myString.replaceString(“ CD “, “ MP3 “);

Formatting methods
Now we come to the other group of string object methods, which ease the process of creating the numerous
string display characteristics when you use JavaScript to assemble HTML code. The following is a list of
these methods:

string.anchor(“anchorName”) string.link(locationOrURL)

string.blink() string.big()

string.bold() string.small()

string.fixed() string.strike()

string.fontcolor(colorValue) string.sub()

string.fontsize(integer1to7) string.sup()

string.italics()

First examine the methods that don’t require any parameters. You probably see a pattern: All of these meth-
ods are font-style attributes that have settings of on or off. To turn on these attributes in an HTML docu-
ment, you surround the text in the appropriate tag pairs, such as ... for boldface text. These
methods take the string object, attach those tags, and return the resulting text, which is ready to be put into
any HTML that your scripts are building. Therefore, the expression

“Good morning!”.bold()

evaluates to

Good morning!

Of course, nothing is preventing you from building your HTML by embedding real tags instead of by calling
the string methods. The choice is up to you. One advantage to the string methods is that they never forget
the ending tag of a tag pair. Listing 28-9 shows an example of incorporating a few simple string methods in
a string variable that is eventually written to the page as it loads. Internet Explorer does not support the
<blink> tag and therefore ignores the string.blink() method.

LISTING 28-9

Using Simple String Methods

<html>
<head>

<title>HTML by JavaScript</title>
</head>
<body>

<script type=”text/javascript”>
var page = “”;

910

JavaScript Core Language ReferencePart IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 910

page += “JavaScript can create HTML on the fly.<P>Numerous string object
methods facilitate creating text that is “ +
“boldfaced”.bold() + “, “ + “italicized”.italics() +
“, or even the terribly annoying “ + “blinking text”.blink() + “.”;

document.write(page);
</script>

</body>
</html>

Of the remaining string methods, two more (string.fontsize() and string.fontcolor()) also affect
the font characteristics of strings displayed in the HTML page. The parameters for these items are pretty
straightforward — an integer between 1 and 7 corresponding to the seven browser font sizes and a color
value (as either a hexadecimal triplet or color constant name) for the designated text. Listing 28-10 adds a
line of text to the string of Listing 28-9. This line of text not only adjusts the font size of some parts of the
string but also nests multiple attributes inside one another to set the color of one word in a large-font-size
string. Because these string methods do not change the content of the string, you can safely nest methods
here.

LISTING 28-10

Nested String Methods

<html>
<head>

<title>HTML by JavaScript</title>
</head>
<body>

<script type=”text/javascript”>
var page = “”;
page += “JavaScript can create HTML on the fly.<P>Numerous string object

methods facilitate creating text that is “ + “boldfaced”.bold() +
“, “ + “italicized”.italics() + “, or even the terribly annoying “ +
“blinking text”.blink() + “.
”;

page += “We can make “ + “some words big”.fontsize(5) + “ and some words
both “ + (“big and “ + “colorful”.fontcolor(‘coral’)).fontsize(5) +
“ at the same time.”;

document.write(page);
</script>

</body>
</html>

The final two string methods let you create an anchor and a link out of a string. The string.anchor()
method uses its parameter to create a name for the anchor. Thus, the following expression

“Table of Contents”.anchor(“toc”)

evaluates to

Table of Contents

911

The String Object 28

37_069165 ch28.qxp 3/1/07 3:53 PM Page 911

In a similar fashion, the string.link() method expects a valid location or URL as its parameter, creating
a genuine HTML link out of the string:

“Back to Home”.link(“index.html”)

This evaluates to the following:

Back to Home

Again, the choice of whether you use string methods to build HTML anchors and links over assembling the
actual HTML is up to you. The methods may be a bit easier to work with if the values for the string and the
parameters are variables whose content may change based on user input elsewhere in your web site.

URL String Encoding and Decoding
When browsers and servers communicate, some non-alphanumeric characters that we take for granted
(such as a space) cannot make the journey in their native form. Only a narrower set of letters, numbers, and
punctuation is allowed. To accommodate the rest, the characters must be encoded with a special symbol (%)
and their hexadecimal ASCII values. For example, the space character is hex 20 (ASCII decimal 32). When
encoded, it looks like %20. You may have seen this symbol in browser history lists or URLs.

JavaScript includes two functions, encodeURIComponent() and decodeURIComponent(), that offer
instant conversion of whole strings. To convert a plain string to one with these escape codes, use the escape
function, as in

encodeURIComponent(“Howdy Pardner”); // result = “Howdy%20Pardner”

The decodeURIComponent() function converts the escape codes into human-readable form.

Both of these functions are covered in Chapter 35.CROSS-REFCROSS-REF

912

JavaScript Core Language ReferencePart IV

37_069165 ch28.qxp 3/1/07 3:53 PM Page 912

The introduction to data types and values in Chapter 6’s tutorial scratched
the surface of JavaScript’s numeric and Boolean powers. In this chapter,
you look more closely at JavaScript’s way of working with numbers and

Boolean data.

Math often frightens away budding programmers; but as you’ve seen so far in this
book, you don’t really have to be a math genius to program in JavaScript. The
powers described in this chapter are here when you need them — if you need
them. So if math is not your strong suit, don’t freak out over the terminology here.

An important point to remember about the objects described in this chapter is
that (like string values and string objects) numbers and Booleans are both values
and objects. Fortunately for script writers, the differentiation is rarely, if ever, a
factor unless you get into some very sophisticated programming. To those who
actually write the JavaScript interpreters inside the browsers we use, the distinc-
tions are vital.

For most scripters, the information about numeric data types and conversions as
well as the Math object are important to know.

Numbers in JavaScript
More powerful programming languages have many different kinds of numbers,
each related to the amount of memory it occupies in the computer. Managing all
these different types may be fun for some, but it gets in the way of quick script-
ing. A JavaScript number has only two possibilities. It can be an integer or a
floating-point value. An integer is any whole number within a humongous range
that does not have any fractional part. Integers never contain a decimal point in
their representation. Floating-point numbers in JavaScript spread across the same
range, but they are represented with a decimal point and some fractional value. If
you are an experienced programmer, refer to the discussion about the number
object later in this chapter to see how the JavaScript number type lines up with
numeric data types you use in other programming environments.

913

IN THIS CHAPTER
Advanced math operations

Number base conversions

Working with integers and
floating-point numbers

The Math, Number,
and Boolean Objects

38_069165 ch29.qxp 3/1/07 3:53 PM Page 913

Integers and floating-point numbers
Deep inside a computer, the microprocessor has an easier time performing math on integer values as com-
pared to any number with a decimal value tacked on it, which requires the microprocessor to go through
extra work to add even two such floating-point numbers. We, as scripters, are unfortunately saddled with
this historical baggage and must be conscious of the type of number used in certain calculations.

Most internal values generated by JavaScript, such as index values and length properties, consist of inte-
gers. Floating-point numbers usually come into play as the result of the division of numeric values, special
values such as pi, and human-entered values such as dollars and cents. Fortunately, JavaScript is forgiving if
you try to perform math operations on mixed numeric data types. Notice how the following examples
resolve to the appropriate data type:

3 + 4 = 7 // integer result
3 + 4.1 = 7.1 // floating-point result
3.9 + 4.1 = 8 // integer result

Of the three examples, perhaps only the last result is unexpected. When two floating-point numbers yield a
whole number, the result is rendered as an integer.

When dealing with floating-point numbers, be aware that not all browser versions return the precise same
value down to the last digit to the right of the decimal. For example, the following table shows the result of
8/9 as calculated by numerous scriptable browsers and converted for string display:

NN3 & NN4 .8888888888888888

NN6+/Moz+/Safari+ 0.8888888888888888

WinIE3 0.888888888888889

WinIE4+ 0.8888888888888888

Clearly, from this display, you don’t want to use floating-point math in JavaScript browsers to plan space
flight trajectories or other highly accurate mission critical calculations. For everyday math, however, you
need to be cognizant of floating-point errors that accrue in PC arithmetic.

In Navigator, JavaScript relies on the operating system’s floating-point math for its own math. Operating
systems that offer accuracy to as many places to the right of the decimal as JavaScript displays are exceed-
ingly rare. As you can detect from the preceding table, modern browsers agree about how many digits to
display and how to perform internal rounding for this display. That’s good for the math, but not particularly
helpful when you need to display numbers in a specific format.

Until you get to IE5.5, Mozilla-based browsers, and other W3C-compatible browsers, JavaScript does not
offer built-in facilities for formatting the results of floating-point arithmetic. (For modern browsers, see the
Number object later in this chapter for formatting methods.) Listing 29-1 demonstrates a generic formatting
routine for positive values, plus a specific call that turns a value into a dollar value. Remove the comments
and the routine is fairly compact.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

NOTENOTE

914

JavaScript Core Language ReferencePart IV

38_069165 ch29.qxp 3/1/07 3:53 PM Page 914

LISTING 29-1

A Generic Number-Formatting Routine

<html>
<head>

<title>Number Formatting</title>
<script type=”text/javascript”>
// generic positive number decimal formatting function
function format(expr, decplaces) {

// raise incoming value by power of 10 times the
// number of decimal places; round to an integer; convert to string
var str = “” + Math.round(eval(expr) * Math.pow(10,decplaces));
// pad small value strings with zeros to the left of rounded number
while (str.length <= decplaces) {

str = “0” + str;
}
// establish location of decimal point
var decpoint = str.length - decplaces;
// assemble final result from: (a) the string up to the position of
// the decimal point; (b) the decimal point; and (c) the balance
// of the string. Return finished product.
return str.substring(0,decpoint) + “.” +

str.substring(decpoint,str.length);
}
// turn incoming expression into a dollar value
function dollarize(expr) {

return “$” + format(expr,2);
}
</script>

</head>
<body>

<h1>How to Make Money</h1>
<form>

Enter a positive floating point value or arithmetic expression to be
converted to a currency format:
<p><input type=”text” name=”entry” value=”1/3” /> <input type=”button”

id=”dollars” value=”>Dollars and Cents>”
onclick=”this.form.result.value=dollarize(this.form.entry.value)”
/>
<input type=”text” name=”result” /></p>

</form>
</body>

</html>

This routine may seem like a great deal of work, but it’s essential if your application relies on floating-point
values and specific formatting for all browsers.

915

The Math, Number, and Boolean Objects 29

38_069165 ch29.qxp 3/1/07 3:53 PM Page 915

You can also enter floating-point numbers with exponents. An exponent is signified by the letter “e” (upper-
or lowercase), followed by a sign (+ or –) and the exponent value. Here are examples of floating-point val-
ues expressed as exponents:

1e6 // 1,000,000 (the “+” symbol is optional on positive exponents)
1e-4 // 0.0001 (plus some error further to the right of the decimal)
-4e-3 // -0.004

For values between 1e-5 and 1e15, JavaScript renders numbers without exponents (although you can force
a number to display in exponential notation in modern browsers). All other values outside these boundaries
return with exponential notation in all browsers.

Hexadecimal and octal integers
JavaScript enables you to work with values in decimal (base-10), hexadecimal (base-16), and octal (base-8)
formats. You have only a few rules to follow when dealing with any of these values.

Decimal values cannot begin with a leading 0. Therefore, if your page asks users to enter decimal values that
begin with a 0, your script must strip those zeros from the input string or use the number parsing global
functions (described in the next section) before performing any math on the values.

Hexadecimal integer values are expressed with a leading 0x or 0X. (That’s a zero, not the letter “o.”) The A
through F values can appear in upper- or lowercase, as you prefer. Here are some hex values:

0X2B
0X1a
0xcc

Don’t confuse the hex values used in arithmetic with the hexadecimal values used in color property specifi-
cations for web documents. Those values are expressed in a special hexadecimal triplet format, which begins
with a crosshatch symbol followed by the three hex values bunched together (such as #c0c0c0).

Octal values are represented by a leading 0 followed by any digits between 0 and 7. Octal values consist
only of integers.

You are free to mix and match base values in arithmetic expressions, but JavaScript renders all results in
decimal form. For conversions to other number bases, you have to employ a user-defined function in your
script. Listing 29-2, for example, is a function that converts any decimal value from 0 to 255 into a
JavaScript hexadecimal value.

LISTING 29-2

Decimal-to-Hexadecimal Converter Function

function toHex(dec) {
hexChars = “0123456789ABCDEF”;
if (dec > 255) {

return null;
}
var i = dec % 16;
var j = (dec - i) / 16;
result = “0X”;
result += hexChars.charAt(j);

916

JavaScript Core Language ReferencePart IV

38_069165 ch29.qxp 3/1/07 3:53 PM Page 916

result += hexChars.charAt(i);
return result;

}

The toHex() conversion function assumes that the value passed to the function is a decimal integer. If you
simply need a hexadecimal representation of a number in string format, see the toString() method in
Chapter 35.

Converting strings to numbers
What is missing so far from this discussion is a way to convert a number represented as a string to a num-
ber with which the JavaScript arithmetic operators can work. Before you get too concerned about this, be
aware that most JavaScript operators and math methods gladly accept string representations of numbers
and handle them without complaint. You will run into data type incompatibilities most frequently when
trying to accomplish addition with the + operator (which is also the string concatenation operator). Also
know that if you perform math operations on values retrieved from form text boxes, those object value
properties are strings. Therefore, in many cases, you need to convert those values to values of the number
type for math operations.

Conversion to numbers requires one of two JavaScript functions:

parseInt(string [,radix])
parseFloat(string [,radix])

These functions are inspired by the Java language. The term parsing has many implied meanings in pro-
gramming. One meaning is the same as extracting. The parseInt() function returns whatever integer value
it can extract from the string passed to it; the parseFloat() function returns the floating-point number
that can be extracted from the string. Here are some examples and their resulting values:

parseInt(“42”) // result = 42
parseInt(“42.33”) // result = 42
parseFloat(“42.33”) // result = 42.33
parseFloat(“42”) // result = 42
parseFloat(“fred”) // result = NaN

Because the parseFloat() function can also work with an integer and return an integer value, you may
prefer using this function in scripts that have to deal with either kind of number, depending on the string
entered into a text field by a user.

An optional second parameter to both functions enables you to specify the base of the number represented
by the string. This comes in handy particularly when you need a decimal number from a string that starts
with one or more zeros. Normally, the leading zero indicates an octal value. But if you force the conversion
to recognize the string value as a decimal, it is converted the way you expect:

parseInt(“010”) // result = 8
parseInt(“010”,10) // result = 10
parseInt(“F2”) // result = NaN
parseInt(“F2”, 16) // result = 242

Use these functions wherever you need the integer or floating-point value. For example:

var result = 3 + parseInt(“3”); // result = 6
var ageVal = parseInt(document.forms[0].age.value);

917

The Math, Number, and Boolean Objects 29

38_069165 ch29.qxp 3/1/07 3:53 PM Page 917

The latter technique ensures that the string value of this property is converted to a number (although you
should do more data validation — see Chapter 43 on the CD-ROM — before trying any math on a user-
entered value).

Both the parseInt() and parseFloat() methods start working on the first character of a string and con-
tinue until there are no more numbers or decimal characters. That’s why you can use them on strings — such
as the one returned by the navigator.appVersion property (for example, 6.0 (Windows; en-US)) — to
obtain just the leading, numeric part of the string. If the string does not begin with an acceptable character,
the methods return NaN (not a number).

Converting numbers to strings
If you attempt to pass a numeric data type value to many of the string methods discussed in Chapter 28,
JavaScript complains. Therefore, you should convert any number to a string before you, for example, find
out how many digits make up a number.

Several ways exist to force conversion from any numeric value to a string. The old-fashioned way is to pre-
cede the number with an empty string and the concatenation operator. For example, assume that a variable
named dollars contains the integer value of 2500. To use the string object’s length property (discussed
later in this chapter) to find out how many digits the number has, use this construction:

(“” + dollars).length // result = 4

The parentheses force JavaScript to evaluate the concatenation before attempting to extract the length
property.

A more elegant way is to use the toString() method. Construct such statements as you do to invoke any
object’s method. For example, to convert the dollars variable value to a string, use this statement:

dollars.toString() // result = “2500”

This method has one added power in modern browsers: You can specify a number base for the string repre-
sentation of the number. Called the radix, the base number is added as a parameter to the method name.
Here is an example of creating a numeric value for conversion to its hexadecimal equivalent as a string:

var x = 30;
var y = x.toString(16); // result = “1e”

Use a parameter of 2 for binary results and 8 for octal. The default is base 10. Be careful not to confuse
these conversions with true numeric conversions. You cannot use results from the toString() method as
numeric operands in other statements.

Finally, in IE5.5+, Mozilla-based browsers, and other W3C browsers, three additional methods of the
Number object — toExponential(), toFixed(), and toPrecision()— return string versions of num-
bers formatted according to the rules and parameters passed to the methods. I describe these in detail later
in this chapter.

When a number isn’t a number
In a couple of examples in the previous section, you probably noticed that the result of some operations was
a value named NaN. That value is not a string but rather a special value that stands for Not a Number. For
example, if you try to convert the string “joe” to an integer with parseFloat(), the function cannot pos-
sibly complete the operation. It reports back that the source string, when converted, is not a number.

918

JavaScript Core Language ReferencePart IV

38_069165 ch29.qxp 3/1/07 3:53 PM Page 918

When you design an application that requests user input or retrieves data from a server-side database, you
cannot be guaranteed that a value you need to be numeric is, or can be converted to, a number. If that’s the
case, you need to see if the value is a number before performing some math operation on it. JavaScript pro-
vides a special global function, isNaN(), that enables you to test the “numberness” of a value. The function
returns true if the value is not a number and false if it is a number. For example, you can examine a form
field that should be a number:

var ageEntry = parseInt(document.forms[0].age.value);
if (isNaN(ageEntry)) {

alert(“Try entering your age again.”);
}

Math Object
Whenever you need to perform math that is more demanding than simple arithmetic, look through the list
of Math object methods for the solution.

Syntax
Accessing Math object properties and methods:

Math.property
Math.method(value [, value])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
In addition to the typical arithmetic operations (covered in detail in Chapter 33), JavaScript includes more
advanced mathematical powers that you can access in a way that may seem odd to you if you have not pro-
grammed in true object-oriented environments before. Although most arithmetic takes place on the fly
(such as var result = 2 + 2), the rest requires use of the JavaScript internal Math object (with a capital
“M”). The Math object brings with it several properties (which behave like some other languages’ constants)
and many methods (which behave like some other languages’ math functions).

The way you use the Math object in statements is the same way you use any JavaScript object: You create a
reference beginning with the Math object’s name, a period, and the name of the property or method you
need:

Math.property | method([parameter]. . . [,parameter])

Property references return the built-in values (things such as pi). Method references require one or more
values to be sent as parameters of the method. Every method returns a result.

Properties
JavaScript Math object properties represent a number of valuable constant values in math. Table 29-1 shows
you those methods and their values as displayed to 16 decimal places.

919

Math Object

The Math, Number, and Boolean Objects 29

38_069165 ch29.qxp 3/1/07 3:53 PM Page 919

TABLE 29-1

JavaScript Math Properties

Property Value Description

Math.E 2.718281828459045091 Euler’s constant

Math.LN2 0.6931471805599452862 Natural log of 2

Math.LN10 2.302585092994045901 Natural log of 10

Math.LOG2E 1.442695040888963387 Log base-2 of E

Math.LOG10E 0.4342944819032518167 Log base-10 of E

Math.PI 3.141592653589793116 π

Math.SQRT1_2 0.7071067811865475727 Square root of 0.5

Math.SQRT2 1.414213562373095145 Square root of 2

Because these property expressions return their constant values, you use them in your regular arithmetic
expressions. For example, to obtain the circumference of a circle whose diameter is in variable d, employ
this statement:

circumference = d * Math.PI;

Perhaps the most common mistakes scripters make with these properties are failing to capitalize the Math
object name and observing the case-sensitivity of property names.

Methods
Methods make up the balance of JavaScript Math object powers. With the exception of the Math.random()
method, all Math object methods take one or more values as parameters. Typical trigonometric methods
operate on the single values passed as parameters; others determine which of the numbers passed along are
the highest or lowest of the group. The Math.random() method takes no parameters but returns a ran-
domized, floating-point value between 0 and 1. Table 29-2 lists all the Math object methods with their syn-
tax and descriptions of the values they return.

TABLE 29-2

Math Object Methods

Method Syntax Returns

Math.abs(val) Absolute value of val

Math.acos(val) Arc cosine (in radians) of val

Math.asin(val) Arc sine (in radians) of val

Math.atan(val) Arc tangent (in radians) of val

Math.atan2(val1, val2) Angle of polar coordinates x and y

Math.ceil(val) Next integer greater than or equal to val

Math.cos(val) Cosine of val

920

JavaScript Core Language Reference

Math

Part IV

38_069165 ch29.qxp 3/1/07 3:53 PM Page 920

Math.exp(val) Euler’s constant to the power of val

Math.floor(val) Next integer less than or equal to val

Math.log(val) Natural logarithm (base e) of val

Math.max(val1, val2) The greater of val1 or val2

Math.min(val1, val2) The lesser of val1 or val2

Math.pow(val1, val2) Val1 to the val2 power

Math.random() Random number between 0 and 1

Math.round(val) N+1 when val >= n.5; otherwise N

Math.sin(val) Sine (in radians) of val

Math.sqrt(val) Square root of val

Math.tan(val) Tangent (in radians) of val

HTML is not exactly a graphic artist’s dream environment, so using trig functions to obtain a series of values
for HTML-generated charting is not a hot JavaScript prospect. Only with the advent of positionable ele-
ments have scripters been able to apply their knowledge of using these functions to define fancy trajectories
for flying elements. For scripters who are not trained in programming, math is often a major stumbling
block. But as you’ve seen so far, you can accomplish a great deal with JavaScript by using simple arithmetic
and a little bit of logic — leaving the heavy-duty math for those who love it.

Creating random numbers
One of the handiest methods in the Math object is Math.random(), which returns a random floating-point
value between 0 and 1. If you design a script to act like a card game, you need random integers between 1
and 52; for dice, the range is 1 to 6 per die. To generate a random integer between zero and any top value
(n), use the following formula:

Math.floor(Math.random() * n)

Here, n is the top number. To generate random numbers between a range that starts somewhere other than
zero, use this formula:

Math.floor(Math.random() * (n – m + 1)) + m

Here, m is the lowest possible integer value of the range and n equals the top number of the range. For the
dice game, the formula for each die is

newDieValue = Math.floor(Math.random() * 6) + 1;

Math object shortcut
In Chapter 32, you see details about a JavaScript construction that enables you to simplify the way you
address multiple Math object properties and methods in statements. The trick is to use the with statement.

In a nutshell, the with statement tells JavaScript that the next group of statements (inside the braces) refers
to a particular object. In the case of the Math object, the basic construction looks like this:

with (Math) {
//statements

}

921

Math Objects

The Math, Number, and Boolean Objects 29

38_069165 ch29.qxp 3/1/07 3:53 PM Page 921

For all intervening statements, you can omit the specific references to the Math object. Compare the long
reference way of calculating the area of a circle (with a radius of six units)

result = Math.pow(6,2) * Math.PI;

to the shortcut reference way:

with (Math) {
result = pow(6,2) * PI;

}

Though the latter occupies more lines of code, the object references are shorter and more natural when
reading the code. For a longer series of calculations involving Math object properties and methods, the
with construction saves keystrokes and reduces the likelihood of a case-sensitive mistake with the object
name in a reference. You can also include other full-object references within the with construction;
JavaScript attempts to attach the object name only to those references lacking an object name. On the
downside, the with construction is not particularly efficient in JavaScript because it must perform a lot of
internal tracking in order to work.

Number Object

Properties Methods

constructor toExponential()

MAX_VALUE toFixed()

MIN_VALUE toLocaleString()

NaN toString()

NEGATIVE_INFINITY toPrecision()

POSITIVE_INFINITY valueOf()

prototype

Syntax
Creating a number object:

var val = new Number(number);

Accessing number and Number object properties and methods:

number.property | method([parameters])
Number.property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

922

JavaScript Core Language Reference

Number

Part IV

38_069165 ch29.qxp 3/1/07 3:53 PM Page 922

About this object
The Number object is rarely used because (for the most part) JavaScript satisfies day-to-day numeric needs
with a plain number value. But the Number object contains some information and power of value to serious
programmers.

First on the docket are properties that define the ranges for numbers in the language. The largest number is
1.79E+308; the smallest number is 2.22E-308. Any number larger than the maximum is
POSITIVE_INFINITY; any number smaller than the minimum is NEGATIVE_INFINITY. Rarely will you
accidentally encounter these values.

More to the point of a JavaScript object, however, is the prototype property. Chapter 28 shows how to add
a method to a string object’s prototype such that every newly created object contains that method. The
same goes for the Number.prototype property. If you have a need to add common functionality to every
number object, this is where to do it. This prototype facility is unique to full-fledged number objects and
does not apply to plain number values. For experienced programmers who care about such matters,
JavaScript number objects and values are defined internally as ieee double-precision 64-bit values.

Properties
constructor
(See string.constructor in Chapter 28)

MAX_VALUE
MIN_VALUE
NEGATIVE_INFINITY
POSITIVE_INFINITY
Value: Number. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The Number.MAX_VALUE and Number.MIN_VALUE properties belong to the static Number object. They rep-
resent constants for the largest and smallest possible positive numbers that JavaScript (and ECMAScript)
can work with. Their actual values are 1.7976931348623157 × 10308, and 5 × 10-324, respectively.

A number that falls outside the range of allowable numbers is equal to the constant
Number.POSITIVE_INFINITY or Number.NEGATIVE_INFINITY.

Example
Enter each of the four Number object expressions into the top text field of The Evaluator (Chapter 13) to see
how the browser reports each value.

Number.MAX_VALUE
Number.MIN_VALUE
Number.NEGATIVE_INFINITY
Number.POSITIVE_INFINITY

Related Items: NaN property; isNaN() global function.

923

Number.MAX_VALUE

The Math, Number, and Boolean Objects 29

38_069165 ch29.qxp 3/1/07 3:53 PM Page 923

NaN
Value: NaN. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The NaN property is a constant that JavaScript uses to report when a number-related function or method
attempts to work on a value other than a number or the result is something other than a number. You
encounter the NaN value most commonly as the result of the parseInt() and parseFloat() functions
whenever a string undergoing conversion to a number lacks a numeral as the first character. Use the
isNaN() global function to see if a value is an NaN value.

Example
See the discussion of the isNaN() function in Chapter 35.

Related Item: isNaN() global function.

prototype
(See String.prototype in Chapter 28)

Methods
number.toExponential(fractionDigits)
number.toFixed(fractionDigits)
number.toPrecision(precisionDigits)
Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari+

These three methods let scripts control the formatting of numbers for display as string text. Each method
has a unique purpose, but they all return strings. You should perform all math operations as unformatted
number objects because the values have the most precision. Only after you are ready to display the results
should you use one of these methods to convert the number to a string for display as body text or assign-
ment to a text field.

The toExponential() method forces a number to display in exponential notation, even if the number is in
the range in which JavaScript normally uses standard notation. The parameter is an integer specifying how
many digits to the right of the decimal should be returned. All digits to the right of the decimal are returned,
even if they are zero. For example, if a variable contains the numeric value 345, applying toExponential(3)
to that value yields 3.450e+2, which is JavaScript’s exponential notation for 3.45 × 102.

Use the toFixed() method when you want to format a number with a specific number of digits to the
right of the decimal. This is the method you use, for instance, to display the results of a financial calculation
in units and hundredths of units (for example, dollars and cents). The parameter to the method is an inte-
ger indicating the number of digits to be displayed to the right of the decimal. If the number being format-
ted has more numbers to the right of the decimal than the number of digits specified by the parameter, the
method rounds the rightmost visible digit — but only with respect to the unrounded value of the next digit.
For example, the value 123.455 fixed to two digits to the right of the decimal is rounded up to 123.46.
But if the starting value is 123.4549, the method ignores the 9 and sees that the 4 to the right of the 5
should be rounded down; therefore, the result is 123.45. Do not consider the toFixed() method to be an
accurate rounder of numbers; however, it does a satisfactory job in most cases.

924

JavaScript Core Language Reference

numberObject.toExponential()

Part IV

38_069165 ch29.qxp 3/1/07 3:53 PM Page 924

The final method is toPrecision(), which enables you to define how many total digits (including digits to
the left and right of the decimal) to display of a number. In other words, you define the precision of a num-
ber. The following list demonstrates the results of several parameter values signifying a variety of precisions:

var num = 123.45
num.toPrecision(1) // result = 1e+2
num.toPrecision(2) // result = 1.2e+2
num.toPrecision(3) // result = 123
num.toPrecision(4) // result = 123.5
num.toPrecision(5) // result = 123.45
num.toPrecision(6) // result = 123.450

Notice that the same kind of rounding can occur with toPrecision() as it does for toFixed().

Example
You can use The Evaluator (Chapter 13) to experiment with all three of these methods with a variety of
parameter values. Before invoking any method, be sure to assign a numeric value to one of the built-in
global variables in The Evaluator (a through z).

a = 10/3
a.toFixed(4)
“$” + a.toFixed(2)

None of these methods works with number literals (for example, 123.toExponential(2) does not work).

Related Item: Math object.

number.toLocaleString()
Returns: String.
Compatibility: WinIE5.5+, MacIE5+, NN6+, Moz+, Safari+

The number.toLocaleString() method returns a string value version of the current number in a format
that may vary according to a browser’s locale settings. According to the ECMA Edition 3 standard, browsers
have some leeway in determining exactly how the toLocaleString() method should return a string value
that conforms with the language standard of the client system or browser.

Related Items: number.toFixed(), number.toString() methods.

number.toString([radix])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The number.toString() method returns a string value version of the current number. The default radix
parameter (10) converts the value to base-10 notation if the original number isn’t already of that type. Or
you can specify other number bases (for example, 2 for binary, 16 for hexadecimal) to convert the original
number to the other base — as a string, not a number, for further calculation.

925

numberObject.toString()

The Math, Number, and Boolean Objects 29

38_069165 ch29.qxp 3/1/07 3:53 PM Page 925

Example
Use The Evaluator (Chapter 13) to experiment with the toString() method. Assign the number 12 to the
variable a and see how the number is converted to strings in a variety of number bases:

a = 12
a.toString() // base 10
a.toString(2)
a.toString(16)

Related Item: toLocaleString() method.

number.valueOf()
(See string.valueOf() in Chapter 28)

Boolean Object

Properties Methods

constructor toString()

prototype valueOf()

Syntax
Creating a Boolean object:

var val = new Boolean(BooleanValue);

Accessing Boolean object properties:

BooleanObject.property | method

Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

About this object
You work with Boolean values a lot in JavaScript — especially as the result of conditional tests. Just as string
values benefit from association with string objects and their properties and methods, so, too, do Boolean
values receive aid from the Boolean object. For example, when you display a Boolean value in a text box,
the “true” or “false” string is provided by the Boolean object’s toString() method so you don’t have
to invoke it directly.

The only time you need to even think about a Boolean object is if you wish to attach some property or
method to Boolean objects that you create with the new Boolean() constructor. Parameter values for the
constructor include the string versions of the values, numbers (0 for false; any other integer for true),
and expressions that evaluate to a Boolean value. Any such new Boolean object is imbued with the new
properties or methods you add to the prototype property of the core Boolean object.

For details about the properties and methods of the Boolean object, see the corresponding listings for the
String object in Chapter 28.

926

JavaScript Core Language Reference

BooleanObject

Part IV

38_069165 ch29.qxp 3/1/07 3:53 PM Page 926

Perhaps the most untapped power of JavaScript is its date and time han-
dling. Scripters passed over the Date object with good cause in the early
days of JavaScript, because in earlier versions of scriptable browsers, sig-

nificant bugs and platform-specific anomalies made date and time programming
hazardous without significant testing. Even with the improved bug situation,
working with dates requires a working knowledge of the world’s time zones and
their relationships with the standard reference point, known as Greenwich Mean
Time (GMT) or Coordinated Universal Time (abbreviated UTC).

Now that date- and time-handling has stabilized in modern browsers, I hope
more scripters look into incorporating these kinds of calculations into their
pages. In Chapter 54 on the CD-ROM, for example, I show you an application
that lets your web site highlight the areas that have been updated since each visi-
tor’s last surf ride through your pages — an application that relies heavily on date
arithmetic and time zone conversion.

Before getting to the JavaScript part of date discussions, however, the chapter
summarizes key facts about time zones and their impact on scripting date and
time on a browser. If you’re not sure what GMT and UTC mean, the following
section is for you.

Time Zones and GMT
By international agreement, the world is divided into distinct time zones that
allow the inhabitants of each zone to say with confidence that when the Sun
appears directly overhead, it is roughly noon, squarely in the middle of the day.
The current time in the zone is what we set our clocks to — the local time.

That’s fine when your entire existence and scope of life go no further than the
width of your own time zone. But with instant communication among all parts of
the world, your scope reaches well beyond local time. Periodically you must be

927

IN THIS CHAPTER
Working with date and time
values in JavaScript

Performing date calculations

Validating date entry form fields

The Date Object

39_069165 ch30.qxp 3/1/07 3:53 PM Page 927

aware of the local time in other zones. After all, if you live in New York, you don’t want to wake up some-
one in Los Angeles before dawn with a phone call from your office.

For the rest of this section, I speak of the Sun “moving” as if Earth were the center of the solar
system. I do so for the convenience of our daily perception of the Sun arcing across what

appears to us as a stationary sky. In point of fact, I believe Copernicus’s theories, so please delete that e-mail
you were about to send me.

From the point of view of the time zone over which the Sun is positioned at any given instant, all time
zones to the east have already had their noon, so it is later in the day for them — one hour later per time
zone (except for those few time zones offset by fractions of an hour). That’s why when U.S. television net-
works broadcast simultaneously to the eastern and central time zones, the announced schedule for a pro-
gram is “10 eastern, 9 central.”

Many international businesses must coordinate time schedules of far-flung events. Doing so and taking into
account the numerous time zone differences (not to mention seasonal national variations, such as daylight
saving time) would be a nightmare. To help everyone out, a standard reference point was devised: the time
zone running through the celestial observatory at Greenwich (pronounced GREN-itch), England. This time
zone is called Greenwich Mean Time, or GMT for short. The “mean” part comes from the fact that on the
exact opposite side of the globe (through the Pacific Ocean) is the international date line, another world
standard that decrees where the first instance of the next calendar day appears on the planet. Thus, GMT is
located at the middle, or mean, of the full circuit of the day. Not that many years ago, GMT was given
another abbreviation that is not based on any one language of the planet. The abbreviation is UTC (pro-
nounced as its letters: yu-tee-see), and the English version is Coordinated Universal Time. Whenever you
see UTC, it is for all practical purposes the same as GMT.

If your personal computer’s system clock is set correctly, the machine ticks away in GMT time. But because
you set your local time zone in the appropriate control panel, all file time stamps and clock displays are in
your local time. The machine knows what the offset time is between your local time and GMT. For daylight
saving time, you may have to check a preference setting so that the offset is adjusted accordingly; in
Windows-based operating systems, the system knows when the changeover occurs and prompts you if
changing the offset is okay. In any case, if you travel across time zones with a laptop, you should change the
computer’s time zone setting, not its clock.

JavaScript’s inner handling of date and time works a lot like the PC clock (on which your programs rely).
Date values that you generate in a script are stored internally in GMT time; however, almost all the displays
and extracted values are in the local time of the visitor (not the web site server). And remember that the
date values are created on the visitor’s machine by virtue of your script’s generating that value — you don’t
send “living” date objects to the client from the server. This concept is perhaps the most difficult to grasp as
you work with JavaScript date and time.

Whenever you program time and date in JavaScript for a public web page, you must take the worldview.
This view requires knowing that the visitor’s computer settings determine the accuracy of the conversion
between GMT and local time. You’ll also have to do some testing by changing your PC’s clock to times in
other parts of the world and making believe you are temporarily in those remote locations, which isn’t
always easy to do. It reminds me of the time I was visiting Sydney, Australia. I was turning in for the night
and switched on the television in the hotel. This hotel received a live satellite relay of a long-running U.S.
television program, Today. The program broadcast from New York was for the morning of the same day I
was just finishing in Sydney. Yes, this time zone stuff can make your head hurt.

NOTENOTE

928

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 928

The Date Object
Like a handful of other objects in JavaScript and the document object models, there is a distinction between
the single, static Date object that exists in every window (or frame) and a date object that contains a spe-
cific date and time. The static Date object (uppercase “D”) is used in only a few cases: Primarily to create a
new instance of a date and to invoke a couple of methods that the Date object offers for the sake of some
generic conversions.

Most of your date and time work, however, is with instances of the Date object. These instances are
referred to generically as date objects (lowercase “d”). Each date object is a snapshot of an exact millisecond
in time, whether it be for the instant at which you generate the object or for a specific time in the past or
future you need for calculations. If you need to have a live clock ticking away, your scripts will repeatedly
create new date objects to grab up-to-the-millisecond snapshots of your computer’s clock. To show the time
on the page, extract the hours, minutes, and seconds from the snapshot date object, and then display the
values as you like (for example, a digital readout, a graphical bar chart, and so on). By and large, it is the
methods of a date object instance that your scripts invoke to read or modify individual components of a
date object (for example, the month or hour).

Despite its name, every date object contains information about date and time. Therefore, even if you’re con-
cerned only about the date part of an object’s data, time data is standing by as well. As you learn in a bit, the
time element can catch you off-guard for some operations.

Creating a date object
The statement that asks JavaScript to make an object for your script uses the special object construction
keyword new. The basic syntax for generating a new date object is as follows:

var dateObjectName = new Date([parameters]);

The date object evaluates to an object data type rather than to some string or numeric value.

With the date object’s reference safely tucked away in the variable name, you access all date-oriented meth-
ods in the dot-syntax fashion with which you’re already familiar:

var result = dateObjectName.method();

With variables, such as result, your scripts perform calculations or displays of the date object’s data (some
methods extract pieces of the date and time data from the object). If you then want to put some new value
into the date object (such as adding a year to the date object), you assign the new value to the object by way
of the method that lets you set the value:

dateObjectName.method(newValue);

This example doesn’t look like the typical JavaScript assignment statement, which has an equals sign opera-
tor. But this statement is the way in which methods that set date object data work.

You cannot get very far into scripting dates without digging into time zone arithmetic. Although JavaScript
may render the string equivalent of a date object in your local time zone, the internal storage is strictly GMT.

Even though you haven’t yet seen details of a date object’s methods, here is how you use two of them to add
one year to today’s date:

929

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 929

var oneDate = new Date(); // creates object with current GMT date
var theYear = oneDate.getYear(); // theYear is now storing the value 2007
theYear = theYear + 1; // theYear now is 2008
oneDate.setYear(theYear); // new year value now in the object

At the end of this sequence, the oneDate object automatically adjusts all the other date components for the
next year’s date. The day of the week, for example, will be different, and JavaScript takes care of that for
you, should you need to extract that data. With next year’s data in the oneDate object, you may now want
to extract that new date as a string value for display in a field on the page or submit it quietly to a CGI pro-
gram on the server.

The issue of parameters for creating a new date object is a bit complex, mostly because of the flexibility that
JavaScript offers the scripter. Recall that the job of the new Date() statement is to create a place in memory
for all data that a date needs to store. What is missing from that task is the data — what date and time to
enter into that memory spot. That’s where the parameters come in.

If you leave the parameters empty, JavaScript takes that to mean you want today’s date and the current time
to be assigned to that new date object. JavaScript isn’t any smarter, of course, than the setting of the internal
clock of your page visitor’s personal computer. If the clock isn’t correct, JavaScript won’t do any better of a
job identifying the date and time.

Remember that when you create a new date object, it contains the current time as well. The
fact that the current date may include a time of 16:03:19 (in 24-hour time) may throw off

things, such as days-between-dates calculations. Be careful.

To create a date object for a specific date or time, you have five ways to send values as a parameter to the
new Date() constructor function:

new Date(“Month dd, yyyy hh:mm:ss”)
new Date(“Month dd, yyyy”)
new Date(yy,mm,dd,hh,mm,ss)
new Date(yy,mm,dd)
new Date(milliseconds)

The first four variations break down into two styles — a long string versus a comma-delimited list of data —
each with optional time settings. If you omit time settings, they are set to 0 (midnight) in the date object for
whatever date you entered. You cannot omit date values from the parameters — every date object must have
a real date attached to it, whether you need it or not.

In the long string versions, the month is spelled out in full in English. No abbreviations are allowed. The
rest of the data is filled with numbers representing the date, year, hours, minutes, and seconds, even if the
order is different from your local way of indicating dates. For single-digit values, you can use either a one-
or two-digit version (such as 4:05:00). Colons separate hours, minutes, and seconds.

The short versions contain a non-quoted list of integer values in the order indicated. JavaScript cannot
know that a 30 means the date if you accidentally place it in the month slot.

You use the last version only when you have the millisecond value of a date and time available. This gener-
ally occurs after some math arithmetic (described later in this chapter), leaving you with a date and time in
millisecond format. To convert that numeric value to a date object, use the new Date() constructor. From
the new date object created, you can retrieve more convenient values about the date and time.

NOTENOTE

930

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 930

Native object properties and methods
Like the String and Array objects, the Date object features a small handful of properties and methods
that all native JavaScript objects have in common. On the property side, the Date object has a prototype
property, which enables you to apply new properties and methods to every date object created in the cur-
rent page. You can see examples of how this works in discussions of the prototype property for String and
Array objects (Chapters 28 and 31, respectively). At the same time, every instance of a date object in mod-
ern browsers has a constructor property that references the constructor function that generated the
object.

A date object has numerous methods that convert date object types to strings, most of which are more spe-
cific than the generic toString() one. The valueOf() method returns the millisecond integer that is
stored for a particular date.

Date methods
The bulk of a date object’s methods are for reading parts of the date and time information and for changing
the date and time stored in the object. These two categories of methods are easily identifiable because they
all begin with the word “get” or “set.” Table 30-1 lists all of the methods of both the static Date object and,
by inheritance, date object instances. The list is impressive — some would say frightening — but there are
patterns you should readily observe. Most methods deal with a single component of a date and time value:
year, month, date, and so forth. Each block of “get” and “set” methods also has two sets of methods: one for
the local date and time conversion of the date stored in the object; one for the actual UTC date stored in the
object. After you see the patterns, the list should be more manageable. Unless otherwise noted, a method
has been part of the Date object since the first generation of scriptable browsers, and is therefore also sup-
ported in newer browsers.

TABLE 30-1

Date Object Methods

Method Value Range Description

dateObj.getFullYear() 1970–... Specified year (NN4+, Moz1+, IE3+)

dateObj.getYear() 70–... (See Text)

dateObj.getMonth() 0–11 Month within the year (January = 0)

dateObj.getDate() 1–31 Date within the month

dateObj.getDay() 0–6 Day of week (Sunday = 0)

dateObj.getHours() 0–23 Hour of the day in 24-hour time

dateObj.getMinutes() 0–59 Minute of the specified hour

dateObj.getSeconds() 0–59 Second within the specified minute

dateObj.getTime() 0–... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.getMilliseconds() 0–999 Milliseconds since the previous full second (NN4+,
Moz1+, IE3+)

dateObj.getUTCFullYear() 1970–... Specified UTC year (NN4+, Moz1+, IE3+)

dateObj.getUTCMonth() 0–11 UTC month within the year (January = 0) (NN4+,
Moz1+, IE3+)

continued

931

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 931

TABLE 30-1 (continued)

Method Value Range Description

dateObj.getUTCDate() 1–31 UTC date within the month (NN4+, Moz1+, IE3+)

dateObj.getUTCDay() 0–6 UTC day of week (Sunday = 0) (NN4+, Moz1+, IE3+)

dateObj.getUTCHours() 0–23 UTC hour of the day in 24-hour time (NN4+, Moz1+,
IE3+)

dateObj.getUTCMinutes() 0–59 UTC minute of the specified hour (NN4+, Moz1+, IE3+)

dateObj.getUTCSeconds() 0–59 UTC second within the specified minute (NN4+,
Moz1+, IE3+)

dateObj.getUTCMilliseconds() 0–999 UTC milliseconds since the previous full second
(NN4+, Moz1+, IE3+)

dateObj.setYear(val) 1970–... Be safe: always specify a four-digit year

dateObj.setFullYear(val) 1970–... Specified year (NN4+, Moz1+, IE3+)

dateObj.setMonth(val) 0–11 Month within the year (January = 0)

dateObj.setDate(val) 1–31 Date within the month

dateObj.setDay(val) 0–6 Day of week (Sunday = 0)

dateObj.setHours(val) 0–23 Hour of the day in 24-hour time

dateObj.setMinutes(val) 0–59 Minute of the specified hour

dateObj.setSeconds(val) 0–59 Second within the specified minute

dateObj.setMilliseconds(val) 0–999 Milliseconds since the previous full second (NN4+,
Moz1+, IE3+)

dateObj.setTime(val) 0–... Milliseconds since 1/1/70 00:00:00 GMT

dateObj.setUTCFullYear(val) 1970–... Specified UTC year (NN4+, Moz1+, IE3+)

dateObj.setUTCMonth(val) 0–11 UTC month within the year (January = 0) (NN4+,
Moz1+, IE3+)

dateObj.setUTCDate(val) 1–31 UTC date within the month (NN4+, Moz1+, IE3+)

dateObj.setUTCDay(val) 0–6 UTC day of week (Sunday = 0) (NN4+, Moz1+, IE3+)

dateObj.setUTCHours(val) 0–23 UTC hour of the day in 24-hour time (NN4+, Moz1+,
IE3+)

dateObj.setUTCMinutes(val) 0–59 UTC minute of the specified hour (NN4+, Moz1+, IE3+)

dateObj.setUTCSeconds(val) 0–59 UTC second within the specified minute (NN4+,
Moz1+, IE3+)

dateObj.setUTCMilliseconds(val) 0–999 UTC milliseconds since the previous full second
(NN4+, Moz1+, IE3+)

dateObj.getTimezoneOffset() 0-... Minutes offset from GMT/UTC

dateObj.toDateString() Date-only string in a format determined by browser
(WinIE5.5+)

dateObj.toGMTString() Date/time string in universal format

dateObj.toLocaleDateString() Date-only string in your system’s localized format
(NN6+, Moz1+, WinIE5.5+)

932

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 932

dateObj.toLocaleString() Date/time string in your system’s localized format

dateObj.toLocaleTimeString() Time-only string in your system’s localized format
(NN6+, Moz1+, WinIE5.5+)

dateObj.toString() Date/time string in a format determined by browser

dateObj.toTimeString() Time-only string in a format determined by browser
(WinIE5.5+)

dateObj.toUTCString() Date/time string in universal format (NN4+, Moz1+, IE3+)

Date.parse(“dateString”) Converts string date to milliseconds integer

Date.UTC(date values) Converts GMT string date to milliseconds integer

Deciding between using the UTC or local versions of the methods depends on several factors. If the
browsers you must support go back to the beginning, you will be stuck with the local versions in any case.
But even for newer browsers, activities, such as calculating the number of days between dates or creating a
countdown timer for a quiz, won’t care which set you use, but you must use the same set for all calcula-
tions. If you start mixing local and UTC versions of date methods, you’ll be destined to get wrong answers.
The UTC versions come in most handy when your date calculations must take into account the time zone
of the client machine compared to some absolute in another time zone — calculating the time remaining to
the chiming of Big Ben signifying the start of the New Year in London.

JavaScript maintains its date information in the form of a count of milliseconds (thousandths of a second)
starting from January 1, 1970, in the GMT (UTC) time zone. Dates before that starting point are stored as
negative values (but see the section on bugs and gremlins later in this chapter). Regardless of the country
you are in or the date and time formats specified for your computer, the millisecond is the JavaScript uni-
versal measure of time. Any calculations that involve adding or subtracting times and dates should be per-
formed in the millisecond values to ensure accuracy. Therefore, though you may never display the
milliseconds value in a field or dialog box, your scripts will probably work with them from time to time in
variables. To derive the millisecond equivalent for any date and time stored in a date object, use the
dateObj.getTime() method, as in

var startDate = new Date();
var started = startDate.getTime();

Although the method has the word “time” in its name, the fact that the value is the total number of millisec-
onds from January 1, 1970, means the value also conveys a date.

Other date object get methods read a specific component of the date or time. You have to exercise some care
here, because some values begin counting with 0 when you may not expect it. For example, January is
month 0 in JavaScript’s scheme; December is month 11. Hours, minutes, and seconds all begin with 0,
which, in the end, is logical. Calendar dates, however, use the actual number that would show up on the
wall calendar: The first day of the month is date value 1. For the twentieth-century years, the year value is
whatever the actual year number is, minus 1900. For 1996, that means the year value is 96. But for years
before 1900 and after 1999, JavaScript uses a different formula, showing the full year value. This means you
have to check whether a year value is less than 100 and add 1900 to it before displaying that year.

var today = new Date();
var thisYear = today.getYear();
if (thisYear < 100) {

thisYear += 1900;
}

933

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 933

This assumes, of course, you won’t be working with years before A.D. 100. If you can assume that your
audience is using a modern browser, which is quite likely, use only the getFullYear() method. This
method returns the complete set of year digits from all ranges.

To adjust any one of the elements of a date value, use the corresponding set method in an assignment state-
ment. If the new value forces the adjustment of other elements, JavaScript takes care of that. For example,
consider the following sequence and how some values are changed for us:

myBirthday = new Date(“July 4, 1776”);
result = myBirthday.getDay(); // result = 4, a Thursday
myBirthday.setYear(1777); // bump up to next year
result = myBirthday.getDay(); // result = 5, a Friday

Because the same date in the following year is on a different day, JavaScript tracks that for you.

Accommodating time zones
Understanding the dateObj.getTimezoneOffset() method involves both your operating system’s time
control panel setting and an internationally recognized (in computerdom, anyway) format for representing
dates and times. If you have ignored the control panel stuff about setting your local time zone, the values
you get for this property may be off for most dates and times. In the eastern part of North America, for
instance, the eastern standard time zone is five hours earlier than Greenwich Mean Time. With the
getTimezoneOffset() method producing a value of minutes’ difference between GMT and the PC’s time
zone, the five hours difference of eastern standard time is rendered as a value of 300 minutes. On the
Windows platform, the value automatically changes to reflect changes in daylight saving time in the user’s
area (if applicable). Offsets to the east of GMT (to the date line) are expressed as negative values.

Dates as strings
When you generate a date object, JavaScript automatically applies the toString() method to the object if
you attempt to display that date either in a page or alert box. The format of this string varies with browser
and operating system platform. For example, in IE6 for Windows XP, the string is in the following format:

Tue Dec 05 16:47:20 CDT 2006

But in Firefox for Windows XP, the string is

Tue Dec 05 2006 16:47:20 GMT-0500 (Central Daylight Time)

Other browsers return their own variations on the string. The point is not to rely on a specific format and
character location of this string for the components of dates. Use the date object methods to read date
object components.

JavaScript does, however, provide two methods that return the date object in more constant string formats.
One, dateObj.toGMTString(), converts the date and time to the GMT equivalent on the way to the vari-
able that you use to store the extracted data. Here is what such data looks like:

Tue, 05 Dec 2006 16:47:20 GMT

If you’re not familiar with the workings of GMT and how such conversions can present unexpected dates,
exercise great care in testing your application. Eight o’clock on a Friday evening in California in the winter
is four o’clock on Saturday morning GMT.

934

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 934

If time zone conversions make your head hurt, you can use the second string method,
dateObj.toLocaleString(). In Firefox for North American Windows users, the returned value looks
like this:

Tuesday, December 05, 2006 16:47:20

Starting with IE5.5 and NN6/Moz1, you can also have JavaScript convert a date object to just the date or
time portions in a nicely formatted version. The best pair of methods for this are toLocaleDateString()
and toLocaleTimeString(), because these methods return values that make the most sense to the user,
based on the localization settings of the user’s operating system and browser.

Friendly date formats for older browsers
If you don’t have the luxury of writing script code only for modern browsers, you can create your own for-
matting function to do the job for a wide range of browsers. Listing 30-1 demonstrates one way of creating
this kind of string from a date object (in a form that will work back to version 4 browsers).

LISTING 30-1

Creating a Friendly Date String

<html>
<head>

<title>Date String Maker</title>
<script type=”text/javascript”>
monthNames = [“January”, “February”, “March”, “April”, “May”, “June”,

“July”, “August”, “September”, “October”, “November”, “December”];
dayNames = [“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”,

“Friday”, “Saturday”];

function customDateString(oneDate) {
var theDay = dayNames[oneDate.getDay()];
var theMonth = monthNames[oneDate.getMonth()];
var theYear = oneDate.getFullYear();
return theDay + “, “ + theMonth + “ “ + oneDate.getDate() +

“, “ + theYear;
}
</script>

</head>
<body>

<h1>
Welcome!

</h1>
<script type=”text/javascript”>
document.write(customDateString(new Date()))
</script>
<hr />

</body>
</html>

935

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 935

Assuming the user has the PC’s clock set correctly (a big assumption), the date appearing just below the open-
ing headline is the current date — making it appear as though the document had been updated today. The
downside to this approach (as opposed to the newer toLocaleDateString() method) is that international
users are forced to view dates in the format you design, which may be different from their local custom.

More conversions
The last two methods shown in Listing 30-1 are methods of the static Date object. These utility methods
convert dates from string or numeric forms into millisecond values of those dates. The primary beneficiary
of these actions is the dateObj.setTime() method, which requires a millisecond measure of a date as a
parameter. You use this method to throw an entirely different date into an existing date object.

Date.parse() accepts as a parameter date strings similar to the ones you’ve seen in this section, including
the internationally approved version. Date.UTC(), on the other hand, requires the comma-delimited list of
values (in proper order: yy,mm,dd,hh,mm,ss) in the GMT zone. The Date.UTC() method gives you a
backward-compatible way to hard-code a GMT time (you can do the same in version 4 browsers via the
UTC methods). The following is an example that creates a new date object for 6 p.m. on October 1, 2006,
GMT in WinIE6:

var newObj = new Date(Date.UTC(2006, 9, 1, 18, 0, 0));
result = newObj.toString(); // result = “Sun Oct 1 13:00:00 CDT 2006”

The second statement returns a value in a local time zone, because all non-UTC methods automatically con-
vert the GMT time stored in the object to the client’s local time.

Date and time arithmetic
You may need to perform some math with dates for any number of reasons. Perhaps you need to calculate a
date at some fixed number of days or weeks in the future or figure out the number of days between two
dates. When calculations of these types are required, remember the lingua franca of JavaScript date values:
milliseconds.

What you may need to do in your date-intensive scripts is establish some variable values representing the
number of milliseconds for minutes, hours, days, or weeks, and then use those variables in your calcula-
tions. Here is an example that establishes some practical variable values, building on each other:

var oneMinute = 60 * 1000;
var oneHour = oneMinute * 60;
var oneDay = oneHour * 24;
var oneWeek = oneDay * 7;

With these values established in a script, I can use one to calculate the date one week from today:

var targetDate = new Date();
var dateInMs = targetDate.getTime();
dateInMs += oneWeek;
targetDate.setTime(dateInMs);

Another example uses components of a date object to assist in deciding what kind of greeting message to
place in a document, based on the local time of the user’s PC clock. Listing 30-2 adds to the scripting from
Listing 30-1, bringing some quasi-intelligence to the proceedings.

936

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 936

LISTING 30-2

A Dynamic Welcome Message

<html>
<head>

<title>Date String Maker</title>
<script type=”text/javascript”>
monthNames = [“January”, “February”, “March”, “April”, “May”, “June”, “July”,

“August”, “September”, “October”, “November”, “December”];
dayNames = [“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”,

“Friday”, “Saturday”];

function customDateString(oneDate) {
var theDay = dayNames[oneDate.getDay()];
var theMonth = monthNames[oneDate.getMonth()];
var theYear = oneDate.getFullYear();
return theDay + “, “ + theMonth + “ “ + oneDate.getDate() +

“, “ + theYear;
}
function dayPart(oneDate) {

var theHour = oneDate.getHours();
if (theHour < 6)

return “wee hours”;
if (theHour < 12)

return “morning”;
if (theHour < 18)

return “afternoon”;
return “evening”;

}
</script>

</head>
<body>

<h1>Welcome!</h1>
<script type=”text/javascript”>
today = new Date();
var header = (customDateString(today)).italics();
header += “
We hope you are enjoying the “;
header += dayPart(today) + “.”;
document.write(header);
</script>
<hr />

</body>
</html>

The script divides the day into four parts and presents a different greeting for each part of the day. The
greeting that plays is based, simply enough, on the hour element of a date object representing the time the
page is loaded into the browser. Because this greeting is embedded in the page, the greeting does not
change no matter how long the user stays logged on to the page.

937

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 937

Counting the days . . .
You may find one or two more date arithmetic applications useful. One displays the number of shopping days
left until Christmas (in the user’s time zone); the other is a countdown timer to the start of the year 2100.

Listing 30-3 demonstrates how to calculate the number of days between the current day and some fixed
date in the future. The assumption in this application is that all calculations take place in the user’s time
zone. The example shows the display of the number of shopping days before the next Christmas day
(December 25). The basic operation entails converting the current date and the next December 25 to mil-
liseconds, calculating the number of days represented by the difference in milliseconds. If you let the mil-
lisecond values represent the dates, JavaScript automatically takes care of leap years.

The only somewhat tricky part is setting the year of the next Christmas day correctly. You can’t just slap the
fixed date with the current year, because if the program is run on December 26, the year of the next
Christmas must be incremented by one. That’s why the constructor for the Christmas date object doesn’t
supply a fixed date as its parameters, but rather, sets individual components of the object.

LISTING 30-3

How Many Days Until Christmas

<html>
<head>

<title>Christmas Countdown</title>
<script type=”text/javascript”>
function getDaysUntilXmas() {

var oneMinute = 60 * 1000;
var oneHour = oneMinute * 60;
var oneDay = oneHour * 24;
var today = new Date();
var nextXmas = new Date();
nextXmas.setMonth(11);
nextXmas.setDate(25);
if (today.getMonth() == 11 && today.getDate() > 25) {

nextXmas.setFullYear(nextXmas.getFullYear() + 1);
}
var diff = nextXmas.getTime() - today.getTime();
diff = Math.floor(diff/oneDay);
return diff;

}
</script>

</head>
<body>

<h1>
<script type=”text/javascript”>
var header = “You have <i>” + getDaysUntilXmas() + “<\/i> “;
header += “shopping days until Christmas.”;
document.write(header);
</script>

</h1>
<hr />

</body>
</html>

938

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 938

The second variation on calculating the amount of time before a certain event takes time zones into
account. For this demonstration, the page is supposed to display a countdown timer to the precise moment
when the flame for the 2008 Summer Games in Beijing is to be lit. That event takes place in a time zone
that may be different from that of the page’s viewer, so the countdown timer must calculate the time differ-
ence accordingly.

Listing 30-4 shows a simplified version that simply displays the ticking timer in a text field. The output, of
course, could be customized in any number of ways, depending on the amount of dynamic HTML you
want to employ on a page. The time of the lighting for this demo is set at 11:00 GMT on August 8, 2008
(the date is certainly accurate, but the officials may set a different time closer to the actual event).

Because this application is implemented as a live ticking clock, the code starts by setting some global vari-
ables that should be calculated only once so that the function that gets invoked repeatedly has a minimum
of calculating to do (to be more efficient). The Date.UTC() method provides the target time and date in
standard time. The getTimeUntil() function accepts a millisecond value (as provided by the targetDate
variable) and calculates the difference between the target date and the actual internal millisecond value of
the client’s PC clock.

The core of the getCountDown() function peels off the number of whole days, hours, minutes, and sec-
onds from the total number of milliseconds difference between now and the target date. Notice that each
chunk is subtracted from the total so that the next smaller chunk can be calculated from the leftover mil-
liseconds.

One extra touch on this page is a display of the local date and time of the actual event.

LISTING 30-4

Summer Games Countdown

<html>
<head>

<title>Summer Games Countdown</title>
<script type=”text/javascript”>
// globals -- calculate only once
// set target date to 1100GMT on August 8, 2008
var targetDate = Date.UTC(2008, 7, 8, 11, 0, 0, 0);
var oneMinute = 60 * 1000;
var oneHour = oneMinute * 60;
var oneDay = oneHour * 24;

function getTimeUntil(targetMS) {
var today = new Date();
var diff = targetMS - today.valueOf();
return Math.floor(diff);

}
function getCountDown() {

var ms = getTimeUntil(targetDate);
var output = “”;
var days, hrs, mins, secs;

continued

939

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 939

LISTING 30-4 (continued)

if (ms >= 0) {
days = Math.floor(ms/oneDay);
ms -= oneDay * days;
hrs = Math.floor(ms/oneHour);
ms -= oneHour * hrs;
mins = Math.floor(ms/oneMinute);
ms -= oneMinute * mins;
secs = Math.floor(ms/1000);
output += days + “ Days, “ + hrs + “ Hours, “ +

mins + “ Minutes, “ + secs + “ Seconds”;
} else {

output += “The time has passed.”;
}
return output;

}
function updateCountDown() {

document.forms[0].timer.value = getCountDown();
setTimeout(“updateCountDown()”, 1000);

}
</script>

</head>
<body onload=”updateCountDown()”>

<h1>Beijing Games Torch Lighting Countdown</h1>
<p>

<script type=”text/javascript”>
document.write(“(“ + (new Date(targetDate)).toLocaleString());
document.write(“ in your time zone.)”);
</script>

</p>
<form>

<input type=”text” name=”timer” size=”60” />
</form>
<hr />

</body>
</html>

Early browser date bugs and gremlins
Each new browser generation improves the stability and reliability of scripted date objects. For example,
Netscape Navigator 2 had so many bugs and crash problems that it made scripting complex world-time
applications for this browser impossible. NN3 improved matters a bit, but some glaring problems still
existed. And lest you think I’m picking on Netscape, rest assured that early versions of Internet Explorer
also had plenty of date and time problems. IE3 couldn’t handle dates before January 1, 1970 (GMT), and
also completely miscalculated the time zone offset, following the erroneous pattern of NN2. Bottom line —
you’re asking for trouble if you must work extensively with dates and times while supporting legacy
browsers.

940

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 940

You should be aware of one more discrepancy between Mac and Windows versions of Navigator through
Version 4. In Windows, if you generate a date object for a date in another part of the year, the browser sets
the time zone offset for that object according to the time zone setting for that time of year. On the Mac, the
current setting of the control panel governs whether the normal or daylight saving time offset is applied to
the date, regardless of the actual date within the year. This discrepancy affects Navigator 3 and 4 and can
throw off calculations from other parts of the year by one hour.

It may sound as though the road to Date object scripting is filled with land mines. Although date and time
scripting is far from hassle free, you can put it to good use with careful planning and a lot of testing. Better
still, if you make the plausible assumption that the majority of users have a modern browser (WinIE6+,
NN6+, Moz1+, FF1+, Cam1+, Safari1+, etc.) then things should go very smoothly.

Validating Date Entries in Forms
Given the bug horror stories in the previous section, you may wonder how you can ever perform data entry
validation for dates in forms. The problem is not so much in the calculations as it is in the wide variety of
acceptable date formats around the world. No matter how well you instruct users to enter dates in a particular
format, many will follow their own habits and conventions. Moreover, how can you know whether an entry of
03/04/2007 is the North American March 4, 2007, or the European April 3, 2007? The answer: You can’t.

My recommendation is to divide a date field into three components: month, day, and year. Let the user
enter values into each field and validate each field individually for its valid range. Listing 30-5 shows an
example of how this is done. The page includes a form that is to be validated before it is submitted. Each
component field does its own range checking on the fly as the user enters values. But because this kind of
validation can be defeated, the page includes one further check triggered by the form’s onsubmit event
handler. If any field is out of whack, the form submission is cancelled.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

LISTING 30-5

Date Validation in a Form

<html>
<head>

<title>Date Entry Validation</title>
<script type=”text/javascript”>
// **BEGIN GENERIC VALIDATION FUNCTIONS**
// general purpose function to see if an input value has been entered at all
function isEmpty(inputStr) {

if (inputStr == “” || inputStr == null) {
return true;

}
return false;

}

continued

NOTENOTE

941

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 941

LISTING 30-5 (continued)

// function to determine if value is in acceptable range for application
function inRange(inputStr, lo, hi) {

var num = parseInt(inputStr, 10);
if (num < lo || num > hi) {

return false;
}
return true;

}
// **END GENERIC VALIDATION FUNCTIONS**

function validateMonth(field, bypassUpdate) {
var input = field.value;
if (isEmpty(input)) {

alert(“Be sure to enter a month value.”);
select(field);
return false;

} else {
input = parseInt(field.value, 10);
if (isNaN(input)) {

alert(“Entries must be numbers only.”);
select(field);
return false;

} else {
if (!inRange(input,1,12)) {

alert(“Enter a number between 1 (January) and 12 (December).”);
select(field);
return false;

}
}

}
if (!bypassUpdate) {

calcDate();
}
return true;

}

function validateDate(field) {
var input = field.value;
if (isEmpty(input)) {

alert(“Be sure to enter a date value.”);
select(field);
return false;

} else {
input = parseInt(field.value, 10);
if (isNaN(input)) {

alert(“Entries must be numbers only.”);
select(field);
return false;

} else {

942

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 942

var monthField = document.birthdate.month;
if (!validateMonth(monthField, true))

return false;
var monthVal = parseInt(monthField.value, 10);
var monthMax = new Array(31,31,29,31,30,31,30,31,31,30,31,30,31);
var top = monthMax[monthVal];
if (!inRange(input,1,top)) {

alert(“Enter a number between 1 and “ + top + “.”);
select(field);
return false;

}
}

}
calcDate();
return true;

}

function validateYear(field) {
var input = field.value;
if (isEmpty(input)) {

alert(“Be sure to enter a year value.”);
select(field);
return false;

} else {
input = parseInt(field.value, 10);
if (isNaN(input)) {

alert(“Entries must be numbers only.”);
select(field);
return false;

} else {
if (!inRange(input,1900,2007)) {

alert(“Enter a number between 1900 and 2007.”);
select(field);
return false;

}
}

}
calcDate();
return true;

}

function select(field) {
field.focus();
field.select();

}

function calcDate() {
var mm = parseInt(document.birthdate.month.value, 10);
var dd = parseInt(document.birthdate.date.value, 10);
var yy = parseInt(document.birthdate.year.value, 10);
document.birthdate.fullDate.value = mm + “/” + dd + “/” + yy;

}

continued

943

The Date Object 30

39_069165 ch30.qxp 3/1/07 3:54 PM Page 943

LISTING 30-5 (continued)

function checkForm(form) {
if (validateMonth(form.month)) {

if (validateDate(form.date)) {
if (validateYear(form.year)) {

return true;
}

}
}
return false;

}
</script>

</head>
<body>

<form name=”birthdate” action=”mailto:fun@dannyg.com” method=”POST”
onsubmit=”return checkForm(this)”>
Please enter your birthdate...

Month:<input type=”text” name=”month” value=”1” size=”2”
onchange=”validateMonth(this)” /> Date:<input type=”text” name=”date”
value=”1” size=”2” onchange=”validateDate(this)” /> Year:<input
type=”text” name=”year” value=”1900” size=”4”
onchange=”validateYear(this)” />
<p>Thank you for entering:<input type=”text” name=”fullDate”

size=”10” /></p>
<p><input type=”submit” /> <input type=”Reset” /></p>

</form>
</body>

</html>

The page shows the three entry fields as well as a field that is normally hidden on a form to be submitted to
a server-side program. The server program responds only to the hidden field with the complete date, which
is in a format for entry into, for example, a MySQL database.

Not every date entry validation must be divided in this way. For example, an intranet application can be
more demanding in the way users are to enter data. Therefore, you can have a single field for date entry, but
the parsing required for such a validation is quite different from that shown in Listing 30-5. See Chapter 43
on the CD-ROM for an example of such a one-field date validation routine. Data entry validation is also an
excellent area of scripting that benefits from asynchronous JavaScript, also known as Ajax.

Check out Chapter 27 for more on how Ajax can be used to carry out dynamic data entry
validation.CROSS-REFCROSS-REF

944

JavaScript Core Language ReferencePart IV

39_069165 ch30.qxp 3/1/07 3:54 PM Page 944

An array is the sole JavaScript data structure provided for storing and
manipulating ordered collections of data. But unlike some other program-
ming languages, JavaScript’s arrays are very forgiving as to the kind of

data you store in each cell or entry of the array. This allows, for example, an array
of arrays, providing the equivalent of multidimensional arrays customized to the
kind of data your application needs.

If you have not done a lot of programming in the past, the notion of arrays may
seem like an advanced topic. But if you ignore their capabilities, you set yourself
up for a harder job when implementing many kinds of tasks. Whenever I
approach a script, one of my first thoughts is about the data being controlled by
the application and whether handling it as an array will offer some shortcuts for
creating the document and handling interactivity with the user.

I hope that by the end of this chapter, you will not only be familiar with the
properties and methods of JavaScript arrays, but you will begin to look for ways
to make arrays work for you.

Structured Data
In programming, an array is defined as an ordered collection of data. You can
best visualize an array as a table, not much different from a spreadsheet. In
JavaScript, arrays are limited to a table holding one column of data, with as many
rows as needed to hold your data. As you have seen in many chapters in Part III,
a JavaScript-enabled browser creates a number of internal arrays for the objects
in your HTML documents and browser properties. For example, if your docu-
ment contains five links, the browser maintains a table of those links. You access
them by number (with 0 being the first link) in the array syntax: the array name
is followed by the index number in square brackets, as in document.links[0],
which represents the first link in the document.

945

IN THIS CHAPTER
Working with ordered
collections of data

Simulating multidimensional
arrays

Manipulating information stored
in an array

The Array Object

40_069165 ch31.qxp 3/1/07 3:54 PM Page 945

For many JavaScript applications, you will want to use an array as an organized warehouse for data that
users of your page access, depending on their interaction with form elements. In the application shown in
Chapter 50 on the CD-ROM, for example, I demonstrate an extended version of this usage in a page that
lets users search a small table of data for a match between the first three digits of their U.S. Social Security
numbers and the state in which they registered with the agency. Arrays are the way JavaScript-enhanced
pages can re-create the behavior of more sophisticated server-side applications such as CGI scripts and Java
servlets. When the collection of data you embed in the script is no larger than a typical .gif image file, the
user won’t experience significant delays in loading your page; yet he or she has the full power of your small
database collection for instant searching without any calls back to the server. Such database-oriented arrays
are important applications of JavaScript for what I call serverless CGIs.

As you design an application, look for clues as to potential uses of arrays. If you have a number of objects or
data points that interact with scripts the same way, you have a good candidate for array structures. For
example, you can assign like names to every text field in a column of an order form. In that sequence, like-
named objects are treated as elements of an array. To perform repetitive row calculations down an order
form, your scripts can use array syntax to perform all the extensions within a handful of JavaScript state-
ments, rather than perhaps dozens of statements hard-coded to each field name. Chapter 51 (on the
CD-ROM) shows an example of this application.

You can also create arrays that behave like the Java hash table: a lookup table that gets you to a desired data
point instantaneously if you know the name associated with the entry. If you can somehow conceive your
data in a table format, an array is in your future.

Creating an Empty Array
Full-fledge array objects in JavaScript go all the way back to NN3 and IE4. It was possible to simulate some
array characteristics in even earlier browsers, but since those first-generation browsers have thankfully dis-
appeared from most users’ computers, this chapter focuses on the modern array and its hefty powers.

To create a new array object, use the static Array object’s constructor method. For example:

var myArray = new Array();

An array object automatically has a length property (0 for an empty array).

Should you want to presize the array (for example, preload entries with null values), you can specify an
initial size as a parameter to the constructor. For example, here is how to create a new array to hold infor-
mation about a 500-item compact disc collection:

var myCDCollection = new Array(500);

Unlike with many other programming languages, presizing a JavaScript array does not give you any particu-
lar advantage, because you can assign a value to any slot in an array at any time: The length property
adjusts itself accordingly. For instance, if you assign a value to myCDCollection[700], the array object
adjusts its length upward to meet that slot (with the count starting at 0):

myCDCollection [700] = “The Smiths/Louder Than Bombs”;
collectionSize = myCDCollection.length; // result = 701

Since the count of array elements starts at 0, assigning a value to location 700 results in an array that con-
tains 701 items. A true array object features a number of methods and the capability to add prototype prop-
erties, described later in this chapter.

946

JavaScript Core Language ReferencePart IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 946

Populating an Array
Entering data into an array is as simple as creating a series of assignment statements, one for each element
of the array. Listing 31-1 generates an array containing a list of the nine planets of the solar system.

LISTING 31-1

Generating and Populating a New Array

solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;

This way of populating a single array is a bit tedious when you’re writing the code, but after the array is set,
it makes accessing collections of information as easy as any array reference:

onePlanet = solarSys[4]; // result = “Jupiter”

A more compact way to create an array is available if you know that the data will be in the desired order
(such as the preceding solarSys array). Instead of writing a series of assignment statements (as in Listing
31-1), you can create what is called a dense array by supplying the data as comma-delimited parameters to
the Array() constructor:

solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”);

The term “dense array” means that data is packed into the array, without gaps, starting at index position 0.

The example in Listing 31-1 shows what you may call a vertical collection of data. Each data point contains
the same type of data as the other data points — the name of a planet — and the data points appear in the
relative order of the planets from the Sun.

JavaScript Array Creation Enhancements
JavaScript provides one more way to create a dense array and also clears up a bug in the way older browsers
handled arrays. This improved approach does not require the Array object constructor. Instead, JavaScript
(as of version 1.2) accepts what is called literal notation to generate an array. To demonstrate the difference,
the following statement is the regular dense array constructor that works all the way back to NN3:

solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”);

947

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 947

While JavaScript 1.2+ fully accepts the preceding syntax, it also accepts the new literal notation:

solarSys = [“Mercury”,”Venus”,”Earth”,”Mars”,”Jupiter”,”Saturn”,
“Uranus”,”Neptune”,”Pluto”];

The square brackets stand in for the call to the Array constructor. Unless your audience is stuck using
ancient browsers, you should use this streamlined approach to array creation.

The bug fix I mentioned has to do with how to treat the earlier dense array constructor if the scripter enters
only the numeric value 1 as the parameter — new Array(1). In NN3 and IE4, JavaScript erroneously cre-
ates an array of length 1, but that element is undefined. For NN4 and all later browsers, the same state-
ment creates that one-element array and places the value in that element.

Deleting Array Entries
You can easily wipe out any data in an array element by setting the value of the array entry to null or an
empty string. But until the delete operator came along in version 4 browsers, you could not completely
remove an element.

Deleting an array element eliminates the index from the list of accessible index values but does not reduce
the array’s length, as in the following sequence of statements:

myArray.length // result: 5
delete myArray[2]
myArray.length // result: 5
myArray[2] // result: undefined

The process of deleting an array entry does not necessarily release memory occupied by that data. The
JavaScript interpreter’s internal garbage collection mechanism (beyond the reach of scripters) is supposed to
take care of such activity. See the delete operator in Chapter 33 for further details.

If you want tighter control over the removal of array elements, you might want to consider using the
splice() method, which is supported in modern browsers. The splice() method can be used on any
array and lets you remove an item (or sequence of items) from the array — causing the array’s length to
adjust to the new item count. See the splice() method later in this chapter.

Parallel Arrays
Using an array to hold data is frequently desirable so that a script can do a lookup to see if a particular value
is in the array (perhaps verifying that a value typed into a text box by the user is permissible); however,
even more valuable is if, upon finding a match, a script can look up some related information in another
array. One way to accomplish this is with two or more parallel arrays: the same indexed slot of each array
contains related information.

Consider the following three arrays:

var regionalOffices = [“New York”, “Chicago”, “Houston”, “Portland”];
var regionalManagers = [“Shirley Smith”, “Todd Gaston”,

“Leslie Jones”, “Harold Zoot”];
var regOfficeQuotas = [300000, 250000, 350000, 225000];

948

JavaScript Core Language ReferencePart IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 948

The assumption for these statements is that Shirley Smith is the regional manager out of the New York
office, and her office’s quota is 300,000. This represents the data that is included with the document, per-
haps retrieved by a server-side program that gets the latest data from a SQL database and embeds the data in
the form of array constructors. Listing 31-2 shows how this data appears in a simple page that looks up the
manager name and quota values for whichever office is chosen in the select element. The order of the
items in the list of select is not accidental: The order is identical to the order of the array for the conven-
ience of the lookup script.

Lookup action in Listing 31-2 is performed by the getData() function. Because the index values of the
options inside the select element match those of the parallel arrays index values, the selectedIndex
property of the select element makes a convenient way to get directly at the corresponding data in other
arrays.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

LISTING 31-2

A Simple Parallel Array Lookup

<html>
<head>

<title>Parallel Array Lookup</title>
<script type=”text/javascript”>
// the data
var regionalOffices = [“New York”, “Chicago”, “Houston”, “Portland”];
var regionalManagers = [“Shirley Smith”, “Todd Gaston”, “Leslie Jones”,

“Harold Zoot”];
var regOfficeQuotas = [300000, 250000, 350000, 225000];
// do the lookup into parallel arrays
function getData(form) {

var i = form.offices.selectedIndex;
form.manager.value = regionalManagers[i];
form.quota.value = regOfficeQuotas[i];

}
</script>

</head>
<body onload=”getData(document.officeData)”>

<h1>Parallel Array Lookup</h1>
<hr />
<form name=”officeData”>

<p>Select a regional office: <select name=”offices”
onchange=”getData(this.form)”>

<option>New York</option>
<option>Chicago</option>
<option>Houston</option>
<option>Portland</option>

continued

NOTENOTE

949

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 949

LISTING 31-2 (continued)

</select></p>
<p>The manager is: <input type=”text” name=”manager” size=”35” />

The office quota is: <input type=”text” name=”quota” size=”8” /></p>
</form>

</body>
</html>

On the other hand, if the content to be looked up is typed into a text box by the user, you have to loop
through one of the arrays to get the matching index. Listing 31-3 is a variation of Listing 31-2, but instead
of the select element, a text field asks users to type in the name of the region. Assuming that users will
always spell the input correctly (admittedly an outrageous assumption), the version of getData() in
Listing 31-3 performs actions that more closely resemble what you may think a “lookup” should be doing:
looking for a match in one array, and displaying corresponding results from the parallel arrays. The for
loop iterates through items in the regionalOffices array. An if condition compares all uppercase ver-
sions of both the input and each array entry. If there is a match, the for loop breaks, with the value of i
still pointing to the matching index value. Outside the for loop, another if condition makes sure that the
index value has not reached the length of the array, which means that no match is found. Only when the
value of i points to one of the array entries does the script retrieve corresponding entries from the other
two arrays.

LISTING 31-3

A Looping Array Lookup

<html>
<head>

<title>Parallel Array Lookup II</title>
<script type=”text/javascript”>
// the data
var regionalOffices = [“New York”, “Chicago”, “Houston”, “Portland”];
var regionalManagers = [“Shirley Smith”, “Todd Gaston”, “Leslie Jones”,

“Harold Zoot”];
var regOfficeQuotas = [300000, 250000, 350000, 225000];
// do the lookup into parallel arrays
function getData(form) {

// make a copy of the text box contents
var inputText = form.officeInp.value;
// loop through all entries of regionalOffices array
for (var i = 0; i < regionalOffices.length; i++) {

// compare uppercase versions of entered text against one entry
// of regionalOffices
if (inputText.toUpperCase() == regionalOffices[i].toUpperCase()) {

// if they’re the same, then break out of the for loop
break;

}
}
// make sure the i counter hasn’t exceeded the max index value
if (i < regionalOffices.length) {

// display corresponding entries from parallel arrays

950

JavaScript Core Language ReferencePart IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 950

form.manager.value = regionalManagers[i];
form.quota.value = regOfficeQuotas[i];

} else { // loop went all the way with no matches
// empty any previous values
form.manager.value = “”;
form.quota.value = “”;
// advise user
alert(“No match found for “ + inputText + “.”);

}
}
</script>

</head>
<body>

<h1>Parallel Array Lookup II</h1>
<hr />
<form name=”officeData”>

<p>Enter a regional office: <input type=”text” name=”officeInp”
size=”35” /> <input type=”button” value=”Search”
onclick=”getData(this.form)” /></p>

<p>The manager is: <input type=”text” name=”manager”
size=”35” />

The office quota is: <input type=”text” name=”quota” size=”8” /></p>

</form>
</body>

</html>

Multidimensional Arrays
An alternate to parallel arrays is the simulation of a multidimensional array. While it’s true that JavaScript
arrays are one-dimensional, you can create a one-dimensional array of other arrays or objects. A logical
approach is to make an array of custom objects, because the objects easily allow for naming of object prop-
erties, making references to multidimensional array data more readable (custom objects are discussed at
length in Chapter 34).

Using the same data from the examples of parallel arrays, the following statements define an object con-
structor for each “data record.” A new object is then assigned to each of four entries in the main array.

// custom object constructor
function officeRecord(city, manager, quota) {

this.city = city;
this.manager = manager;
this.quota = quota;

}

// create new main array
var regionalOffices = new Array();
// stuff main array entries with objects
regionalOffices[0] = new officeRecord(“New York”, “Shirley Smith”, 300000);
regionalOffices[1] = new officeRecord(“Chicago”, “Todd Gaston”, 250000);
regionalOffices[2] = new officeRecord(“Houston”, “Leslie Jones”, 350000);
regionalOffices[3] = new officeRecord(“Portland”, “Harold Zoot”, 225000);

951

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 951

The object constructor function (officeRecord()) assigns incoming parameter values to properties of the
object. Therefore, to access one of the data points in the array, you use both array notations to get to the
desired entry in the array and the name of the property for that entry’s object:

var eastOfficeManager = regionalOffices[0].manager;

You can also assign string index values for this kind of array, as in

regionalOffices[“east”] = new officeRecord(“New York”, “Shirley Smith”,
300000);

and access the data via the same index:

var eastOfficeManager = regionalOffices[“east”].manager;

But if you’re more comfortable with the traditional multidimensional array (from your experience in other
programming languages), you can also implement the above as an array of arrays with less code:

// create new main array
var regionalOffices = new Array();
// stuff main array entries with arrays
regionalOffices[0] = new Array(“New York”, “Shirley Smith”, 300000);
regionalOffices[1] = new Array(“Chicago”, “Todd Gaston”, 250000);
regionalOffices[2] = new Array(“Houston”, “Leslie Jones”, 350000);
regionalOffices[3] = new Array(“Portland”, “Harold Zoot”, 225000);

or, for the extreme of unreadable brevity with literal notation:

// create new main array
var regionalOffices = [[“New York”, “Shirley Smith”, 300000],

[“Chicago”, “Todd Gaston”, 250000],
[“Houston”, “Leslie Jones”, 350000],
[“Portland”, “Harold Zoot”, 225000]];

Accessing a single data point of an array of arrays requires a double array reference. For example, retrieving
the manager’s name for the Houston office requires the following syntax:

var HoustonMgr = regionalOffices[2][1];

The first index in brackets is for the outermost array (regionalOffices); the second index in brackets
points to the item of the array returned by regionalOffices[2].

Simulating a Hash Table
All arrays shown so far in this chapter have used integers as their index values. A JavaScript array is a spe-
cial type of object (the object type is covered in Chapter 34). As a result, you can also assign values to cus-
tomized properties of an array without interfering with the data stored in the array or the length of the
array. In other words, you can “piggy-back” data in the array object. You may reference the values of these
properties either using “dot” syntax (array.propertyName) or through array-looking syntax consisting of
square brackets and the property name as a string inside the brackets (array[“propertyName”]). An
array used in this fashion is also known as an associative array.

952

JavaScript Core Language ReferencePart IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 952

Addressing object properties by way of string indexes is sometimes very useful. For example, the multidi-
mensional array described in the previous section consists of four objects. If your page contains a form
whose job is to look through the array to find a match for a city chosen from a select list, the typical array
lookup would loop through the length of the array, compare the chosen value against the city property of
each object, and then retrieve the other properties when there was a match. For a 4-item list, this isn’t a big
deal. But for a 100-item list, the process could get time consuming. A faster approach would be to jump
directly to the array entry whose city property is the chosen value. That’s what a simulated hash table can
do for you (some programming languages have formal hash table constructions especially designed to act
like a lookup table).

Create a simulated hash table after the array is populated by looping through the array and assigning prop-
erties to the array object as string values. Use string values that you expect to use for lookup purposes. For
example, after the regionalOffices array has its component objects assigned, run through the following
routine to make the hash table:

for (var i = 0; i < regionalOffices.length; i++) {
regionalOffices[regionalOffices[i].city] = regionalOffices[i];

}

You can retrieve the manager property of the Houston office object as follows:

var HoustonMgr = regionalOffices[“Houston”].manager;

With the aid of the hash table component of the array, your scripts have the convenience of both numeric
lookup (if the script needs to cycle through all items) and an immediate jump to an item.

Array Object Properties
constructor
(See string.constructor in Chapter 28)

length
Value: Integer. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

A true array object’s length property reflects the number of entries in the array. An entry can be any kind
of JavaScript value, including null. If an entry is in the 10th cell and the rest are null, the length of that
array is 10. Note that because array index values are zero-based, the index of the last cell of an array is one
less than the length (9 in this case). This characteristic makes it convenient to use the property as an auto-
matic counter to append a new item to an array:

myArray[myArray.length] = valueOfAppendedItem;

Thus, a generic function does not have to know which specific index value to apply to an additional item in
the array.

953

array.length

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 953

prototype
Value: Variable or function. Read/Write
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Inside JavaScript, an array object has its dictionary definition of methods and length property — items that
all array objects have in common. The prototype property enables your scripts to ascribe additional prop-
erties or methods that apply to all the arrays you create in the currently loaded documents. You can over-
ride this prototype, however, for any individual object.

Example
To demonstrate how the prototype property works, Listing 31-4 creates a prototype property for all
array objects generated from the static Array object. As the script generates new arrays (instances of the
Array object, just as a date object is an instance of the Date object), the property automatically becomes a
part of those arrays. In one array, c, you override the value of the prototype sponsor property. By changing
the value for that one object, you don’t alter the value of the prototype for the Array object. Therefore,
another array created afterward, d, still gets the original sponsor property value.

LISTING 31-4

Adding a prototype Property

<html>
<head>

<title>Array prototypes</title>
<script type=”text/javascript”>
// add prototype to all Array objects
Array.prototype.sponsor = “DG”;
a = new Array(5);
b = new Array(5);
c = new Array(5);
// override prototype property for one ‘instance’
c.sponsor = “JS”;
// this one picks up the original prototype
d = new Array(5);
</script>

</head>
<body>

<h2>
<script type=”text/javascript”>
document.write(“Array a is brought to you by: “ + a.sponsor +

“
”);
document.write(“Array b is brought to you by: “ + b.sponsor +

“
”);
document.write(“Array c is brought to you by: “ + c.sponsor +

“
”);
document.write(“Array d is brought to you by: “ + d.sponsor +

“
”);
</script>

</h2>
</body>

</html>

954

JavaScript Core Language Reference

Array.prototype

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 954

You can assign properties and functions to a prototype. To assign a function, define the function as you nor-
mally would in JavaScript. Then assign the function to the prototype by name:

function newFunc(param1) {
// statements

}
Array.prototype.newMethod = newFunc; // omit parentheses in this reference

When you need to call upon that function (which has essentially become a new temporary method for the
Array object), invoke it as you would any object method. Therefore, if an array named CDCollection has
been created and a prototype method showCoverImage() has been attached to the array, the call to invoke
the method for a tenth listing in the array is

CDCollection.showCoverImage(9);

where the parameter of the function uses the index value to perhaps retrieve an image whose URL is a prop-
erty of an object assigned to the 10th item of the array.

Array Object Methods
After you have information stored in an array, JavaScript provides several methods to help you manage that
data. These methods, all of which belong to array objects you create, have evolved over time, so pay close
attention to browser compatibility if you’re in need of supporting legacy (pre-version 4) browsers.

array.concat(array2)
Returns: Array object.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

The array.concat() method allows you to join two array objects into a new, third array object. The
action of concatenating the arrays does not alter the contents or behavior of the two original arrays. To join
the arrays, you refer to the first array object to the left of the period before the method; a reference to the
second array is the parameter to the method. For example:

var array1 = new Array(1,2,3);
var array2 = new Array(“a”,”b”,”c”);
var array3 = array1.concat(array2);

// result: array with values 1,2,3,”a”,”b”,”c”

If an array element is a string or number value (not a string or number object), the values are copied from
the original arrays into the new one. All connection with the original arrays ceases for those items. But if an
original array element is a reference to an object of any kind, JavaScript copies a reference from the original
array’s entry into the new array. So if you make a change to either array’s entry, the change occurs to the
object, and both array entries reflect the change to the object.

Example
Listing 31-5 is a bit complex, but it demonstrates both how arrays can be joined with the array.concat()
method and how values and objects in the source arrays do or do not propagate based on their data type.
The page is shown in Figure 31-1.

955

array.concat()

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 955

FIGURE 31-1

Object references remain “alive” in a concatenated array.

After you load the page, you see readouts of three arrays. The first array consists of all string values; the sec-
ond array has two string values and a reference to a form object on the page (a text box named “original” in
the HTML). In the initialization routine of this page, not only are the two source arrays created, but they are
joined with the array.concat() method, and the result is shown in the third box. To show the contents
of these arrays in columns, I use the array.join() method, which brings the elements of an array
together as a string delimited in this case by a return character — giving us an instant column of data.

Two series of fields and buttons let you experiment with the way values and object references are linked
across concatenated arrays. In the first group, if you enter a new value to be assigned to arrayThree[0],
the new value replaces the string value in the combined array. Because regular values do not maintain a link
back to the original array, only the entry in the combined array is changed. A call to showArrays() proves
that only the third array is affected by the change.

More complex is the object relationship for this demonstration. A reference to the first text box of the sec-
ond grouping has been assigned to the third entry of arrayTwo. After concatenation, the same reference is
now in the last entry of the combined array. If you enter a new value for a property of the object in the last
slot of arrayThree, the change goes all the way back to the original object — the first text box in the lower
grouping. Thus, the text of the original field changes in response to the change of arrayThree[5]. And
because all references to that object yield the same result, the reference in arrayTwo[2] points to the same
text object, yielding the same new answer. The display of the array contents doesn’t change, because both

956

JavaScript Core Language Reference

array.concat()

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 956

arrays still contain a reference to the same object (and the value attribute showing in the <input> tag of
the column listings refers to the default value of the tag, not to its current algorithmically retrievable value
shown in the last two fields of the page).

LISTING 31-5

Array Concatenation

<html>
<head>

<title>Array Concatenation</title>
<script type=”text/javascript”>
// global variables
var arrayOne, arrayTwo, arrayThree, textObj;
// initialize after load to access text object in form
function initialize() {

var form = document.forms[0];
textObj = form.original;
arrayOne = new Array(“Jerry”, “Elaine”,”Kramer”);
arrayTwo = new Array(“Ross”, “Rachel”,textObj);
arrayThree = arrayOne.concat(arrayTwo);
update1(form);
update2(form);
showArrays();

}
// display current values of all three arrays
function showArrays() {

var form = document.forms[0];
form.array1.value = arrayOne.join(“\n”);
form.array2.value = arrayTwo.join(“\n”);
form.array3.value = arrayThree.join(“\n”);

}
// change the value of first item in Array Three
function update1(form) {

arrayThree[0] = form.source1.value;
form.result1.value = arrayOne[0];
form.result2.value = arrayThree[0];
showArrays();

}
// change value of object property pointed to in Array Three
function update2(form) {

arrayThree[5].value = form.source2.value;
form.result3.value = arrayTwo[2].value;
form.result4.value = arrayThree[5].value;
showArrays();

}
</script>

</head>

continued

957

array.concat()

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 957

LISTING 31-5 (continued)

<body onload=”initialize()”>
<form>

<table>
<tr>

<th>arrayOne</th>
<th>arrayTwo</th>
<th>arrayThree</th>

</tr>
<tr>

<td><textarea name=”array1” cols=”25” rows=”6”>
</textarea></td>

<td><textarea name=”array2” cols=”25” rows=”6”>
</textarea></td>

<td><textarea name=”array3” cols=”25” rows=”6”>
</textarea></td>

</tr>
</table>
Enter new value for arrayThree[0]:<input type=”text”
name=”source1” value=”Jerry” /> <input type=”button”
value=”Change arrayThree[0]” onclick=”update1(this.form)” />

Current arrayOne[0] is:<input type=”text” name=”result1” />

Current arrayThree[0] is:<input type=”text” name=”result2” />

<hr />
textObj assigned to arrayTwo[2]:<input type=”text” name=”original”
onfocus=”this.blur()” />

Enter new value for arrayThree[5]:<input type=”text”
name=”source2” value=”Phoebe” /> <input type=”button”
value=”Change arrayThree[5].value”
onclick=”update2(this.form)” />

Current arrayTwo[2].value is:<input type=”text”
name=”result3” />

Current arrayThree[5].value is:<input type=”text” name=”result4” />
<p><input type=”button” value=”Reset”
onclick=”location.reload()” /></p>

</form>
</body>

</html>

Related Items: array.join() method.

array.join(separatorString)
Returns: String of entries from the array delimited by the separatorString value.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

You cannot directly view data that is stored in an array. Nor can you put an array into a form element for
transmittal to a server-side program that expects a string of text. To make the transition from discrete array
elements to string, the array.join() method handles what would otherwise be a nasty string manipula-
tion exercise.

958

JavaScript Core Language Reference

array.join()

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 958

The sole parameter for this method is a string of one or more characters that you want to act as a delimiter
between entries. For example, if you want commas between array items in their text version, the statement is

var arrayText = myArray.join(“,”);

Invoking this method does not change the original array in any way. Therefore, you need to assign the
results of this method to another variable or a value property of a form element.

Example
The script in Listing 31-6 converts an array of planet names into a text string. The page provides you with a
field to enter the delimiter string of your choice and shows the results in a text area.

LISTING 31-6

Using the Array.join() Method

<html>
<head>

<title>Array.join()</title>
<script type=”text/javascript”>
solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;

// join array elements into a string
function convert(form) {

var delimiter = form.delim.value;
form.output.value = decodeURIComponent(solarSys.join(delimiter));

}
</script>

</head>
<body>

<h2>Converting arrays to strings</h2>
This document contains an array of planets in our solar system.
<hr />
<form>

Enter a string to act as a delimiter between entries: <input
type=”text” name=”delim” value=”,” size=”5” />
<p><input type=”button” value=”Display as String”

onclick=”convert(this.form)” /> <input type=”reset” /> <textarea
name=”output” rows=”4” cols=”40” wrap=”virtual”></textarea></p>

</form>
</body>

</html>

959

array.join()

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 959

Notice that this method takes the parameter very literally. If you want to include non-alphanumeric charac-
ters, such as a newline or tab, do so with URL-encoded characters (%0D for a carriage return; %09 for a tab)
instead of inline string literals. Coming up in Listing 31-7, the results of the array.join() method are
subjected to the decodeURIComponent() function in order to display them in the textarea.

Related Items: string.split() method.

array.pop()
array.push(valueOrObject)
array.shift()
array.unshift(valueOrObject)
Returns: One array entry value.
Compatibility: WinIE5.5+, MacIE-, NN4+, Moz+, Safari+

The notion of a stack is well known to experienced programmers, especially those who know about the
inner workings of assembly language at the CPU level. Even if you’ve never programmed a stack before, you
have encountered the concept in real life many times. The classic analogy is the spring-loaded pile of cafete-
ria trays. If the pile were created one tray at a time, each tray would be pushed onto the top of the stack of
trays. When a customer comes along, the topmost tray (the last one to be pushed onto the stack) gets
popped off. The last one to be put on the stack is the first one to be taken off.

JavaScript in modern browsers lets you turn an array into one of these spring-loaded stacks. But instead of
placing trays on the pile, you can place any kind of data at either end of the stack, depending on which
method you use to do the stacking. Similarly, you can extract an item from either end.

Perhaps the most familiar terminology for this is push and pop. When you push() a value onto an array, the
value is appended as the last entry in the array. When you issue the array.pop() method, the last item in
the array is removed from the stack and is returned, and the array shrinks in length by one. In the following
sequence of statements, watch what happens to the value of the array used as a stack:

var source = new Array(“Homer”,”Marge”,”Bart”,”Lisa”,”Maggie”);
var stack = new Array();

// stack = <empty>
stack.push(source[0]);

// stack = “Homer”
stack.push(source[2]);

// stack = “Homer”,”Bart”
var Simpson1 = stack.pop();

// stack = “Homer” ; Simpson1 = “Bart”
var Simpson2 = stack.pop();

// stack = <empty> ; Simpson2 = “Homer”

While push() and pop() work at the end of an array, another pair of methods works at the front. Their
names are not as picturesque as push() and pop(). To insert a value at the front of an array, use the
array.unshift() method; to grab the first element and remove it from the array, use array.shift(). Of
course, you are not required to use these methods in matching pairs. If you push() a series of values onto
the back end of an array, you can shift() them off from the front end without complaint. It all depends on
how you need to process the data.

Related Items: array.concat(), array.slice() method.

960

JavaScript Core Language Reference

array.pop()

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 960

array.reverse()
Returns: Array of entries in the opposite order of the original.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Occasionally, you may find it more convenient to work with an array of data in reverse order. Although you
can concoct repeat loops to count backward through index values, a server-side program may prefer the
data in a sequence opposite to the way it was most convenient for you to script it.

You can have JavaScript switch the contents of an array for you: Whatever element was last in the array
becomes the 0 index item in the array. Bear in mind that if you do this, you’re restructuring the original
array, not copying it, even though the method also returns a copy of the reversed version. A reload of the
document restores the order as written in the HTML document.

Example
Listing 31-7 is an enhanced version of Listing 31-6, which includes another button and function that
reverse the array and display it as a string in a text area.

LISTING 31-7

Array.reverse() Method

<html>
<head>

<title>Array.reverse()</title>
<script type=”text/javascript”>
solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;

// show array as currently in memory
function showAsIs(form) {

var delimiter = form.delim.value;
form.output.value = decodeURIComponent(solarSys.join(delimiter));

}
// reverse array order, then display as string
function reverseIt(form) {

var delimiter = form.delim.value;
solarSys.reverse(); // reverses original array
form.output.value = decodeURIComponent(solarSys.join(delimiter));

}

continued

961

array.reverse()

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 961

LISTING 31-7 (continued)

</script>
</head>
<body>

<h2>Reversing array element order</h2>
This document contains an array of planets in our solar system.
<hr />
<form>

Enter a string to act as a delimiter between entries: <input
type=”text” name=”delim” value=”,” size=”5” />
<p><input type=”button” value=”Array as-is”

onclick=”showAsIs(this.form)” /> <input type=”button”
value=”Reverse the array” onclick=”reverseIt(this.form)” /> <input
type=”reset” /> <input type=”button” value=”Reload”
onclick=”self.location.reload()” /> <textarea name=”output”
rows=”4” cols=”60”>
</textarea></p>

</form>
</body>

</html>

Notice that the solarSys.reverse() method stands by itself (meaning, nothing captures the returned
value) because the method modifies the solarSys array. You then run the now inverted solarSys array
through the array.join() method for your text display.

Related Items: array.sort() method.

array.slice(startIndex [, endIndex])
Returns: Array.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Behaving as its like-named string method, array.slice() lets you extract a contiguous series of items
from an array. The extracted segment becomes an entirely new array object. Values and objects from the
original array have the same kind of behavior as arrays created with the array.concat() method.

One parameter is required — the starting index point for the extraction. If you don’t specify a second
parameter, the extraction goes all the way to the end of the array; otherwise the extraction goes to, but does
not include, the index value supplied as the second parameter. For example, extracting Earth’s neighbors
from an array of planet names looks like the following:

var solarSys = new Array(“Mercury”,”Venus”,”Earth”,”Mars”,
“Jupiter”,”Saturn”,”Uranus”,”Neptune”,”Pluto”);

var nearby = solarSys.slice(1,4);
// result: new array of “Venus”, “Earth”, “Mars”

Related Items: array.splice(), string.slice() methods.

962

JavaScript Core Language Reference

array.slice()

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 962

array.sort([compareFunction])
Returns: Array of entries in the order as determined by the compareFunction algorithm.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

JavaScript array sorting is both powerful and a bit complex to script if you haven’t had experience with this
kind of sorting methodology. The purpose, obviously, is to let your scripts sort entries of an array by almost
any kind of criterion that you can associate with an entry. For entries consisting of strings, the criterion may
be their alphabetical order or their length; for numeric entries, the criterion may be their numerical order.

Look first at the kind of sorting you can do with the array.sort() method by itself (for example, without
calling a comparison function). When no parameter is specified, JavaScript takes a snapshot of the contents
of the array and converts items to strings. From there, it performs a string sort of the values. ASCII values of
characters govern the sort, which means that numbers are sorted by their string values, not their numeric
values. This fact has strong implications if your array consists of numeric data: The value 201 sorts before
88, because the sorting mechanism compares the first characters of the strings (“2” versus “8”) to determine
the sort order. For simple alphabetical sorting of string values in arrays, the plain array.sort() method
does the trick.

Fortunately, additional intelligence is available that you can add to array sorting. The key tactic is to define a
function that helps the sort() method compare items in the array. A comparison function is passed two
values from the array (what you don’t see is that the array.sort() method rapidly sends numerous pairs
of values from the array to help it sort through all entries). The comparison function lets the sort()
method know which of the two items comes before the other, based on the value the function returns.
Assuming that the function compares two values, a and b, the returned value reveals information to the
sort() method, as shown in Table 31-1.

TABLE 31-1

Comparison Function Return Values

Return Value Range Meaning

< 0 Value b should sort later than a

0 The order of a and b should not change

> 0 Value a should sort later than b

Consider the following example:

myArray = new Array(12, 5, 200, 80);
function compare(a,b) {

return a – b;
}
myArray.sort(compare);

The array has four numeric values in it. To sort the items in numerical order, you define a comparison func-
tion (arbitrarily named compare()), which is called from the sort() method. Note that unlike invoking
other functions, the parameter of the sort() method uses a reference to the function, which lacks paren-
theses.

963

array.sort()

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 963

When the compare() function is called, JavaScript automatically sends two parameters to the function in
rapid succession until each element has been compared with the others. Every time compare() is called,
JavaScript assigns two of the array’s values to the parameter variables (a and b). In the preceding example,
the returned value is the difference between a and b. If a is larger than b, then a positive value goes back to
the sort() method, telling it to sort a later than b (that is, position a at a higher value index position than
b). Therefore, b may end up at myArray[0], whereas a ends up at a higher index-valued location. On the
other hand, if a is smaller than b, the returned negative value tells sort() to put a in a lower index value
spot than b.

Evaluations within the comparison function can go to great lengths, as long as some data connected with
array values can be compared. For example, instead of numerical comparisons, as just shown, you can per-
form string comparisons. The following function sorts alphabetically by the last character of each array
string entry:

function compare(a,b) {
// last character of array strings
var aComp = a.charAt(a.length - 1);
var bComp = b.charAt(b.length - 1);
if (aComp < bComp)

return -1;
if (aComp > bComp)

return 1;
return 0;

}

First, this function extracts the final character from each of the two values passed to it. Then, because
strings cannot be added or subtracted like numbers, you compare the ASCII values of the two characters,
returning the corresponding values to the sort() method to let it know how to treat the two values being
checked at that instant.

When an array’s entries happen to be objects, you can even sort by properties of those objects. If you bear
in mind that the a and b parameters of the sort function are references to two array entries, then by exten-
sion you can refer to properties of those objects. For example, if an array contains objects whose properties
define information about employees, one of the properties of those objects can be the employee’s age as a
string. You can then sort the array based on the numeric equivalent of the age property of the objects by
way of the following comparison function:

function compare(a,b) {
return parseInt(a.age) - parseInt(b.age);

}

Array sorting, unlike sorting routines you may find in other scripting languages, is not a stable sort. Not
being stable means that succeeding sort routines on the same array are not cumulative. Also, remember that
sorting changes the sort order of the original array. If you don’t want the original array harmed, make a copy
of it before sorting or reload the document to restore an array to its original order. Should an array element
be null, the method sorts such elements at the end of the sorted array.

964

JavaScript Core Language Reference

array.sort()

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 964

JavaScript array sorting is extremely powerful stuff. Array sorting is one reason why it’s not uncommon to
take the time during the loading of a page containing an IE XML data island, for example, to make a
JavaScript copy of the data as an array of objects (see Chapter 57 on the CD-ROM). Converting the XML to
JavaScript arrays makes the job of sorting the data much easier and faster than cobbling together your own
sorting routines on the XML elements.

Example
You can look to Listing 31-8 for a few examples of sorting an array of string values (see Figure 31-2). Four
buttons summon different sorting routines, three of which invoke comparison functions. This listing sorts
the planet array alphabetically (forward and backward) by the last character of the planet name and also by
the length of the planet name. Each comparison function demonstrates different ways of comparing data
sent during a sort.

LISTING 31-8

Array.sort() Possibilities

<html>
<head>

<title>Array.sort()</title>
<script type=”text/javascript”>
solarSys = new Array(9);
solarSys[0] = “Mercury”;
solarSys[1] = “Venus”;
solarSys[2] = “Earth”;
solarSys[3] = “Mars”;
solarSys[4] = “Jupiter”;
solarSys[5] = “Saturn”;
solarSys[6] = “Uranus”;
solarSys[7] = “Neptune”;
solarSys[8] = “Pluto”;
// comparison functions
function compare1(a,b) {

// reverse alphabetical order
if (a > b)

return -1;
if (b > a)

return 1;
return 0;

}
function compare2(a,b) {

// last character of planet names
var aComp = a.charAt(a.length - 1);
var bComp = b.charAt(b.length - 1);
if (aComp < bComp)

return -1;
if (aComp > bComp)

return 1;
return 0;

continued

965

array.sort()

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 965

LISTING 31-8 (continued)

}
function compare3(a,b) {

// length of planet names
return a.length - b.length;

}
// sort and display array
function sortIt(form, compFunc) {

var delimiter = “;”;
if (compFunc == null) {

solarSys.sort();
} else {

solarSys.sort(compFunc);
}
// display results in field
form.output.value = decodeURIComponent(solarSys.join(delimiter));

}
</script>

</head>
<body onload=”document.forms[0].output.value =

decodeURIComponent(solarSys.join(‘;’))”>
<h2>Sorting array elements</h2>
This document contains an array of planets in our solar system.
<hr />
<form>

Click on a button to sort the array:
<p><input type=”button” value=”Alphabetical A-Z”

onclick=”sortIt(this.form)” /> <input type=”button”
value=”Alphabetical Z-A” onclick=”sortIt(this.form, compare1)” />
<input type=”button” value=”Last Character”
onclick=”sortIt(this.form, compare2)” /> <input type=”button”
value=”Name Length” onclick=”sortIt(this.form, compare3)”/> <input
type=”button” value=”Reload Original”
onclick=”self.location.reload()” /> <input type=”text”
name=”output” size=”62” /></p>

</form>
</body>

</html>

Related Items: array.reverse() method.

As I show you in Chapter 42 on the CD-ROM, many regular expression object methods gener-
ate arrays as their result (for example, an array of matching values in a string). These special

arrays have a custom set of named properties that assist your script in analyzing the findings of the method.
Beyond that, these regular expression result arrays behave like all others.

NOTENOTE

966

JavaScript Core Language Reference

array.sort()

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 966

FIGURE 31-2

Sorting an array of planet names alphabetically by name length.

array.splice(startIndex , deleteCount[, item1[,
item2[,...itemN]]])
Returns: Array.
Compatibility: WinIE5.5+, MacIE-, NN4+, Moz+, Safari+

If you need to remove items from the middle of an array, the array.splice() method simplifies a task
that would otherwise require assembling a new array from selected items of the original array. The first of
two required parameters is a zero-based index integer that points to the first item to be removed from the
current array. The second parameter is another integer that indicates how many sequential items are to be
removed from the array. Removing array items affects the length of the array, and those items that are
removed are returned by the splice() method as their own array.

You can also use the splice() method to replace array items. Optional parameters beginning with the
third let you provide data elements that are to be inserted into the array in place of the items being
removed. Each added item can be any JavaScript data type, and the number of new items does not have to
be equal to the number of items removed. In fact, by specifying a second parameter of zero, you can use
splice() to insert one or more items into any position of the array.

967

array.splice()

The Array Object 31

40_069165 ch31.qxp 3/1/07 3:54 PM Page 967

Example
Use The Evaluator (Chapter 13) to experiment with the splice() method. Begin by creating an array with
a sequence of numbers:

a = new Array(1,2,3,4,5)

Next, remove the center three items, and replace them with one string item:

a.splice(1, 3, “two/three/four”)

The Results box shows a string version of the three-item array returned by the method. To view the current
contents of the array, enter a into the top text box.

To put the original numbers back into the array, swap the string item with three numeric items:

a.splice(1, 1, 2, 3, 4)

The method returns the single string, and the a array now has five items in it again.

Related Items: array.slice() method.

array.toLocaleString()
Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari+

array.toString()
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

The array.toLocaleString() and the older, more compatible array.toString() are methods to
retrieve the contents of an array in string form. Browsers use the toString() method on their own when-
ever you attempt to display an array in text boxes, in which case the array items are comma-delimited.

The precise string conversion of the toLocaleString() is left up to the specific browser implementation.
That browsers differ in some details is not surprising, even in the U.S. English versions of operating systems
and browsers. For example, if the array contains integer values, the toLocaleString() method in IE5.5+
returns the numbers comma-and-space-delimited, formatted with two digits to the right of the decimal (as
if dollars and cents). Mozilla-based browsers, on the other hand, return just the integers, but these are also
comma-delimited.

If you need to convert an array to a string for purposes of passing array data to other venues (for example,
as data in a hidden text box submitted to a server or as search string data conveyed to another page), use
the array.join() method instead. Array.join() gives you more reliable and flexible control over the
item delimiters, and you are assured of the same results regardless of locale.

Related Items: array.join() method.

968

JavaScript Core Language Reference

array.toString()

Part IV

40_069165 ch31.qxp 3/1/07 3:54 PM Page 968

You get up in the morning, go about your day’s business, and then turn out
the lights at night. That’s not much different from what a program does
from the time it starts to the time it ends. But along the way, both you and

a program take lots of tiny steps, not all of which advance the processing in a
straight line. At times, you have to control what’s going on by making a decision
or repeating tasks until the whole job is finished. Control structures are the facili-
ties that make these tasks possible in JavaScript.

JavaScript control structures follow along the same lines of many programming
languages. Basic decision-making and looping constructions satisfy the needs of
just about all programming tasks.

Another vital program control mechanism — error (or exception) handling — is
formally addressed in Edition 3 of the ECMA-262 language standard. The con-
cept of exception handling was added to the JavaScript version introduced in
IE5.5 and NN6, but it is well known to programmers in many other environ-
ments. Adopting exception-handling techniques in your code can greatly
enhance recovery from processing errors beyond your control, such as those
caused by errant user input or network glitches.

If and If. . .Else Decisions
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

JavaScript programs frequently have to make decisions based on the current val-
ues of variables or object properties. Such decisions can have only two possible
outcomes at a time. The factor that determines the path that the program takes at
these decision points is the truth of some statement. For example, when you
enter a room of your home at night, the statement under test is something such
as “It is too dark to see without a light.” If that statement is true, you switch on
the light; if that statement is false, you carry on with your primary task.

969

IN THIS CHAPTER
Branching script execution down
multiple paths

Looping through ordered
collections of data

Applying exception handling
techniques

Control Structures
and Exception Handling

41_069165 ch32.qxp 3/1/07 3:54 PM Page 969

Simple decisions
JavaScript syntax for this kind of simple decision always begins with the keyword if, followed by the con-
dition to test, and then the statements that execute if the condition yields a true result. JavaScript uses no
“then” keyword (as some other languages do); the keyword is implied by the way parentheses and braces
surround the various components of this construction. The formal syntax is

if (condition) {
statementsIfTrue

}

This construction means that if the condition is true, program execution takes a detour to execute state-
ments inside the braces. No matter what happens, the program continues executing statements beyond the
closing brace (}). If household navigation were part of the scripting language, the code would look like this:

if (tooDark == true) {
feel for light switch
turn on light switch

}

If you’re not used to C/C++, the double equals sign may have caught your eye. You learn more about this
type of operator in the next chapter, but for now, know that this operator compares the equality of items on
either side of it. In other words, the condition statement of an if construction must always yield a
Boolean (true or false) value. Some object properties, you may recall, are Booleans, so you can stick a
reference to that property into the condition statement by itself. Otherwise, the condition statement
consists of two values separated by a comparison operator, such as == (equals) or != (does not equal).

Next, look at some real JavaScript. The following function receives a form object containing a text object
called entry:

function notTooHigh(form) {
if (parseInt(form.entry.value) > 100) {

alert(“Sorry, the value you entered is too high. Try again.”);
return false;

}
return true;

}

The condition (in parentheses) tests the contents of the field against a hard-wired value of 100. If the
entered value is larger than that, the function alerts you and returns a false value to the calling statement
elsewhere in the script. But if the value is less than 100, all intervening code is skipped and the function
returns true.

About (condition) expressions
A lot of condition testing for control structures compares a value against some very specific condition, such
as a string’s being empty or a value’s being null. You can use a couple of shortcuts to take care of many cir-
cumstances. Table 32-1 details the values that evaluate to a true or false (or equivalent) to satisfy a control
structure’s condition expression.

970

JavaScript Core Language Reference

if

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 970

TABLE 32-1

Condition Value Equivalents

True False

Nonempty string Empty string

Nonzero number 0

Nonnull value Null

Object exists Object doesn’t exist

Property is defined Undefined property

Instead of having to spell out an equivalency expression for a condition involving these kinds of values, you
can simply supply the value to be tested. For example, if a variable named myVal is capable of reaching an
if construction with a value of null, an empty string, or a string value for further processing, you can use
the following shortcut:

if (myVal) {
// do processing on myVal

}

All null or empty string conditions evaluate to false, so that only the cases of myVal’s being a processable
value get inside the if construction. This mechanism is the same that you have seen elsewhere in this book
to employ object detection for browser branching. For example, the code nested inside the following code
segment executes only if the document object has an images array property:

if (document.images) {
// do processing on image objects

}

Complex decisions
The simple type of if construction described earlier is fine when the decision is to take a small detour
before returning to the main path. But not all decisions — in programming or in life — are like that. To
present two alternate paths in a JavaScript decision, you can add a component to the construction. The syn-
tax is

if (condition) {
statementsIfTrue

} else {
statementsIfFalse

}

By appending the else keyword, you give the if construction a path to follow in case the condition evalu-
ates to false. The statementsIfTrue and statementsIfFalse do not have to be balanced in any way:
One statement can be one line of code, the other 100 lines. But when either one of those branches com-
pletes, execution continues after the last closing brace. To demonstrate how this construction can come in
handy, the following example is a script fragment that assigns the number of days in February based on

971

if. . .else

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 971

whether or not the year is a leap year (using modulo arithmetic, explained in Chapter 33, to determine if
the year is evenly divisible by four, and setting aside all other leap year calculation details for the moment):

var howMany = 0;
var theYear = 2002;
if (theYear % 4 == 0) {

howMany = 29;
} else {

howMany = 28;
}

Here is a case where execution has to follow only one of two possible paths to assign the number of days to
the howMany variable. Had I not used the else portion, as in

var howMany = 0;
var theYear = 2002;
if (theYear % 4 == 0) {

howMany = 29;
}
howMany = 28;

then the variable would always be set to 28, occasionally after momentarily being set to 29. The else con-
struction is essential in this case.

Nesting if. . .else statements
Designing a complex decision process requires painstaking attention to the logic of the decisions your script
must process and the statements that must execute for any given set of conditions. The need for repetitive
logic disappeared with the advent of switch construction in version 4 browsers (described later in this
chapter), but there may still be times when you must fashion complex decision behavior out of a series of
nested if. . .else statements. Without a JavaScript-aware text editor to help keep everything properly
indented and properly terminated (with closing braces), you have to monitor the authoring process very
carefully. Moreover, the error messages that JavaScript provides when a mistake occurs (see Chapter 45 on
the CD-ROM) may not point directly to the problem line but only to the region of difficulty.

To demonstrate a deeply nested set of if. . .else constructions, Listing 32-1 presents a simple user inter-
face to a complex problem. A single text object asks the user to enter one of three letters — A, B, or C. The
script behind that field processes a different message for each of the following conditions:

n The user enters no value.

n The user enters A.

n The user enters B.

n The user enters C.

n The user enters something entirely different.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

NOTENOTE

972

JavaScript Core Language Reference

if. . .else

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 972

LISTING 32-1

Deeply Nested if. . .else Constructions

<html>
<head>

<title></title>
<script type=”text/javascript”>
function testLetter(form){

inpVal = form.entry.value; // assign to shorter variable name
if (inpVal != “”) { // if entry is not empty then dive in...

if (inpVal == “A”) { // Is it an “A”?
alert(“Thanks for the A.”);

} else if (inpVal == “B”) { // No. Is it a “B”?
alert(“Thanks for the B.”);

} else if (inpVal == “C”) { // No. Is it a “C”?
alert(“Thanks for the C.”);

} else { // Nope. None of the above
alert(“Sorry, wrong letter or case.”);

}
} else { // value was empty, so skipped all other stuff above

alert(“You did not enter anything.”);
}

}
</script>

</head>
<body>

<form onsubmit=”return false”>
Please enter A, B, or C: <input type=”text” name=”entry”
onchange=”testLetter(this.form)” />

</form>
</body>

</html>

973

if. . .else

Control Structures and Exception Handling 32

What’s with the Formatting?

Indentation of the if construction and the further indentation of the statements executed on a true condition
are not required by JavaScript. What you see here, however, is a convention that most JavaScript scripters

follow. As you write the code in your text editor, you can use the Tab key to establish each level of indenta-
tion; some developers prefer using a setting in their editor that converts tabs to spaces, which guarantees that
indentations are consistent across different editors. The browser ignores these tab characters (and/or spaces)
when loading the HTML documents containing your scripts.

41_069165 ch32.qxp 3/1/07 3:54 PM Page 973

Each condition executes only the statements that apply to that particular condition, even if it takes several
queries to find out what the entry is. You do not need to break out of the nested construction because when
a true response is found, the relevant statement executes, and no other statements occur in the execution
path to run.

Even if you understand how to construct a hair-raising nested construction, such as the one in Listing 32-1,
the trickiest part is making sure that each left brace has a corresponding right brace. My technique for
ensuring this pairing is to enter the right brace immediately after I type the left brace. I typically type the
left brace, press Enter twice (once to open a free line for the next statement, once for the line that is to
receive the right brace); tab, if necessary, to the same indentation as the line containing the left brace; and
then type the right brace. Later, if I have to insert something indented, I just push down the right braces
that I entered earlier. If I keep up this methodology throughout the process, the right braces appear at the
desired indentation after I’m finished, even if the braces end up being dozens of lines below their original
spot.

Conditional Expressions
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

While I’m showing you decision-making constructions in JavaScript, now is a good time to introduce a spe-
cial type of expression that you can use in place of an if. . .else control structure for a common type of
decision — the instance where you want to assign one of two values to a variable, depending on the out-
come of some condition. The formal definition for the conditional expression is as follows:

variable = (condition) ? val1 : val2;

This expression means that if the Boolean result of the condition statement is true, JavaScript assigns
val1 to the variable; otherwise, it assigns val2 to the variable. Like other instances of condition expres-
sions, this one must also be written inside parentheses. The question mark is key here, as is the colon sepa-
rating the two possible values.

A conditional expression, though not particularly intuitive or easy to read inside code, is very compact.
Compare an if. . .else version of an assignment decision that follows

var collectorStatus;
if (CDCount > 500) {

collectorStatus = “fanatic”;
} else {

collectorStatus = “normal”;
}

with the conditional expression version:

var collectorStatus = (CDCount > 500) ? “fanatic” : “normal”;

The latter saves a lot of code lines (although the internal processing is the same as that of an if. . .else
construction). Of course, if your decision path contains more statements than just one setting the value of a
variable, the if. . .else or switch construction is preferable. This shortcut, however, is a handy one to
remember if you need to perform very binary actions, such as setting a true-or-false flag in a script.

974

JavaScript Core Language Reference

if. . .else

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 974

Repeat (for) Loops
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

As you have seen in numerous examples throughout other chapters, the capability to cycle through every
entry in an array or through every item of a form element is vital to many JavaScript scripts. Perhaps the
most typical operation is inspecting a property of many similar items in search of a specific value, such as to
determine which radio button in a group is selected. One JavaScript structure that allows for these repeti-
tious excursions is the for loop, so-named after the keyword that begins the structure. Two other struc-
tures, called the while loop and do-while loop, are covered in the following sections.

The JavaScript for loop repeats a series of statements any number of times and includes an optional loop
counter that can be used in the execution of the statements. The following is the formal syntax definition:

for ([initial expression]; [condition]; [update expression]) {
statements

}

The three statements inside the parentheses (parameters to the for statement) play a key role in the way a
for loop executes.

An initial expression in a for loop is executed one time, the first time the for loop begins to run. The most
common application of the initial expression is to assign a name and starting value to a loop counter vari-
able. Thus, seeing a var statement that both declares a variable name and assigns an initial value (generally
0 or 1) to it is not uncommon. An example is

var i = 0;

You can use any variable name, but conventional usage calls for the letter i, which is short for index. If you
prefer the word counter or another word that reminds you of what the variable represents, that’s fine, too.
In any case, the important point to remember about this statement is that it executes once at the outset of
the for loop.

The second statement is a condition, precisely like the condition statement you saw in if constructions
earlier in this chapter. When a loop-counting variable is established in the initial expression, the condition
statement usually defines how high the loop counter should go before the looping stops. Therefore, the most
common statement here is one that compares the loop counter variable against some fixed value — is the
loop counter less than the maximum allowed value? If the condition is false at the start, the body of the loop
is not executed. But if the loop does execute, then every time execution comes back around to the top of the
loop, JavaScript reevaluates the condition to determine the current result of the expression. If the loop
counter increases with each loop, eventually the counter value goes beyond the value in the condition
statement, causing the condition statement to yield a Boolean value of false. The instant that happens,
execution drops out of the for loop entirely.

The final statement, the update expression, is executed at the end of each loop execution — after all state-
ments nested inside the for construction have run. Again, the loop counter variable can be a factor here. If
you want the counter value to increase by one the next time through the loop (called incrementing the
value), you can use the JavaScript operator that makes that happen: the ++ operator appended to the vari-
able name. That task is the reason for the appearance of all those i++ symbols in the for loops that you’ve
seen already in this book. You’re not limited to incrementing by one. You can increment by any multiplier
you want or even drive a loop counter backward by decrementing the value (i--).

975

for

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 975

Now, take this knowledge and beef up the formal syntax definition with one that takes into account a typi-
cal loop-counting variable, i, and the common ways to use it:

//incrementing loop counter
for (var i = minValue; i <= maxValue; i++) {

statements
}
//decrementing loop counter
for (var i = maxValue; i >= minValue; i--) {

statements
}

In the top format, the variable, i, is initialized at the outset to a value equal to that of minValue. Variable i
is immediately compared against maxValue. If i is less than or equal to maxValue, processing continues
into the body of the loop. At the end of the loop, the update expression executes. In the top example, the
value of i is incremented by 1. Therefore, if i is initialized as 0, then the first time through the loop, the i
variable maintains that 0 value during the first execution of statements in the loop. The next time around,
the variable has the value of 1.

As you may have noticed in the formal syntax definition, each of the parameters to the for statement is
optional. For example, the statements that execute inside the loop may control the value of the loop counter
based on data that gets manipulated in the process. Therefore, the update statement would probably inter-
fere with the intended running of the loop. But I suggest that you use all three parameters until such time as
you feel absolutely comfortable with their roles in the for loop. If you omit the condition statement, for
instance, and you don’t program a way for the loop to exit on its own, your script may end up in an infinite
loop — which does your users no good.

Putting the loop counter to work
Despite its diminutive appearance, the i loop counter (or whatever name you want to give it) can be a pow-
erful tool for working with data inside a repeat loop. For example, examine a version of the classic
JavaScript function that creates an array while initializing entries to a value of 0:

// initialize array with n entries
function MakeArray(n) {

this.length = n;
for (var i = 1; i <= n; i++) {

this[i] = 0;
}
return this;

}

The loop counter, i, is initialized to a value of 1, because you want to create an array of empty entries (with
value 0) starting with the one whose index value is 1 (the zeroth entry is assigned to the length property)
in the previous line. In the condition statement, the loop continues to execute as long as the value of the
counter is less than or equal to the number of entries being created (n). After each loop, the counter incre-
ments by 1. In the nested statement that executes within the loop, you use the value of the i variable to
substitute for the index value of the assignment statement:

this[i] = 0;

976

JavaScript Core Language Reference

for

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 976

The first time the loop executes, the value expression evaluates to

this[1] = 0;

The next time, the expression evaluates to

this[2] = 0;

and so on, until all entries are created and stuffed with 0.

Recall the HTML page in Listing 31-2, where a user chooses a regional office from a select list (triggering
a script to look up the manager’s name and sales quota for that region). Because the regional office names
are stored in an array, the page could be altered so that a script populates the select element’s options
from the array. That way, if there is ever a change to the alignment of regional offices, there need be only one
change to the array of offices, and the HTML doesn’t have to be modified. As a reminder, here is the defini-
tion of the regional offices array, created while the page loads:

var regionalOffices = [“New York”, “Chicago”, “Houston”, “Portland”];

A script inside the HTML form can be used to dynamically generate the select list as follows:

<script type=”text/javaScript”>
var elem = “”; // start assembling next part of page and form
elem += “<p>Select a regional office: “;
elem += “<select name=’offices’ onchange=’getData(this.form)’>”;
// build options list from array office names
for (var i = 0; i < regionalOffices.length; i++) {

elem += “<option”; // option tags
if (i == 0) { // pre-select first item in list

elem += “ selected=’selected’”;
}
elem += “>” + regionalOffices[i];

}
elem += “</select></p>”; // close select item tag
document.write(elem); // write element to the page
</script>

Notice one important point about the condition statement of the for loop: JavaScript extracts the length
property from the array to be used as the loop counter boundary. From a code maintenance and stylistic
point of view, this method is preferable to hard-wiring a value there. If the company added a new regional
office, you would make the addition to the array “database,” whereas everything else in the code would
adjust automatically to those changes, including creating a longer pop-up menu in this case.

Notice, too, that the operator for the condition statement is less-than (<): The zero-based index values of
arrays mean that the maximum index value we can use is one less than the actual count of items in the
array. This is vital information, because the index counter variable (i) is used as the index to the
regionalOffices array each time through the loop to read the string for each item’s entry. You also use
the counter to determine which is the first option, so that you can take a short detour (via the if construc-
tion) to add the selected attribute to the first option’s definition.

The utility of the loop counter in for loops often influences the way you design data structures, such as
two-dimensional arrays (see Chapter 31) for use as databases. Always keep the loop-counter mechanism in
the back of your mind when you begin writing JavaScript script that relies on collections of data that you
embed in your documents.

977

for

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 977

Breaking out of a loop
Some loop constructions perform their job as soon as a certain condition is met, at which point they have
no further need to continue looping through the rest of the values in the loop counter’s range. A common
scenario for this is the cycling of a loop through an entire array in search of a single entry that matches
some criterion. That criterion test is set up as an if construction inside the loop. If that criterion is met,
you break out of the loop and let the script continue with the more meaningful processing of succeeding
statements in the main flow. To accomplish that exit from the loop, use the break statement. The following
schematic shows how the break statement may appear in a for loop:

for (var i = 0; i < array.length; i++) {
if (array[i].property == magicValue) {

statements that act on entry array[i]
break;

}
}

The break statement tells JavaScript to bail out of the nearest for loop (in case you have nested for
loops). Script execution then picks up immediately after the closing brace of the for statement. The vari-
able value of i remains whatever it was at the time of the break, so that you can use that variable later in the
same script to access, say, that same array entry.

I use a construction similar to this in Chapter 22. There, the discussion of radio buttons demonstrates this
construction, where, in Listing 22-6, you see a set of radio buttons whose value attributes contain screen
sizes, in pixels. A function uses a for loop to find out which button was selected and then uses that item’s
index value — after the for loop breaks out of the loop — to alert the user. Listing 32-2 shows the relevant
function.

LISTING 32-2

Breaking Out of a for Loop

function showMegapixels(form) {
for (var i = 0; i < form.sizes.length; i++) {

if (form.sizes[i].checked) {
break;

}
}
alert(“That image size requires “ + form.sizes[i].value + “ megapixels.”);

}

In this case, breaking out of the for loop was for more than mere efficiency; the value of the loop counter
(frozen at the break point) is used to summon a different property outside of the for loop. Starting back in
version 4 browsers, the break statement gained additional powers in cooperation with the new label fea-
ture of control structures. This subject is covered later in this chapter.

978

JavaScript Core Language Reference

break

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 978

Directing loop traffic with continue
One other possibility in a for loop is that you may want to skip execution of the nested statements for just
one condition. In other words, as the loop goes merrily on its way round and round, executing statements
for each value of the loop counter, one value of that loop counter may exist for which you don’t want those
statements to execute. To accomplish this task, the nested statements need to include an if construction to
test for the presence of the value to skip. When that value is reached, the continue command tells
JavaScript to immediately skip the rest of the body, execute the update statement, and loop back around to
the top of the loop.

To illustrate this construction, take a look at an artificial example that skips over execution when the
counter variable is the superstitious person’s unlucky 13:

for (var i = 0; i <= 20; i++) {
if (i == 13) {

continue;
}
statements

}

In this example, the statements part of the loop executes for all values of i except 13. The continue
statement forces execution to jump to the i++ part of the loop structure, incrementing the value of i for the
next time through the loop. In the case of nested for loops, a continue statement affects the for loop in
whose immediate scope the if construction falls. The continue statement was enhanced in version 4
browsers with the label feature of control structures, which is covered later in this chapter.

The while Loop
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The for loop is not the only kind of repeat loop you can construct in JavaScript. Another statement, called
a while statement, sets up a loop in a slightly different format. Rather than providing a mechanism for
modifying a loop counter, a while repeat loop assumes that your script statements will reach a condition
that forcibly exits the repeat loop.

The basic syntax for a while loop is

while (condition) {
statements

}

The condition expression is the same kind that you saw in if constructions and in the middle parameter
of the for loop. You introduce this kind of loop if some condition exists in your code (evaluates to true)
before reaching this loop. The loop then performs some action, which affects that condition repeatedly until
that condition becomes false. At that point, the loop exits, and script execution continues with statements
after the closing brace. If the statements inside the while loop do not somehow affect the values being
tested in condition, your script never exits, and it becomes stuck in an infinite loop.

979

while

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 979

Many loops can be rendered with either the for or while loops. In fact, Listing 32-3 shows a while loop
version of the for loop from Listing 32-2.

LISTING 32-3

A while Loop Version of Listing 32-2

function showMegapixels(form) {
var i = 0;
while (!form.sizes[i].checked) {

i++;
}
alert(“That image size requires “ + form.sizes[i].value + “ megapixels.”);

}

One point you may notice is that if the condition of a while loop depends on the value of a loop counter,
the scripter is responsible for initializing the counter prior to the while loop construction and managing its
value within the while loop.

Should you need their powers, the break and continue control statements work inside while loops as
they do in for loops. But because the two loop styles treat their loop counters and conditions differently, be
extra careful (do lots of testing) when applying break and continue statements to both kinds of loops.

No hard-and-fast rules exist for which type of loop construction to use in a script. I generally use while
loops only when the data or object I want to loop through is already a part of my script before the loop. In
other words, by virtue of previous statements in the script, the values for any condition or loop counting (if
needed) are already initialized. But if I need to cycle through an object’s properties or an array’s entries to
extract some piece of data for use later in the script, I favor the for loop. The for loop is also generally pre-
ferred when the looping involves a simple counter from one value to another.

Another point of style, particularly with the for loop, is where a scripter should declare the i variable.
Some programmers prefer to declare (or initialize if initial values are known) all variables in the opening
statements of a script or function. That is why you tend to see a lot of var statements in those positions in
scripts. If you have only one for loop in a function, for example, nothing is wrong with declaring and ini-
tializing the i loop counter in the initial expression part of the for loop (as demonstrated frequently in the
previous sections). But if your function utilizes multiple for loops that reuse the i counter variable (that is,
the loops run completely independently of one another), then you can declare the i variable once at the
start of the function and simply assign a new initial value to i in each for construction.

The do-while Loop
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

JavaScript brings you one more looping construction, called the do-while loop. The formal syntax for this
construction is as follows:

do {
statements

} while (condition)

980

JavaScript Core Language Reference

do-while

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 980

An important difference distinguishes the do-while loop from the while loop. In the do-while loop, the
statements in the construction always execute at least one time before the condition can be tested; in a
while loop, the statements may never execute if the condition tested at the outset evaluates to false. So,
just think of the do-while loop as a while loop where the first statement gets executed no matter what.

Use a do-while loop when you know for certain that the looped statements are free to run at least one
time. If the condition may not be met the first time, use the while loop. For many instances, the two con-
structions are interchangeable, although only the while loop is compatible with legacy browsers.

Looping through Properties (for-in)
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

JavaScript includes a variation of the for loop, called a for-in loop, which has special powers of extract-
ing the names and values of any object property currently in the browser’s memory. The syntax looks like
this:

for (var in object) {
statements

}

The object parameter is not the string name of an object but a reference to the object itself. JavaScript
delivers an object reference if you provide the name of the object as an unquoted string, such as window or
document. Using the var variable, you can create a script that extracts and displays the range of properties
for any given object.

Listing 32-4 shows a page containing a utility function that you can insert into your HTML documents dur-
ing the authoring and debugging stages of designing a JavaScript-enhanced page. In the example, the cur-
rent window object is examined and its properties are presented in the page (note that Safari 1.0 doesn’t
expose window object properties).

LISTING 32-4

Property Inspector Function

<html>
<head>

<title></title>
<script type=”text/javascript”>
function showProps(obj,objName) {

var result = “”;
for (var i in obj) {

result += objName + “.” + i + “ = “ + obj[i] + “
”;
}
return result;

}
</script>

</head>

continued

981

for-in

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 981

LISTING 32-4 (continued)

<body>
Here are the properties of the current window:
<p>

<script type=”text/javascript”>
document.write(showProps(window, “window”));
</script>

</p>
</body>

</html>

For debugging purposes, you can revise the function slightly to display the results in an alert dialog box.
Replace the
 HTML tag with the \n carriage return character for a nicely formatted display in the
alert dialog box. You can call this function from anywhere in your script, passing both the object reference
and a string to it to help you identify the object after the results appear in an alert dialog box. If the
showProps() function looks familiar to you, it is because it closely resembles the property inspector rou-
tines of The Evaluator (see Chapter 13). In Chapter 45 on the CD-ROM, you can see how to embed func-
tionality of The Evaluator into a page under construction so that you can view property values while
debugging your scripts.

The with Statement
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The with statement enables you to preface any number of statements by advising JavaScript on precisely
which object your scripts will be talking about, so that you don’t have to use full, formal addresses to access
properties or invoke methods of the same object. The formal syntax definition of the with statement is as
follows:

with (object) {
statements

}

The object reference is a reference to any valid object currently in the browser’s memory. An example of this
appears in Chapter 29’s discussion of the Math object. By embracing several Math-encrusted statements
inside a with construction, your scripts can call the properties and methods without having to make the
object part of every reference to those properties and methods. Here’s an example:

with (Math) {
randInt = round(random() * 100);

}

This example uses the round() and random() methods of the Math object to obtain a random integer
between 0 and 100. The significance of the code is how the with statement allows you to forego using the
full notation of Math.round() and Math.random().

982

JavaScript Core Language Reference

with

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 982

An advantage of the with structure is that it can make heavily object-dependent statements easier to read
and understand. Consider this long version of a function that requires multiple calls to the same object (but
different properties):

function seeColor(form) {
newColor = (form.colorsList.options[form.colorsList.selectedIndex].text);
return newColor;

}

Using the with structure, you can shorten the long statement:

function seeColor(form) {
with (form.colorsList) {

newColor = (options[selectedIndex].text);
}
return newColor;

}

When JavaScript encounters an otherwise unknown identifier inside a with statement, it tries to build a ref-
erence out of the object specified as its parameter and that unknown identifier. You cannot, however, nest
with statements that build on one another. For instance, in the preceding example, you cannot have a with
(colorsList) nested inside a with (form) statement and expect JavaScript to create a reference to options
out of the two object names.

As clever as the with statement may seem, be aware that it introduces some inherent performance penalties
in your script (because of the way the JavaScript interpreter must artificially generate references). You prob-
ably won’t notice degradation with occasional use of this construction, but if it’s used inside a loop that
must iterate many times, processing speed will almost certainly be affected negatively.

Labeled Statements
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Crafting multiple nested loops can sometimes be difficult when the final condition your script is looking for
is met deep inside the nests. The problem is that the break or continue statement by itself has scope only
to the nearest loop level. Therefore, even if you break out of the inner loop, the outer loop(s) continue to
execute. If all you want to do is exit the function after the condition is met, a simple return statement per-
forms the same job as some other languages’ exit command. But if you also need some further processing
within that function after the condition is met, you need the JavaScript facility supported in modern
browsers that lets you assign labels to blocks of statements. Your break and continue statements can then
alter their scope to apply to a labeled block other than the one containing the statement.

A label is any identifier (that is, name starting with a letter and containing no spaces or odd punctuation
other than an underscore) followed by a colon preceding a logical block of executing statements, such as an
if. . .then or loop construction. The formal syntax looks like the following:

labelID:
statements

983

label

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 983

For a break or continue statement to apply itself to a labeled group, the label is added as a kind of param-
eter to each statement, as in

break labelID;
continue labelID;

If you’re arriving at JavaScript from another programming language that has a bit more struc-
ture, such as C++ or Java, the thought of labeled code may have you worried about the risks of

creating code that is impossible to manage. This worry is likely rooted in the goto statement that is found in
some languages, such as BASIC, and which is seriously frowned upon in modern structured languages. Labels
in JavaScript are much more limited than the infamous goto statement in other languages and can only tar-
get labels they are nested in. So while I don’t necessarily encourage the heavy usage of labels, you can rest
easy knowing that they aren’t on par with the much maligned goto statement.

To demonstrate how valuable this can be in the right situation, Listing 32-5 contains two versions of the
same nested loop construction. The goal of each version is to loop through two different index variables
until both values equal the target values set outside the loop. When those targets are met, the entire nested
loop construction should break off and continue processing afterward. To help you visualize the processing
that goes on during the execution of the loops, the scripts output intermediate and final results to a
textarea.

In the version without labels, when the targets are met, only the simple break statement is issued. This
breaks the inner loop at that point, but the outer loop picks up on the next iteration. By the time the entire
construction has ended, a lot of wasted processing has gone on. Moreover, the values of the counting vari-
ables max themselves out, because the loops execute in their entirety several times after the targets are met.

But in the labeled version, the inner loop breaks out of the labeled outer loop as soon as the targets are met.
Far fewer lines of code are executed, and the loop counting variables are equal to the targets, as desired.
Experiment with Listing 32-5 by changing the break statements to continue statements. Then closely
analyze the two results in the Results textarea to see how the two versions behave.

LISTING 32-5

Labeled Statements

<html>
<head>

<title>Breaking Out of Nested Labeled Loops</title>
<script type=”text/javascript”>
var targetA = 2;
var targetB = 2;
var range = 5;
function run1() {

var out = document.forms[0].output;
out.value = “Running WITHOUT labeled break\n”;
for (var i = 0; i <= range; i++) {

out.value += “Outer loop #” + i + “\n”;
for (var j = 0; j <= range; j++) {

out.value += “ Inner loop #” + j + “\n”;
if (i == targetA && j == targetB) {

out.value += “**BREAKING OUT OF INNER LOOP**\n”;

NOTENOTE

984

JavaScript Core Language Reference

label

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 984

break;
}

}
}
out.value += “After looping, i = “ + i + “, j = “ + j + “\n”;

}
function run2() {

var out = document.forms[0].output;
out.value = “Running WITH labeled break\n”;
outerLoop:
for (var i = 0; i <= range; i++) {

out.value += “Outer loop #” + i + “\n”;
innerLoop:
for (var j = 0; j <= range; j++) {

out.value += “ Inner loop #” + j + “\n”;
if (i == targetA && j == targetB) {

out.value += “**BREAKING OUT OF OUTER LOOP**\n”;
break outerLoop;

}
}

}
out.value += “After looping, i = “ + i + “, j = “ + j + “\n”;

}
</script>

</head>
<body>

<h1>Breaking Out of Nested Labeled Loops</h1>
<hr />
<p>Look in the Results field for traces of these button scripts:</p>
<form>

<p><input type=”button” value=”Execute WITHOUT Label”
onclick=”run1()” /></p>

<p><input type=”button” value=”Execute WITH Label”
onclick=”run2()” /></p>

<p>Results:</p>
<textarea name=”output” rows=”43” cols=”60”></textarea>

</form>
</body>

</html>

The switch Statement
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

In some circumstances, a binary — true or false — decision path is not enough to handle the processing in
your script. An object property or variable value may contain any one of several values, and a separate
execution path is required for each one. The most obvious way to establish such a decision path is with a
series of if. . .else constructions. However, in addition to quickly getting unwieldy with nested code,

985

switch

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 985

the more conditions you must test, the less efficient the processing is, because each condition must be
tested. The end result is a sequence of clauses and braces that can get very confusing.

Starting in version 4 browsers, a control structure in use by many languages was introduced to JavaScript.
The implementation is similar to that of Java and C/C++, using the switch and case keywords. The basic
premise is that you can create any number of execution paths based on the value of some expression. At the
beginning of the structure, you identify what that expression is and then, for each execution path, assign a
label matching a particular value.

The formal syntax for the switch statement is

switch (expression) {
case label1:

statements
[break]

case label2:
statements
[break]

...
[default:

statements]
}

The expression parameter of the switch statement can evaluate to any string or number value. Labels are
surrounded by quotes when the labels represent string values of the expression. Notice that the break
statements are optional. A break statement forces the switch expression to bypass all other checks of suc-
ceeding labels against the expression value. It’s important to understand that without a break statement at
the end of each case, every line of code in the switch expression will get executed. Another option is the
default statement, which provides a catchall execution path when the expression value does not match
any of the case statement labels. If you’d rather not have any execution take place with a non-matching
expression value, omit the default part of the construction.

To demonstrate the syntax of a working switch statement, Listing 32-6 provides the skeleton of a larger
application of this control structure. The page contains two separate arrays of different product categories.
Each product has its name and price stored in its respective array. A select list displays the product
names. After a user chooses a product, the script looks up the product name in the appropriate array and
displays the price.

The trick behind this application is the values assigned to each product in the select list. While the dis-
played text is the product name, the value attribute of each <option> tag is the array category for the
product. That value is the expression used to decide which branch to follow. Notice, too, that I assign a
label to the entire switch construction. The purpose of that is to let the deeply nested repeat loops for each
case completely bail out of the switch construction (via a labeled break statement) whenever a match is
made. You can extend this example to any number of product category arrays with additional case state-
ments to match.

986

JavaScript Core Language Reference

switch

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 986

LISTING 32-6

The switch Construction in Action

<html>
<head>

<title>Switch Statement and Labeled Break</title>
<script type=”text/javascript”>
// build two product arrays, simulating two database tables
function product(name, price) {

this.name = name;
this.price = price;

}
var ICs = new Array();
ICs[0] = new product(“Septium 900MHz”,”$149”);
ICs[1] = new product(“Septium Pro 1.0GHz”,”$249”);
ICs[2] = new product(“Octium BFD 750MHz”,”$329”);
var snacks = new Array();
snacks[0] = new product(“Rays Potato Chips”,”$1.79”);
snacks[1] = new product(“Cheezey-ettes”,”$1.59”);
snacks[2] = new product(“Tortilla Flats”,”$2.29”);

// lookup in the ‘table’ associated with the product
function getPrice(selector) {

var chipName = selector.options[selector.selectedIndex].text;
var outField = document.forms[0].cost;
master:
switch(selector.options[selector.selectedIndex].value) {
case “ICs”:

for (var i = 0; i < ICs.length; i++) {
if (ICs[i].name == chipName) {

outField.value = ICs[i].price;
break master;

}
}
break;

case “snacks”:
for (var i = 0; i < snacks.length; i++) {

if (snacks[i].name == chipName) {
outField.value = snacks[i].price;
break master;

}
}
break;

default:
outField.value = “Not Found”;

}
}

continued

987

switch

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 987

LISTING 32-6 (continued)

</script>
</head>
<body>

Branching with the switch Statement
<hr />
Select a chip for lookup in the chip price tables:
<form>

Chip:<select name=”chips” onchange=”getPrice(this)”>
<option></option>
<option value=”ICs”>Septium 900MHz</option>
<option value=”ICs”>Septium Pro 1.0GHz</option>
<option value=”ICs”>Octium BFD 750MHz</option>
<option value=”snacks”>Rays Potato Chips</option>
<option value=”snacks”>Cheezey-ettes</option>
<option value=”snacks”>Tortilla Flats</option>
<option>Poker Chipset</option>

</select> Price:<input type=”text” name=”cost” size=”10” />
</form>

</body>
</html>

Exception Handling
The subject of exception handling is relatively new to JavaScript. Formalized in Edition 3 of ECMA-262,
parts of the official mechanism were implemented in IE5, with more complete implementations in IE6 and
NN6, and of course in Mozilla, Firefox, Camino, and Safari.

Exceptions and errors
If you’ve done any scripting, you are certainly aware of JavaScript errors, whether they be from syntax errors
in your code, or what are known as runtime errors — errors that occur while scripts are processing informa-
tion. Ideally, a program should be aware of when an error occurs and handle it as gracefully as possible.
This self-healing can prevent lost data and help keep users from seeing the ugliness of error messages.
Chapter 16 covers the onerror event handler (and window.onerror property), which were early attempts
at letting scripts gain a level of control over runtime errors. This event-driven mechanism works on a global
level (that is, in the window object) and processes every error that occurs throughout the page. This event
handler ends up being used primarily as a last-ditch defense against displaying any error message to the
user and is a long way from what programmers consider to be exception handling.

In the English language, the term “exception” can mean something out of the ordinary, or something abnor-
mal. This definition seems quite distant from the word “error,” which usually means a mistake. In the realm
of programming languages, however, the two words tend to be used interchangeably, and the difference
between the two depends primarily on one’s point of view.

Consider, for example, a simple script whose job is to multiply numbers that the user enters into two text
fields on the page. The script is supposed to display the results in a third text box. If the script contains no

988

JavaScript Core Language Reference

Exceptions

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 988

data entry validation, JavaScript will attempt to multiply whatever values are entered into the text boxes. If
the user enters two numbers, JavaScript is smart enough to recognize that even though the value proper-
ties of the two input text fields are strings, the strings contain numbers that can be converted to number
types for the proper multiplication. Without complaint, the product of the two numbers gets calculated and
displayed into the results.

But what if the user types a letter into one of the text boxes? Again, without any entry validation in the
script, JavaScript has a fixed way of responding to such a request: The result of the multiplication operation
is the NaN (not a number) constant. If you are an untrained user, you have no idea what NaN means, but
your experience with computers tells you that some kind of error has occurred. You may blame the com-
puter or you may blame yourself — the accurate response may in fact be to blame the JavaScript developer!

To shift the point of view to the programmer, however, the script was designed to be run by a user who
never makes a typing mistake, intentional or not. That, of course, is not very good programming practice.
Users make mistakes. Therefore, anticipating user input that is not what would be expected is the program-
mer’s job — input that is an exception to the rules your program wants to operate by. You must include
some additional code that handles the exceptions gracefully so as to not confuse the user with unintelligible
output and perhaps even help the user repair the input to get a result. This extra programming code han-
dles the undesirable and erroneous input and makes your scripts considerably more user-friendly and
robust.

As it turns out, JavaScript and the W3C Document Object Model liberally mix terms of exception and error
within the vocabulary used to handle exceptions. As you see shortly, an exception creates an error object,
which contains information about the exception. It is safe to say that you can think of exceptions and errors
as the same things.

The exception mechanism
Newcomers to JavaScript (or any programming environment, for that matter) may have a difficult time at
first creating a mental model of how all this exception stuff runs within the context of the browser. It may
be easy enough to understand how pages load and create object models, and how event handlers (or listen-
ers in the W3C DOM terminology) cause script functions to run. But a lot of action also seems to be going
on in the background. For example, the event object that is generated automatically with each event action
(see Chapter 25) seems to sit “somewhere” while event handler functions run so that they can retrieve
details about the event. After the functions finish their processing, the event object disappears, without even
leaving behind a Cheshire Cat smile. Mysterious.

Browsers equipped for exception handling have more of this “stuff” running in the background, ready for
your scripts when you need it. Because you have certainly viewed the details of at least one scripting error,
you have already seen some of the exception-handling mechanism that is built into browsers. If a script
error occurs, the browser creates in its memory an error object, whose properties contain details about the
error. The precise details (described later in this chapter) vary from one browser brand to the next, but what
you see in the error details readout is the default way the browser handles exceptions/errors. As browsers
have matured, their makers have gone to great lengths to tone down the intrusion of script errors. For
example in NN4+, errors appeared in a separate JavaScript Console window (which must be invoked in
NN4 by typing javascript: into the Location field; or opened directly via the Tools menu in NN6+ and
Mozilla-based browsers, including Firefox and Camino). In IE4+ for Windows, the status bar comes into
play again, as the icon at the bottom-left corner turns into an alert icon: Double-clicking the icon displays
more information about the error. MacIE users can turn off scripting error alerts altogether. Safari 1.0 didn’t
divulge any script errors but a JavaScript console was added as of version 1.3.

989

Exceptions

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 989

True exception handling, however, goes further than just displaying error messages. It also provides a uni-
form way to let scripts guard against unusual occurrences. Ideally, the mechanism makes sure that all run-
time errors get funneled through the same mechanism to help simplify the scripting of exception handling.
The mechanism is also designed to be used intentionally as a way for your own code to generate errors in a
uniform way so that other parts of your scripts can handle them quietly and intelligently. In other words,
you can use the exception handling mechanism as a kind of “back channel” to communicate from one part
of your scripts to another.

The JavaScript exception handling mechanism is built around two groups of program execution statements.
The first group consists of the try-catch-finally statement triumvirate; the second group is the single
throw statement.

Using try-catch-finally Constructions
The purpose of the try-catch-finally group of related statements is to provide a controlled environment
in which script statements that may encounter runtime errors can run, such that if an exception occurs,
your scripts can act upon the exception without alarming the rest of the browser’s error mechanisms. Each
of the three statements precedes a block of code in the following syntax:

try {
statements to run

}
catch (errorInfo) {

statements to run if exception occurs in try block
}
finally {

statements to run whether or not an exception occurred [optional]
}

Each try block must be mated with a catch and/or finally block at the same nesting level, with no
intervening statements. For example, a function can have a one-level try-catch construction inside it as
follows:

function myFunc() {
try {

statements
}
catch (e) {

statements
}

}

But if there were another try block nested one level deeper, a balancing catch or finally block would
also have to be present at that deeper level:

function myFunc() {
try {

statements
try {

statements
}
catch (e) {

990

JavaScript Core Language Reference

try-catch-finally

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 990

statements
}

}
catch (e) {

statements
}

}

The statements inside the try block include statements that you believe are capable of generating a runtime
error because of user input errors, the failure of some page component to load, or a similar error. The pres-
ence of the catch block prevents errors from appearing in the browser’s regular script error reporting sys-
tem (for example, the JavaScript Console of Safari1.3+, NN6+, and Mozilla-based browsers).

An important term to know about exception handling of this type is throw. The convention is that when an
operation or method call triggers an exception, it is said to “throw an exception.” For example, if a script
statement attempts to invoke a method of a string object, but that method does not exist for the object (per-
haps you mistyped the method name), JavaScript throws an exception. Exceptions have names associated
with them — a name that sometimes, but not always, reveals important information about the exception. In
the mistyped method example just cited, the name of that exception is a TypeError (yet more evidence of
how “exception” and “error” become intertwined).

The JavaScript language supported in modern browsers is not the only entity that can throw exceptions.
The W3C DOM also defines categories of exceptions for DOM objects. For example, according to the Level
2 specification, the appendChild() method (see Chapter 15) can throw (or raise, in the W3C terminology)
one of three exceptions:

Exception Name When Thrown

HIERARCHY_REQUEST_ERR If the current node is of a type that does not allow children of the type of
the newChild node, or if the node to append is one of this node’s
ancestors

WRONG_DOCUMENT_ERR If newChild was created from a different document than the one that
created the current node

NO_MODIFICATION_ALLOWED_ERR If the current node is read-only

Because the appendChild() method is capable of throwing exceptions, a JavaScript statement that invokes
this method should ideally be inside a try block. If an exception is thrown, then script execution immedi-
ately jumps to the catch or finally block associated with the try block. Execution does not come back
to the try block.

A catch block has special behavior. Its format looks similar to a function in a way, because the catch key-
word is followed by a pair of parentheses and an arbitrary variable that is assigned a reference to the error
object whose properties are filled by the browser when the exception occurs. One of the properties of that
error object is the name of the error. Therefore, the code inside the catch block can examine the name of the
error and perhaps include some branching code to take care of a variety of different errors that are caught.

To see how this construction may look in code, look at a hypothetical generic function whose job is to cre-
ate a new element and append it to some other node. Both the type of element to be created and a reference
to the parent node are passed as parameters. To take care of potential misuses of this function through the
passage of improper parameter values, it includes extra error handling to treat all possible exceptions from
the two DOM methods: createElement() and appendChild(). Such a function looks like Listing 32-7.

991

try-catch-finally

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 991

LISTING 32-7

A Hypothetical try-catch Routine

// generic appender
function attachToEnd(theNode, newTag) {

try {
var newElem = document.createElement(newTag);
theNode.appendChild(newElem);

}
catch (e) {

switch (e.name) {
case “INVALID_CHARACTER_ERR” :

statements to handle this createElement() error
break;

case “HIERARCHY_REQUEST_ERR” :
statements to handle this appendChild() error
break;

case “WRONG_DOCUMENT_ERR” :
statements to handle this appendChild() error
break;

case “NO_MODIFICATION_ALLOWED_ERR” :
statements to handle this appendChild() error
break;

default:
statements to handle any other error

}
return false;

}
return true;

}

The single catch block in Listing 32-7 executes only if one of the statements in the try block throws an
exception. The exceptions may be not only one of the four specific ones named in the catch block but also
syntax or other errors that could occur inside the try block. That’s why you have a last-ditch case to handle
truly unexpected errors. Your job as scripter is to not only anticipate errors but also to provide clean ways
for the exceptions to be handled, whether they be through judiciously worded alert dialog boxes or perhaps
even some self-repair. For example, in the case of the invalid character error for createElement(), your
script may attempt to salvage the data passed to the attachToEnd() function and reinvoke the method
passing theNode value as-is and the repaired value originally passed to newTag. If your repairs were suc-
cessful, the try block would execute without error and carry on with the user’s being completely unaware
that a nasty problem had been averted. And that’s really the goal of exception handling — to save the day
when something “unexpected” goes wrong so that the user isn’t left confused or frustrated.

A finally block contains code that always executes after a try block, whether or not the try block suc-
ceeds without throwing an error. Unlike the catch block, a finally block does not receive an error object
as a parameter, so it operates very much in the dark about what transpires inside the try block. If you
include both catch and finally blocks after a try block, the execution path depends on whether an
exception is thrown. If no exception is thrown, the finally block executes after the last statement of the

992

JavaScript Core Language Reference

try-catch-finally

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 992

try block runs. But if the try block throws an exception, program execution runs first to the catch block.
After all processing within the catch block finishes, the finally block executes. In development environ-
ments that give programmers complete control over resources, such as memory allocation, a finally block
may be used to delete some temporary items generated in the try block, whether or not an exception
occurs in the try block. Currently, JavaScript’s automatic memory management system reduces the need for
that kind of maintenance, but you should be aware of the program execution possibilities of the finally
block in the try-catch-finally context.

Real-life exceptions
The example shown in Listing 32-7 is a bit idealized. The listing assumes that the browser dutifully reports
every W3C DOM exception precisely as defined in the formal specification. Unfortunately, even the latest
browsers have yet to fully comply with the DOM when it comes to exception reporting. Most browsers
implement additional error naming conventions and layers between actual DOM exceptions and what gets
reported with the error object at the time of the exception.

If you think these discrepancies make cross-browser exception handling difficult, you’re right. Even simple
errors are reported differently among the two major browser brands (IE and Mozilla) and the W3C DOM
specification. Until the browsers exhibit a greater unanimity in exception reporting, the smoothest develop-
ment road will be for those scripters who have the luxury of writing for one of the browser platforms, such
as IE for Windows or Safari for Mac.

That said, however, one aspect of exception handling can still be used in all modern browsers without a
hitch. You can take advantage of try-catch constructions to throw your own exceptions — a practice that
is quite common in advanced programming environments.

Throwing Exceptions
The last exception handling keyword not covered yet — throw— makes it possible to utilize exception-
handling facilities for your own management of processes, such as data entry validation. At any point inside
a try block, you can manually throw an exception that gets picked up by the associated catch block. The
details of the specific exception are up to you.

Syntax for the throw statement is as follows:

throw value;

The value you throw can be of any type, but good practice suggests that the value be an error object
(described more fully later in this chapter). Whatever value you throw is assigned to the parameter of the
catch block. Look at the following two examples. In the first, the value is a string message; in the second,
the value is an error object.

Listing 32-8 presents one input text box for a number between 1 and 5. Clicking a button looks up a corre-
sponding letter in an array and displays the letter in a second text box. The lookup script has two simple
data validation routines to make sure the entry is a number and is in the desired range. Error checking here
is done manually by script. If either of the error conditions occurs, throw statements force execution to
jump to the catch block. The catch block assigns the incoming string parameter to the variable e. The
design here assumes that the message being passed is text for an alert dialog box. Not only does a single
catch block take care of both error conditions (and conceivably any others to be added later), but the
catch block runs within the same variable scope as the function, so that it can use the reference to the
input text box to focus and select the input text if there is an error.

993

throw

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 993

LISTING 32-8

Throwing String Exceptions

<html>
<head>

<title>Throwing a String Exception</title>
<script type=”text/javascript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”);
function getLetter(fld) {

try {
var inp = parseInt(fld.value, 10);
if (isNaN(inp)) {

throw “Entry was not a number.”;
}
if (inp < 1 || inp > 5) {

throw “Enter only 1 through 5.”;
}
fld.form.output.value = letters[inp - 1];

}
catch (e) {

alert(e);
fld.form.output.value = “”;
fld.focus();
fld.select();

}
}
</script>

</head>
<body>

<h1>Throwing a String Exception</h1>
<hr />
<form>

Enter a number from 1 to 5: <input type=”text” name=”input”
size=”5” /> <input type=”button” value=”Get Letter”
onclick=”getLetter(this.form.input)” /> Matching Letter is:<input
type=”text” name=”output” size=”5” />

</form>
</body>

</html>

The flaw with Listing 32-8 is that if some other kind of exception were thrown inside the try block, the
value passed to the catch block would be an error object, not a string. The alert dialog box displayed to the
user would be meaningless. Therefore, it is better to be uniform in your throw-catch constructions and
pass an error object.

Listing 32-9 is an updated version of Listing 32-8, demonstrating how to create an error object that gets
sent to the catch block via throw statements.

994

JavaScript Core Language Reference

throw

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 994

LISTING 32-9

Throwing an Error Object Exception

<html>
<head>

<title>Throwing an Error Object Exception</title>
<script type=”text/javascript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”);
function getErrorObj(msg) {

var err = new Error(msg);
return err;

}
function getLetter(fld) {

try {
var inp = parseInt(fld.value, 10);
if (isNaN(inp)) {

throw getErrorObj(“Entry was not a number.”);
}
if (inp < 1 || inp > 5) {

throw getErrorObj(“Enter only 1 through 5.”);
}
fld.form.output.value = letters[inp - 1];

}
catch (e) {

alert(e.message);
fld.form.output.value = “”;
fld.focus();
fld.select();

}
}
</script>

</head>
<body>

<h1>Throwing an Error Object Exception</h1>
<hr />
<form>

Enter a number from 1 to 5: <input type=”text” name=”input”
size=”5” /> <input type=”button” value=”Get Letter”
onclick=”getLetter(this.form.input)” /> Matching Letter is:<input
type=”text” name=”output” size=”5” />

</form>
</body>

</html>

The only difference to the catch block is that it now reads the message property of the incoming error
object. This means that if some other exception is thrown inside the try block, the browser-generated mes-
sage will be displayed in the alert dialog box.

995

throw

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 995

In truth, however, the job really isn’t complete. In all likelihood, if a browser-generated exception is thrown,
the message in the alert dialog box won’t mean much to the user. The error message will probably be some
kind of syntax or type error — the kind of meaningless error message you often get from your favorite oper-
ating system. A better design is to branch the catch block so that “intentional” exceptions thrown by your
code are handled through the alert dialog box messages you’ve put there, but other types are treated differ-
ently. To accomplish this, you can take over one of the other properties of the error object — name— so that
your catch block treats your custom messages separately.

In Listing 32-10, the getErrorObj() function adds a custom value to the name property of the newly cre-
ated error object. The name you assign can be any name, but you want to avoid exception names used by
JavaScript or the DOM. Even if you don’t know what all of those are, you can probably conjure up a suit-
ably unique name for your error. Down in the catch block, a switch construction branches to treat the
two classes of errors differently. In this simplified example, about the only possible problem other than the
ones being trapped for explicitly in the try block would be some corruption to the page during download-
ing. Therefore, for this example, the branch for all other errors simply asks that the user reload the page and
try again. The point is, however, that you can have as many classifications of custom and system errors as
you want and handle them in a single catch block accordingly.

LISTING 32-10

A Custom Object Exception

<html>
<head>

<title>Throwing a Custom Error Object Exception</title>
<script type=”text/javascript”>
var letters = new Array(“A”,”B”,”C”,”D”,”E”);
function getErrorObj(msg) {

var err = new Error(msg);
err.name = “MY_ERROR”;
return err;

}
function getLetter(fld) {

try {
var inp = parseInt(fld.value, 10);
if (isNaN(inp)) {

throw getErrorObj(“Entry was not a number.”);
}
if (inp < 1 || inp > 5) {

throw getErrorObj(“Enter only 1 through 5.”);
}
fld.form.output.value = letters[inp - 1];

}
catch (e) {

switch (e.name) {
case “MY_ERROR” :

alert(e.message);
fld.form.output.value = “”;
fld.focus();
fld.select();

996

JavaScript Core Language Reference

throw

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 996

break;
default :

alert(“Reload the page and try again.”);
}

}
}
</script>

</head>
<body>

<h1>Throwing a Custom Error Object Exception</h1>
<hr />
<form>

Enter a number from 1 to 5: <input type=”text” name=”input”
size=”5” /> <input type=”button” value=”Get Letter”
onclick=”getLetter(this.form.input)” /> Matching Letter is:<input
type=”text” name=”output” size=”5” />

</form>
</body>

</html>

If you want to see how the alternative branch of Listing 32-10 looks, copy the listing file from the CD-ROM
to your hard disk and modify the last line of the try block so that one of the letters is dropped from the
name of the array:

fld.form.output.value = letter[inp - 1];

This may simulate the faulty loading of the page. If you enter one of the allowable values, the reload alert
appears, rather than the actual message of the error object: letter is undefined. Your users will thank you.

All that’s left now on this subject are the details on the error object.

Error Object

Properties Methods

Error.prototype errorObject.toString()

errorObject.constructor

errorObject.description

errorObject.filename

errorObject.lineNumber

errorObject.message

errorObject.name

errorObject.number

997

errorObject

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 997

Syntax
Creating an error object:

var myError = new Error(“message”);
var myError = Error(“message”);

Accessing static Error object property:

Error.property

Accessing error object properties and methods:

errorObject.property | method([parameters])

Compatibility: WinIE5+, MacIE-, NN6+, Moz+, Safari+

About this object
An error object instance is created whenever an exception is thrown or when you invoke either of the con-
structor formats for creating an error object. Properties of the error object instance contain information
about the nature of the error so that catch blocks can inspect the error and process error handling accord-
ingly.

IE5 implemented an error object in advance of the ECMA-262 formal error object, and the IE5 version
ended up having its own set of properties that are not part of the ECMA standard. Those proprietary prop-
erties are still part of IE5.5+, which includes the ECMA properties as well. NN6, on the other hand, started
with the ECMA properties and adds two proprietary properties of its own. The browser uses these addi-
tional properties in its own script error reporting. The unfortunate bottom line for cross-browser developers
is that no properties in common among all browsers support the error object. However, two common
denominators (name and message) are between IE5.5+, NN6+, and other Mozilla-based browsers.

As described earlier in this chapter, you are encouraged to create an error object whenever you use the
throw statement for your own error control. See the discussion surrounding Listing 32-9 about handling
missing properties in IE.

Properties
constructor
(See string.constructor in Chapter 28)

description
Value: String. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, FF-, Cam-, Safari-

The description property contains a descriptive string that provides some level of detail about the error.
For errors thrown by the browser, the description is the same text that appears in the script error dialog box
in IE. Although this property continues to be supported, the message property is preferred.

Related Items: message property.

998

JavaScript Core Language Reference

errorObject.description

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 998

fileName
lineNumber
Value: String. Read/Write
Compatibility: WinIE-, MacIE-, NN6+, Moz-, FF-, Cam-, Safari-

The NN6 browser uses the fileName and lineNumber properties of an error object for its own internal
script error processing — these values appear as part of the error messages that are listed in the JavaScript
Console. The fileName is the URL of the document causing the error; the lineNumber is the source code
line number of the statement that threw the exception. These properties are exposed to JavaScript, as well,
so that your error processing may use this information if it is meaningful to your application.

See the discussion of the window.error property in Chapter 16 for further ideas on how to use this infor-
mation for bug reporting from users.

Related Items: window.error property.

message
Value: String. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari+

The message property contains a descriptive string that provides some level of detail about the error. For
errors thrown by the browser, the message is the same text that appears in the script error dialog box in IE
and the JavaScript Console in Mozilla. By and large, these messages are more meaningful to scripters than to
users. Unfortunately, there are no standards for the wording of a message for a given error. Therefore, it is
hazardous at best to use the message content in a catch block as a means of branching to handle particular
kinds of errors. You may get by with this approach if you are developing for a single browser platform, but
you have no assurances that the text of a message for a particular exception may not change in future
browser versions.

Custom messages for errors that your code explicitly throws can be in user-friendly language if you intend
to display such messages to users. See Listings 32-8 through 32-10 for examples of this usage.

Related Items: description property.

name
Value: String. Read/Write
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari+

The name property generally contains a word that identifies the type of error that has been thrown. The
most general kind of error (and the one that is created via the new Error() constructor) has a name Error.
But JavaScript errors can be of several varieties: EvalError, RangeError, ReferenceError,
SyntaxError, TypeError, and URIError. Some of these error types are not necessarily intended for
exposure to scripters (they’re used primarily in the inner workings of the JavaScript engine), but some
browsers do expose them. Unfortunately, there are some discrepancies as to the specific name supplied to
this property for script errors.

When JavaScript is being used in a W3C-compatible browser, some DOM exception types are returned via
the name property. But browsers frequently insert their own error types for this property, and, as is common
in this department, little uniformity exists among browser brands.

999

errorObject.name

Control Structures and Exception Handling 32

41_069165 ch32.qxp 3/1/07 3:54 PM Page 999

For custom exceptions that your code explicitly throws, you can assign names as you want. As shown in
Listings 32-9 and 32-10, this information can assist a catch block in handling multiple categories of errors.

Related Items: message property.

number
Value: Number. Read/Write
Compatibility: WinIE5+, MacIE-, NN-, Moz-, FF-, Cam-, Safari-

IE5+ assigns unique numbers to each error description or message. The value of the number property must
be massaged somewhat to retrieve a meaningful error description. Following is an example of how you
must apply binary arithmetic to an error number to arrive at a meaningful result:

var errNum = errorObj.number & 0xFFFF;

To find out what an error number means, just look it up on Microsoft’s Developer Network (MSDN) site at
http://msdn.microsoft.com/library/en-us/script56/html/js56jsmscRunTimeErrors.asp.

Related Items: description property.

Methods
toString()
Returns: String (see text).
Compatibility: WinIE5+, MacIE-, NN6+, Moz+, Safari+

The toString() method for an error object should return a string description of the error. In IE5+, how-
ever, the method returns a reference to the very same error object. In Mozilla-based browsers, the method
returns the message property string, preceded by the string Error: (with a space after the colon). Most
typically, if you want to retrieve a human-readable expression of an error object, read its message (or, in
IE5+, description) property.

Related Items: message property.

1000

JavaScript Core Language Reference

errorObject.toString()

Part IV

41_069165 ch32.qxp 3/1/07 3:54 PM Page 1000

JavaScript is rich in operators: words and symbols in expressions that
perform operations on one or two values to arrive at another value. Any
value on which an operator performs some action is called an operand. An
expression may contain one operand and one operator (called a unary opera-

tor), as in a++, or two operands separated by one operator (called a binary operator),
as in a + b. Many of the same symbols are used in a variety of operators. The combi-
nation and order of those symbols are what distinguish their powers.

The vast majority of JavaScript operators have been in the language
since the very beginning. But, as you may expect from an evolving

language, some entries were added to the lexicon as the language matured and
gained wider usage. In the rest of this chapter, compatibility charts typically gov-
ern an entire category of operator. If there are version anomalies for a particular
operator within a category, they are covered in the text. The good news is that
modern browsers support the entire set of JavaScript operators.

Operator Categories
To help you grasp the range of JavaScript operators, I group them into seven cat-
egories. I assign a wholly untraditional name (connubial) to the second group —
but a name that I believe correctly identifies its purpose in the language. Table
33-1 shows the operator types.

NOTENOTE

1001

IN THIS CHAPTER
Understanding operator
categories

Exploring the role of operators in
script statements

Recognizing operator
precedence

JavaScript Operators

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1001

TABLE 33-1

JavaScript Operator Categories

Type What It Does

Comparison Compares the values of two operands, deriving a result of either true or false (used extensively
in condition statements for if...else and for loop constructions)

Connubial Joins together two operands to produce a single value that is a result of an arithmetical or
other operation on the two

Assignment Stuffs the value of the expression of the right-hand operand into a variable name on the left-
hand side, sometimes with minor modification, as determined by the operator symbol

Boolean Performs Boolean arithmetic on one or two Boolean operands

Bitwise Performs arithmetic or column-shifting actions on the binary (base-2) representations of two
operands

Object Helps scripts examine the heritage and capabilities of a particular object before they need to
invoke the object and its properties or methods

Miscellaneous A handful of operators that have special behaviors

Any expression that contains an operator evaluates to a value of some kind, meaning that a value is always
left behind after an operation. Sometimes the operator changes the value of one of the operands; other times
the result is a new value. Even this simple expression

5 + 5

shows two integer operands joined by the addition operator. This expression evaluates to 10. The operator
(+) is what provides the instruction for JavaScript to follow in its never-ending drive to evaluate every
expression in a script.

Doing an equality comparison on two operands that, on the surface, look very different is not at all uncom-
mon. JavaScript doesn’t care what the operands look like — only how they evaluate. Two very dissimilar-
looking values can, in fact, be identical when they are evaluated. Thus, an expression that compares the
equality of two values, such as

fred == 25

does, in fact, evaluate to true if the variable fred has the number 25 stored in it from an earlier statement.

Comparison Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Anytime you compare two values in JavaScript, the result is a Boolean true or false value. You have a
wide selection of comparison operators to choose from, depending on the kind of test you want to apply to
the two operands. Table 33-2 lists all comparison operators.

1002

JavaScript Core Language Reference

Comparison Operators

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1002

TABLE 33-2

JavaScript Comparison Operators

Syntax Name Operand Types Results

== Equals All Boolean

!= Does not equal All Boolean

=== Strictly equals All Boolean (IE4+, NN4+, Moz+, W3C)

!== Strictly does not equal All Boolean (IE4+, NN4+, Moz+, W3C)

> Is greater than All Boolean

>= Is greater than or equal to All Boolean

< Is less than All Boolean

<= Is less than or equal to All Boolean

For numeric values, the results are the same as those you’d expect from your high school algebra class.
Some examples follow, including some that may not be obvious.

10 == 10 // true
10 == 10.0 // true
9 != 10 // true
9 > 10 // false
9.99 <= 9.98 // false

Strings can also be compared on all of these levels:

“Fred” == “Fred” // true
“Fred” == “fred” // false
“Fred” > “fred” // false
“Fran” < “Fred” // true

To calculate string comparisons, JavaScript converts each character of a string to its ASCII value. Each letter,
beginning with the first of the left-hand operator, is compared to the corresponding letter in the right-hand
operator. With ASCII values for uppercase letters being less than those of their lowercase counterparts, an
uppercase letter evaluates to being less than its lowercase equivalent. JavaScript takes case-sensitivity very
seriously.

Values for comparison can also come from object properties or values passed to functions from event han-
dlers or other functions. A common string comparison used in data-entry validation is the one that sees if
the string has anything in it:

form.entry.value != “” // true if something is in the field

Equality of Disparate Data Types
For all versions of JavaScript before 1.2 (legacy browsers), when your script tries to compare string values
consisting of numerals and real numbers (for example, “123” == 123 or “123” != 123), JavaScript antici-
pates that you want to compare apples to apples. Internally it does some data type conversion that does not

1003

Comparison Operators

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1003

affect the data type of the original values (for example, if the values are in variables). But the entire situation
is more complex, because other data types, such as objects, need to be dealt with. Therefore, prior to
JavaScript 1.2, the rules of comparison are as shown in Table 33-3.

TABLE 33-3

Equality Comparisons for JavaScript 1.0 and 1.1

Operand A Operand B Internal Comparison Treatment

Object reference Object reference Compare object reference evaluations

Any data type Null Convert nonnull to its object type and compare against null

Object reference String Convert object to string and compare strings

String Number Convert string to number and compare numbers

The logic to what goes on in equality comparisons from Table 33-3 requires a lot of forethought on the
scripter’s part, because you have to be very conscious of the particular way data types may or may not be
converted for equality evaluation (even though the values themselves are not converted). In this situation,
supplying the proper conversion where necessary in the comparison statement is best. This ensures that
what you want to compare — for example, the string versions of two values or the number versions of two
values — is compared, rather than leaving the conversion up to JavaScript.

Backward-compatible conversion from a number to string entails concatenating an empty string to a number:

var a = “09”;
var b = 9;
a == “” + b; // result: false, because “09” does not equal “9”

For converting strings to numbers, you have numerous possibilities. The simplest is subtracting zero from a
numeric string:

var a = “09”;
var b = 9;
a-0 == b; // result: true because number 9 equals number 9

You can also use the parseInt() and parseFloat() functions to convert strings to numbers:

var a = “09”;
var b = 9;
parseInt(a, 10) == b; // result: true because number 9 equals number 9

Of course, the other solution is to reasonably assume that your user base has a modern web browser that
supports JavaScript 1.2+. To clear up the ambiguity of JavaScript’s equality internal conversions, in version
1.2 JavaScript added two more operators to force the equality comparison to be extremely literal in its com-
parison. The strictly equals (===) and strictly does not equal (!==) operators compare both the data type
and value. The only time the === operator returns true is if the two operands are of the same data type (for
example, both are numbers) and the same value. Therefore, no number is ever automatically equal to a
string version of that same number. Data and object types must match before their values are compared.

1004

JavaScript Core Language Reference

Comparison Operators

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1004

JavaScript 1.2+ also provides some convenient global functions for converting strings to numbers and vice
versa: String() and Number(). To demonstrate these methods, the following examples use the typeof
operator to show the data type of expressions using these functions:

typeof 9; // result: number
type of String(9); // result: string
type of “9”; // result: string
type of Number(“9”); // result: number

None of these functions alters the data type of the value being converted. But the value of the function is
what gets compared in an equality comparison:

var a = “09”;
var b = 9;
a == String(b); // result: false, because “09” does not equal “9”
typeof b; // result: still a number
Number(a) == b; // result: true, because 9 equals 9
typeof a; // result: still a string

This discussion should impress upon you the importance of considering data types when testing the equal-
ity of two values.

Connubial Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Connubial operators is my terminology for those operators that join two operands to yield a value related to
the operands. Table 33-4 lists the connubial operators in JavaScript.

TABLE 33-4

JavaScript Connubial Operators

Syntax Name Operand Types Results

+ Plus Integer, float, string Integer, float, string

- Minus Integer, float Integer, float

* Multiply Integer, float Integer, float

/ Divide Integer, float Integer, float

% Modulo Integer, float Integer, float

++ Increment Integer, float Integer, float

-- Decrement Integer, float Integer, float

+val Positive Integer, float, string Integer, float

-val Negation Integer, float, string Integer, float

1005

Connubial Operators

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1005

The four basic arithmetic operators for numbers are straightforward. The plus operator also works on
strings to join them together, as in

“Scooby “ + “Doo” // result = “Scooby Doo”

In object-oriented programming terminology, the plus sign is considered overloaded, meaning that it per-
forms a different action depending on its context. Remember, too, that string concatenation does not do
anything on its own to monitor or insert spaces between words. In the preceding example, the space
between the names is part of the first string.

Modulo arithmetic is helpful for those times when you want to know if one number divides evenly into
another. You used it in an example in Chapter 32 to figure out if a particular year was a leap year. Although
some other leap year considerations exist for the turn of each century, the math in the example simply
checked whether the year was evenly divisible by four. The result of the modulo math is the remainder of
division of the two values: When the remainder is 0, one divides evenly into the other. Here are some sam-
ples of years evenly divisible by four:

2002 % 4 // result = 2
2003 % 4 // result = 3
2004 % 4 // result = 0 (Bingo! Leap year!)

Thus, I used this modulo operator in a condition statement of an if. . .else structure:

var howMany = 0;
today = new Date();
var theYear = today.getYear();
if (theYear % 4 == 0) {

howMany = 29;
} else {

howMany = 28;
}

The modulo operator is also handy in special cases where you need to carry out some action in a loop at
certain intervals, such as every third time through the loop. Here’s an example of a loop that increments a
counter every third time through while looping to 100:

for (var i = 1; i < 100; i++) {
if (i % 3 == 0)

threeCounter++;
}

Just as the modulo operator gives you the remainder of a division operation, some other languages offer an
operator that results in the integer part of a division: integral division, or div. Although JavaScript does not
have an explicit operator for this behavior, you can re-create it reliably if you know that your operands are
always positive numbers. Use the Math.floor() or Math.ceil() methods with the division operator, as in

Math.floor(4/3); // result = 1

In this example, Math.floor() works only with values greater than or equal to 0; Math.ceil() works
with values less than 0.

1006

JavaScript Core Language Reference

Connubial Operators

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1006

The increment operator (++) is a unary operator (only one operand) and displays two different behaviors,
depending on the side of the operand on which the symbols lie. Both the increment and decrement (--)
operators can be used in conjunction with assignment operators, which I cover next.

As its name implies, the increment operator increases the value of its operand by one. But in an assignment
statement, you have to pay close attention to precisely when that increase takes place. An assignment state-
ment stuffs the value of the right operand into a variable on the left. If the ++ operator is located in front of
the right operand (prefix), the right operand is incremented before the value is assigned to the variable; if
the ++ operator is located after the right operand (postfix), the previous value of the operand is sent to the
variable before the value is incremented. Follow this sequence to get a feel for these two behaviors:

var a = 10; // initialize a to 10
var z = 0; // initialize z to zero
z = a; // a = 10, so z = 10
z = ++a; // a becomes 11 before assignment, so a = 11 and z becomes 11
z = a++; // a is still 11 before assignment, so z = 11; then a becomes 12
z = a++; // a is still 12 before assignment, so z = 12; then a becomes 13

The decrement operator behaves the same way, except that the value of the operand decreases by one.
Increment and decrement operators are used most often with loop counters in for and while loops. The
simpler ++ or -- symbology is more compact than reassigning a value by adding 1 to it (such as, z = z + 1
or z += 1). Because these are unary operators, you can use the increment and decrement operators without
an assignment statement to adjust the value of a counting variable within a loop:

function doNothing() {
var i = 1;
while (i < 20) {

++i;
}
alert(i); // breaks out at i = 20

}

The last pair of connubial operators are also unary operators (operating on one operand). Both the positive
and negation operators can be used as shortcuts to the Number() global function, converting a string
operand consisting of number characters to a number data type. The string operand is not changed, but the
operation returns a value of the number type, as shown in the following sequence:

var a = “123”;
var b = +a; // b is now 123
typeof a; // result: string
typeof b; // result: number

The negation operator (-val) has additional power. By placing a minus sign in front of any numeric value
(no space between the symbol and the value), you instruct JavaScript to evaluate a positive value as its corre-
sponding negative value, and vice versa. The operator does not change the operand’s value, but the expres-
sion returns the modified value. The following example provides a sequence of statements to demonstrate:

var x = 2;
var y = 8;
var z = -x; // z equals -2, but x still equals 2
z = -(x + y); // z equals -10, but x still equals 2 and y equals 8
z = -x + y; // z equals 6, but x still equals 2 and y equals 8

To negate a Boolean value, see the Not (!) operator in the discussion of Boolean operators.

1007

Connubial Operators

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1007

Assignment Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Assignment statements are among the most common statements you write in your JavaScript scripts. These
statements appear everywhere you copy a value or the results of an expression into a variable for further
manipulation of that value.

You assign values to variables for many reasons, even though you could probably use the original values or
expressions several times throughout a script. Here is a sampling of reasons why you should assign values
to variables:

n Variable names are usually shorter

n Variable names can be more descriptive

n You may need to preserve the original value for later in the script

n The original value is a property that cannot be changed

n Invoking the same method several times in a script is not efficient

Newcomers to scripting often overlook the last reason. For instance, if a script is writing HTML to a new
document, it’s more efficient to assemble the string of large chunks of the page into one variable before
invoking the document.write() method to send that text to the document. This approach is more effi-
cient than literally sending out one line of HTML at a time with multiple document.writeln() method
statements. Table 33-5 shows the range of assignment operators in JavaScript.

TABLE 33-5

JavaScript Assignment Operators

Syntax Name Example Means

= Equals x = y x = y

+= Add by value x += y x = x + y

-= Subtract by value x -= y x = x - y

*= Multiply by value x *= y x = x * y

/= Divide by value x /= y x = x / y

%= Modulo by value x %= y x = x % y

<<= Left shift by value x <<= y x = x << y

>= Right shift by value x >= y x = x > y

>>= Zero fill by value x >>= y x = x >> y

>>>= Right shift by value x >>>= y x = x >>> y

&= Bitwise and by value x &= y x = x & y

|= Bitwise or by value x |= y x = x | y

^= Bitwise XOR by value x ^= y x = x ^ y

1008

JavaScript Core Language Reference

Assignment Operators

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1008

As clearly demonstrated in the top group (see “Bitwise Operators” later in the chapter for information on the
bottom group), assignment operators beyond the simple equals sign can save some characters in your typ-
ing, especially when you have a series of values that you’re trying to bring together in subsequent state-
ments. You’ve seen plenty of examples in previous chapters, where you used the add-by-value operator (+=)
to work wonders with strings as you assemble a long string variable that you eventually send to a docu-
ment.write() method. Look at this variation of a segment of Listing 31-3, where you could use JavaScript
to create the HTML content of a select element on the fly:

var elem = “”; // start assembling next part of page and form
elem += “<p>Select a regional office: “;
elem += “<select name=’offices’ onchange=’getData(this.form)’>”;
// build options list from array office names
for (var i = 0; i < regionalOffices.length; i++) {

elem += “<option”; // option tags
if (i == 0) { // pre-select first item in list

elem += “ selected=’selected’”;
}
elem += “>” + regionalOffices[i];

}
elem += “</select></p>”; // close select item tag
document.write(elem); // write element to the page

The script segment starts with a plain equals assignment operator to initialize the elem variable as an empty
string. In many of the succeeding lines, you use the add-by-value operator to tack additional string values
onto whatever is in the elem variable at the time. Without the add-by-value operator, you are forced to use
the plain equals assignment operator for each line of code to concatenate new string data to the existing
string data. In that case, the first few lines of code look as shown:

var elem = “”; // start assembling next part of page and form
elem = elem + “<p>Select a regional office: “;
elem = elem + “<select name=’offices’ onchange=’getData(this.form)’>”;

Within the for loop, the repetition of elem + makes the code very difficult to read, trace, and maintain.
These enhanced assignment operators are excellent shortcuts that you should use at every turn.

Boolean Operators
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

Because a great deal of programming involves logic, it is no accident that the arithmetic of the logic world
plays an important role. You’ve already seen dozens of instances where programs make all kinds of deci-
sions based on whether a statement or expression is the Boolean value true or false. What you haven’t
seen much of yet is how to combine multiple Boolean values and expressions — a quality that scripts with
slightly above average complexity may need to have in them.

In the various condition expressions required throughout JavaScript (such as in an if construction), the
condition that the program must test for may be more complicated than, say, whether a variable value is
greater than a certain fixed value or whether a field is not empty. Look at the case of validating a text field
entry for whether the entry contains all the numbers that your script may want. Without some magical
JavaScript function to tell you whether or not a string consists of all numbers, you have to break apart the

1009

Boolean Operators

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1009

entry character by character and examine whether each character falls within the range of 0 through 9. But
that examination actually comprises two tests: You can test for any character whose ASCII value is less than
0 or greater than 9. Alternatively, you can test whether the character is greater than or equal to 0 and is less
than or equal to 9. What you need is the bottom-line evaluation of both tests.

Boolean math
That’s where the wonder of Boolean math comes into play. With just two values — true and false— you
can assemble a string of expressions that yield Boolean results and then let Boolean arithmetic figure out
whether the bottom line is true or false.

But you don’t add or subtract Boolean values the same way you add or subtract numbers. Instead, you use
one of three JavaScript Boolean operators at your disposal. Table 33-6 shows the three operator symbols. In
case you’re unfamiliar with the characters in the table, the symbols for the Or operator are created by typing
Shift-backslash.

TABLE 33-6

JavaScript Boolean Operators

Syntax Name Operands Results

&& And Boolean Boolean

|| Or Boolean Boolean

! Not One Boolean Boolean

Using Boolean operators with Boolean operands gets tricky if you’re not used to it, so I have you start with
the simplest Boolean operator: Not. This operator requires only one operand. The Not operator precedes
any Boolean value to switch it back to the opposite value (from true to false, or from false to true).
For instance:

!true // result = false
!(10 > 5) // result = false
!(10 < 5) // result = true
!(document.title == “Flintstones”) // result = true

As shown here, enclosing the operand of a Not expression inside parentheses is always a good idea. This
forces JavaScript to evaluate the expression inside the parentheses before flipping it around with the Not
operator. Otherwise, you may accidentally perform the operation on only part of the intended expression,
resulting in unexpected consequences.

The And (&&) operator joins two Boolean values to reach a true or false value based on the results of
both values. This brings up something called a truth table, which helps you visualize all the possible out-
comes for each value of an operand. Table 33-7 is a truth table for the And operator.

1010

JavaScript Core Language Reference

Boolean Operators

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1010

TABLE 33-7

Truth Table for the And Operator

Left Operand And Operator Right Operand Result

True && True True

True && False False

False && True False

False && False False

Only one condition yields a true result: Both operands must evaluate to true. Which side of the operator
a true or false value lives doesn’t matter. Here are examples of each possibility:

5 > 1 && 50 > 10 // result = true
5 > 1 && 50 < 10 // result = false
5 < 1 && 50 > 10 // result = false
5 < 1 && 50 < 10 // result = false

You may be wondering why parentheses aren’t being used in this code to separate the compar-
ison and Boolean expressions. The reason has to do with operator precedence, which you learn

a great deal more about later in the chapter. The short answer is that comparison operators are evaluated
before Boolean operators. Even so, it’s never a bad idea to use parentheses to group sub-expressions and
make absolutely sure you’re getting the desired result.

In contrast, the Or (||) operator is more lenient about what it evaluates to true. The reason is that if one
or the other (or both) operands is true, the operation returns true. The Or operator’s truth table is shown
in Table 33-8.

TABLE 33-8

Truth Table for the Or Operator

Left Operand Or Operator Right Operand Result

True || True True

True || False True

False || True True

False || False False

NOTENOTE

1011

Boolean Operators

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1011

Therefore, if a true value exists on either side of the operator, a true value is the result. Take the previous
examples and swap the And operators with Or operators so that you can see the Or operator’s impact on the
results:

5 > 1 || 50 > 10 // result = true
5 > 1 || 50 < 10 // result = true
5 < 1 || 50 > 10 // result = true
5 < 1 || 50 < 10 // result = false

Only when both operands are false does the Or operator return false.

Boolean operators at work
Applying Boolean operators to JavaScript the first time just takes a little time and some sketches on a pad of
paper to help you figure out the logic of the expressions. Earlier I talked about using a Boolean operator to
see whether a character fell within a range of ASCII values for data-entry validation. Listing 33-1 is a func-
tion discussed in more depth in Chapter 43 on the CD-ROM. This function accepts any string and sees
whether each character of the string has an ASCII value less than 0 or greater than 9— meaning that the
input string is not a number.

LISTING 33-1

Is the Input String a Number?

function isNumber(inputStr) {
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.substring(i, i + 1);
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numerals only.”);
return false;

}
}
return true;

}

Combining a number of JavaScript powers to read individual characters (substrings) from a string object
within a for loop, the statement that you’re interested in is the condition of the if construction:

(oneChar < “0” || oneChar > “9”)

In one condition statement, you use the Or operator to test for both possibilities. If you check the Or truth
table (Table 33-8), you see that this expression returns true if either one or both tests returns true. If that
happens, the rest of the function alerts the user about the problem and returns a false value to the calling
statement. Only if both tests within this condition evaluate to false for all characters of the string does the
function return a true value.

From the simple Or operator, I go to the extreme, where the function checks — in one condition state-
ment — whether a number falls within several numeric ranges. The script in Listing 33-2 comes from the
array lookup application in Chapter 50 (on the CD-ROM), in which a user enters the first three digits of a
U.S. Social Security number.

1012

JavaScript Core Language Reference

Boolean Operators

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1012

LISTING 33-2

Is a Number within Discontiguous Ranges?

// function to determine if value is in acceptable range for this application
function inRange(inputStr) {

num = parseInt(inputStr)
if (num < 1 || (num > 586 && num < 596) || (num > 599 && num < 700) ||

num > 728) {
alert(“Sorry, the number you entered is not part of our database. Try

another three-digit number.”);
return false;

}
return true;

}

By the time this function is called, the user’s data entry has been validated enough for JavaScript to know
that the entry is a number. Now the function must check whether the number falls outside of the various
ranges for which the application contains matching data. The conditions that the function tests here are
whether the number is

n Less than 1

n Greater than 586 and less than 596 (using the And operator)

n Greater than 599 and less than 700 (using the And operator)

n Greater than 728

Each of these tests is joined by an Or operator. Therefore, if any one of these conditions proves true, the
whole if condition is true, and the user is alerted accordingly.

The alternative to combining so many Boolean expressions in one condition statement would be to nest a
series of if constructions. But such a construction requires not only a great deal more code but also much
repetition of the alert dialog box message for each condition that could possibly fail. The combined Boolean
condition is, by far, the best way to go.

Bitwise Operators
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

For scripters, bitwise operations are an advanced subject. Unless you’re dealing with external processes on
server-side applications or the connection to Java applets, it’s rare that you will use bitwise operators.
Experienced programmers who concern themselves with more specific data types (such as long integers) are
quite comfortable in this arena, so I simply provide an explanation of JavaScript capabilities. Table 33-9 lists
JavaScript bitwise operators.

1013

Bitwise Operators

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1013

TABLE 33-9

JavaScript’s Bitwise Operators

Operator Name Left Operand Right Operand

& Bitwise And Integer value Integer value

| Bitwise Or Integer value Integer value

^ Bitwise XOR Integer value Integer value

~ Bitwise Not (None) Integer value

<< Left shift Integer value Shift amount

>> Right shift Integer value Shift amount

>>> Zero fill right shift Integer value Shift amount

The numeric value operands can appear in any of the JavaScript language’s three numeric literal bases (deci-
mal, octal, or hexadecimal). As soon as the operator has an operand, the value is converted to binary repre-
sentation (32 bits long). For the first three bitwise operations, the individual bits of one operand are
compared with their counterparts in the other operand. The resulting value for each bit depends on the
operator:

n Bitwise And: 1 if both digits are 1

n Bitwise Or: 1 if either digit is 1

n Bitwise Exclusive Or: 1 if only one digit is a 1

Bitwise Not, a unary operator, inverts the value of every bit in the single operand. The bitwise shift opera-
tors operate on a single operand. The second operand specifies the number of positions to shift the value’s
binary digits in the direction of the arrows of the operator symbols.

Example
For example, the left shift (<<) operator has the following effect:

4 << 2 // result = 16

The reason for this shifting is that the binary representation for decimal 4 is 00000100 (to eight digits, any-
way). The left shift operator instructs JavaScript to shift all digits two places to the left, giving the binary
result 00010000, which converts to 16 in decimal format. If you’re interested in experimenting with these
operators, use The Evaluator (Chapter 13) to evaluate sample expressions for yourself. More advanced
books on C and C++ programming are also of help.

Object Operators
The next group of operators concern themselves with objects (including native JavaScript, DOM, and cus-
tom objects) and data types. Most of these have been implemented after the earliest JavaScript browsers, so
each one has its own compatibility rating.

1014

JavaScript Core Language Reference

Object Operators

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1014

delete
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Array objects do not contain a method to remove an element from the collection, nor do custom objects
offer a method to remove a property. You can always empty the data in an array item or property by setting
its value to an empty string or null, but the array element or property remains in the object. With the
delete operator, you can completely remove the element or property.

There is special behavior about deleting an array item that you should bear in mind. If your array uses
numeric indices, a deletion of a given index removes that index value from the total array but without col-
lapsing the array (which would alter index values of items higher than the deleted item).

Example
For example, consider the following simple dense array:

var oceans = new Array(“Atlantic”, “Pacific”, “Indian”,”Arctic”);

This kind of array automatically assigns numeric indices to its entries for addressing later in constructions,
such as for loops:

for (var i = 0; i < oceans.length; i++) {
if (oceans[i] == form.destination.value) {

// statements
}

}

If you then issue the statement

delete oceans[2];

the array undergoes significant changes. First, the third element is removed from the array. Note that the
length of the array does not change. Even so, the index value (2) is removed from the array, such that
schematically the array looks like the following:

oceans[0] = “Atlantic”;
oceans[1] = “Pacific”;
oceans[3] = “Arctic”;

If you try to reference oceans[2] in this collection, the result is undefined.

The delete operator works best on arrays that have named indices since there is less confusion due to
deleted numeric indices. Your scripts will have more control over the remaining entries and their values,
because they don’t rely on what could be a missing entry of a numeric index sequence.

One aspect of this deletion action that JavaScript doesn’t provide is absolute control over memory utiliza-
tion. All garbage collection is managed by the JavaScript interpreter engine, which tries to recognize when
items occupying memory are no longer needed, at which time the unused browser’s application memory
may be recovered. But you cannot force the browser to perform its garbage collection task. So, deleting an
entry from an array doesn’t guarantee an immediate release of its associated memory.

1015

delete

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1015

in
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari+

The in operator lets a script statement inspect an object to see if it has a named property or method. The
operand to the left of the operator is a string reference to the property or method (just the method name,
without parentheses); the operand to the right of the operator is the object being inspected. If the object
knows the property or method, the expression returns true. Thus, you can use the in operator in expres-
sions used for conditional expressions.

Example
You can experiment with this operator in The Evaluator (Chapter 13). For example, to prove that the
write() method is implemented for the document object, the expression you type into the top text box of
The Evaluator is:

“write” in document

But compare the implementation of the W3C DOM document.defaultView property in IE5.5+ and mod-
ern W3C browsers:

“defaultView” in document

In NN6+, Mozilla (including Firefox and Camino), and Safari, the result is true, while in IE5.5 and IE6,
the result is false.

Having this operator around for conditional expressions lets you go much beyond simple object detection
for branching code. For example, if you intend to use document.defaultView in your script, you can
make sure that the property is supported before referencing it (assuming your users all have browsers that
know the in operator).

instanceof
Compatibility: WinIE5+, MacIE-, NN6+, Moz+, Safari+

The instanceof operator lets a script test whether an object is an instance of a particular JavaScript native
object or DOM object. The operand to the left side of the operator is the value under test; the value to the
right of the operand is a reference to the root class from which the value is suspected of being constructed.

For native JavaScript classes, the kinds of object references to the right of the operator include such static
objects as Date, String, Number, Boolean, Object, Array, and RegExp. You sometimes need to be
mindful of how native JavaScript classes can sometimes be children of other native classes, which means
that a value may be an instance of two different static objects.

Example
For example, consider the following sequence (which you can follow along in The Evaluator):

a = new Array(1,2,3);
a instanceof Array;

The second statement yields a result of true, because the Array constructor was used to generate the
object. But the JavaScript Array is, itself, an instance of the root Object object. Therefore both of the fol-
lowing statements evaluate to true:

a instanceof Object;
Array instanceof Object;

1016

JavaScript Core Language Reference

instanceof

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1016

new
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Most JavaScript core objects have constructor functions built into the language. To access those functions,
you use the new operator along with the name of the constructor. The function returns a reference to the
object instance, which your scripts can then use to get and set properties or invoke object methods. For
example, creating a new date object requires invoking the Date object’s constructor, as follows:

var today = new Date();

Some object constructor functions require parameters to help define the object. Others, as in the case of the
Date object, can accept a number of different parameter formats, depending on the format of date informa-
tion you have to set the initial object. The new operator can be used with the following core language
objects as of each specified JavaScript version:

JavaScript 1.0 JavaScript 1.1 JavaScript 1.2 JavaScript 1.5

Date Array RegExp Error

Object Boolean

(Custom object) Function

Image

Number

String

this
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

JavaScript includes an operator that allows script statements to refer to the very object in which they are
located. The self-referential operator is this.

The most common application of the this operator is in event handlers that pass references of themselves
to functions for further processing, as in

<input type=”text” name=”entry” onchange=”process(this)” />

A function receiving the value assigns it to a variable that can be used to reference the sender, its properties,
and its methods.

Example
Because the this operator references an object, that object’s properties can be exposed with the aid of the
operator. For example, to send the value property of a text input object to a function, the this operator
stands in for the current object reference and appends the proper syntax to reference the value property:

<input type=”text” name=”entry” onchange=”process(this.value)” />

1017

this

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1017

The this operator also works inside other objects, such as custom objects. When you define a constructor
function for a custom object, using the this operator to define properties of the object and assign values to
those properties is common practice. Consider the following example of an object creation sequence:

function bottledWater(brand, ozSize, flavor) {
this.brand = brand;
this.ozSize = ozSize;
this.flavor = flavor;

}
var myWater = new bottledWater(“Crystal Springs”, 16, “original”);

When the new object is created via the constructor function, the this operators define each property of the
object and then assign the corresponding incoming value to that property. Using the same names for the
properties and parameter variables is perfectly fine and makes the constructor easy to maintain.

By extension, if you assign a function as an object’s property (to behave as a method for the object), the
this operator inside that function refers to the object invoking the function, offering an avenue to the
object’s properties. For example, if I add the following function definition and statement to the myWater
object created just above, the function can directly access the brand property of the object:

function adSlogan() {
return “Drink “ + this.brand + “, it’s wet and wild!”;

}
myWater.getSlogan = adSlogan;

When a statement invokes the myWater.getSlogan() method, the object invokes the adSlogan() func-
tion, but all within the context of the myWater object. Thus, the this operator applies to the surrounding
object, making the brand property available via the this operator (this.brand).

Miscellaneous Operators
The final group of operators doesn’t fit into any of the previous categories, but they are no less important.

,
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The comma operator indicates a series of expressions that are to be evaluated in left-to-right sequence. Most
typically, this operator is used to permit multiple variable initializations. For example, you can combine the
declaration of several variables in a single var statement, as follows:

var name, address, serialNumber;

Another situation where you could use this operator is within the expressions of a for loop construction. In
the following example, two different counting variables are initialized and incremented at different rates.
When the loop begins, both variables are initialized at zero (they don’t have to be, but this example starts
that way); for each subsequent trip through the loop, one variable is incremented by one, while the other is
incremented by 10:

for (var i=0, j=0; i < someLength; i++, j+10) {
...

}

Don’t confuse the comma operator with the semicolon delimiter between statements.

1018

JavaScript Core Language Reference

, (series)

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1018

? :
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

The conditional operator is a shortcut way of expressing an if. . .else conditional construction covered
in Chapter 32. This operator is typically used in concert with an assignment operator to assign one of two
values to a variable based on the result of a condition expression. The formal syntax for the conditional
operator is:

condition ? expressionIfTrue : expressionIfFalse

If used with an assignment operator, the syntax is:

var = condition ? expressionIfTrue : expressionIfFalse;

No matter how you use the operator, the important point to remember is that an expression that contains
this operator evaluates to one of the two expressions following the question mark symbol. In truth, either
expression could invoke any JavaScript, including calling other functions or even nesting further condi-
tional operators within one of the expressions to achieve the equivalent of nested if. . .else construc-
tions. To assure proper resolution of nested conditionals, surround inner expressions with parentheses to
make sure that they evaluate before the outer expression evaluates. As an example, the following statement
assigns one of three strings to a variable depending on the date within a month:

var monthPart = (dateNum <= 10) ? “early” : ((dateNum <= 20) ?
“middle” : “late”);

When the statement is evaluated, the inner conditional expression at the right of the first colon is evaluated,
returning either middle or late; then the outer conditional expression is evaluated, returning either early
or the result of the inner conditional expression.

typeof
Compatibility: WinIE3+, MacIE3+, NN3+, Moz+, Safari+

Unlike most other operators, which are predominantly concerned with arithmetic and logic, the unary
typeof operator defines the kind of value to which a variable or expression evaluates. Typically, this opera-
tor is used to identify whether a variable value is one of the following types: number, string, boolean,
object, function, or undefined.

Example
Having this investigative capability in JavaScript is helpful because variables cannot only contain any one of
those data types but can change their data type on the fly. Your scripts may need to handle a value differ-
ently based on the value’s type. The most common use of the typeof property is as part of a condition. For
example:

if (typeof myVal == “number”) {
myVal = parseInt(myVal);

}

The evaluated value of the typeof operation is, itself, a string.

1019

typeof

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1019

void
Compatibility: WinIE3+, MacIE3+, NN3+, Moz+, Safari+

In all scriptable browsers you can use the javascript: pseudo-protocol to supply the parameter for href
and src attributes in HTML tags, such as links. In the process, you have to be careful that the function or
statement being invoked by the URL does not return or evaluate to any values. If a value comes back from
such an expression, then that value or sometimes the directory of the client’s hard disk often replaces the
page content. To avoid this possibility, use the void operator in front of the function or expression being
invoked by the javascript: URL.

Example
The best way to use this construction is to place the operator before the expression or function and separate
them by a space, as in

javascript: void doSomething();

On occasion, you may have to wrap the expression inside parentheses after the void operator. Using paren-
theses is necessary only when the expression contains operators of a lower precedence than the void opera-
tor (see the following section, “Operator Precedence”). But don’t automatically wrap all expressions in
parentheses, because some browsers can experience problems with these. Even so, it is common practice to
assign the following URL to the href attribute of an a link whose onclick event handler does all of the
work:

href=”javascript: void (0)”

The void operator makes sure the function or expression returns no value that the HTML attribute can use.
Such a link’s onclick event handler should also inhibit the natural behavior of a clicked link (for example,
by evaluating to return false).

Operator Precedence
When you start working with complex expressions that hold a number of operators (for example, Listing
33-2), knowing the order in which JavaScript evaluates those expressions is vital. JavaScript assigns differ-
ent priorities or weights to types of operators in an effort to achieve uniformity in the way it evaluates com-
plex expressions.

In the following expression

10 + 4 * 5 // result = 30

JavaScript uses its precedence scheme to perform the multiplication before the addition — regardless of
where the operators appear in the statement. In other words, JavaScript first multiplies 4 by 5 and then
adds that result to 10 to get a result of 30. That may not be the way you want this expression to evaluate.
Perhaps your intention was to add the 10 and 4 first and then to multiply that sum by 5. To make that hap-
pen, you have to override JavaScript’s natural operator precedence. To do that, you must use parentheses to
enclose an operator with lower precedence. The following statement shows how you adjust the previous
expression to make it behave differently:

(10 + 4) * 5 // result = 70

That one set of parentheses has a great impact on the outcome. Parentheses have the highest precedence in
JavaScript, and if you nest parentheses in an expression, the innermost set evaluates first.

1020

JavaScript Core Language Reference

void

Part IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1020

For help in constructing complex expressions, refer to Table 33-10 for JavaScript’s operator precedence. My
general practice: When in doubt about complex precedence issues, I build the expression with lots of
parentheses according to the way I want the internal expressions to evaluate.

TABLE 33-10

JavaScript Operator Precedence

Precedence Level Operator Notes

1 () From innermost to outermost

[] Array index value

function() Any remote function call

2 ! Boolean Not

~ Bitwise Not

- Negation

++ Increment

-- Decrement

new

typeof

void

delete Delete array or object entry

3 * Multiplication

/ Division

% Modulo

4 + Addition

- Subtraction

5 << Bitwise shifts

>

>>

6 < Comparison operators

<=

>

>=

7 == Equality

!=

8 & Bitwise And

9 ^ Bitwise XOR

10 | Bitwise Or

continued

1021

JavaScript Operators 33

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1021

LISTING 33-10 (continued)

Precedence Level Operator Notes

11 && Boolean And

12 || Boolean Or

13 ? Conditional expression

14 = Assignment operators

+=

-=

*=

/=

%=

<<=

>=

>>=

&=

^=

|=

15 , Comma (parameter delimiter)

This precedence scheme is devised to help you avoid being faced with two operators from the same prece-
dence level that often appear in the same expression. When it happens (such as with addition and subtrac-
tion), JavaScript begins evaluating the expression from left to right.

One related fact involves a string of Boolean expressions strung together for a condition statement (see
Listing 33-2). JavaScript follows what is called short-circuit evaluation. As the nested expressions are evalu-
ated left to right, the fate of the entire condition can sometimes be determined before all expressions are
evaluated. Anytime JavaScript encounters an And operator, if the left operand evaluates to false, the entire
expression evaluates to false without JavaScript’s even bothering to evaluate the right operand. For an Or
operator, if the left operand is true, JavaScript short-circuits that expression to true. This feature can trip
you up if you don’t perform enough testing on your scripts: If a syntax error or other error exists in a right
operand, and you fail to test the expression in a way that forces that right operand to evaluate, you may not
know that a bug exists in your code. Users of your page, of course, will find the bug quickly. Do your test-
ing to head bugs off at the pass.

Notice, too, that all math and string concatenation is performed prior to any comparison oper-
ators. This enables all expressions that act as operands for comparisons to evaluate fully before

they are compared.

The key to working with complex expressions is to isolate individual expressions and to try them out by
themselves, if you can. See additional debugging tips in Chapter 45 on the CD-ROM.

NOTENOTE

1022

JavaScript Core Language ReferencePart IV

42_069165 ch33.qxp 3/1/07 3:55 PM Page 1022

By now, you’ve seen dozens of JavaScript functions in action and probably
have a pretty good feel for the way they work. This chapter provides the
function object specification and delves into the fun prospect of creating

objects in your JavaScript code. If you’ve missed out on the object-oriented pro-
gramming (OOP) revolution, then now is your chance to join. JavaScript is sur-
prisingly full-featured when it comes to supporting OOP and allowing you to
develop scripts that rely heavily on custom objects.

Function Object

Properties Methods Event Handlers

arguments apply()

arity call()

caller toString()

constructor valueOf()

length

prototype

Syntax
Creating a function object:

function functionName([arg1,...[,argN]]) {
statement(s)

}

1023

IN THIS CHAPTER
Creating function blocks

Passing parameters to functions

Creating your own objects

Functions and
Custom Objects

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1023

var funcName = new Function([“argName1”,...[,”argNameN”],
“statement1;...[;statementN]”])

object.eventHandlerName = function([arg1,...[,argN]]) {statement(s)}

Accessing function object properties and methods:

functionObject.property | method([parameters])

Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

About this object
JavaScript accommodates what other languages might call procedures, subroutines, and functions all in one
type of structure: the custom function. A function may return a value (if programmed to do so with the
return keyword), but it does not have to return any value. With the exception of JavaScript code that exe-
cutes as the document loads, all deferred processing takes place in functions.

Although you can create functions that are hundreds of lines long, I recommend you break up longer
processes into shorter functions. Among the reasons for doing so: smaller chunks are easier to write and
debug; building blocks make it easier to visualize the entire script; you can make functions generalizable
and reusable for other scripts; and other parts of the script or other open frames can use the functions.

Learning how to write good, reusable functions takes time and experience. But the earlier you understand
the importance of this concept, the more you will be on the lookout for good examples in other people’s
scripts on the web.

Creating functions
The standard way of defining a function in your script means following a simple pattern and then filling in
the details. The formal syntax definition for a function is:

function functionName([arg1] ... [, argN]) {
statement(s)

}

The task of assigning a function name helps you determine the precise scope of activity of the function. If
you find that you can’t reduce the planned task for the function to a simple one- to three-word name
(which is then condensed into one contiguous sequence of characters for the functionName), perhaps
you’re asking the function to do too much. A better idea may be to break the job into two or more func-
tions. As you start to design a function, be on the lookout for functions that you can call from the one
you’re writing. If you find yourself copying and pasting lines of code from one part of a function to another
because you’re performing the same operation in different spots within the function, it may be time to break
that segment out into its own function.

Here’s a quick example of a simple function that accepts a single argument, a name, and then returns a
string greeting that includes the name:

function sayHello(name) {
return (“Hello, “ + name + “.”);

}

You can also create what is called an anonymous function using the new Function() constructor. In reality,
you assign a name to this anonymous function as follows:

var funcName = new Function([“argName1”,...[,”argNameN”],
“statement1;...[;statementN]”]);

1024

JavaScript Core Language Reference

functionObject

Part IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1024

This other way of building a function is particularly helpful when your scripts need to create a function
after a document loads. All the components of a function are present in this definition. Each function
parameter name is supplied as a string value, separated from each other by commas. The final parameter
string consists of the statements that execute whenever the function is called. Separate each JavaScript state-
ment with a semicolon, and enclose the entire sequence of statements inside quotes, as in the following:

var willItFit = new Function(“width”,”height”,
“var sx = screen.availWidth; var sy = screen.availHeight;
return (sx >= width && sy >= height)”);

The willItFit() function takes two parameters; the body of the function defines two local variables (sx
and sy) and then returns a Boolean value of true if the incoming parameters are smaller than the local
variables. In traditional form, this function is defined as follows:

function willItFit(width, height) {
var sx = screen.availWidth;
var sy = screen.availHeight;
return (sx >= width && sy >= height);

}

When this function exists in the browser’s memory, you can invoke it like any other function:

if (willItFit(400,500)) {
statements to load image

}

One last function creation format is available in IE4+, NN4+, Moz, and other W3C DOM browsers. This
advanced technique, called a lambda expression, provides a shortcut for creating a reference to an anony-
mous function (truly anonymous because the function has no name that you can reference later). The com-
mon application of this technique is to assign function references to event handlers when an event object
also must be passed. The following is an example of how to assign an anonymous function to an onchange
event handler for a form control:

document.forms[0].age.onchange = function(event) {isNumber(document.forms[0].age)}

Because an anonymous function evaluates to a reference to a function object, you can use either form of
anonymous function in situations where a function reference is called for, including parameters of methods
or other functions.

Nesting functions
Modern browsers also provide for nesting functions inside one another. In the absence of nested functions,
each function definition is defined at the global level whereby every function is exposed and available to all
other script code. With nested functions, you can encapsulate the exposure of a function inside another and
make that nested function private to the enclosing function. Of course I don’t recommend reusing function
names with this technique, although you can create nested functions with the same name inside multiple
global-level functions, as the following skeletal structure shows:

function outerA() {
statements
function innerA() {

statements
}
statements

1025

functionObject

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1025

}
function outerB() {

statements
function innerA() {

statements
}
function innerB() {

statements
}
statements

}

A good time to apply a nested function is when a sequence of statements need to be invoked in multiple
places within a large function but those statements have meaning only within the context of the larger func-
tion. In other words, rather than break out the repeated sequence as a separate global function, you keep it
all within the scope of the larger function.

The premise behind nesting a function is to isolate the function and make it private from the
overall script. This results in cleaner script code because nothing is exposed globally without a

good reason. As an admittedly strange analogy, the water heater in your house could feasibly be placed out-
side (global) but it’s generally safer and more organized to place it inside (local). Unlike your mailbox, which
must interact with the outside (global) world, your water heater plays an internal (local) role, and therefore
lives inside your house.

You can access a nested function only from statements in its containing function (and in any order).
Moreover, all variables defined in the outer function (including parameter variables) are accessible to the
inner function; but variables defined in an inner function are not accessible to the outer function. See the
section, “Variable scope: Globals and locals” later in this chapter for details on how variables are visible to
various components of a script.

Function parameters
The function definition requires a set of parentheses after the functionName. If the function does not rely
on any information arriving with it when invoked, the parentheses can be empty. But when some kind of
data is arriving with a call to the function, you need to assign names to each parameter. Virtually any kind
of value can be a parameter: strings, numbers, Boolean operators, and even complete object references such
as a form or form element. Choose names for these variables that help you remember the content of those
values; also, avoid reusing existing object names as variable names because it’s easy to get confused when
objects and variables with the same name appear in the same statements. You must avoid using JavaScript
keywords (including the reserved words listed in Appendix B) and any global variable name defined else-
where in your script. (See more about global variables in the following sections.)

JavaScript is forgiving about matching the number of parameters in the function definition with the number
of parameters passed along from the calling statement. If you define a function with three parameters and
the calling statement specifies only two, the third parameter variable value in that function is assigned a
null value. For example:

function saveWinners(first, second, third) {
statements

}
oneFunction(“George”,”Gracie”);

NOTENOTE

1026

JavaScript Core Language Reference

functionObject

Part IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1026

In the preceding example, the values of first and second inside the function are “George” and
“Gracie”, respectively; the value of third is null.

At the opposite end of the spectrum, JavaScript also doesn’t balk if you send more parameters from the call-
ing statement than the number of parameter variables specified in the function definition. In fact, the lan-
guage includes a mechanism — the arguments property — that you can add to your function to gather any
extraneous parameters that should read your function.

Properties
arguments
Value: Array of arguments. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

When a function receives parameter values from the statement that invoked the function, those parameter
values are silently assigned to the arguments property of the function object. This property is an array of the
values, with each parameter value assigned to a zero-based index entry in the array — whether or not param-
eters are defined for it. You can find out how many parameters are sent by extracting functionName
.arguments.length. For example, if four parameters are passed, functionName.arguments.length
returns 4. Then, you can use array notation (functionName.arguments[i]) to extract the values of any
parameter(s) you want.

Theoretically, you never have to define parameter variables for your functions because you can extract the
desired arguments array entry instead. Well-chosen parameter variable names, however, are much more
readable, so I recommend them over the arguments property in most cases. But you may run into situa-
tions in which a single function definition needs to handle multiple calls to the function when each call may
have a different number of parameters. The function knows how to handle any arguments over and above
the ones given names as parameter variables.

It is necessary in some cases to create a function that deliberately accepts a varied number of
arguments, in which case the arguments property is the only way to access and process the

arguments. For example, if you wanted to create a function that averages test scores, there’s a good chance
the number of scores may vary, in which case you would write the function so that it loops through the
arguments array, adding up the scores as it carries out the calculation.

Example
See Listings 34-1 and 34-2 for a demonstration of both the arguments and caller properties.

arity
Value: Integer. Read-Only
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

See the discussion of the length property later in this chapter.

NOTENOTE

1027

functionObject.arity

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1027

caller
Value: Function object reference. Read-Only
Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari-

When one function invokes another, a chain is established between the two primarily so that a returned
value knows where to go. Therefore, a function invoked by another maintains a reference to the function
that called it. Such information is automatically stored in a function object as the caller property. This
relationship reminds me a bit of a subwindow’s opener property, which points to the window or frame
responsible for the subwindow’s creation. The value is valid only while the called function is running at the
request of another function; when a function isn’t running, its caller property is null.

The value of the caller property is a reference to a function object, so you can inspect its arguments and
caller properties (in case it was called by yet another function). Thus, a function can look back at a calling
function to see what values it was passed.

The functionName.caller property reveals the contents of an entire function definition if the current
function was called from another function (including an event handler). If the call for a function comes
from a regular JavaScript statement not originating from inside a function, the functionName.caller
property is null.

Example
To help you grasp all that these two properties yield, study Listing 34-1.

LISTING 34-1

A Function’s arguments and caller Properties

<html>
<head>

<title></title>
<script type=”text/javascript”>
function hansel(x,y) {

var args = hansel.arguments;
document.write(“<p>hansel.caller is “ + hansel.caller + “
”);
document.write(“hansel.arguments.length is “ +

hansel.arguments.length + “
”);
for (var i = 0; i < args.length; i++) {

document.write(“argument “ + i + “ is “ + args[i] + “
”);
}
document.write(“<\/p>”);

}

function gretel(x,y,z) {
today = new Date();
thisYear = today.getFullYear();
hansel(x,y,z,thisYear);

}
</script>

1028

JavaScript Core Language Reference

functionObject.caller

Part IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1028

</head>
<body>

<script type=”text/javascript”>
hansel(1, “two”, 3);
gretel(4, “five”, 6, “seven”);
</script>

</body>
</html>

When you load this page, the following results appear in the browser window (although the caller prop-
erty values show undefined for Safari):

hansel.caller is null
hansel.arguments.length is 3
argument 0 is 1
argument 1 is two
argument 2 is 3

hansel.caller is function gretel(x, y, z) { today = new Date(); thisYear =
today.getFullYear(); hansel(x, y, z, thisYear); }
hansel.arguments.length is 4
argument 0 is 4
argument 1 is five
argument 2 is 6
argument 3 is 2007 (or whatever the current year is)

As the document loads, the hansel() function is called directly in the body script. It passes three argu-
ments, even though the hansel() function defines only two. The hansel.arguments property picks up
all three arguments just the same. The main body script then invokes the gretel() function, which, in
turn, calls hansel() again. But when gretel() makes the call, it passes four parameters. The gretel()
function picks up only three of the four arguments sent by the calling statement. It also inserts another
value from its own calculations as an extra parameter to be sent to hansel(). The hansel.caller prop-
erty reveals the entire content of the gretel() function, whereas hansel.arguments picks up all four
parameters, including the year value introduced by the gretel() function.

constructor
(See string.constructor in Chapter 28)

length
Value: Integer. Read-Only
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

As the arguments property of a function proves, JavaScript is very forgiving about matching the number of
parameters passed to a function with the number of parameter variables defined for the function. But a
script can examine the length property of a function object to see precisely how many parameter variables
are defined for a function. A reference to the property starts with the function name representing the object.
For example, consider the following function definition shell:

1029

functionObject.length

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1029

function identify(name, rank, serialNum) {
...

}

A script statement anywhere outside of the function can read the number of parameters with the reference:

identify.length

The value of the property in the preceding example is 3. The length property supercedes the NN-only
arity property.

prototype
(See Array.prototype in Chapter 31)

Methods
apply([thisObj[, argumentsArray]])
call([thisObj[, arg1[, arg2[,...argN]]]])
Returns: Nothing.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari+

The apply() and call() methods of a function object invoke the function. This may seem redundant to
the normal way in which script statements invoke functions by simply naming the function, following it
with parentheses, passing parameters, and so on. The difference with these methods is that you can invoke
the function through the apply() and call() methods using only a reference to the function. For exam-
ple, if your script defines a function through the new Function() constructor (or other anonymous short-
cut supported by the browser), you receive a reference to the function as a result of the constructor. To
invoke the function later using only that reference (presumably preserved in a global variable), use either
the apply() or call() method. Both of these methods achieve the same result, but choosing one method
over the other depends on the form in which the function’s parameters are conveyed (more about that in a
moment).

The first parameter of both methods is a reference to the object that the function treats as the current object.
For garden-variety functions defined in your script, use the keyword this, which means that the function’s
context becomes the current object (just like a regular function). In fact, if there are no parameters to be
sent to the function, you can omit parameters to both methods altogether.

The object reference comes into play when the function being invoked is one that is normally defined as a
method to a custom object. (I cover some of these concepts later in this chapter, so you may need to return
here after you are familiar with custom objects.)

Example
Consider the following code that generates a custom object and assigns a method to the object to display an
alert about properties of the object:

// function to be invoked as a method from a ‘car’ object
function showCar() {

alert(this.make + “ : “ + this.color);
}
// ‘car’ object constructor function

1030

JavaScript Core Language Reference

functionObject.apply()

Part IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1030

function car(make, color) {
this.make = make;
this.color = color;
this.show = showCar;

}
// create instance of a ‘car’ object
var myCar = new car(“Ford”, “blue”);

The normal way of getting the myCar object to display an alert about its properties is:

myCar.show();

At that point, the showCar() function runs, picking up the current car object as the context for the this
references in the function. In other words, when the showCar() function runs as a method of the object,
the function treats the object as the current object.

With the call() or apply() methods, however, you don’t have to bind the showCar() function to the
myCar object. You can omit the statement in the car() constructor that assigns the showCar function to a
method name for the object. Instead, a script can invoke the showCar() method and instruct it to treat
myCar as the current object:

showCar.call(myCar);

The showCar() function operates just as before, and the object reference in the call() method’s first
parameter slot is treated as the current object for the showCar() function.

As for succeeding parameters, the apply() method’s second parameter is an array of values to be passed as
parameters to the current function. The order of the values must match the order of parameter variables
defined for the function. The call() method, on the other hand, enables you to pass individual parameters
in a comma-delimited list. Your choice depends on how the parameters are carried along in your script. If
they’re already in array form, use the apply() method; otherwise, use the call() method. The (ECMA)
recommended way to invoke a function through this mechanism when no parameters need to be passed is
via the call() method.

Remember, ECMA is the standards organization that oversees the official JavaScript language
standard, which is formally known as ECMAScript. ECMAScript is the language specification,

whereas JavaScript is an actual implementation.

toString()
valueOf()
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Scripts rarely, if ever, summon the toString() and valueOf() methods of a function object. They work
internally to allow debugging scripts to display a string version of the function definition. For example,
when you enter the name of a function defined in The Evaluator (see Chapter 13) into the top text box,
JavaScript automatically converts the function to a string so that its value can be displayed in the Results
box. Using these methods or parsing the text they return has little, if any, practical application.

NOTENOTE

1031

functionObject.toString()

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1031

Function Application Notes
Understanding the ins and outs of JavaScript functions is the key to successful scripting, especially for com-
plex applications. Additional topics covered in this chapter include the ways to invoke functions, variable
scope in and around functions, recursion, and the design of reusable functions.

Invoking functions
A function doesn’t perform any work until a script calls it by name or reference. Scripts invoke functions
(that is, get functions to do something) through four routes: document object event handlers; JavaScript
statements; href attributes pointing to a javascript: URL; and the more modern call() and apply()
methods of function objects. The one approach not discussed at length yet in this book is the javascript:
URL (some say pseudo-URL).

Several HTML tags have href attributes that normally point to Internet URLs for navigating to another page
or loading a MIME file that requires a helper application or plug-in. These HTML tags are usually tags for
clickable objects, such as links and client-side image map areas.

A JavaScript-enabled browser has a special, built-in URL pseudo-protocol — javascript:— that lets the
href attribute point to a JavaScript function or method rather than to a URL on the Net. For example, it is
common practice to use the javascript: URL to change the contents of two frames from a single link.
Because the href attribute is designed to point to only a single URL, you’d be out of luck without a conven-
ient way to put multiframe navigation into your hands. You implement multiframe navigation by writing a
function that sets the location.href properties of the two frames; then invoke that function from the
href attribute. The following example shows what the script may look like:

function loadPages() {
parent.frames[1].location.href = “page2.html”;
parent.frames[2].location.href = “instrux2.html”;

}
...
Next

These kinds of function invocations can include parameters, and the functions can do anything you want.
One potential side effect to watch out for occurs when the function returns a value (perhaps the function is
also invoked from other script locations where a returned value is expected). Because the href attribute sets
the target window to whatever the attribute evaluates to, the returned value is assigned to the target
window — probably not what you want.

To prevent the assignment of a returned value to the href attribute, prefix the function call with the void
operator:

If you don’t want the href attribute to do anything (that is, let the onclick event handler do all the work),
assign a blank function after the operator:

Experienced programmers of many other languages recognize this operator as a way of indicating that no
values are returned from a function or procedure. The operator has that precise functionality here, but in a
nontraditional location.

1032

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1032

Variable scope: Globals and locals
A variable can have two scopes in JavaScript. As you might expect, any variable initialized within the main
flow of a script (not inside a function) is a global variable in that any statement in the same document’s script
can access it by name. You can, however, also initialize variables inside a function (in a var statement) so
the variable name applies only to statements inside that function. By limiting the scope of the variable to a
single function, you can reuse the same variable name in multiple functions thereby enabling the variables
to carry very different information in each function. Listing 34-2 demonstrates the various possibilities.

LISTING 34-2

Variable Scope Workbench Page

<html>
<head>

<title>Variable Scope Trials</title>
<script type=”text/javascript”>
var headGlobal = “Gumby”;
function doNothing() {

var headLocal = “Pokey”;
return headLocal;

}
</script>

</head>
<body>

<script type=”text/javascript”>
// two global variables
var aBoy = “Charlie Brown”;
var hisDog = “Snoopy”;
function testValues() {

var hisDog = “Gromit”; // initializes local version of “hisDog”
var page = “”;
page += “headGlobal is: “ + headGlobal + “
”;
// page += “headLocal is: “ + headLocal + “
” // won’t run:
// ...headLocal not defined
page += “headLocal value returned from head function is: “ +

doNothing() + “
”;
page += “ aBoy is: “ + aBoy + “
”; // picks up global
page += “local version of hisDog is: “ + hisDog + “
”; // “sees”
// ...only local version
document.write(page);

}
testValues();
document.write(“global version of hisDog is intact: “ + hisDog);
</script>

</body>
</html>

1033

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1033

In this page, you define a number of variables — some global, others local — that are spread out in the doc-
ument’s Head and Body sections. When you load this page, it runs the testValues() function, which
accounts for the current values of all the variable names. The script then follows up with at least one value
extraction that was masked in the function. The results of the page look like this:

headGlobal is: Gumby
headLocal value returned from head function is: Pokey
aBoy is: Charlie Brown
local version of hisDog is: Gromit
global version of hisDog is intact: Snoopy

Examine the variable initialization throughout this script. In the Head, you define the first variable
(headGlobal) as a global style outside of any function definition. The var keyword for the global variable
is optional but often helpful for enabling you to see at a glance where you initialize your variables. You then
create a short function, which defines a variable (headLocal) that only statements in the function can use.

In the Body, you define two more global variables: aBoy and hisDog. Inside the Body’s function (for pur-
poses of demonstration), you reuse the hisDog variable name. By initializing hisDog with the var state-
ment inside the function, you tell JavaScript to create a separate variable whose scope is only within the
function. This initialization does not disturb the global variable of the same name. It can, however, make
things confusing for you as the script author.

Statements in this script attempt to collect the values of variables scattered around the script. Even from
within this script, JavaScript has no problem extracting global variables directly — including the one
defined in the Head. But JavaScript cannot get the local variable defined in the other function — that
headLocal variable is private to its own function. Trying to run a script that references that variable value
will result in an error message saying that the variable name is not defined. In the eyes of everyone else out-
side of the doNothing() function, that’s true. If you really need that value, you can have the function
return the value to a calling statement as you do in the testValues() function.

Near the end of the function, the script reads the aBoy global value without a hitch. But because you initial-
ized a separate version of hisDog inside that function, only the localized version is available to the function.
If you reassign a global variable name inside a function, you cannot access the global version from inside
that function.

As proof that the global variable — whose name was reused inside the testValues() function — remains
untouched, the script writes that value to the end of the page for all to see. Charlie Brown and his dog are
reunited.

A benefit of this variable-scoping scheme is that you can reuse throwaway variable names in any function
you like. For example, you can use the i loop counting variable in every function that employs loops. (In
fact, you can reuse it in multiple for loops of the same function because the for loop reinitializes the value
at the start of the loop.) If you pass parameters to a function, you can assign to those parameter variables
the same names to aid in consistency. For example, a common practice is to pass an entire form object refer-
ence as a parameter to a function (using a this.form parameter in the event handler). For every function
that catches one of these objects, you can use the variable name form in the parameter:

function doSomething(form) {
statements

}
...
<input type=”button” value=”Do Something” onclick=”doSomething(this.form)” />

1034

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1034

If five buttons on your page pass their form objects as parameters to five different functions, each function
can assign form (or whatever you want to use) to that parameter value.

I recommend reusing variable names only for these throwaway variables. In this case, the variables are all
local to functions, so the possibility of a mix-up with global variables does not exist. But the thought of
reusing a global variable name as, say, a special case inside a function sends shivers up my spine. Such a tac-
tic is doomed to cause confusion and error.

Reusing a global variable name locally is one of the most subtle and therefore difficult bugs to
find in JavaScript code. The local variable ends up temporarily hiding the global variable with-

out making any effort to let you know. Just do yourself a favor and make sure you don’t reuse a global vari-
able name as a local variable in a function.

Some programmers devise naming conventions to avoid reusing global variables as local variables. A popu-
lar scheme puts a lowercase g in front of any global variable name. In the example from Listing 34-2, you
can name the global variables:

gHeadGlobal
gABoy
gHisDog

Then, if you define local variables, don’t use the leading g. A similar scheme involves using an underscore
character (_) instead of a g in front of global variable names. Any scheme you employ to prevent the reuse
of variable names in different scopes is fine as long as it does the job.

In a multiframe or multiwindow environment, your scripts can also access global variables from any other
document currently loaded into the browser. For details about this level of access, see Chapter 16.

Variable scoping rules apply equally to nested functions in IE4+, NN4+, Moz, and W3C browsers. Any vari-
ables defined in an outer function (including parameter variables) are exposed to all functions nested inside.
But if you define a new local variable inside a nested function, that variable is not available to the outer
function. Instead, you can return a value from the nested function to the statement in the outer function
that invokes the nested function.

Parameter variables
When a function receives data in the form of parameters, remember that the values may be copies of the
data (in the case of run-of-the-mill data values) or references to real objects (such as a form object). In the
latter case, you can change the object’s modifiable properties in the function when the function receives the
object as a parameter, as shown in the following example:

function validateCountry(form) {
if (form.country.value == “”) {

form.country.value = “USA”;
}

}

Therefore, whenever you pass an object reference as a function parameter, be aware that the changes you
make to that object in its passed form affect the real object.

As a matter of style, if my function needs to extract properties or results of methods from passed data (such
as object properties or string substrings), I like to do that at the start of the function. I initialize as many vari-
ables as needed for each piece of data used later in the function. This task enables me to assign meaningful

CAUTION CAUTION

1035

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1035

names to the data chunks, rather than rely on potentially long references within the working part of the func-
tion (such as using a variable like inputStr instead of form.entry.value). Here’s a quick example:

function updateContactInfo(form) {
var firstName = form.firstname.value;
var lastName = form.lastname.value;
var address1 = form.addr1.value;
var address2 = form.addr2.value;
var phone = form.phone.value;
var email = form.email.value;

// Process contact info using local variables
}

Notice in this example how the form field information is first stored in local variables, which are then used
to carry out the hypothetical updating of contact information. Throughout the remainder of the function
you can use the local variables instead of the longer and less wieldy form fields.

Recursion in functions
In what may come as a strange surprise, it is possible for functions to call themselves — a process known as
recursion. The classic example of programmed recursion is the calculation of the factorial (the factorial for a
value of 4 is 4 * 3 * 2 * 1), shown in Listing 34-3.

In the third line of this function, the statement calls itself, passing along a parameter of the next lower value
of n. As this function executes, diving ever deeper into itself, JavaScript watches intermediate values and
performs the final evaluations of the nested expressions. If designed properly, a recursive function eventu-
ally stops calling itself, and the program flow eventually returns back to the original function call.

Recursive functions are dangerous in a sense that they can easily fall into an infinite state. For this reason, it
is very important that you test them carefully. In particular, make sure that the recursion is finite: that a
limit exists for the number of times it can recurse. In the case of Listing 34-3, that limit is the initial value of
n. Failure to watch out for this limit may cause the recursion to overpower the limits of the browser’s mem-
ory and even lead to a crash.

LISTING 34-3

A JavaScript Function Utilizing Recursion

function factorial(n) {
if (n > 0) {

return n * (factorial(n-1));
} else {

return 1;
}

}

1036

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1036

Turning functions into libraries
As you start writing functions for your scripts, be on the lookout for ways to make functions generalizable
(written so that you can reuse the function in other instances, regardless of the object structure of the page).
The likeliest candidates for this kind of treatment are functions that perform specific kinds of validation
checks (see examples in Chapter 43 on the CD-ROM), data conversions, or iterative math problems.

To make a function generalizable, don’t let it make any references to specific objects by name. Object names
generally change from document to document. Instead, write the function so that it accepts a named object
as a parameter. For example, if you write a function that accepts a text object as its parameter, the function
can extract the object’s data or invoke its methods without knowing anything about its enclosing form or
name. Look again, for example, at the factorial() function in Listing 34-4 — but now as part of an entire
document.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

LISTING 34-4

Calling a Generalizable Function

<html>
<head>

<title>Variable Scope Trials</title>
<script type=”text/javascript”>
function factorial(n) {

if (n > 0) {
return n * (factorial(n - 1));

} else {
return 1;

}
}
</script>

</head>
<body>

<form>
Enter an input value: <input type=”text” name=”input” value=”0” />
<p><input type=”button” value=”Calc Factorial”

onclick=”this.form.output.value =
factorial(this.form.input.value)” /></p>

<p>Results: <input type=”text” name=”output” /></p>
</form>

</body>
</html>

NOTENOTE

1037

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1037

This function is designed to be generalizable, accepting only the input value (n) as a parameter. In the form,
the onClick event handler of the button sends only the input value from one of the form’s fields to the
factorial() function. The returned value is assigned to the output field of the form. The factorial()
function is totally ignorant about forms, fields, or buttons in this document. If I need this function in
another script, I can copy and paste it into that script knowing that it has been pretested. Any generalizable
function is part of my personal library of scripts — from which I can borrow — and saves me time in future
scripting tasks.

You cannot always generalize a function. Somewhere along the line in your scripts, you must have refer-
ences to JavaScript or custom objects. But if you find that you’re frequently writing functions that perform
the same kind of actions, see how you can generalize the code and put the results in your library of ready-
made functions. You should also consider placing these reusable library functions in an external .js library
file. See Chapter 13 for details on this convenient way to share utility functions among many documents.

Making sense of closures
A topic that has confused many an aspiring scripter is closures, which may enter the picture when you
declare a function within another function. At the core of JavaScript, closures refer to the fact that you can
keep a local variable defined in a function alive even after the function has executed — which normally sig-
nals the end of life for a local variable. That’s right, it’s possible for a function to return and its local variables
to go on living like some kind of strange zombie data. How is this possible? Take a look at an example:

function countMe() {
var count = 1;
var showCount = function() { alert(count); }
count++;
return showCount;

}

The unusual thing to note about this code is how the inner function assigned to the showCount variable is
returned by the function. When you call the countMe() function, you receive a reference to the inner func-
tion that displays the count variable value. That wouldn’t be a problem except for the fact that the inner
function acts on a variable (count) that is local to the countMe() function.

To see the closure come to life, take a look at this code that calls the countMe() function:

var countamatic = countMe();
countamatic();

The first line calls the countMe() function, which results in the local count variable being created and a
reference to the inner function being passed out and stored in the countamatic variable. The local variable
count is also incremented within the countMe() function. Without knowing about closures, you would
clearly be in some serious gray area at this point because the countamatic() function defined in the first
line is now set to display the value of a variable that is clearly out of scope. But JavaScript works a miracle
by keeping the count variable alive in a closure and still allowing the countamatic() function to access it.
Thus, the second statement displays an alert with the number 2 in it.

If closures still seem a bit mysterious, just remember that a potential closure is created any time you specify
a function within another function. You really only take advantage of a closure when you pass an inner
function reference outside the scope of the function in which it is defined.

1038

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1038

Okay, so closures reveal a sneaky way to manipulate scope in JavaScript but what good are they? Closures
are finding a great deal of usage in Ajax applications because Ajax programming often uses closures to work
around inherent limitations in how you normally use the this keyword.

For more on Ajax, check out Chapter 27.

Although I could just pawn everything closure-related off on Ajax, I can demonstrate a simple but practical
application of how closures can help you carry out the seemingly impossible. Consider the scenario where
you want to set a timer that calls a function after an interval of time has elapsed. You may be thinking no
problem — just create a function and pass its reference to the setTimeout() function. End of story. What I
didn’t mention is that you need to pass a couple of parameters to the function. See the problem?

Unless you design with anonymous functions, there is no mechanism for using parameters when you pass a
function reference to another function, as in specifying a timer event handler when calling the
setTimeout() function. Now take a look at this code that uses closures to circumvent the problem:

function wakeupCaller(name, roomnum) {
return (function() {

alert(“Call “ + name + “ in room #” + roomnum + “.”);
});

}

By placing a zero-param function within a parameterized function, you now have the ingredients for a timer
handler that can accept parameters. The next step is to create an actual function reference that uses the closure:

var wakeWilson = wakeupCaller(“Mr. Wilson”, 515);

At this point, you’ve passed parameters to a function and received a zero-param function reference in
return, which can then be passed along to the setTimeout() function:

setTimeout(wakeWilson, 600000);

Thanks to closures, Mr. Wilson will now get his wake up call!

Before you dive into closures and begin exploiting them in all of your code, let me caution you
that they can result in some tricky bugs when used incorrectly. Extensive use of closures

involving references to DOM objects can also cause memory leaks (gradual increase of memory used by the
browser) if the objects are not disposed of (that is, set to null) when they are no longer needed. Definitely
spend the time to explore closures in more detail before you get too wild with them.

Creating Your Own Objects
with Object-Oriented JavaScript
In all the previous chapters of this book, you’ve seen how conveniently the browser document object mod-
els organize all the information about the browser window and its document. More specifically, you learned
how to use standard objects as a means of accessing different aspects of the browser window and document.
What may not be obvious from the scripting you’ve done so far is that JavaScript enables you to create your
own objects in memory — objects with properties and methods that you define. These objects are not user-
interface elements on the page but rather the kinds of objects that may contain data and script functions
(behaving as methods) whose results the user can see displayed in the browser window.

CAUTION CAUTION

CROSS-REFCROSS-REF

1039

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1039

You actually had a preview of this power in Chapter 31’s discussion about arrays. An array, you recall, is an
ordered collection of data. An object typically contains different kinds of data. It doesn’t have to be an
ordered collection of data — although your scripts can use objects in constructions that strongly resemble
arrays. Moreover, you can attach any number of custom functions as methods for that object. You are in
total control of the object’s structure, data, and behavior.

The practice of employing custom objects in your JavaScript code is known as object-oriented programming,
or OOP for short. OOP has been around a long time and has been used to great success in other program-
ming languages such as C++ and Java. However, the scripted nature of JavaScript has caused OOP to catch
on a bit more slowly in the JavaScript world. Even so, support for custom objects is a standard part of
modern JavaScript-enabled browsers and is something you should consider taking advantage of whenever
prudent.

To split hairs technically, I have to clarify that JavaScript isn’t truly an object-oriented language
in a strict sense. Instead, JavaScript is considered an object-based language. The difference

between object-oriented and object-based is significant and has to do with how objects can be extended.
Even so, conceptually JavaScript’s support of objects is enough akin to true OOP languages such that it’s not
unreasonable to discuss JavaScript in OOP terms. You learn about some of the specific object features that
allow JavaScript to approach OOP languages later in the chapter.

There is no magic to knowing when to use a custom object instead of an array in your application. The
more you work with and understand the way custom objects work, the more likely you will think about
your data-carrying scripts in these terms — especially if an object can benefit from having one or more
methods associated with it. This avenue is certainly not one for beginners, but I recommend that you give
custom objects more than a casual perusal after you have gained some JavaScripting experience.

The nuts and bolts of objects
An object in JavaScript is really just a collection of properties. Properties can take on the form of data types,
functions (methods), or even other objects. A function assigned to a property is known as a method.
Methods are no different than other functions except that they are intended to be used in the context of an
object, and therefore are assumed to have access to data properties of that object. This connection between
data and functions is one of the core concepts prevalent in OOP.

Objects are created using a special function known as a constructor, which determines the name of the
object — the constructor is named the same as the object. Here’s an example of a constructor function:

function alien() {
}

Although this function doesn’t contain any code, it does nonetheless lay the groundwork for creating an
alien object. You can think of a constructor as a blueprint that is then used to create actual objects. Here’s
an example of how you create an object using a constructor:

var myAlien = new alien();

The new keyword is used to create JavaScript objects, and it is used in conjunction with a constructor to
do so.

NOTENOTE

1040

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1040

Creating properties for custom objects
Earlier I mentioned that properties are key to objects, so you might be wondering how you go about creat-
ing a property for a custom object. Custom object properties are created in the constructor with some help
from the this keyword, as this code reveals:

function alien() {
this.name = “Clyde”;
this.aggressive = true;

}

The this keyword is used to reference the current object, which in this case is the object that is being cre-
ated by the constructor. So, you use the this keyword to create new properties for the object. The only
problem with this example is that it results in all aliens that are created with the alien() constructor hav-
ing the same name and aggression. The fix is to pass in the property values to the constructor so that each
alien can be customized upon creation:

function alien(name, aggressive) {
this.name = name;
this.aggressive = aggressive;

}

Now you can create different aliens that each have their own unique property values:

var alien1 = new alien(“Ernest”, false);
var alien2 = new alien(“Wilhelm”, true);

To get to the properties of the object (for reading or writing after the object has been created), use the same
type of dot syntax you use with DOM objects. To change the name property of one of the objects, the state-
ment would be:

alien1.name = “Julius”;

Creating methods for custom objects
Properties are really only half of the JavaScript OOP equation. The other half is methods, which are func-
tions that you tie to objects so that they can access object data. Following is an example of a method that
you might use with the alien class:

function attack() {
if (this.aggressive) {

// Do some attacking and return true to indicate that the attack commenced
return true;

}
else {

// Don’t attack and return false to indicate that the attack didn’t happen
return true;

}
}

Notice that the attack() method references the this.aggressive property to decide if the attack should
take place. The only thing missing at this point is the connection between the attack() method and the
alien object. Without this connection the this keyword would have no meaning because there would be
no associated object. Here’s how the connection is made:

1041

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1041

function alien(name, aggressive) {
this.name = name;
this.aggressive = aggressive;
this.attack = attack;

}

This code clearly illustrates how methods are really just properties. A new property named attack is cre-
ated and assigned a reference to the attack() function. It’s very important to note that the attack() func-
tion is specified by reference (without the parentheses). Here, then, is the creation of an alien object and
the invocation of its attack() method:

var alien1 = new alien(“Ernest”, false);
alien1.attack();

You’re now armed with enough of the basics of JavaScript objects to move on to a more complete example,
which the next section provides.

An OOP example — planetary objects
Building on your familiarity with the planetary data array created in Chapter 31, this chapter shows you
how convenient it is to use the data when it is constructed in the form of an OOP design that utilizes cus-
tom objects. The application goal for the extended example in this section is to present a pop-up list of the
nine planets of the solar system and display data about the selected planet. From a user-interface perspec-
tive (and for more exposure to multiframe environments), the resulting data displays in a separate frame of
a two-frame window. This means your object method builds HTML on the fly and plugs it into the display
frame. If you implement this application strictly for IE4+, NN6+, Moz, and W3C browsers, you can apply
the same data to reconstruct the displayed table data for each user selection. The example as shown, how-
ever, is fully backward compatible for all scriptable browsers.

In this chapter, instead of building arrays to hold the data, you build objects — one object for each planet.
The design of your planetary object has five properties and one method. The properties of each planet are:
name, diameter, distance from the sun, year length, and day length. To assign more intelligence to these
objects, you give each of them the capability to display their data in the lower frame of the window. You can
conveniently define one function that knows how to behave with any of these planet objects, rather than
having to define nine separate functions. When used within the context of an object, a function is actually
referred to as a method.

Listing 34-5 shows the source code for the document that creates the frameset for your planetary explo-
rations; Listing 34-6 shows the entire HTML page for the object-oriented planet document, which appears
in the top frame.

LISTING 34-5

Framesetting Document for a Two-Frame Window

<html>
<head>

<title>Solar System Viewer</title>
<script type=”text/javascript”>
function blank() {

return “<html><body><\/body><\/html>”;
}

1042

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1042

</script>
</head>
<frameset rows=”50%,50%” onload=”frames[‘Frame1’].doDisplay(

frames[‘Frame1’].document.forms[0].planetsList)”>
<frame name=”Frame1” src=”lst34-06.htm” />
<frame name=”Frame2” src=”javascript:parent.blank()” />

</frameset>
</html>

One item to point out in Listing 34-5 is that because the lower frame isn’t filled until the upper frame’s doc-
ument loads, you need to assign some kind of URL for the src attribute of the second frame. Rather than
add the extra transaction and file burden of a blank HTML document, here you use the javascript: URL
to invoke a function. In this instance, I want the value returned from the function (a blank HTML page) to
be reflected into the target frame (no void operator here). This method provides the most efficient way of
creating a blank frame in a frameset.

LISTING 34-6

Object-Oriented Planetary Data Presentation

<html>
<head>

<title>Our Solar System</title>
<script type=”text/javascript”>
// method definition
function showPlanet() {

var result = “<html><body><center><table border=’2’>”;
result += “<caption align=’top’>Planetary data for: ” + this.name +

“</caption>”;
result += “<tr><td align=’right’>Diameter:</td><td>” + this.diameter +

“</td></tr>”;
result += “<tr><td align=’right’>Distance from Sun:</td><td>” +

this.distance + “</td></tr>”;
result += “<tr><td align=’right’>One Orbit Around Sun:</td><td>” +

this.year + “</td></tr>”;
result += “<tr><td align=’right’>One Revolution (Earth

Time):</td><td>” + this.day + “</td></tr>”;
result += “</table></center></body></html>”;
// display results in a second frame of the window
parent.frames[“Frame2”].document.write(result);
parent.frames[“Frame2”].document.close();

}

// definition of planet object type;
// ‘new’ will create a new instance and stuff parameter data into object
function planet(name, diameter, distance, year, day) {

this.name = name;
this.diameter = diameter;
this.distance = distance;

1043

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1043

this.year = year;
this.day = day;
this.showPlanet = showPlanet; // make showPlanet() function a method
// ...of planet

}

// create new planet objects, and store in a series of variables
var Mercury = new planet(“Mercury”,”3100 miles”, “36 million miles”,

“88 days”, “59 days”);
var Venus = new planet(“Venus”, “7700 miles”, “67 million miles”,

“225 days”, “244 days”);
var Earth = new planet(“Earth”, “7920 miles”, “93 million miles”,

“365.25 days”,”24 hours”);
var Mars = new planet(“Mars”, “4200 miles”, “141 million miles”,

“687 days”, “24 hours, 24 minutes”);
var Jupiter = new planet(“Jupiter”,”88,640 miles”,”483 million miles”,

“11.9 years”, “9 hours, 50 minutes”);
var Saturn = new planet(“Saturn”, “74,500 miles”,”886 million miles”,

“29.5 years”, “10 hours, 39 minutes”);
var Uranus = new planet(“Uranus”, “32,000 miles”,

“1.782 billion miles”,”84 years”, “23 hours”);
var Neptune = new planet(“Neptune”,”31,000 miles”,

“2.793 billion miles”,”165 years”, “15 hours, 48 minutes”);
var Pluto = new planet(“Pluto”, “1500 miles”, “3.67 billion miles”,

“248 years”, “6 days, 7 hours”);

// called from push button to invoke planet object method
function doDisplay(popup) {

i = popup.selectedIndex;
eval(popup.options[i].text + “.showPlanet()”);

}
</script>

</head>
<body>

<h1>The Daily Planet</h1>
<hr />
<form>

<p>Select a planet to view its planetary data: <select
name=’planetsList’ onchange=’doDisplay(this)’>

<option>Mercury</option>
<option>Venus</option>
<option selected=”selected”>Earth</option>
<option>Mars</option>
<option>Jupiter</option>
<option>Saturn</option>
<option>Uranus</option>
<option>Neptune</option>
<option>Pluto</option>

</select></p>
</form>

</body>
</html>

1044

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1044

The first task in the Head is to define the function that becomes a method in each of the objects. You must
do this task before scripting any other code that adopts the function as its method. Failure to define the
function ahead of time results in an error — the function name is not defined. If you compare the data
extraction methodology with the function in the array version, notice that the parameter for the index value
is gone and the reference to each property begins with this. Later, I return to the custom method after giv-
ing you a look at the rest of the Head code.

Next comes the object constructor function, which performs several important tasks. For one, everything in
this function establishes the structure of your custom object: the properties available for data storage and
retrieval and any methods that the object can invoke. The name of the function is the name you use later to
create new instances of the object. Therefore, choosing a name that truly reflects the nature of the object is
important. And, because you probably want to stuff some data into the function’s properties to get one or
more instances of the object loaded and ready for the page’s user, the function definition includes parame-
ters for each of the properties defined in this object definition.

Inside the function, you use the this keyword to assign data that comes in as parameters to labeled proper-
ties. For this example, I use the same names for both the incoming parameter variables and the properties.
That’s primarily for convenience (and is very common practice), but you can assign any variable and prop-
erty names you want and connect them any way you like. In the planet() constructor function, five prop-
erty slots are reserved for every instance of the object whether or not any data actually is placed in every
property (any unassigned slot has a value of null).

The last entry in the planet() constructor function is a reference to the showPlanet() function defined
earlier. Note that the assignment statement doesn’t refer to the function with its parentheses — just to the
function name. When JavaScript sees this assignment statement, it looks back through existing definitions
(those functions defined ahead of the current location in the script) for a match. If it finds a function (as it
does here), JavaScript knows to assign the function to the identifier on the left side of the assignment state-
ment. In doing this task with a function, JavaScript automatically sets up the identifier as a method name
for this object. As you do in every JavaScript method you encounter, you must invoke a method by using a
reference to the object, a period, and the method name followed by a set of parentheses. You see that syntax
in a minute.

The next long block of statements creates the individual objects according to the definition established in
the planet() constructor. Similar to an array, an assignment statement and the keyword new create an
object. I assign names that are not only the real names of planets (the Mercury object name is the Mercury
planet object) but that also can come in handy later when the doDisplay() function extracts names from
the pop-up list in search of a particular object’s data.

The act of creating a new object sets aside space in memory (associated with the current document) for this
object and its properties. An object created in memory is known as an instance. In this script, you create
nine object instances, each with a different set of properties. Note that no parameter is sent (or expected at
the function) that corresponds to the showPlanet() method. Omitting that parameter here is fine because
the specification of that method in the object definition means that the script automatically attaches the
method to every version (instance) of the planet object that it creates. This is important, because it links the
function (method) to the object, thereby providing it access to the object’s properties.

The last function definition, doDisplay(), is invoked whenever the user makes a choice from the list of
planets in the upper frame. This function is also invoked through the frameset’s onload event handler so
that an initial table is displayed from the default selected item (see Figure 34-1). Invoking the function from
the upper frame’s onload event handler can cause problems (such as the failure of the other frame) if the
frameset is not completely loaded.

1045

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1045

FIGURE 34-1

An external and internal face-lift for an earlier application.

The onchange event handler in the select list passes that select element’s reference to the
doDisplay() function. In that function, the select object is assigned to a variable called popup to help
you visualize that the object is the pop-up list. The first statement extracts the index value of the selected
item. Using that index value, the script extracts the text. But things get a little tricky because you need to
use that text string as a variable name — the name of the planet — and append it to the call to the
showPlanet() method. To make the disparate data types come together, use the eval() function. Inside
the parentheses, extract the string for the planet name and concatenate a string that completes the reference
to the object’s showPlanet() method. The eval() function evaluates that string, which turns it into a
valid method call. Therefore, if the user selects Jupiter from the pop-up list, the method call becomes
Jupiter.showPlanet().

Now it’s time to look back to the showPlanet() function/method definition at the top of the script. When
that method runs in response to a user selection of the planet Jupiter, the method’s only scope is of the
Jupiter object. Therefore, all references to this.propertyName in showPlanet() refer to Jupiter only.
The only possibility for this.name in the Jupiter object is the value assigned to the name property for
Jupiter. The same goes for the rest of the properties extracted in the function/method.

Further encapsulation
One of the benefits of using objects in scripting is that all the “wiring” inside the object — properties and
methods — are defined within the local variable scope of the object. It’s a concept call encapsulation. Thus,
when you use the this keyword to create object properties and assign values to them inside a constructor
function, the property names and any code associated with them are private to the object and never conflict
with global variable or object names.

1046

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1046

In large scripting projects, especially when multiple programmers are involved, it’s fairly easy for global
names to clash, sometimes inadvertently. For example, in Internet Explorer, all DOM object IDs become
part of the global variable space because that browser allows scripts to reference an element object simply
by its ID (unlike the W3C DOM, which uses the document.getElementById() method). As a project
grows in size and complexity, it is increasingly helpful to avoid piling up more and more objects — includ-
ing function definitions — in the global variable naming space.

In Listing 34-6, for example, the showPlanet() function is defined in the global space. The function is
used, however, only as a method of planet object instances. Therefore, the showPlanet() function is tak-
ing up a global object name (showPlanet) that might be used elsewhere (perhaps as an ID for a button ele-
ment). To get the function definition out of the global space, define it within the planet() constructor
function, either as a nested function, or as an anonymous function assigned directly to the
this.showPlanet property in the constructor.

Creating an array of objects
In Listing 34-6, each of the planet objects is assigned to a global variable whose name is that of the planet. If
the idea of custom objects is new to you, this idea probably doesn’t sound so bad because it’s easy to visual-
ize each variable representing an object. But, as shown in the doDisplay() function, accessing an object
by name requires use of the eval() function to convert a string representation to a valid object reference.
Although it’s not too important in this simple example, the eval() function is not particularly efficient in
JavaScript. If you find yourself using an eval() function, look for ways to improve efficiency such that you
can reference an object by string. The way to accomplish that streamlining for this application is to place
the objects in an array whose index values are the planet names — an associative array.

To assign the custom objects in Listing 34-6 to an array, first create an empty array and then assign the
result of each object constructor call to an entry in the array. The modified code section looks like the fol-
lowing (formatted to fit this printed page):

// create array
var planets = new Array();
// populate array with new planet objects
planets[“Mercury”] =

new planet(“Mercury”,”3100 miles”, “36 million miles”,
“88 days”, “59 days”);

planets[“Venus”] =
new planet(“Venus”, “7700 miles”, “67 million miles”,
“225 days”, “244 days”);

planets[“Earth”] =
new planet(“Earth”, “7920 miles”, “93 million miles”,
“365.25 days”,”24 hours”);

planets[“Mars”] =
new planet(“Mars”, “4200 miles”, “141 million miles”,
“687 days”, “24 hours, 24 minutes”);

planets[“Jupiter”] =
new planet(“Jupiter”,”88,640 miles”,”483 million miles”,
“11.9 years”, “9 hours, 50 minutes”);

planets[“Saturn”] =
new planet(“Saturn”, “74,500 miles”,”886 million miles”,
“29.5 years”, “10 hours, 39 minutes”);

1047

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1047

planets[“Uranus”] =
new planet(“Uranus”, “32,000 miles”,”1.782 billion miles”,
“84 years”, “23 hours”);

planets[“Neptune”] =
new planet(“Neptune”,”31,000 miles”,”2.793 billion miles”,
“165 years”, “15 hours, 48 minutes”);

planets[“Pluto”] =
new planet(“Pluto”, “1500 miles”, “3.67 billion miles”,
“248 years”, “6 days, 7 hours”);

The supreme advantage to this approach comes in a modified doDisplay() function, which can use the
string value from the select element directly without any conversion to an object reference:

// called from push button to invoke planet object method
function doDisplay(popup) {

i = popup.selectedIndex;
planets[popup.options[i].text].showPlanet();

}

The presence of so many similar objects cries out for their storage as an array. Because the names play a key
role in their choice for this application, the named index values work best; in other situations, you may pre-
fer to use numeric indexes to facilitate looping through the array.

Taking advantage of embedded objects
One powerful technique for using custom objects is that of embedding an object within another object.
When you place one object inside another object, the object being placed is known as an embedded object
or object property. Let’s extend the planet example to help you understand the implications of using a cus-
tom object property.

Say that you want to beef up the planet page with a photo of each planet. Each photo has a URL for the
photo file; each photo also contains other information, such as the copyright notice and a reference number,
which displays on the page for the user. One way to handle this additional information is to create a sepa-
rate object definition for a photo database. Such a definition may look like this:

function photo(name, URL, copyright, refNum) {
this.name = name;
this.URL = URL;
this.copyright = copyright;
this.refNum = refNum;

}

You then need to create individual photo objects for each picture. One such definition may look like this:

mercuryPhoto = new photo(“Planet Mercury”, “/images/merc44.gif”,
“(c)1990 NASA”, 28372);

Attaching a photo object to a planet object requires modifying the planet constructor function to accom-
modate one more property, an object property. The new planet constructor looks like this:

function planet(name, diameter, distance, year, day, photo) {
this.name = name;
this.diameter = diameter;
this.distance = distance;
this.year = year;

1048

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1048

this.day = day;
this.showPlanet = showPlanet;
this.photo = photo; // add photo property

}

When the photo objects are created, you can then create each planet object by passing one more
parameter — a photo object you want associated with that object:

// create new planet objects, and store in a series of variables
Mercury = new planet(“Mercury”, “3100 miles”, “36 million miles”,

“88 days”, “59 days”, mercuryPhoto);

To access a property of a photo object, your scripts then have to assemble a reference that works its way
through the connection with the planet object:

copyrightData = Mercury.photo.copyright;

The potential of embedded objects of this type is enormous. For example, you can embed all the copy ele-
ments and image URLs for an online catalog in a single document. As the user selects items to view (or
cycles through them in sequence), a new JavaScript-written page displays the information in an instant.
This requires only the image to be downloaded — unless the image was precached, as described in the
image object discussion in Chapter 18. In this case, everything works instantaneously — no waiting for page
after page of catalog.

If, by now, you think you see a resemblance between this object-within-an-object construction and a rela-
tional database, give yourself a gold star. Nothing prevents multiple objects from having the same subobject
as their properties — like multiple business contacts having the same company object property.

The modern way to create objects
The examples in Listings 34-5 and 34-6 show a way of creating objects that works with all scriptable
browsers. However, there is a much cleaner option available to you. If you can safely assume that your audi-
ence consists of users with more modern browsers, then you’ll likely want to take advantage of the new
Object() constructor, which can be used to create any custom object.

From NN3+ and IE4+ onward (including Moz and W3C browsers), you can use the new Object() con-
structor to generate a blank object. From that point on, you can define property and method names by sim-
ple assignment, as in the following snippet:

var Earth = new Object();
Earth.diameter = “7920 miles”;
Earth.distance = “93 million miles”;
Earth.year = “365.25”;
Earth.day = “24 hours”;
Earth.showPlanet = showPlanet; // function reference

When you create a lot of like-structured objects, the custom object constructor shown in Listing 34-6 is
more efficient. But for single objects, the new Object() constructor is more efficient.

For modern browsers, you can also benefit from a shortcut literal syntax for creating a new object. You can
set pairs of property names and their values inside a set of curly braces, and you can assign the whole con-
struction to a variable that becomes the object name. The following script shows how to organize this kind
of object constructor:

var Earth = {diameter:”7920 miles”, distance:”93 million miles”, year:”365.25”,
day:”24 hours”, showPlanet:showPlanet};

1049

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1049

Colons link name-value pairs, and commas separate multiple name-value pairs. The value portion of a
name-value pair can even be an array (using the [...] constructor shortcut) or a nested object (using
another pair of curly braces). In fact, you can nest arrays and objects to your heart’s content to create
exceedingly complex objects. All in all, this is a very compact way to embed data in a page for script manip-
ulation. If your CGI, XML, and database skills are up to the task, consider using a server program to convert
XML data into this compact JavaScript version with each XML record being its own JavaScript object. For
multiple records, assign the curly-braced object definitions to an array entry. Then your scripts on the client
can iterate through the data and generate the HTML to display the data in a variety of forms and sorted
according to different criteria (thanks to the JavaScript array-sorting powers).

Defining object property getters and setters
JavaScript 1.5 unofficially added an interesting OOP feature that enables you to create special methods for
getting and setting custom object properties. This feature consists of two methods called getter and setter. I
say “unofficially” because getters and setters are not officially part of the current ECMAScript standard and
are therefore left to each browser vendor to implement. As of this writing, Mozilla-based browsers are the
only browsers that support getters and setters.

The purpose of a getter is to assign a new property to an object and to define how the value returned by the
property should be evaluated. A setter does the same, but it also defines how a new value assigned to the
property should apply the value to the object. Both definitions are written in the form of anonymous func-
tions, such that reading or writing an object’s property value can include sophisticated processing for either
operation.

I introduced the idea of creating a getter and setter for an object briefly in Chapter 14, where
the NN6 syntax style extended properties of some W3C DOM objects to include some of the

Microsoft-specific (and very convenient) DOM syntax. Most notably, you can define a getter for any con-
tainer to return an array of nested elements just like the IE-only document.all collection.

Getters and setters are dynamically assigned to the prototype property of an object, thus enabling you to
customize native and DOM objects. Following is the syntax used to fashion getters and setters as methods
of an object’s prototype:

object.prototype.__defineGetter__(“propName”, function)
object.prototype.__defineSetter__(“propName”, function)

Note that the underscores before and after the method names are actually pairs of underscore characters
(that is, _, _, defineGetter, _, _). This double underscore was chosen as a syntax that the ECMA stan-
dard will not use, so it will not conflict with the eventual syntax for this facility that does make its way into
the standard.

The first parameter of the method is the name of the property for which the getter or setter is defined. This
can be an existing property name that you want to override. The second parameter can be a function refer-
ence; but more likely it will be an anonymous function defined in place. By using an anonymous function,
you can take advantage of the context of the object for which the property is defined. For each property,
define both a getter and setter — even if the property is meant to be read-only or write-only.

To see how this mechanism works, let’s use the getter and setter shown in Chapter 14 to add an innerText
property to HTML elements in NN6+/Moz. This property is read/write, so functions are defined for both the
getter and setter. The getter definition is as follows:

NOTENOTE

1050

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1050

HTMLElement.prototype.__defineGetter__(“innerText”, function () {
var rng = document.createRange();
rng.selectNode(this);
return rng.toString();

})

The modified object is the basic HTMLElement object — the object that NN6+ uses to create instances of
every HTML element for the page. After the preceding statement executes, every HTML element on the
page inherits the new innerText property. Each time the innerText property is read for an element, the
anonymous function in this getter executes. Thus, after a text range object is created, the range is set to the
node that is the current element. This is an excellent example of how the context of the current object
allows the use of the this keyword to refer to the very same object. Finally, the string version of the
selected range is returned. It is essential that a getter function include a return statement and that the
returned value is of the desired data type. Also take notice of the closing of the function’s curly brace and
the getter method’s parenthesis.

By executing this function each time the property is read, the getter always returns the current state of the
object. If content of the element has changed since the page loaded, you are still assured of getting the cur-
rent text inside the element. This is far superior to simply running the statements inside this function when
the page loads to capture a static view of the element’s text.

The corresponding setter definition is as follows:

HTMLElement.prototype.__defineSetter__(“innerText”, function (txt) {
var rng = document.createRange();
rng.selectNodeContents(this);
rng.deleteContents();
var newText = document.createTextNode(txt);
this.appendChild(newText);
return txt;

})

To assign a value to an object’s property, the setter function requires that a parameter variable receive the
assigned value. That parameter variable plays a role somewhere within the function definition. For this par-
ticular setter, the current object (this) also manipulates the text range object. The contents of the current
element are deleted, and a text node comprising the text passed as a parameter is inserted into the element.
To completely simulate the IE behavior of setting the innerText property, the text is returned. Although
setters don’t always return values, this one does so that the expression that assigns a value to the
innerText property evaluates to the new text.

If you want to create a read-only property, you still define a setter for the property but you also assign an
empty function, as in:

Node.prototype.__defineSetter__(“all”, function() {})

This prevents assignment statements to a read-only property from generating errors. A write-only property
should also have a getter that returns null or an empty string, as in:

HTMLElement.prototype.__defineGetter__(“outerHTML”, function() {return “”})

Because the getter and setter syntax shown here is unique to NN6+/Moz, you must obviously wrap such
statements inside object detection or browser version detection statements. And, to reiterate, this syntax will
change in future browser versions when ECMA adopts the formal syntax (look for it in JavaScript 2.0).

1051

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1051

Object-Oriented Concepts
As mentioned previously, JavaScript is object-based rather than object-oriented. This means that instead of
adhering to the class, subclass, and inheritance schemes of object-oriented languages such as Java,
JavaScript uses what is called prototype inheritance. This scheme works not only for native and DOM objects
but also for custom objects.

Adding a prototype
A custom object is frequently defined by a constructor function, which typically parcels out initial values to
properties of the object, as in the following example:

function car(plate, model, color) {
this.plate = plate;
this.model = model;
this.color = color;

}
var car1 = new car(“AB 123”, “Ford”, “blue”);

Modern browsers offer a handy shortcut, as well, to stuff default values into properties if none are provided
(the supplied value is null, 0, or an empty string). The OR operator (||) can let the property assignment
statement apply the passed value, if present, or a default value you hard-wire into the constructor.
Therefore, you can modify the preceding function to offer default values for the properties:

function car(plate, model, color) {
this.plate = plate || “missing”;
this.model = model || “unknown”;
this.color = color || “unknown”;

}
var car1 = new car(“AB 123”, “Ford”, “”);

After the preceding statements run, the car1 object has the following properties:

car1.plate // value = “AB 123”
car1.model // value = “Ford”
car1.color // value = “unknown”

If you then add a new property to the constructor’s prototype property, as in

car.prototype.companyOwned = true;

any car object you already created or are about to create automatically inherits the new companyOwned prop-
erty and its value. You can still override the value of the companyOwned property for any individual car object.
But if you don’t override the property for instances of the car object, the car objects whose companyOwned
property is not overridden automatically inherit any change to the prototype.companyOwned value. This has
to do with the way JavaScript looks for prototype property values.

1052

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1052

Prototype inheritance
Each time your script attempts to read or write a property of an object, JavaScript follows a specific
sequence in search of a match for the property name. The sequence is as follows:

1. If the property has a value assigned to the current (local) object, this is the value to use.

2. If there is no local value, check the value of the property’s prototype of the object’s constructor.

3. Continue up the prototype chain until either a match of the property is found (with a value
assigned to it) or the search reaches the native Object object.

Therefore, if you change the value of a constructor’s prototype property and you do not override the prop-
erty value in an instance of that constructor, JavaScript returns the current value of the constructor’s proto-
type property.

Nested objects and prototype inheritance
When you begin nesting objects, especially when one object invokes the constructor of another, there is an
added wrinkle to the prototype inheritance chain. Let’s continue with the car object defined earlier. In this
scenario, consider the car object to be akin to a root object that has properties shared among two other
types of objects. One of the object types is a company fleet vehicle, which needs the properties of the root
car object (plate, model, color) but also adds some properties of its own. The other object that shares
the car object is an object representing a car parked in the company garage — an object that has additional
properties regarding the parking of the vehicle. This explains why the car object is defined on its own.

Now look at the constructor function for the parking record, along with the constructor for the basic car
object:

function car(plate, model, color) {
this.plate = plate || “missing”;
this.model = model || “unknown”;
this.color = color || “unknown”;

}
function carInLot(plate, model, color, timeIn, spaceNum) {

this.timeIn = timeIn;
this.spaceNum = spaceNum;
this.carInfo = car;
this.carInfo(plate, model, color);

}

The carInLot constructor not only assigns values to its unique properties (timeIn and spaceNum) but
it also includes a reference to the car constructor arbitrarily assigned to a property called carInfo. This
property assignment is merely a conduit that allows property values intended for the car constructor to be
passed within the carInLot constructor function. To create a carInLot object, use a statement like the
following:

var car1 = new carInLot(“AA 123”, “Ford”, “blue”, “10:02AM”, “31”);

1053

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1053

After this statement, the car1 object has the following properties and values:

car1.timeIn // value = “10:02AM”
car1.spaceNum // value = “31”
car1.carInfo // value = reference to car object constructor function
car1.plate // value = “AA 123”
car1.model // value = “Ford”
car1.color // value = “blue”

Let’s say that five carInLot objects are created in the script (car1 through car5). The prototype wrinkle
comes into play if, for example, you assign a new property to the car constructor prototype:

car.prototype.companyOwned = true;

Even though the carInLot objects use the car constructor, the instances of carInLot objects do not have
a prototype chain back to the car object. As the preceding code stands, even though you’ve added a
companyOwned property to the car constructor, no carInLot object inherits that property (even if you
were to create a new carInLot object after defining the new prototype property for car). To get the
carInLot instances to inherit the prototype.companyOwned property, you must explicitly connect the
prototype of the carInLot constructor to the car constructor prior to creating instances of carInLot
objects:

carInLot.prototype = new car();

The complete sequence, then, is as follows:

function car(plate, model, color) {
this.plate = plate || “missing”;
this.model = model || “unknown”;
this.color = color || “unknown”;

}
function carsInLot(plate, model, color, timeIn, spaceNum) {

this.timeIn = timeIn;
this.spaceNum = spaceNum;
this.carInfo = car;
this.carInfo(plate, model, color);

}
carsInLot.prototype = new car();
var car1 = new carsInLot(“123ABC”, “Ford”,”blue”,”10:02AM”, “32”);
car.prototype.companyOwned = true;

After this stretch of code runs, the car1 object has the following properties and values:

car1.timeIn // value = “10:02AM”
car1.spaceNum // value = “31”
car1.carInfo // value = reference to car object constructor function
car1.plate // value = “AA 123”
car1.model // value = “Ford”
car1.color // value = “blue”
car1.companyOwned // value = true

NN4+/Moz provides one extra, proprietary bit of syntax in this prototype world. The __proto__ property
(that’s with double underscores before and after the word proto) returns a reference to the object that is next

1054

JavaScript Core Language ReferencePart IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1054

up the prototype chain. For example, if you inspect the properties of car1.__proto__ after the preceding
code runs, you see that the properties of the object next up the prototype chain are as follows:

car1.__proto__.plate // value = “AA 123”
car1.__proto__.model // value = “Ford”
car1.__proto__.color // value = “blue”
car1.__proto__.companyOwned // value = true

This property can be helpful in debugging custom objects and prototype inheritance chain challenges, but
the property is not part of the ECMA standard. Therefore, I discourage you from using the property in your
production scripts since it isn’t available in non-Mozilla-based browsers.

Object Object

Properties Methods

constructor hasOwnProperty()

prototype isPrototypeOf()

propertyIsEnumerable()

toSource()

toString()

unwatch()

valueOf()

watch()

Syntax
Creating an Object object:

function constructorName([arg1,...[,argN]]) {
statement(s)

}
var objName = new constructorName([“argName1”,...[,”argNameN”]);
var objName = new Object();
var objName = {propName1:propVal1[, propName2:propVal2[,...N]}}

Accessing an Object object properties and methods:

objectReference.property | method([parameters])

Compatibility: WinIE4+, MacIE4+, NN3+, Moz+, Safari+

About this object
Although it might sound like doubletalk, the Object object is a vital native object in the JavaScript environ-
ment. It is the root object on which all other native objects — such as Date, Array, String, and the like —
are based. This object also provides the foundation for creating custom objects, as described earlier in this
chapter.

1055

objectObject

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1055

By and large, your scripts do not access the properties of the native Object object. The same is true for
many of its methods, such as toString() and valueOf(), which internally allow debugging alert dialog
boxes (and The Evaluator) to display something when referring to an object or its constructor. Similarly, the
toSource() method returns a string representation of the source code for an object, which is not some-
thing you would typically need to use in a script.

A little more practical are the watch() and unwatch() methods of the Object object, which provide a
mechanism for taking action when a property value changes. You can call the watch() method and assign a
function that is called when a certain property changes. This enables you to handle an internal property
change as an event. When you’re finished watching a property, the unwatch() method is used to stop the
watch.

Listing 34-7 contains an example of how the watch() and unwatch() methods can be used to track the
value of a property.

LISTING 34-7

Watching an Object Property

<html>
<head>

<title>Object Watching</title>
<script type=”text/javascript”>
function setIt(msg) {

document.forms[0].entry.value = msg;
}
function watchIt(on) {

var obj = document.forms[0].entry;
if (on) {

obj.watch(“value”,report);
} else {

obj.unwatch(“value”);
}

}
function report(id, oldval, newval) {

alert(“The field’s “ + id + “ property on its way from \n’” +
oldval + “‘\n to \n’” + newval + “‘.”);

return newval;
}
</script>

</head>
<body>

Watching Over You
<hr />
<form>

Enter text here: <input type=”text” name=”entry” size=”50”
value=”Default Value” />
<p><input type=”button” value=”Set to Phrase I”

onclick=”setIt(‘Four score and seven years ago...’)”
/>

<input type=”button” value=”Set to Phrase 2”

1056

JavaScript Core Language Reference

objectObject

Part IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1056

onclick=”setIt(‘When in the course of human events...’)”
/>

<input type=”reset” onclick=”setIt(‘Default value’)” /></p>

<p><input type=”button” value=”Watch It” onclick=”watchIt(true)” />
<input type=”button” value=”Don’t Watch It” onclick=”watchIt(false)”
/></p>

</form>
</body>

</html>

You can use a trio of methods (hasOwnProperty(), isPrototypeOf(), and propertyIsEnumerable())
to perform some inspection of the prototype environment of an object instance. They are of interest prima-
rily to advanced scripters who are building extensive, simulated object-oriented applications.

Methods
hasOwnProperty(“propName”)
Returns: Boolean.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

The hasOwnProperty() method returns true if the current object instance has the property defined in its
constructor or in a related constructor function. But if this property is defined externally, as through assign-
ment to the object’s prototype property, the method returns false.

Using the example of the car and carInLot objects from earlier in this chapter, the following expressions
evaluate to true:

car1.hasOwnProperty(“spaceNum”);
car1.hasOwnProperty(“model”);

Even though the model property is defined in a constructor that is invoked by another constructor, the
property belongs to the car1 object. The following statement, however, evaluates to false:

car1.hasOwnProperty(“companyOwned”);

This property is defined by way of the prototype of one of the constructor functions and is not a built-in
property for the object instance.

isPrototypeOf(objRef)
Returns: Boolean.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

The isPrototypeOf() method is intended to reveal whether or not the current object has a prototype
relation with an object passed as a parameter. In practice, the IE and NN/Moz versions of this method oper-
ate differently and return different results.

1057

objectObject.isPrototypeOf()

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1057

propertyIsEnumerable(“propName”)
Returns: Boolean.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

In the terminology of the ECMA-262 language specification, a value is enumerable if constructions such as
the for-in property inspection loop (see Chapter 32) can inspect it. Enumerable properties include values
such as arrays, strings, and virtually every kind of object. According to the ECMA specification, this method
is not supposed to work its way up the prototype chain.

toSource()
Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

The toSource() method obtains a string representation of the source code for an object. Unlike the
toString() method, which returns a string equivalent of the value of an object, the toSource() method
returns the underlying code for the object as a string. Seeing as how this is a very specialized, low-level fea-
ture, the method is typically only used internally by JavaScript and potentially in some debugging scenarios.

toString()
Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

The toString() method is used to obtain a string representation of the value of an object. It is fairly com-
mon to take advantage of this method in situations where an object needs to be examined as raw text.
When creating custom objects, you have the ability to create your own toString() method that reveals
whatever information about the object you desire to be seen.

unwatch(“propName”)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

As the counterpart to the watch() method, the unwatch() method terminates a watchpoint that has been
set for a particular property.

valueOf()
Returns: Object.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

The valueOf() method is used to resolve an object to a primitive data type. This may not always be possi-
ble, in which case the method simply returns the object itself. Otherwise, the method returns a primitive
value that represents the object.

1058

JavaScript Core Language Reference

objectObject.valueOf()

Part IV

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1058

watch(“propName”)
Returns: Boolean.
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The watch() method is the key to a handy little JavaScript debugging feature known as watchpoints. A
watchpoint enables you to specify a function that is called whenever the value of a property is set. This
enables you to carefully track the state of properties and take action when an important property value
changes.

You set a watchpoint by calling the watch() method and passing the name of the property that you want to
watch, like this:

obj.watch(“count”,
function(prop, oldval, newval) {

document.writeln(prop + “ changed from “ + oldval + “ to “ + newval);
return newval;

});

In this example, a function is created to output a property change notification and then return the new
property value. Every watchpoint handler must follow this same convention of using three arguments that
specify the property, old value, and new value, respectively.

1059

objectObject.watch()

Functions and Custom Objects 34

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1059

43_069165 ch34.qxp 3/1/07 3:56 PM Page 1060

In addition to all the objects and other language constructs described in the
preceding chapters of this reference part of the book, several language items
need to be treated on a global scale. These items apply to no particular

objects (or any object), and you can use them anywhere in a script. If you read
earlier chapters, you were introduced to many of these functions and statements.
This chapter serves as a convenient place to highlight these all-important items
that are otherwise easily forgotten. At the end of the chapter, note the brief intro-
duction to several objects that are built into the Windows-only versions of
Internet Explorer.

This chapter begins with coverage of the following global functions and state-
ments that are part of the core JavaScript language:

1061

IN THIS CHAPTER
Converting strings into object
references

Creating URL-friendly strings

Adding comments to scripts

Global Functions
and Statements

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1061

Functions Statements

decodeURI() // and /*...*/ (comment)

decodeURIComponent() const

encodeURI() var

encodeURIComponent()

escape()

eval()

isFinite()

isNaN()

Number()

parseFloat()

parseInt()

toString()

unescape()

unwatch()

watch()

Global functions are not tied to the document object model. Instead, they typically enable you to convert
data from one type to another type. The list of global statements is short, but a couple of them appear
extensively in your scripting.

Functions
decodeURI(“encodedURI”)
decodeURIComponent(“encodedURIComponent”)
encodeURI(“URIString”)
encodeURIComponent(“URIComponentString”)
Returns: String.
Compatibility: WinIE5.5+, MacIE-, NN6+, Moz+, Safari-

The ECMA-262 Edition 3 standard, as implemented in IE5.5+, NN6+, and Mozilla-based browsers, pro-
vides utility functions that perform a more rigorous conversion of strings to valid URI strings and vice versa
than was achieved earlier via the escape() and unescape() functions (described later in this chapter). In
fact, the modern encodeURI(), encodeURIComponent(), decodeURI(), and decodeURIComponent()
functions serve as replacements to the now deprecated escape() and unescape() functions.

The purpose of the encoding functions is to convert any string to a version that you can use as a Uniform
Resource Identifier, such as a web page address or an invocation of a server CGI script. Whereas Latin

1062

JavaScript Core Language Reference

decodeURI()

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1062

alphanumeric characters pass through the encoding process untouched, you must use the encoding func-
tions to convert some symbols and other Unicode characters to a form (hexadecimal representations of the
character numbers) that the Internet can pass from place to place. The space character, for example, must
be encoded to its hex version: %20.

Perhaps the biggest difference between the encodeURI() and escape() functions (and their
decodeURI() and unescape() counterparts) is that the more modern versions do not encode a wide
range of symbols that are perfectly acceptable as URI characters according to the syntax recommended in
RFC2396 (http://www.ietf.org/rfc/rfc2396.txt). Thus, the following characters are not encoded
via the encodeURI() function:

; / ? : @ & = + $, - _ . ! ~ * ‘ () #

Use the encodeURI() and decodeURI() functions only on complete URIs. Applicable URIs can be relative
or absolute, but these two functions are wired especially so symbols that are part of the protocol (://),
search string (? and =, for instance), and directory-level delimiters (/) are not encoded. The decodeURI()
function should work with URIs that arrive from servers as page locations, but be aware that some server
CGIs encode spaces into plus symbols (+) that are not decoded back to spaces by the JavaScript function. If
the URIs your script needs to decode contain plus symbols in place of spaces, you need to run your
decoded URI through a string replacement method to finish the job (regular expressions come in handy
here). If you are decoding URI strings that your scripts encoded, use the decode functions only on URIs that
were encoded via the corresponding encode function. Do not attempt to decode a URI that was created via
the old escape() function because the conversion processes work according to different rules.

The difference between a URI and a URI component is that a component is a single piece of a URI, generally
not containing delimiter characters. For example, if you use the encodeURIComponent() function on a
complete URI, almost all of the symbols (other than things such as periods) are encoded into hexadecimal
versions — including directory delimiters. Therefore, you should use the component-level conversion func-
tions only on quite granular pieces of a URI. For example, if you assemble a search string that has a name-
value pair, you can use the encodeURIComponent() function separately on the name and on the value. But
if you use that function on the pair that is already in the form name=value, the function encodes the equal
symbol to a hexadecimal equivalent.

Since the escape() and unescape() functions were sometimes used on strings that weren’t necessarily
URL (URI) strings, you will generally use the encodeURIComponent() and decodeURIComponent()
functions when modernizing code that utilizes escape() and unescape().

Example
Use The Evaluator (Chapter 13) to experiment with the differences between encoding a full URI and a com-
ponent, and encoding and escaping a URI string. For example, compare the results of the following three
statements:

escape(“http://www.giantco.com/index.html?code=42”)
encodeURI(“http://www.giantco.com/index.html?code=42”)
encodeURIComponent(“http://www.giantco.com/index.html?code=42”)

Because the sample URI string is valid as is, the encodeURI() version makes no changes. Experiment
further by making the search string value into a string with a space, and see how each function treats that
character.

1063

decodeURI()

Global Functions and Statements 35

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1063

escape(“URIString” [,1])
unescape(“escapedURIString”)
Returns: String.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

If you watch the content of the Location field in your browser, you may occasionally see URLs that include
a lot of % symbols plus some numbers. The format you see is URL encoding (more accurately called URI
encoding — Uniform Resource Identifier rather than Uniform Resource Locator). This format allows even
multiple word strings and nonalphanumeric characters to be sent as one contiguous string of a very low,
common denominator character set. This encoding turns a character, such as a space, into its hexadecimal
equivalent value preceded by a percent symbol. For example, the space character (ASCII value 32) is hexa-
decimal 20, so the encoded version of a space is %20.

All characters, including tabs and carriage returns, can be encoded in this way and sent as a simple string
that can be decoded on the receiving end for reconstruction. You can also use this encoding to preprocess
multiple lines of text that must be stored as a character string in databases. To convert a plain-language
string to its encoded version, use the escape() method. This function returns a string consisting of the
encoded version. For example:

var theCode = escape(“Hello there”);
// result: “Hello%20there”

Most, but not all, non-alphanumeric characters are converted to escaped versions with the escape() func-
tion. One exception is the plus sign, which URLs use to separate components of search strings. If you must
encode the plus symbol, too, then add the optional second parameter to the function to make the plus sym-
bol convert to its hexadecimal equivalent (2B):

var a = escape(“Adding 2+2”);
// result: “Adding%202+2

var a = escape(“Adding 2+2”,1);
// result: “Adding%202%2B2

The unescape() function was used to convert an escaped string back into plain language. I say “was” because
the function is now deprecated thanks to decodeURI() and decodeURIComponent() and shouldn’t be used.

The escape() function operates in a way that is approximately midway between the newer functions
encodeURI() and encodeComponentURI(). However, the function is now deprecated in lieu of the newer
functions and shouldn’t be used.

eval(“string”)
Returns: Object reference.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Expression evaluation, as you probably are well aware by now, is an important concept to grasp in scripting
with JavaScript (and programming in general). An expression evaluates to some value. But occasionally you
need to force an additional evaluation on an expression to receive the desired results. The eval() function
acts on a string value to force an evaluation of that string expression. Perhaps the most common application
of the eval() function is to convert a string version of an object reference to a genuine object reference.

1064

JavaScript Core Language Reference

eval()

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1064

Example
The eval() function can evaluate any JavaScript statement or expression stored as a string. This includes
string equivalents of arithmetic expressions, object value assignments, and object method invocation. I do
not recommend that you rely on the eval() function, however, because this function is inherently ineffi-
cient (from the standpoint of performance). Fortunately, you may not need the eval() function to get from
a string version of an object’s name to a valid object reference. For example, if your script loops through a
series of objects whose names include serial numbers, you can use the object names as array indices rather
than use eval() to assemble the object references. The inefficient way to set the value of a series of fields
named data0, data1, and so on, is as follows:

function fillFields() {
var theObj;
for (var i = 0; i < 10; i++) {

theObj = eval(“document.forms[0].data” + i);
theObj.value = i;

}
}

A more efficient way is to perform the concatenation within the index brackets for the object reference:

function fillFields() {
for (var i = 0; i < 10; i++) {

document.forms[0].elements[“data” + i].value = i;
}

}

Whenever you are about to use an eval() function, look for ways to use string index values
of arrays of objects instead. The W3C DOM makes it even easier with the help of the

document.getElementById() method, which takes a string as a parameter and returns a reference to
the named object.

isFinite(number)
Returns: Boolean.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

It is rare that you will ever need the isFinite() function, but its purpose is to advise whether a number is
beyond the absolute minimum or maximum values that JavaScript can handle. If a number is outside of
that range, the function returns false. The parameter to the function must be a number data type.

isNaN(expression)
Returns: Boolean.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

For those instances in which a calculation relies on data coming from a text field or other string-oriented
source, you frequently need to check whether the value is a number. If the value is not a number, the calcu-
lation may result in a script error.

TIPTIP

1065

isNaN()

Global Functions and Statements 35

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1065

Example
Use the isNaN() function to test whether a value is a number prior to passing the value onto a calculation.
The most common use of this function is to test the result of a parseInt() or parseFloat() function. If
the strings submitted for conversion to those functions cannot be converted to a number, the resulting value
is NaN (a special symbol indicating “not a number”). The isNaN() function returns true if the value is not
a number.

A convenient way to use this function is to intercept improper data before it can do damage, as follows:

function calc(form) {
var inputValue = parseInt(form.entry.value);
if (isNaN(inputValue)) {

alert(“You must enter a number to continue.”);
} else {

statements for calculation
}

}

Probably the biggest mistake scripters make with this function is failing to observe the case of all the letters
in the function name. The trailing uppercase “N” is easy to miss.

Number(“string”)
parseFloat(“string”)
parseInt(“string” [,radix])
Returns: Number.
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

All three of these functions convert a string value into a numeric value. The parseInt() and
parseFloat() functions are compatible across all versions of all browsers, including very old browsers;
the Number() function was introduced in version 4 browsers.

Use the Number() function when your script is not concerned with the precision of the value and prefers to
let the source string govern whether the returned value is a floating-point number or an integer. The func-
tion takes a single parameter — a string to convert to a number value.

The parseFloat() function also lets the string source value determine whether the returned value is a
floating-point number or an integer. If the source string includes any non-zero value to the right of the deci-
mal, the result is a floating-point number. But if the string value were, say, “3.00”, the returned value
would be an integer value.

An extra, optional parameter for parseInt() enables you to define the number base for use in the conver-
sion. If you don’t specify a radix parameter, JavaScript tries to look out for you; but in doing so, JavaScript
may cause some difficulty for you. The primary problem arises when the string parameter for parseInt()
starts with a zero, which a text box entry or database field might do. In JavaScript, numbers starting with
zero are treated as octal (base-8) numbers. Therefore, parseInt(“010”) yields the decimal value 8.

When you apply the parseInt() function, always specify the radix of 10 if you are working in base-10
numbers. You can, however, specify any radix value from 2 through 36. For example, to convert a binary
number string to its decimal equivalent, assign a radix of 2 as follows:

var n = parseInt(“011”,2);
// result: 3

1066

JavaScript Core Language Reference

parseFloat()

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1066

Similarly, you can convert a hexadecimal string to its decimal equivalent by specifying a radix of 16:

var n = parseInt(“4F”,16);
// result: 79

Example
Both parseInt() and parseFloat() exhibit a very useful behavior: If the string passed as a parameter
starts with at least one number followed by, say, letters, the functions do their jobs on the numeric part of
the string and ignore the rest. This is why you can use parseFloat() on the navigator.appVersion
string to extract just the reported version number without having to parse the rest of the string. For exam-
ple, Firefox 1.0 for Windows reports a navigator.appVersion value as

5.0 (Windows; en-US)

But you can get just the numeric part of the string via parseFloat():

var ver = parseFloat(navigator.appVersion);

The number stored in the navigator.appVersion property refers to the version number of
the underlying browser engine, which helps explain why the reported version in this case is 5.0

even though the Firefox browser application is considered version 1.0.

Because the result is a number, you can perform numeric comparisons to see, for instance, whether the ver-
sion is greater than or equal to 4.

toString([radix])
Returns: String.
Compatibility: WinIE4+, MacIE4+, NN4+, Moz+, Safari+

Every JavaScript core language object and every DOM document object has a toString() method associ-
ated with it. This method is designed to render the contents of the object as a string of text that is as mean-
ingful as possible. Table 35-1 shows the result of applying the toString() method on each of the
convertible core language object types.

TABLE 35-1

toString() Method Results for Object Types

Object Type Result

String The same string

Number String equivalent (but numeric literals cannot be converted)

Boolean “true” or “false”

Array Comma-delimited list of array contents (with no spaces after commas)

Function Decompiled string version of the function definition

NOTENOTE

1067

toString()

Global Functions and Statements 35

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1067

Many DOM objects can be converted to a string. For example, a location object returns its URL. But
when an object has nothing suitable to return for its content as a string, it usually returns a string in the fol-
lowing format:

[object objectType]

Example
The toString() method is available on all versions of all browsers. By setting the optional radix parame-
ter between 2 and 16, you can convert numbers to string equivalents in different number bases. Listing
35-1 calculates and draws a conversion table for decimal, hexadecimal, and binary numbers between 0 and
20. In this case, the source of each value is the value of the index counter variable each time the for loop’s
statements execute.

LISTING 35-1

Using toString() with Radix Values

<html>
<head>

<title>Number Conversion Table</title>
</head>
<body>

Using toString() to convert to other number bases:
<hr />
<table border=”1”>

<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>Binary</th>
<script type=”text/javascript”>
var content = “”;
for (var i = 0; i <= 20; i++) {

content += “<tr>”;
content += “<td>” + i.toString(10) + “<\/td>”;
content += “<td>” + i.toString(16) + “<\/td>”;
content += “<td>” + i.toString(2) + “<\/td><\/tr>”;

}
document.write(content);
</script>

</tr>
</table>

</body>
</html>

The toString() method of user-defined objects does not convert the object into a meaningful string, but
you can create your own method to do just that. For example, if you want to make your custom object’s
toString() method behave like an array’s method, define the action of the method and assign that func-
tion to a property of the object (as shown in Listing 35-2).

1068

JavaScript Core Language Reference

toString()

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1068

LISTING 35-2

Creating a Custom toString() Method

<html>
<head>

<title>Custom toString()</title>
<script type=”text/javascript”>
function customToString() {

var dataArray = new Array();
var count = 0;
for (var i in this) {

dataArray[count++] = this[i];
if (count > 2) {

break;
}

}
return dataArray.join(“,”);

}
var book = {title:”The Aeneid”, author:”Virgil”, pageCount:543};
book.toString = customToString;
</script>

</head>
<body>

A user-defined toString() result:
<hr />
<script type=”text/javascript”>
document.write(book.toString());
</script>

</body>
</html>

When you run Listing 35-2, you can see how the custom object’s toString() handler extracts the values
of all elements of the object. You can customize how the data should be labeled and/or formatted.

Keep in mind that you can provide a custom toString() method to any object that you create, not just
arrays. This is a handy way to provide a glimpse at the contents of an object for debugging purposes. For
example, you could craft a toString() method that carefully formats all of the properties of an object into
an easily readable string of text. Then use an alert box or browser debugging console to view the contents of
the object if a problem arises.

unwatch(property)
watch(property, handler)
Returns: Nothing.
Compatibility: WinIE-, MacIE-, NN4+, Moz-, Safari-

To supply the right kind of information to external debuggers, JavaScript in NN4+ implements two global
functions that belong to every object — including user-defined objects. The watch() function keeps an eye
on a desired object and property. If that property is set by assignment, the function invokes another user-
defined function that receives information about the property name, its old value, and its new value. The
unwatch() function turns off the watch functionality for a particular property.

1069

watch()

Global Functions and Statements 35

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1069

Statements
//
/*...*/
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Comments are statements that the JavaScript interpreter (or server-side compiler) ignores. However, these
statements enable authors to leave notes about how things work in their scripts. Although lavish comments
are useful to authors during a script’s creation and maintenance, the full content of a client-side comment is
downloaded with the document. Every byte of non-operational content of the page takes a bit more time to
download. Still, I recommend lots of comments — particularly as you create a script.

JavaScript offers two styles of comments. One style consists of two forward slashes (no spaces between
them), and is useful for creating a comment on a single line. JavaScript ignores any characters to the right of
those slashes on the same line, even if they appear in the middle of a line. You can stack as many lines of
these single-line comments as is necessary to convey your thoughts. I typically place a space between the
second slash and the beginning of my comment. The following are examples of valid, one-line comment
formats:

// this is a comment line usually about what’s to come
var a = “Fred”; // a comment about this line
// You may want to capitalize the first word of a comment
// sentence if it runs across multiple lines.
//
// And you can leave a completely blank line, like the one above.

For longer comments, it is usually more convenient to enclose the section in the other style of comment,
which is fully capable of spanning multiple lines. The following comment opens with a forward slash
and asterisk (/*) and ends with an asterisk and forward slash (*/). JavaScript ignores all statements in
between — including multiple lines. If you want to comment out briefly a large segment of your script
for debugging purposes, it is easiest to enclose the segment with these comment symbols. To make these
comment blocks easier to find, I generally place these symbols on their own lines as follows:

/*
some
commented-out
statements

*/

If you are developing rather complex documents, you might find using comments a convenient way to help
you organize segments of your scripts and make each segment easier to find. For example, you can define a
comment block above each function and describe what the function is about, as in the following example.

/*---
calculate()
Performs a mortgage calculation based on
parameters blah, blah, blah. Called by blah
blah blah.

---*/
function calculate(form) {

statements
}

1070

JavaScript Core Language Reference

// (comment)

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1070

const
Compatibility: WinIE-, MacIE-, NN6+, Moz+, Safari-

The const keyword initializes a constant. Unlike a variable, whose data is subject to change while a page
loads, a constant’s value cannot be modified once it is assigned. It is common practice in many program-
ming languages to define constant identifiers with all uppercase letters, usually with underscore characters
to delimit multiple words. This style makes it easier to quickly find constants in your code, as well as
reminds you that their values are fixed.

Example
Listing 35-3 shows how you can use a constant in NN6+ and other Mozilla-based browsers. The page con-
veys temperature data for several cities. (Presumably, this data is updated on the server and fashioned into
an array of data when the user requests the page.) For temperatures below freezing, the temperature is
shown in a distinctive text style. Because the freezing temperature is a constant reference point, it is
assigned as a constant.

The property assignment event handling technique employed throughout the code in this chap-
ter and much of the book is a deliberate simplification to make the code more readable. It is

generally better to use the more modern approach of binding events using the addEventListener()
(NN6+/Moz/W3C) or attachEvent() (IE5+) methods. A modern cross-browser event handling technique
is explained in detail in Chapter 25.

LISTING 35-3

Using the const Keyword

<html>
<head>

<title>const(ant)</title>
<style type=”text/css”>
.cold {font-weight:bold; color:blue}
td {text-align:center}
</style>
<script type=”text/javascript”>
const FREEZING_F = 32;
var cities = [“London”, “Moscow”, “New York”, “Tokyo”, “Sydney”];
var tempsF = [33, 12, 20, 40, 75];
function showData() {

var tableData = “”;
for (var i = 0; i < cities.length; i++) {

tableData += “<tr><td>” + cities[i] + “<\/td><td “;
tableData += (tempsF[i] < FREEZING_F) ? “class=’cold’” : “”;
tableData += “>” + tempsF[i] + “<\/td><\/tr>”;

}
document.getElementById(“display”).innerHTML = tableData;

}
</script>

</head>

continued

NOTENOTE

1071

const

Global Functions and Statements 35

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1071

LISTING 35-3 (continued)

<body onload=”showData()”>
<h1>The const keyword</h1>
<hr />
<table id=”temps”>

<tr>
<th>City</th>
<th>Temperature</th>

</tr>
<tbody id=”display”></tbody>

</table>
</body>

</html>

The const keyword likely will be adopted in the next version of the ECMA-262 standard and will become
an official part of the JavaScript vernacular in future browsers. In the meantime, it enjoys full support in
Mozilla-based browsers.

var
Compatibility: WinIE3+, MacIE3+, NN2+, Moz+, Safari+

Before using any variable, you should declare it (and optionally initialize it with a value) via the var state-
ment. If you omit the var keyword, the variable is automatically assigned as a global variable within the
current document. To keep a variable local to a function, you must declare or initialize the variable with the
var keyword inside the function’s braces.

If you assign no value to a variable, it evaluates to null. Because a JavaScript variable is not limited to one
variable type during its lifetime, you don’t need to initialize a variable to an empty string or zero unless that
initial value helps your scripting. For example, if you initialize a variable as an empty string, you can then
use the add-by-value operator (+=) to append string values to that variable in a future statement in the doc-
ument.

To save statement lines, you can declare and/or initialize multiple variables with a single var statement.
Separate each varName=value pair with a comma, as in

var name, age, height; // declare as null
var color = “green”, temperature = 85.6; // initialize

Variable names (also known as identifiers) must be one contiguous string of characters, and the first charac-
ter must be a letter. Many punctuation symbols are also banned, but the underscore character is valid and
often is used to separate multiple words in a long variable name. All variable names (like most identifiers in
JavaScript) are case-sensitive, so you must name a particular variable identically throughout the variable’s
scope.

1072

JavaScript Core Language Reference

var

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1072

WinIE Objects
Compatibility: WinIE4+, MacIE4+, NN-, Moz-, Safari-

For better or worse, Microsoft prides itself on the integration between web browser functionality and the
Windows operating system. The linkage between browser and OS is most apparent in IE’s facilities for
accessing ActiveX objects. Microsoft has fashioned several such objects for access to scripters — again, pro-
vided the deployment is intended only for Windows versions of Internet Explorer. Some objects also exist
as a way to expose some Visual Basic Script (VBScript) functionality to JavaScript. Because these objects are
more within the realm of Windows and ActiveX programming, the details and quirks of working with them
from WinIE is best left to other venues. But in case you are not familiar with these facilities, the following
discussions introduce the basic set of WinIE objects. You can find more details at the Microsoft Developer
Network (MSDN) web site at http:// msdn.microsoft.com/.

The objects mentioned here are the ActiveXObject, Dictionary, Enumerator, and VBArray objects.
Microsoft documents these objects as if they are part of the native JScript language. However, you can be
sure that they will remain proprietary certainly to Internet Explorer, if not exclusively for Windows-only
versions.

JScript is Microsoft’s proprietary take on JavaScript that is supported by Internet Explorer.
JScript is essentially the same as JavaScript with a few Windows-specific extras thrown in, such

as support for ActiveX objects.

ActiveXObject
ActiveXObject is a generic object that allows your script to open and access what Microsoft sometimes
calls automation objects. An automation object is an executable program that might run on the client or be
served from a server. This can include local applications, such as applications from the Microsoft Office
suite, executable DLLs (dynamic-link libraries), and so on.

Use the constructor for the ActiveXObject to obtain a reference to the object according to the following
syntax:

var objRef = new ActiveXObject(appName.className[, remoteServerName]);

This JScript syntax is the equivalent of the VBScript CreateObject() method. You need to know a bit
about Windows programming to determine the application name and the classes or types available for that
application. For example, to obtain a reference to an Excel worksheet, use this constructor:

var mySheet = new ActiveXObject(“Excel.Sheet”);

Once you have a reference to the desired object, you must also know the names of the properties and meth-
ods of the object you’ll be addressing. You can access much of this information via Microsoft’s developer
tools, such as Visual Studio .NET or the tools that come with Visual Basic .NET. These tools enable you to
query an object to discover its properties and methods. Unfortunately, an ActiveXObject’s properties are
not enumerable through a typical JavaScript for-in property inspector.

Accessing an ActiveXObject, especially one on the client, involves some serious security considerations.
The typical security setup for an IE client prevents scripts from accessing client applications, at least not
without asking the user if it’s okay to do so. While it’s foolhardy to state categorically that you cannot per-
form surreptitious inspection or damage to a client without the user’s knowledge (hackers find holes from

NOTENOTE

1073

ActiveXObject

Global Functions and Statements 35

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1073

time to time), it is highly unlikely. In a corporate environment, where some level of access to all clients is
desirable, the client may be set up to accept instructions to work with ActiveX objects when they come
from trusted sources. The bottom line is that unless you are well versed in Windows programming, don’t
expect the ActiveXObject to become some kind of magic portal that enables you to invade the privacy or
security of unsuspecting users.

Dictionary
Although the Dictionary object is very helpful to VBScript authors, JavaScript already provides the equiv-
alent functionality natively. A Dictionary object behaves very much like a JavaScript array that has string
index values (similar to a Java hash table), although numeric index values are also acceptable in the
Dictionary. Indexes are called keys in this environment. VBScript arrays do not have this facility natively,
so the Dictionary object supplements the language for the sake of convenience. Unlike a JavaScript array,
however, you must use the various properties and methods of the Dictionary object to add, access, or
remove items from it.

You create a Dictionary object via ActiveXObject as follows:

var dict = new ActiveXObject(“Scripting.Dictionary”);

You must create a separate Dictionary object for each array. Table 35-2 lists the properties and methods of
the Dictionary object. After you create a blank Dictionary object, populate it via the Add() method for
each entry. For example, the following statements create a Dictionary object to store U.S. state capitals:

var stateCaps = new ActiveXObject(“Scripting.Dictionary”);
stateCaps.Add(“Illinois”, “Springfield”);

You can then access an individual item via the Key property (which, thanks to its VBScript heritage, looks
more like a JavaScript method). One convenience of the Dictionary object is the Keys() method, which
returns an array of all the keys in the dictionary — something that a string-indexed JavaScript array could use.

TABLE 35-2

Dictionary Object Properties and Methods

Property Description

Count Integer number of entries in the dictionary (read-only)

Item(“key”) Reads or writes a value for an entry whose name is key

Key(“key”) Assigns a new key name to an entry

Method Description

Add(“key”, value) Adds a value associated with a unique key name

Exists(“key”) Returns Boolean true if key exists in dictionary

Items() Returns VBArray of values in dictionary

Keys() Returns VBArray of keys in dictionary

Remove(“key”) Removes key and its value

RemoveAll() Removes all entries

1074

JavaScript Core Language Reference

Dictionary

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1074

Enumerator
An Enumerator object provides JavaScript with access to collections that otherwise do not allow direct
access to their items via index number or name. This object isn’t necessary when working with DOM collec-
tions, such as document.all, because you can use the item() method to obtain a reference to any mem-
ber of the collection. But if you are scripting ActiveX objects, some of these objects’ methods or properties
may return collections that cannot be accessed through this mechanism or the JavaScript for-in property
inspection technique. Instead, you must wrap the collection inside an Enumerator object.

To wrap a collection in an Enumerator, invoke the constructor for the object, passing the collection as the
parameter:

var myEnum = new Enumerator(someCollection);

This enumerator instance must be accessed via one of its four methods to position a “pointer” to a particular
item and then extract a copy of that item. In other words, you don’t access a member directly (that is, by
diving into the collection with an item number to retrieve). Instead, you move the pointer to the desired
position and then read the item value. As you can see from the list of methods in Table 35-3, this object is
truly intended for looping through the collection. Pointer control is limited to positioning it at the start of
the collection and incrementing its position along the collection by one:

myEnum.moveFirst();
for (; !myEnum.atEnd(); myEnum.moveNext()) {

val = myEnum.item();
// more statements that work on value

}

TABLE 35-3

Enumerator Object Methods

Method Description

atEnd() Returns true if pointer is at end of collection

item() Returns value at current pointer position

moveFirst() Moves pointer to first position in collection

moveNext() Moves pointer to next position in collection

VBArray
The VBArray object provides JavaScript access to Visual Basic safe arrays. Such an array is read-only and is
commonly returned by ActiveX objects. Such arrays can be composed in VBScript sections of client-side
scripts. Visual Basic arrays by their very nature can have multiple dimensions. For example, the following
code creates a three-by-two VB array:

<script type=”text/vbscript”>
Dim myArray(2, 1)
myArray(0, 0) = “A”
myArray(0, 1) = “a”
myArray(1, 0) = “B”
myArray(1, 1) = “b”

1075

VBArray

Global Functions and Statements 35

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1075

myArray(2, 1) = “C”
myArray(2, 2) = “c”
</script>

Once you have a valid VB array, you can convert it to an object that the JScript interpreter can’t choke on:

<script type=”text/javascript”>
var theVBArray = new VBArray(myArray);
</script>

Global variables from one script language block can be accessed by another block, even in a different lan-
guage. But at this point, the array is not in the form of a JavaScript array yet. You can either convert it to
such via the VBArray.toArray() method or access information about the VBArray object through its
other methods (described briefly in Table 35-4). Once you convert a VBArray to a JavaScript array, you can
then iterate through the values just like any JavaScript array.

TABLE 35-4

VBArray Object Methods

Method Description

dimensions() Returns number of dimensions of the original array

getItem(dim1[, dim2[,...dimN]]) Returns value at array location defined by dimension addresses

ibound(dim) Returns lowest index value for a given dimension

toArray() Returns JavaScript array version of VBArray

ubound(dim) Returns highest index value for a given dimension

When you use the toArray() method and the source array has multiple dimensions, values from dimen-
sions after the first “row” are simply appended to the JavaScript array with no nesting structure.

1076

JavaScript Core Language Reference

VBArray

Part IV

44_069165 ch35.qxp 3/1/07 3:57 PM Page 1076

Appendixes

IN THIS PART
Appendix A
JavaScript and Browser Objects
Quick Reference

Appendix B
JavaScript Reserved Words

Appendix C
Answers to Tutorial Exercises

Appendix D
JavaScript and DOM Internet
Resources

Appendix E
What’s on the CD-ROM

45_069165 pt05.qxp 3/1/07 3:57 PM Page 1077

45_069165 pt05.qxp 3/1/07 3:57 PM Page 1078

1079

JavaScript and Browser
Objects Quick Reference

46_069165 appa.qxp 3/1/07 3:58 PM Page 1079

constructor
length
prototype

anchor("anchorName")
big()
blink()
bold()
charAt(index)
charCodeAt([i])
concat(string2)
fixed()
fontcolor(#rrggbb)
fontsize(1to7)
fromCharCode(n1...)*

indexOf("str" [,i])
italics()
lastIndexOf("str" [,i])
link(url)
localeCompare()
match(regexp)
replace(regexp,str)
search(regexp)
slice(i,j)
small()
split(char)
strike()
sub()
substr(start,length)
substring(intA, intB)
sup()
toLocaleLowerCase()
toLocaleUpperCase()
toLowerCase()
toString()
toUpperCase()
valueOf()

String 28

*Method of the static String object.

constructor
length
prototype

concat(array2)
every(func[, thisObj])M1.8

filter(func[, thisObj])M1.8

forEach(func[, thisObj])M1.8

indexOf(func[, thisObj])M1.8

join("char")
lastIndexOf(func[, thisObj])M1.8

map(func[, thisObj])M1.8

pop()
push()
reverse()
shift()
slice(i,[j])
some(func[, thisObj])M1.8

sort(compareFunc)
splice(i,j[,items])
toLocaleString()
toString()
unshift()

Array 31

global
ignoreCase
input
lastIndex
multiline
lastMatch
lastParen
leftContext
prototype
rightContext
source
$1...$9

compile(regexp)
exec("string")*
test("string")
str.match(regexp)
str.replace(regexp,"string")
str.search(regexp)
str.split(regexp[,limit])

Regular Expressions 42

*Returns array with properties: index, input, [0],...[n].

constructor
prototype

getFullYear()
getYear()
getMonth()
getDate()
getDay()
getHours()
getMinutes()
getSeconds()
getTime()
getMilliseconds()
getUTCFullYear()
getUTCMonth()
getUTCDate()
getUTCDay()
getUTCHours()
getUTCMinutes()
getUTCSeconds()
getUTCMilliseconds()
parse("dateString")*

setYear(val)
setFullYear(val)
setMonth(val)
setDate(val)
setDay(val)
setHours(val)
setMinutes(val)
setSeconds(val)
setMilliseconds(val)
setTime(val)
setUTCFullYear(val)
setUTCMonth(val)
setUTCDate(val)
setUTCDay(val)
setUTCHours(val)
setUTCMinutes(val)
setUTCSeconds(val)
setUTCMilliseconds(val)
getTimezoneOffset()
toDateString()
toGMTString()
toLocaleDateString()
toLocaleString()
toLocaleTimeString()
toString()
toTimeString()
toUTCString()
UTC(dateValues)*

Date 30

*Method of the static Date object.

if (condition) {
statementsIfTrue

}

if (condition) {
statementsIfTrue

} else {
statementsIfFalse

}

result = condition ? expr1 : expr2

for ([init expr]; [condition]; [update expr]) {
statements

}

for (var in object) {
statements

}

for each ([var] varName in objectRef) {
statements

}M1.8.1

with (objRef) {
statements

}

do {
statements

} while (condition)

yield valueM1.8.1

while (condition) {
statements

}

return [value]

switch (expression) {
 case labelN :

statements
 [break]
 ...
 [default :

statements]
}

label :
continue [label]
break [label]

try {
statements to test

}
catch (errorInfo) {

statements if exception occurs in try block
}
[finally {

 statements to run, exception or not
}]

throw value

Control Statements 32

JavaScript and Browser Objects Quick Reference

E
LN2
LN10
LOG2E
LOG10E
PI
SQRT1_2
SQRT2

abs(val)
acos(val)
asin(val)
atan(val)
atan2(val1, val2)
ceil(val)
cos(val)
exp(val)
floor(val)
log(val)
max(val1, val2)
min(val1, val2)
pow(val1, power)
random()
round(val)
sin(val)
sqrt(val)
tan(val)

Math* 29

*All properties and methods are of the static Math object.

constructor
MAX_VALUE
MIN_VALUE
NaN
NEGATIVE_INFINITY
POSITIVE_INFINITY
prototype

toExponential(n)
toFixed(n)
toLocaleString()
toString([radix])
toPrecision(n)
valueOf()

Number 29

prototype
constructor
descriptionE

fileNameE

lineNumber
message
name
numberE

toString()

Error 32

arguments
caller
constructor
length
prototype

apply(this, argsArray)
call(this[,arg1[,...argN]])
toString()
valueOf()

Function 34

constructor
prototype

toString()
valueOf()

Boolean 29

1080

AppendixesPart V

46_069165 appa.qxp 3/1/07 3:58 PM Page 1080

appCoreM

clientInformationES1.2

clipboardDataE

closed
Components[]M

contentM

controllers[]M

cryptoM

defaultStatus
dialogArgumentsE

dialogHeightE

dialogLeftE

dialogTopE

dialogWidthE

directoriesM

document
eventES

externalE

frameElementEMS1.2
frames[]
fullScreenM1.4

history
innerHeightMS

innerWidthMS

length
location
locationbarM

menubarM

name
navigator
netscapeM

offscreenBufferingES1.2

opener
outerHeightMS

outerWidthMS

pageXOffsetMS

pageYOffsetMS

parent
personalbarM

pkcs11M

prompterM

returnValueE

screen
screenLeftES1.2

screenTopES1.2

screenXMS1.2

screenYMS1.2

scrollbarsM

scrollMaxXM1.4

scrollMaxYM1.4

scrollXMS

scrollYMS

self
sidebarM

status
statusbarM

toolbarM

top
window

addEventListener(”evt”, func,capt)MS

alert(”msg”)
attachEvent(”evt”, func)E

back()M

blur()
clearInterval(ID)
clearTimeout(ID)
close()
confirm(”msg”)
createPopup()E

detachEvent(”evt”, func)E

dispatchEvent()MS

dump(”msg”)M1.4

execScript(”exprList”[, lang])E

find([”str”[, case[, up]])M

fireEvent(”evt”[, evtObj])E

focus()
forward()M

geckoActiveXObject(ID)M1.4

getComputedStyle(node, “”)M

getSelection()MS

home()M

moveBy(∆x, ∆y)
moveTo(x, y)
navigate(”url”)E

open(”url”, “name”[, specs])
openDialog(”url”, “name”[, specs])M

print()
prompt(”msg”, ”reply”)
removeEventListener(”evt”, func,capt)MS

resizeBy(∆x, ∆y)
resizeTo(width, height)
scroll()
scrollBy(∆x, ∆y)
scrollByLines(n)M

scrollByPages(n)M

scrollTo(x, y)
setInterval(func, msecs[, args])
setTimeout(func, msecs[, args])
showHelp(”url”)E

showModalDialog(”url”[, args][, features])ES2.01

showModelessDialog(”url”[, args][, features])E

sizeToContent()M

stop()M

onabortM

onafterprintE

onbeforeprintE

onbeforeunloadE

onblur
onclick
onclose
onerror
onfocus
onhelpE

onkeydown
onkeypress
onkeyup
onload
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
onmove
onreset
onresizeEM

onscrollEMS1.3

onunload

window 16

hash
host
hostname
href
pathname
port
protocol
search

assign("url")
reload([unconditional])
replace(”url”)

location 17

currentM(signed)

length
nextM(signed)

previousM(signed)

back()
forward()
go(int | "url")

history 17

Appendix A
JavaScript Bible, 6th Edition

by Danny Goodman

How to Use This Quick Reference

This guide contains quick reference info for the
core JavaScript language and browser object
models starting with IE 5.5, Mozilla, and Safari.

Numbers in the upper right corners of object
squares are chapter numbers in which the object
is covered in detail.

Each term is supported by all baseline browsers unless
noted with a superscript symbol indicating browser
brand and version:
 E—Internet Explorer M—Mozilla S—Safari
For example, M1.4 means the term is supported only
by Mozilla 1.4 or later; E means the term is supported
only by Internet Explorer.

JavaScript and Browser Objects Quick Reference

Comparison
== Equals
=== Strictly equals
!= Does not equal
!== Strictly does not equal
> Is greater than
>= Is greater than or equal to
< Is less than
<= Is less than or equal to

Arithmetic
+ Plus (and string concat.)
- Minus
* Multiply
/ Divide
% Modulo
++ Increment
-- Decrement
-val Negation

Assignment
= Equals
+= Add by value
-= Subtract by value
*= Multiply by value
/= Divide by value
%= Modulo by value
<<= Left shift by value
>>= Right shift by value
>>>= Zero fill by value
&= Bitwise AND by value
|= Bitwise OR by value
^= Bitwise XOR by value

Boolean
&& AND
|| OR
! NOT

Bitwise
& Bitwise AND
| Bitwise OR
^ Bitwise XOR
~ Bitwise NOT
<< Left shift
>> Right shift
>>> Zero fill right shift

Miscellaneous
, Series delimiter
delete Property destroyer
in Item in object
instanceof Instance of
new Object creator
this Object self-reference
typeof Value type
void Return no value

Operators 33

Functions
atob()M

btoa()M

decodeURI("encodedURI")
decodeURIComponent("encComp")
encodeURI("URIString")
encodeURIComponent("compString")
escape("string" [,1])
eval("string")
isFinite(number)
isNaN(expression)
isXMLName("string")M1.8.1

Number("string")
parseFloat("string")
parseInt("string" [,radix])
toString([radix])
unescape("string")
unwatch(prop)
watch(prop, handler)

Statements
// /*...*/
const
var

Globals 35

allowTransparencyE

borderColorE

contentDocumentMS

contentWindowEM

frameBorder
heightE

longDesc
marginHeight
marginWidth
name
noResize
scrolling
src
widthE

frame 16

border
borderColorE

cols
frameBorderE

frameSpacingE

rows

frameset 16

(None) onload

align
allowTransparencyE

contentDocumentMS

contentWindowEM

frameBorderE

frameSpacingE

height
hspaceE

longDesc
marginHeight
marginWidth
name
noResize
scrolling
src
vspaceE

width

iframe 16

document
isOpen

hide()
show()

popupE 16

1081

JavaScript and Browser Objects Quick Reference A

46_069165 appa.qxp 3/1/07 3:58 PM Page 1081

activeElementE

alinkColor
anchors[]
applets[]
baseURIM

bgColor
body
charsetE

characterSetM

compatModeEM

contentTypeM

cookie
defaultCharsetE

defaultViewM

designModeEM

doctypeM
documentElement
documentURIM1.7

domain
embeds[]
expandoE

fgColor
fileCreatedDateE

fileModifiedDateE

fileSizeE

forms[]
frames[]
heightMS

images[]
implementationE6MS

inputEncodingM1.8

lastModified
linkColor
links[]
location
mediaE

mimeTypeE

namePropE6

namespaces[]
parentWindowE

plugins[]
protocolE

referrer
scripts[]E

securityE

selectionE

strictErrorCheckingM1.8

styleSheets[]
title
URL
URLUnencodedE

vlinkColor
widthMS

xmlEncodingM1.8

xmlStandaloneM1.8

xmlVersionM1.8

clear()
close()
createAttribute(”name”)E6MS

createCDATASection(”data”)M

createComment(”text”)E6MS

createDocumentFragment()E6MS

createElement(”tagname”)
createElementNS(”uri”, “tagname)
createEvent(”evtType”)MS

createEventObject([evtObj])E

createNSResolver(nodeResolver)M

createRange()M

createStyleSheet([”url”[, index]])E

createTextNode(”text”)
createTreeWalker(root, what, filterfunc, exp)M1.4

elementFromPoint(x, y)E

evaluate(”expr”, node, resolver, type, result)M

execCommand(”cmd”[, UI][, param])EM1.3S1.3

getElementById(”ID”)
getElementsByName(”name”)
importNode(node, deep)M

open([”mimetype”][, “replace”])
queryCommandEnabled(”commandName”)EM1.3

queryCommandIndterm(”commandName”)
queryCommandState(”commandName”)
queryCommandSupported(”commandName”)
queryCommandText(”commandName”)
queryCommandValue(”commandName”)
recalc([all])E

write(”string”)
writeln(”string”)

onselectionchangeE

onstopE

document 18

versionE6MS

html 37

profile

head 37

text

title 37

href
target

base 37

charsetE

content
httpEquiv
name
urlE

meta 37defer
event
htmlFor
src
text
type

script 37

JavaScript and Browser Objects Quick Reference

charset
disabled
href
hreflangE6MS

media
rel
rev
sheetM

styleSheetE

target
type

(None) onloadE

link 37

accessKey
all[]E

attributes[]
baseURIM

behaviorUrns[]E

canHaveChildrenE

canHaveHTMLE

childNodes[]
childrenES1.2

citeE6MS

className
clientHeight
clientLeftE

clientTopE

clientWidth
contentEditableES1.2

currentStyleE

dateTimeE6M

dataFldE

dataFormatAsE

dataSrcE

dir
disabled
documentES1.2

filters[]E

firstChild
height
hideFocusE

id
innerHTML
innerTextES

isContentEditableES1.2

isDisabledE

isMultiLineE

isTextEditE

lang
languageE

lastChild
length
localNameMS

namespaceURIMS

nextSibling
nodeName
nodeType
nodeValue
offsetHeight
offsetLeft
offsetParent
offsetTop
offsetWidth
outerHTMLES1.3

outerTextES1.3

ownerDocument
parentElementES1.2

parentNode
parentTextEditE

prefixMS

previousSibling
readyStateE

recordNumberE

runtimeStyleE

scopeNameE

scrollHeight
scrollLeft
scrollTop
scrollWidth
sourceIndexE

style
tabIndex
tagName
tagUrnE

textContentM1.7

title
uniqueIDE

unselectableE

width

addBehavior(”url”)E

addEventListener(”evt”, func,capt)MS

appendChild(node)
applyElement(elem[, type])E

attachEvent(”evt”, func)E

blur()
clearAttributes()E

click()
cloneNode(deep)
compareDocumentPosition(node)M1.4

componentFromPoint(x, y)E

contains(elem)E

createControlRange()E

detachEvent(”evt”, func)E

dispatchEvent(evtObj)MS

doScroll(”action”)E

dragDrop()E

fireEvent(”evtType”[, evtObj])E

focus()
getAdjacentText(”where”)E

getAttribute(”name”[, case])
getAttributeNode(”name”)E6MS

getAttributeNodeNS(”uri”, “name”)M

getAttributeNS(”uri”, “name”)M

getBoundingClientRect()E

getClientRects()E

getElementsByTagName(”tagname”)
getElementsByTagNameNS(”uri”, “name”)M

getExpression(”attrName”)E

getFeature(”feature”, “version”)M1.7.2

getUserData(”key”)M1.7.2

hasAttribute(”attrName”)MS

hasAttributeNS(”uri”, “name”)M

hasAttributes()MS

hasChildNodes()
insertAdjacentElement(”where”, obj)E

insertAdjacentHTML(”where”, “HTML”)E

insertAdjacentText(”where”, “text”)E

insertBefore(newNode, refNode)
isDefaultNamespace(”uri”)M1.7.2

isEqualNode(node)M1.7.2

isSameNode(node)M1.7.2

isSupported(”feature”, “version”)MS

item(index)
lookupNamespaceURI(”prefix”)M1.7.2

lookupPrefix(”uri”)M1.7.2

mergeAttributes(srcObj)E

normalize()
releaseCapture()E

removeAttribute(”attrName”[, case])
removeAttributeNode(attrNode)E6MS

removeAttributeNS(”uri”, “name”)M

removeBehavior(ID)E

removeChild(node)
removeEventListener(”evt”, func,capt)MS

removeExpression(”propName”)E

removeNode(childrenFlag)E

replaceAdjacentText(”where”, “text”)E

replaceChild(newNode, oldNode)
replaceNode(newNode)E

scrollIntoView(topFlag)EMS2.02

setActive()E

setAttribute(”name”, “value”[, case])
setAttributeNode(attrNode)E6MS

setAttributeNodeNS(”uri”, “name”)M

setAttributeNS(”uri”, “name”, “value”)M

setCapture(containerFlag)E

setExpression(”propName”, “expr”)E

setUserData(”key”, data, handler)M1.7.2

swapNode(nodeRef)E

tags(”tagName”)E

toString()
urns(”behaviorURN”)E

onactivateE

onafterupdateE

onbeforecopyES1.3

onbeforecutES1.3

onbeforedeactivateE

onbeforeeditfocusE

onbeforepasteES1.3

onbeforeupdateE

onblur
oncellchangeE

onclick
oncontextmenuEM

oncontrolselectE

oncopyES1.3

oncutES1.3

ondataavailableE

ondatasetchangedE

ondatasetcompleteE

ondblclick
ondeactivateE

ondragES1.3

ondragendES1.3

ondragenterES1.3

ondragleaveES1.3

ondragoverES1.3

ondragstartES1.3

ondropES1.3

onerrorupdateE

onfilterchangeE

onfocus
onfocusinE

onfocusoutE

onhelpE

onkeydown
onkeypress
onkeyup
onlayoutcompleteE

onlosecaptureE

onmousedown
onmouseenterE

onmouseleaveE

onmousemove
onmouseout
onmouseover
onmouseup
onmousewheelE

onmoveE

onmoveendE

onmovestartE

onpasteES1.3

onpropertychangeE

onreadystatechangeEMS1.2

onresize
onresizeendE

onresizestartE

onrowenterE

onrowexitE

onrowsdeleteE

onrowsinsertedE

onscrollE

onselectstartES1.3

All HTML Element Objects 15

1082

AppendixesPart V

46_069165 appa.qxp 3/1/07 3:58 PM Page 1082

charsetE6MS

coordsE6MS

hash
host
hostname
href
hreflangE6MS

MethodsE

mimeTypeE

name
namePropE

pathname
port
protocol
rel
rev
search
shapeE6MS

target
typeE6MS

urnE

a 19

alt
coords
hash
host
hostname
href
noHref
pathname
port
protocol
search
shape
target

area 20

areas[]
name

(None) onscrollE

map 20

align
alt
border
completeEM

dynsrcE

fileCreatedDateE

fileModifiedDateE

fileSizeE

fileUpdatedDateE

height
href
hspace
isMap
longDescE6MS

loopE

lowsrcEM

mimeTypeE6

name
namePropE

naturalHeightM

naturalWidthM

protocolE

src
startE

useMap
vspace
width
xMS

yMS

(None) onabort
onerror
onload

img 20

fillStyle
globalAlpha
globalCompositeOperation
lineCap
lineJoin
lineWidth
miterLimit
shadowBlur
shadowColor
shadowOffsetX
shadowOffsetY
strokeStyle
target

arc(x, y, radius, start, end, clockwise)
arcTo(x1, y1, x2, y2, radius)
bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)
beginPath()
clearRect(x, y, width, height)
clip()
closePath()
createLinearGradient(x1, y1, x2, y2)
createPattern(img, repetition)
createRadialGradient(x1, y1, radius1, x2, y2, radius2)
drawImage(img, x, y)
drawImage(img, x, y, width, height)
fill()
fillRect(x, y, width, height)
getContext(contextID)
lineTo(x, y)
moveTo(x, y)
quadraticCurveTo(cpx, cpy, x, y)
rect(x, y, width, height)
restore()
rotate(angle)
save()
scale(x, y)
stroke()
strokeRect(x, y, width, height)
translate(x, y)

canvasM1.8S1.3 20

citeE6MS

blockquote, q 36

clear

br 36

align

h1...h6 36

color
face
size

font 36

align
colorE

noShade
size
width

hr 36

bottom
left
right
top

TextRectangleE 36

collapsed
commonAncestorContainer
endContainer
endOffset
startContainer
startOffset

cloneContents()
cloneRange()
collapse([start])
compareBoundaryPoints(type,src)
compareNode(node)
comparePoint(node, offset)
createContextualFragment("text")
deleteContents()
detach()
extractContents()
insertNode(node)
intersectsNode(node)
isPointInRange(node, offoffsetset)
selectNode(node)
selectNodeContents(node)
setEnd(node,offset)
setEndAfter(node)
setEndBefore(node)
setStart(node,offset)
setStartAfter(node)
setStartBefore(node)
surroundContents(node)
toString()

RangeMS 36

JavaScript and Browser Objects Quick Reference

anchorNodeM

anchorOffsetM

focusNodeM

focusOffsetM

isCollapsedM

rangeCountM

typeE

typeDetailE

addRange(range)M

clear()E

collapse(node, offset)M

collapseToEnd()M

collapseToStart()M

containsNode(node, entireFlag)M

createRange()E

deleteFromDocument()M

empty()E

extend(node, offset)M

getRangeAt(rangeIndex)M

removeAllRanges()M

removeRange(range)M

selectAllChildren(elementRef)M

toString()M

selection 36

boundingHeight
boundingLeft
boundingTop
boundingWidth
htmlText
offsetLeft
offsetTop
text

collapse([start])
compareEndPoints("type",range)
duplicate()
execCommand("cmd"[,UI[,val]])
expand("unit")
findText("str"[,scope,flags])
getBookmark()
getBoundingClientRect()
getClientRects()
inRange(range)
isEqual(range)
move("unit"[,count])
moveEnd("unit"[,count])
moveStart("unit"[,count])
moveToBookmark("bookmark")
moveToElementText(elem)
moveToPoint(x,y)
parentElement()
pasteHTML("HTMLText")
queryCommandEnabled("cmd")
queryCommandIndeterm("cmd")
queryCommandState("cmd")
queryCommandSupported("cmd")
queryCommandText("cmd")
queryCommandValue("cmd")
scrollIntoView()
select()
setEndPoint("type",range)

TextRangeE 36

behaviorE

bgColorE

directionEM

heightEM

hspaceEM

loopE

scrollAmountEM

scrollDelayEM

trueSpeedE

vspaceE

widthE

start()EM

stop()EM
onbounceE

onfinishE

onstartE

marquee 36
start
type

ol 38

type
value

li 38

type

ul 38

compact

dl, dt, dd 38

alink
background
bgColor
bgPropertiesE

bottomMarginE

leftMarginE

link
noWrapE

rightMarginE

scrollE

scrollLeftEM

scrollTopEM

text
topMarginE

vLink

createControlRange()E

createTextRange()E

doScroll(”scrollAction”)E

onafterprintE

onbeforeprintE

onscrollE

body 18

1083

JavaScript and Browser Objects Quick Reference A

46_069165 appa.qxp 3/1/07 3:58 PM Page 1083

acceptCharset
action
autocompleteE

elements[]
encodingEM

enctypeE6MS

length
method
name
target

reset()
submit()

onreset
onsubmit

form 21

align
form

fieldset, legend 21

form
htmlFor

label 21

JavaScript and Browser Objects Quick Reference

checked(checkbox, radio)

complete(image)

defaultChecked(checkbox, radio)

defaultValue(text, password)

form
maxLength(text)

name
readOnly(text)

size(text)

src(image)

type
value

input 22/23/24

select()(text, password) onchange(text)

cols
form
name
readOnly
rows
type
value
wrap

textarea 23

createTextRange()
select()

onchange

form
length
multiple
name
options[]
options[i].defaultSelected
options[i].index
options[i].selected
options[i].text
options[i].value
selectedIndex
size
type
value

add(newOption[, index])E

add(newOption, optionRef)MS

remove(index)

onchange

select 24

align
backgroundE

bgColor
border
borderColorE

borderColorDarkE

borderColorLightE

caption
cellPadding
cellsE

cellSpacing
colsE

datePageSizeE

frame
height
rows
rules
summaryE6MS

tbodies
tFoot
tHead
width

createCaption()
createTFoot()
createTHead()
deleteCaption()
deleteRow(i)
deleteTFoot()
deleteTHead()
firstPage()E

insertRow(i)
lastPage()
moveRow(srcIndex, destIndex)E

nextPage()E

previousPage()E

refresh()E

onscroll

table 38

defaultSelected
form
label
selected
text
value

option 24

form
label

optgroupE6MS 24

align
vAlign

caption 38

align
chE6MS

chOffE6MS

span
vAlign
width

col, colgroup 38

align
bgColor
chE6MS

chOffE6MS

rows
vAlign

tbody, tfoot, thead 38

deleteRow(i)
insertRow(i)
moveRow(srcIndex, destIndex)E

appCodeName
appMinorVersionE

appName
appVersion
browserLanguageE

cookieEnabled
cpuClassE

languageMS

mimeTypesMS

onLineE

oscpuMS

platform
pluginsMS

productMS

productSubMS

securityPolicyM

systemLanguageE

userAgent
userLanguage
userProfileE

vendorMS
vendorSubMS

navigator 39

javaEnabled()
preference(name[, val])M(signed)

align
bgColor
borderColor
borderColorDark
borderColorLight
cells
chE6MS

chOffE6MS

heightE

rowIndex
sectionRowIndex
vAlign

tr 38

deleteCell(i)
insertCell(i)

abbrE6MS

align
axisE6MS

backgroundE

bgColor
borderColorE

borderColorDarkE

borderColorLightE

cellIndex
chE

chOffE

colSpan
headers
height
noWrap
rowSpan
vAlign
width

td, th 38

availHeight
availLeftMS

availTopMS

availWidth
bufferDepthE

colorDepth
fontSmoothingEnabledE

height
pixelDepth
updateIntervalE

width

screen 39

1084

AppendixesPart V

46_069165 appa.qxp 3/1/07 3:58 PM Page 1084

JavaScript and Browser Objects Quick Reference

description
enabledPlugin
type
suffixes

mimeTypeMS 39

name
filename
description
length

pluginMS 39

refresh()

alignM

heightEM

hiddenE
name
pluginspageM

srcM

unitsM

widthEM

(Object variables)

embed 39

align
altE6MS

altHTMLE
archiveE6MS

code
codeBase
height
hspace
name
objectE

vspace
width
(Applet variables)

applet 39

(Applet methods) alignES

altE6
altHTMLE

archiveE6MS

baseHrefE

baseURIM

borderE6MS

classidE

code
codeBase
codeType
contentDocumentM

data
declareE6MS

form
height
hspace
name
objectE

standbyE6MS

type
useMapE6MS

vspace
width
(Object variables)

object 39

(Object methods)

readyState
responseText
responseXML
status
statusText

abort()
getAllResponseHeaders()
getResponseHeader(”headerName”)
open(”method”, “url”[, asyncFlag])
send(data)
setRequestHeader(”name”, “value”)

onreadystatechange

XMLHttpRequestEMS1.2
27

altKey
altLeftE

behaviorCookieE6

behaviorPartE

bookmarksE6

boundElementsE6

bubblesMS

button
cancelableMS

cancelBubble
charCodeMS

clientX
clientY
contentOverflowE

ctrlKey
ctrlLeftE

currentTargetMS

dataFldE6

dataTransferES2

detailMS2

eventPhaseMS

fromElementE

isCharMS

isTrustedM1.7.5

keyCode
layerXMS

layerYMS

metaKeyMS

nextPageE

offsetXE

offsetYE

originalTargetM

pageXMS

pageYMS

propertyNameE

qualifierE6

reasonE6

recordsetE6

relatedTargetMS

repeatE

returnValueES1.2

saveTypeE

screenX
screenY
shiftKey
shiftLeftE

srcElementES1.2

srcFilterE

srcUrnE

targetMS

timeStampMS

toElementE

type
viewMS

wheelDataE

xE

yE

initEvent()MS

initKeyEvent()MS

initMouseEvent()MS

initMutationEvent()MS

initUIEvent()MS

preventDefault()MS

stopPropagation()MS

event 25

1085

JavaScript and Browser Objects Quick Reference A

46_069165 appa.qxp 3/1/07 3:58 PM Page 1085

JavaScript and Browser Objects Quick Reference

media
type

style (element) 26

cssRulesMS

cssTextE

disabled
href
idE

importsE

media
ownerNodeMS

ownerRuleMS

owningElementE

pagesE

parentStyleSheet
readOnlyE

rules
title
type

addImport(”url”[, index])E

addRule(”selector”, “spec”[, index])E

deleteRule(index)MS

insertRule(”rule”, index)MS

removeRule(index)E

styleSheet 26

cssTextMS

parentStyleSheetMS

readOnlyE

selectorText
style
typeMS

cssRule, rule 26

Text & Fonts
color
font
fontFamily
fontSize
fontSizeAdjustM

fontStretchM

fontStyle
fontVariantEMS1.3

fontWeight
letterSpacing
lineBreakE

lineHeight
quotesM

rubyAlignE

rubyOverhangE

rubyPositionE

textAlign
textAlignLastE

textAutospaceE

textDecoration
textDecorationBlinkE

textDecorationLineThroughE

textDecorationNoneE

textDecorationOverlineE

textDecorationUnderlineE

textIndent
textJustifyE

textJustifyTrimE

textKashidaSpaceE

textOverflowE6S1.3

textShadowMS1.2

textTransform
textUnderlinePositionE

unicodeBidi
whiteSpace
wordBreakE

wordSpacingE6MS

wordWrapES1.3

writingModeE

Inline Display & Layout
clear
clip
clipBottomE

clipLeftE

clipRightE

clipTopE

contentMS1.3

counterIncrementM1.8

counterResetM1.8

cssFloatMS

cursorEMS1.3

direction
display
filterE

layoutGridE

layoutGridCharE

layoutGridLineE

layoutGridModeE

layoutGridTypeE

markerOffsetM

marksM

maxHeightE7MS

maxWidth
minHeight
minWidth
MozOpacityM

opacityM1.7.2S1.2

overflow
overflowXEM1.8S1.2

overflowYEM1.8S1.2

styleFloatE

verticalAlignEMS1.2

visibility
width
zoomE

Positioning
bottom
height
left
pixelBottomES

pixelHeightES

pixelLeftES

pixelRightES

pixelTopES

pixelWidthES

posBottomE

posHeightE

posLeftE

posRightE

posTopE

posWidthE

position
right
top
width
zIndex

Background
background
backgroundAttachmentEMS1.2

backgroundColor
backgroundImage
gackgroundPosition
backgroundPositionXES1.3

backgroundPositionYES1.3

backgroundRepeat

Borders & Edges
border
borderBottom
borderLeft
borderRight
borderTop
borderBottomColor
borderLeftColor
borderRightColor
borderTopColor
borderBottomStyle
borderLeftStyle
borderRightStyle
borderTopStyle
borderBottomWidth
borderLeftWidth
borderRightWidth
borderTopWidth
borderColor
borderStyle
borderWidth
margin
marginBottom
marginLeft
marginRight
marginTop
outlineM1.8.1S1.2

outlineColorM1.8.1S1.2

outlineStyleM1.8.1S1.2

outlineOffsetM1.8.1S1.2

outlineWidthM1.8.1S1.2

padding
paddingBottom
paddingLeft
paddingRight
paddingTop

Lists
listStyle
listStyleImage
listStylePosition
listStyleType

Scrollbars
scrollbar3dLightColorE

scrollbarArrowColorE

scrollbarBaseColorE

scrollbarDarkShadowColorE

scrollbarFaceColorE

scrollbarHighlightColorE

scrollbarShadowColorE

scrollbarTrackColorE

Tables
borderCollapseEMS1.3

borderSpacing
captionSideMS

emptyCellsMS1.3

tableLayout

Printing
orphansM

widowsM

pageM

pageBreakAfterEMS1.3

pageBreakBeforeEMS1.3

pageBreakInsideM

sizeM

Miscellaneous
acceleratorE

behaviorE

cssTextEMS1.3

imeModeE

style 26

1086

AppendixesPart V

46_069165 appa.qxp 3/1/07 3:58 PM Page 1086

Every programming language has a built-in vocabulary of keywords that
you cannot use for the names of variables and the like. Because a
JavaScript function is an object that uses the function name as an identifier

for the object, you cannot employ reserved words for function names either. It’s
worth nothing that many of the keywords in the list are not technically a part of
the JavaScript language just yet, but they are reserved for potential future use.
Remember that JavaScript keywords are case-sensitive. Although you may get
away with using these words in other cases, it may lead to unnecessary confusion
for someone reading your scripts.

abstract boolean break byte

case catch char class

const continue debugger default

delete do double else

enum export extends false

final finally float for

function goto if implements

import in instanceof int

interface long native new

null package private protected

public return short static

super switch synchronized this

throw throws transient true

try typeof var void

volatile while with

1087

JavaScript Reserved Words

47_069165 appb.qxp 3/1/07 3:58 PM Page 1087

47_069165 appb.qxp 3/1/07 3:58 PM Page 1088

This appendix provides answers to the tutorial exercises that appear in Part
II of this book (Chapters 4 through 12).

Chapter 4 Answers
1. The catalog page (a) and temperature calculator (d) are good client-side

JavaScript applications. Even though the catalog relies on server storage
of the image files, you can create a more engaging and responsive user
interface of buttons and swappable images. The temperature calculator
is a natural, because all processing is done instantaneously on the
client, rather than having to access the server for each conversion.

The Web site visit counter (b) that accumulates the number of different
visitors to a Web site is a server-side application, because the count
must be updated and maintained on the server. At best, a client-side
counter could keep track of the number of visits the user has made to a
site and report to the user how many times he or she has been to the
site. The storage requires scripting the cookie (see Chapter 16). A chat
room application (c) done properly requires server facilities to open up
communication channels among all users connected simultaneously.
Client-side scripting by itself cannot create a live chat environment.

1089

Answers to Tutorial Exercises

48_069165 appc.qxp 3/1/07 3:58 PM Page 1089

2. a. Valid, because it is one contiguous word. InterCap spelling is fine.

b. Valid, because an underscore character is acceptable between words.

c. Not valid, because an identifier cannot begin with a numeral.

d. Not valid, because no spaces are allowed.

e. Not valid, because apostrophes and most other punctuation are not allowed.

3. The diagram is as follows. The paragraph element reference is:

document.getElementById(“formPar”)

4. In common:

n Both are types of nodes, derived from the basic DOM node

n Both may be children of parent nodes that act as containers

Different:

n An element node is created by a tag, while a text node has no tag associated with it

n A text node cannot be a parent to any other node, but an element node can be either a parent
(branch node) or end node (leaf node)

5. <input type=”button” name=”Hi” value=”Howdy” onclick=”alert(‘Hello to you,
too!’)”>

Chapter 5 Answers
1. <script type=”text/javascript”>

<!--
document.write(“Hello, world.”);
// -->
</script>

document

html

head body

“Search Form”

title

img

p

form

p

input input“Search For: ”

1090

AppendixesPart V

48_069165 appc.qxp 3/1/07 3:58 PM Page 1090

2. <html>
<body>
<script type=”text/javascript”>
<!--
document.write(“Hello, world.”);
// -->
</script>
</body>
</html>

3. <html>
<body>
<script type=”text/javascript”>
<!--
// write a welcome message to the world
document.write(“Hello, world.”);
// -->
</script>
</body>
</html>

4. My answer is written so that both event handlers call separate functions. You can also have each event
handler invoke the alert() method inline. If you prefer to follow the XHTML format, include a
space and forward slash character before the right angle bracket of the input element’s tag.

<html>
<head>
<title>An onload script</title>
<script type=”text/javascript”>
<!--
function done() {

alert(“The page has finished loading.”);
}
function alertUser() {

alert(“Ouch!”);
}
// -->
</script>
</head>
<body onload=”done()”>
Here is some body text.
<form>

<input type=”button” name=”oneButton” value=”Press Me!”
onclick=”alertUser()”>
</form>
</body>
</html>

5. a. The page displays two text fields.

b. The user enters text into the first field and either clicks or tabs out of the field to trigger the
onchange event handler.

c. The function displays an all-uppercase version of one field into the other.

1091

Answers to Tutorial Exercises C

48_069165 appc.qxp 3/1/07 3:58 PM Page 1091

Chapter 6 Answers
1. a. Valid.

b. Not valid. The variable needs to be a single word, such as howMany or how_many.

c. Valid. The trailing semicolon is missing, but because it is optional for a one-line statement,
browsers accept the statement as written.

d. Not valid. The variable name cannot begin with a numeral. If the variable needs a number to
help distinguish it from other similar variables, then put the numeral at the end: address1.

2. a. 4

b. 40

c. “4020”

d. “Robert”

3. The functions are parseInt() and parseFloat(). Strings to be converted are passed as param-
eters to the functions: parseInt(document.getElementById(“entry”).value).

4. Both text field values are strings that must be converted to numbers before they can be arithmeti-
cally added together. You can use the parseFloat() functions either on the variable assignment
expressions (for example, var value1 =
parseFloat(document.getElementById(“inputA”).value)) or in the addition expression
(document.getElementById(“output”).value = parseFloat(value1) +
parseFloat(value2)).

5. Concatenate means to join together two strings to become one string.

Chapter 7 Answers
1. The following answer shows the HTML markup portion in XHTML, where elements not acting as

containers (notably the input elements) include a space and forward slash to simulate XHTML’s
required close tag.

<html>
<head>
<script type=”text/javascript”>
var USStates = new Array(51);
USStates[0] = “Alabama”;
USStates[1] = “Alaska”;
USStates[2] = “Arizona”;
USStates[3] = “Arkansas”;
USStates[4] = “California”;
USStates[5] = “Colorado”;
USStates[6] = “Connecticut”;
USStates[7] = “Delaware”;
USStates[8] = “District of Columbia”;
USStates[9] = “Florida”;
USStates[10] = “Georgia”;
USStates[11] = “Hawaii”;
USStates[12] = “Idaho”;
USStates[13] = “Illinois”;
USStates[14] = “Indiana”;
USStates[15] = “Iowa”;

1092

AppendixesPart V

48_069165 appc.qxp 3/1/07 3:58 PM Page 1092

USStates[16] = “Kansas”;
USStates[17] = “Kentucky”;
USStates[18] = “Louisiana”;
USStates[19] = “Maine”;
USStates[20] = “Maryland”;
USStates[21] = “Massachusetts”;
USStates[22] = “Michigan”;
USStates[23] = “Minnesota”;
USStates[24] = “Mississippi”;
USStates[25] = “Missouri”;
USStates[26] = “Montana”;
USStates[27] = “Nebraska”;
USStates[28] = “Nevada”;
USStates[29] = “New Hampshire”;
USStates[30] = “New Jersey”;
USStates[31] = “New Mexico”;
USStates[32] = “New York”;
USStates[33] = “North Carolina”;
USStates[34] = “North Dakota”;
USStates[35] = “Ohio”;
USStates[36] = “Oklahoma”;
USStates[37] = “Oregon”;
USStates[38] = “Pennsylvania”;
USStates[39] = “Rhode Island”;
USStates[40] = “South Carolina”;
USStates[41] = “South Dakota”;
USStates[42] = “Tennessee”;
USStates[43] = “Texas”;
USStates[44] = “Utah”;
USStates[45] = “Vermont”;
USStates[46] = “Virginia”;
USStates[47] = “Washington”;
USStates[48] = “West Virginia”;
USStates[49] = “Wisconsin”;
USStates[50] = “Wyoming”;

var stateEntered = new Array(51);
stateEntered[0] = 1819;
stateEntered[1] = 1959;
stateEntered[2] = 1912;
stateEntered[3] = 1836;
stateEntered[4] = 1850;
stateEntered[5] = 1876;
stateEntered[6] = 1788;
stateEntered[7] = 1787;
stateEntered[8] = 0000;
stateEntered[9] = 1845;
stateEntered[10] = 1788;
stateEntered[11] = 1959;
stateEntered[12] = 1890;
stateEntered[13] = 1818;
stateEntered[14] = 1816;
stateEntered[15] = 1846;

1093

Answers to Tutorial Exercises C

48_069165 appc.qxp 3/1/07 3:58 PM Page 1093

stateEntered[16] = 1861;
stateEntered[17] = 1792;
stateEntered[18] = 1812;
stateEntered[19] = 1820;
stateEntered[20] = 1788;
stateEntered[21] = 1788;
stateEntered[22] = 1837;
stateEntered[23] = 1858;
stateEntered[24] = 1817;
stateEntered[25] = 1821;
stateEntered[26] = 1889;
stateEntered[27] = 1867;
stateEntered[28] = 1864;
stateEntered[29] = 1788;
stateEntered[30] = 1787;
stateEntered[31] = 1912;
stateEntered[32] = 1788;
stateEntered[33] = 1789;
stateEntered[34] = 1889;
stateEntered[35] = 1803;
stateEntered[36] = 1907;
stateEntered[37] = 1859;
stateEntered[38] = 1787;
stateEntered[39] = 1790;
stateEntered[40] = 1788;
stateEntered[41] = 1889;
stateEntered[42] = 1796;
stateEntered[43] = 1845;
stateEntered[44] = 1896;
stateEntered[45] = 1791;
stateEntered[46] = 1788;
stateEntered[47] = 1889;
stateEntered[48] = 1863;
stateEntered[49] = 1848;
stateEntered[50] = 1890;

function getStateDate() {
var selectedState = document.getElementById(“entry”).value;
for (var i = 0; i < USStates.length; i++) {

if (USStates[i] == selectedState) {
break;

}
}
alert(“That state entered the Union in “ + stateEntered[i] + “.”);

}
</script>
</head>
<body>
<form name=”entryForm”>
Enter the name of a state:
<input type=”text” name=”entry” />

1094

AppendixesPart V

48_069165 appc.qxp 3/1/07 3:58 PM Page 1094

<input type=”button” value=”Look Up Entry Date” onclick=”getStateDate()”
/>
</form>
</body>
</html>

2. Several problems plague this function definition. Parentheses are missing from the first if con-
struction’s condition statement. Curly braces are missing from the second nested if...else con-
struction. A mismatch of curly braces also exists for the entire function. The following is the
correct form (changes and additions in boldface):

function format(ohmage) {
var result;
if (ohmage >= 10e6) {

ohmage = ohmage / 10e6;
result = ohmage + “ Mohms”;

} else {
if (ohmage >= 10e3) {

ohmage = ohmage / 10e3;
result = ohmage + “ Kohms”;

} else {
result = ohmage + “ ohms”;

}
}
alert(result);

}

3. Here is one possibility:

for (var i = 1; i < tomatoes.length; i++) {
if (tomatoes[i].looks == “mighty tasty”) {

break;
}

}
var myTomato = tomatoes[i]

4. The new version defines a different local variable name for the dog.

<html>
<head>
<script type=”text/javascript”>
var aBoy = “Charlie Brown”; // global
var hisDog = “Snoopy”; // global
function demo() {

var WallacesDog = “Gromit”; // local version of hisDog
var output = WallacesDog + “ does not belong to “ + aBoy + “.
”;
document.write(output);

}
</script>
<body>
<script type=”text/javascript”>
demo(); // runs as document loads
document.write(hisDog + “ belongs to “ + aBoy + “.”);
</script>
</body>
</html>

1095

Answers to Tutorial Exercises C

48_069165 appc.qxp 3/1/07 3:58 PM Page 1095

5. The application uses three parallel arrays and is structured very much like the solution to ques-
tion 1. Learn to reuse code whenever you can.

<html>
<head>
<script type=”text/javascript”>
var planets = new Array(4);
planets[0] = “Mercury”;
planets[1] = “Venus”;
planets[2] = “Earth”;
planets[3] = “Mars”;

var distance = new Array(4);
distance[0] = “36 million miles”;
distance[1] = “67 million miles”;
distance[2] = “93 million miles”;
distance[3] = “141 million miles”;

var diameter = new Array(4);
diameter[0] = “3100 miles”;
diameter[1] = “7700 miles”;
diameter[2] = “7920 miles”;
diameter[3] = “4200 miles”;

function getPlanetData() {
var selectedPlanet = document.getElementById(“entry”).value;
for (var i = 0; i < planets.length; i++) {

if (planets[i] == selectedPlanet) {
break;

}
}
var msg = planets[i] + “ is “ + distance[i];
msg += “ from the Sun and “;
msg += diameter[i] + “ in diameter.”;
document.getElementById(“output”).value = msg;

}
</script>
</head>
<body>
<form name=”entryForm”>
Enter the name of a planet:
<input type=”text” name=”entry” id=”entry” />
<input type=”button” value=”Look Up a Planet” onclick=”getPlanetData()”
/>

<input type=”text” size=”70” name=”output” id=”output” />
</form>
</body>
</html>

1096

AppendixesPart V

48_069165 appc.qxp 3/1/07 3:58 PM Page 1096

Chapter 8 Answers
1. a. Close, but no cigar. Array references are always plural:

window.document.forms[0]

b. Not valid: self refers to a window and entryForm must refer to a form. Where’s the
document? It should be self.document.entryForm.entryField.value.

c. Valid. This reference points to the name property of the third form in the document.

d. Not valid. The uppercase “D” in the method name is incorrect.

e. Valid, assuming that newWindow is a variable holding a reference to a subwindow.

2. window.alert(“Welcome to my Web page.”);

3. document.write(“<h1>Welcome to my Web page.</h1>”);

4. A script in the Body portion invokes a function that returns the text entered in a prompt() dialog
box.

<html>
<head>
<script type=”text/javascript”>
function askName() {

var name = prompt(“What is your name, please?”,””);
return name;

}
</script>
</head>
<body>
<script type=”text/javascript”>
document.write(“Welcome to my web page, “ + askName() + “.”);
</script>
</body>
</html>

5. The URL can be derived from the href property of the location object.

<html>
<head>
<script type=”text/javascript”>
function showLocation() {

alert(“This page is at: “ + location.href);
}
</script>
</head>
<body onload=”showLocation()”>
Blah, blah, blah.
</body>
</html>

1097

Answers to Tutorial Exercises C

48_069165 appc.qxp 3/1/07 3:58 PM Page 1097

Chapter 9 Answers
1. For Listing 9-1, pass the text input element object because that’s the only object involved in the

entire transaction.

<html>
<head>
<title>Text Object value Property</title>
<script type=”text/javascript”>
function upperMe(field) {

field.value = field.value.toUpperCase();
}
</script>
</head>
<body>
<form onsubmit=”return false”>
<input type=”text” name=”convertor” value=”sample”
onchange=”upperMe(this)”>
</form>
</body>
</html>

For Listing 9-2, the button invokes a function that communicates with a different element in the
form. Pass the form object.

<html>
<head>
<title>Checkbox Inspector</title>
<script type=”text/javascript”>
function inspectBox(form) {

if (form.checkThis.checked) {
alert(“The box is checked.”);

} else {
alert(“The box is not checked at the moment.”);

}
}
</script>
</head>
<body>
<form>
<input type=”checkbox” name=”checkThis”>Check here

<input type=”button” value=”Inspect Box” onclick=”inspectBox(this.form)”>
</form>
</body>
</html>

1098

AppendixesPart V

48_069165 appc.qxp 3/1/07 3:58 PM Page 1098

For Listing 9-3, again the button invokes a function that looks at other elements in the form. Pass
the form object.

<html>
<head>
<title>Extracting Highlighted Radio Button</title>
<script type=”text/javascript”>
function fullName(form) {

for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {

break;
}

}
alert(“You chose “ + form.stooges[i].value + “.”);

}
</script>
</head>

<body>
<form>
<p>Select your favorite Stooge:
<input type=”radio” name=”stooges” value=”Moe Howard” checked>Moe
<input type=”radio” name=”stooges” value=”Larry Fine”> Larry
<input type=”radio” name=”stooges” value=”Curly Howard”> Curly

<input type=”button” name=”Viewer” value=”View Full Name...”
onclick=”fullName(this.form)”></p>
</form>
</body>
</html>

For Listing 9-4, all action is triggered by and confined to the select object. Pass only that object
to the function.

<html>
<head>
<title>Select Navigation</title>
<script type=”text/javascript”>
function goThere(list) {

location = list.options[list.selectedIndex].value;
}
</script>
</head>

<body>
<form>
Choose a place to go:
<select name=”urlList” onchange=”goThere(this)”>

<option selected value=”index.html”>Home Page
<option value=”store.html”>Shop Our Store
<option value=”policies”>Shipping Policies
<option value=”http://www.google.com”>Search the Web

</select>
</form>
</body>
</html>

1099

Answers to Tutorial Exercises C

48_069165 appc.qxp 3/1/07 3:58 PM Page 1099

2. Here are the most likely ways to reference the text box object:

document.getElementById(“email”)
document.forms[0].elements[0]
document.forms[“subscription”].elements[0]
document.subscription.elements[0]
document.forms[0].elements[“email”]
document.forms[“subscription”].elements[“email”]
document.subscription.elements[“email”]
document.forms[0].email
document.forms[“subscription”].email
document.subscription.email

The reference document.all.email (or any reference starting with document.all) works only
in Internet Explorer and other browsers that emulate IE, but not in Mozilla or Safari, as requested.
Other valid references may include the W3C DOM getElementsByTagName() method. Since
the question indicates that there is only one form on the page, the text box is the first input ele-
ment in the page, indicating that document.body.getElementsByTagName(“input”)[0]
would be valid for this page.

3. The this keyword refers to the text input object, so that this.value refers to the value prop-
erty of that object.

function showText(txt) {
alert(txt);

}

4. document.accessories.acc1.value = “Leather Carrying Case”;
document.forms[1].acc1.value = “Leather Carrying Case”;

5. The select object invokes a function that does the job.

<html>
<head>
<title>Color Changer</title>
<script type=”text/javascript”>
function setColor(list) {

var newColor = list.options[list.selectedIndex].value;
document.bgColor = newColor;

}
</script>
</head>

<body>
<form>
Select a background color:
<select onchange=”setColor(this)”>
<option value=”red”>Stop
<option value=”yellow”>Caution
<option value=”green”>Go
</select>
</form>
</body>
</html>

1100

AppendixesPart V

48_069165 appc.qxp 3/1/07 3:58 PM Page 1100

Chapter 10 Answers
1. Use string.indexOf() to see if the field contains the “@” symbol.

<html>
<head>
<title>E-mail @ Validator</title>
<script type=”text/javascript”>
function checkAddress(form) {

if (form.email.value.indexOf(“@”) == -1) {
alert(“Check the e-mail address for accuracy.”);
return false;

}
return true;

}
</script>
</head>

<body>
<form onsubmit=”return checkAddress(this)”>
Enter your e-mail address:
<input type=”text” name=”email” size=”30”>

<input type=”submit”>
</form>
</body>
</html>

2. Remember that the substring goes up to, but does not include, the index of the second parameter.
Spaces count as characters.

myString.substring(0,3) // result = “Int”
myString.substring(11,17) // result = “plorer”
myString.substring(5,12) // result = “net Exp”

3. The missing for loop is in boldface. You could also use the increment operator on the count
variable (++count) to add 1 to it for each letter “e.”

function countE(form) {
var count = 0;
var inputString = form.mainstring.value.toLowerCase();
for (var i = 0; i < inputString.length; i++) {

if (inputString.charAt(i) == “e”) {
count += 1;

}
}
var msg = “The string has “ + count;
msg += “ instances of the letter e.”;
alert(msg);

}

1101

Answers to Tutorial Exercises C

48_069165 appc.qxp 3/1/07 3:58 PM Page 1101

4. The formula for the random throw of one die is in the chapter.

<html>
<head>
<title>Roll the Dice</title>
<script type=”text/javascript”>
function roll(form) {

form.die1.value = Math.floor(Math.random() * 6) + 1
form.die2.value = Math.floor(Math.random() * 6) + 1

}
</script>
</head>

<body>
<form>
<input type=”text” name=”die1” size=”2”>
<input type=”text” name=”die2” size=”2”>

<input type=”button” value=”Roll the Dice” onclick=”roll(this.form)”>
</form>
</body>
</html>

5. If you used the Math.round() method in your calculations, that is fine for your current exposure
to the Math object. Another method, Math.ceil(), may be more valuable because it rounds up
any fractional value.

<html>
<head>
<title>Waiting for Santa</title>
<script type=”text/javascript”>
function daysToXMAS() {

var oneDay = 1000 * 60 * 60 * 24;
var today = new Date();
var XMAS = new Date(“December 25, 2001”);
var diff = XMAS.getTime() - today.getTime();
return Math.ceil(diff/oneDay);

}
</script>
</head>

<body>
<script type=”text/javascript”>
document.write(daysToXMAS() + “ days until Christmas.”);
</script>
</body>
</html>

1102

AppendixesPart V

48_069165 appc.qxp 3/1/07 3:58 PM Page 1102

Chapter 11 Answers
1. onload=”parent.currCourse = ‘history101’”

2.

3. All three frames are siblings, so references include the parent.

parent.mechanics.location.href = “french201M.html”;
parent.description.location.href = “french201D.html”;

4. A script in one of the documents is attempting to reference the selector object in one of the
frames but the document has not fully loaded, causing the object to not yet be in the browser’s
object model. Rearrange the script so that it fires in response to the onload event handler of the
framesetting document.

5. From the subwindow, the opener property refers back to the frame containing the
window.open() method. To extend the reference to the frame’s parent, the reference includes
both pieces: opener.parent.location.

Chapter 12 Answers
1. As the document loads, the tag creates a document image object. A memory image object

is created with the new Image() constructor. Both objects have the same properties, and assign-
ing a URL to the src property of a memory object loads the image into the browser’s image cache.

2. var janeImg = new Image(100,120);
janeImg.src = “jane.jpg”;

3. document.images[“people”].src = janeImg.src;

4. Surround tags with link (<a>) tags, and use the link’s onclick, onmouseover, and
onmouseout event handlers. Set the image’s border attribute to zero if you don’t want the link
highlight to appear around the image.

5. The following works in all W3C DOM-compatible browsers. The order of the first two statements
may be swapped without affecting the script.

var newElem = document.createElement(“a”);
var newText = document.createTextNode(“Next Page”);
newElem.href = “page4.html”;
newElem.appendChild(newText);
document.getElementById(“forwardLink”).appendChild(newElem);

Top Parent

<Framesets>

mechanics description navigation

<Frame> <Frame><Frame>

1103

Answers to Tutorial Exercises C

48_069165 appc.qxp 3/1/07 3:58 PM Page 1103

48_069165 appc.qxp 3/1/07 3:58 PM Page 1104

As an online technology, JavaScript has plenty of support online for
scripters. Items recommended here were taken as a snapshot of Internet
offerings in late 2006. But beware! Sites tend to change. URLs can change

too. Be prepared to hunt around for these items if the information provided here
is updated or moved around by the time you read this.

Support and Updates for This Book
The most up-to-date list of errata and other notes of interest pertaining to this edi-
tion of JavaScript Bible can be found at the official Support Center, located at:

http://www.dannyg.com/support/index.html

If you are experiencing difficulty with the example listings in this book, first
check with the Support Center to see if your question has been answered. As
mentioned earlier, you are encouraged to enter the tutorial listings yourself to get
used to typing JavaScript (and HTML) code. If, after copying the examples from
Part II, you can’t make something work (and a fix hasn’t already been posted to
the Support Center), send the file you’ve typed to me via e-mail, along with a
description of what’s not working for you. Also tell me the browser version and
operating system that you’re using. My e-mail address is dannyg@dannyg.com.
Regretfully, I am unable to answer general questions about JavaScript or how to
apply examples from the book to your own projects.

1105

JavaScript and DOM
Internet Resources

49_069165 appd.qxp 3/1/07 3:58 PM Page 1105

Newsgroups
The best places to get quick answers to your pressing questions are online newsgroups. Here are the top
JavaScript-related newsgroups:

On most news servers:

comp.lang.javascript

On news://msnews.microsoft.com:

microsoft.public.scripting.jscript
microsoft.public.windows.inetexplorer.ie55.programming.dhtml
microsoft.public.windows.inetexplorer.ie55.programming.dhtml.scripting
microsoft.public.inetsdk.programming.scripting.jscript

On news://news.mozilla.org:

mozilla.dev.tech.javascript
mozilla.dev.tech.js-engine
mozilla.dev.apps.js-debugger
mozilla.dev.ajax
netscape.public.mozilla.jseng
netscape.public.mozilla.jsdebugger

Before you post a question to a newsgroup, however, read about FAQs in the following section and also use
the extremely valuable newsgroup archive search facility of Google Groups. Visit the Google Groups search
page at:

http://groups.google.com/

Enter the keyword or phrase into the top text box, but then also try to narrow your search by limiting the
newsgroup(s) to search. For example, if you have a question about weird behavior you are experiencing
with the borderCollapse style property in IE, enter borderCollapse into the search field, and then try
narrowing the search to a specific newsgroup (forum) such as comp.lang.javascript.

If you post a question to a newsgroup, you will most likely get a quick and intelligent response if you also
provide either some sample code that’s giving you a problem, or a link to a temporary file on your server
that others can check out. Visualizing a problem you’ve spent days on is very hard for others. Be as specific
as possible, including the browser(s) on which the code must run and the nature of the problem.

FAQs
One situation that arises with a popular and accessible technology, such as JavaScript and DHTML author-
ing, is that the same questions get asked over and over, as newcomers arrive on the scene daily. Rather than
invoke the ire of newsgroup users, look through existing FAQ files to see if your concern has already been
raised and answered. Here are some of the best JavaScript FAQ sites:

javascript.faqts.com
developer.irt.org/script/script.htm
javascripter.net/faq/index.htm

For less-frequently asked questions — but previously asked and answered in a public form — use the
Google Groups search, described earlier in this appendix.

1106

AppendixesPart V

49_069165 appd.qxp 3/1/07 3:58 PM Page 1106

Online Documentation
Locations of Web sites that dispense official documentation for one browser or another are extremely fluid.
Therefore, the following information contains links only to top-level areas of appropriate Web sites, along
with tips on what to look for after you are at the site.

Microsoft has condensed its developer documentation into a massive site called MSDN (Microsoft
Developer Network). The place to begin is:

http://msdn.microsoft.com/library/

This page is the portal to many technologies, but the one most applicable to JavaScript and client-side script-
ing is one labeled “Library.” Within the MSDN Library, you can then click “Web Development” to access
information related to JavaScript and other Web development technologies. Inside the Wed Development
area of the library you’ll find a section named “Scripting.” Here you’ll find plenty of documentation and tech-
nical articles for Microsoft scripting technologies, including JScript (Microsoft’s flavor of JavaScript).

For Mozilla-based browser technologies, start at:

http://www.mozilla.org/docs

Finally, you can read the industry standards for HTML, CSS, and ECMAScript technologies online. Be aware
that these documents are primarily intended for developers of tools that we use — browsers, WYSIWYG
editors, and so forth — to direct them on how their products should respond to tags, stylesheets, scripts,
and so on. Reading these documents has frequently been cited as a cure for insomnia.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/TR/html4/
http://www.w3.org/MarkUp/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/DOM/

Please note that just because a particular item is described in an industry standard doesn’t mean that it is
implemented in any or all browsers. In the real world, we must develop for the way the technologies are
actually implemented in browsers.

World Wide Web
The number of Web sites devoted to JavaScript tips and tricks is mind-boggling. Many sites come and go in
the middle of the night, leaving no trace of their former existence. If you are looking for more example code
for applications not covered in this book, perhaps the best place to begin your journey is through the tradi-
tional search engines. Narrowing your search through careful keyword choice is vital. In addition to the
Mozilla and (heavily Windows-oriented) Microsoft developer Web sites (plus numerous online articles of
mine listed at http://www.dannyg.com/pubs/index.html), a few other venerable sites are:

http://www.javascript.com/
http://www.w3schools.com/js/
http://www.webreference.com/js/
http://en.wikipedia.org/wiki/Javascript

These sites are by no means the only worthwhile JavaScript and DHTML destinations on the Web.
Sometimes having too many sources is as terrifying as having not enough. The links and newsgroups
described in this appendix should take you a long way.

1107

JavaScript and DOM Internet Resources D

49_069165 appd.qxp 3/1/07 3:58 PM Page 1107

49_069165 appd.qxp 3/1/07 3:58 PM Page 1108

The accompanying Windows–Macintosh CD-ROM contains additional
chapters including many more JavaScript examples, an electronic version
of the Quick Reference shown in Appendix A for printing, a complete,

searchable version of the entire book, and the Adobe Reader.

System Requirements
To derive the most benefit from the example listings, you should have a Mozilla-
based browser (for example, Firefox 1+, Netscape Navigator 7+, or Camino 1+)
or Internet Explorer 6+ installed on your computer. Although many scripts run
in these and other browsers, several scripts demonstrate features that are avail-
able on only a limited range of browsers. To write scripts, you can use a simple
text editor, word processor, or dedicated HTML editor.

To use the Adobe Reader (version 7.0), you need the following:

n For Windows XP Pro/Home, or Windows XP Table PC Edition, you
should be using a Pentium computer with 128 MB of RAM and 90 MB
of hard disk space.

n Macintosh users require a PowerPC G3, G4, or G5 processor, OS X
v10.2.8 or later, at least 128 MB of RAM, and 110 MB of disk space.

1109

What’s on the CD-ROM

50_069165 appe.qxp 3/1/07 3:59 PM Page 1109

Disc Contents
When you view the contents of the CD-ROM, you will see files tailored for your operating system. The con-
tents include the following items.

JavaScript listings for text editors
Starting with Part III of the book, almost all example listings are on the CD-ROM in the form of complete
HTML files, which you can load into a browser to see the JavaScript item in operation. A directory called
Listings contains the example files, with nested folders named for each chapter. The name of each
HTML file is keyed to the listing number in the book. For example, the file for Listing 15-1 is named
lst15-01.htm. Note that no listing files are provided for the tutorial chapters of Part II, because you are
encouraged to enter HTML and scripting code manually.

For your convenience, the _index.html file in the Listings folder provides a front-end table of contents
to the HTML files for the book’s program listings. Open that file from your browser whenever you want to
access the program listing files. If you intend to access that index page frequently, you can bookmark it in
your browser(s). Using the index file to access the listing files can be very important in some cases, because
several individual files must be opened within their associated framesets to work properly. Accessing the
files through the _index.html file ensures that you open the frameset. The _index.html file also shows
browser compatibility ratings for all the listings. This saves you time from opening listings that are not
intended to run on your browser. To examine and modify the HTML source files, open them from your
favorite text editor program (for Windows editors, be sure to specify the .htm file extension in the Open
File dialog box).

You can open all example files directly from the CD-ROM, but if you copy them to your hard drive, access
is faster and you will be able to experiment with modifying the files more readily. Copy the folder named
Listings from the CD-ROM to any location on your hard drive.

Printable version of the JavaScript and Browser Object
Quick Reference from Appendix A
If you like the quick reference in Appendix A, you can print it out with the help of the Adobe Reader,
included with the CD-ROM.

Adobe Reader
The Adobe Reader is a helpful program that enables you to view the Quick Reference from Appendix A and
the searchable version of this book, both of which are in PDF format on the CD-ROM. To install and run
Adobe Reader, follow these steps:

For Windows
1. Navigate to the Adobe_Reader folder on the CD-ROM.

2. In the Adobe_Reader folder, double-click the lone executable file and follow the instructions pre-
sented on-screen for installing Adobe Acrobat Reader.

1110

AppendixesPart V

50_069165 appe.qxp 3/1/07 3:59 PM Page 1110

For Macintosh
1. Open the Adobe_Reader folder on the CD-ROM.

2. In the Adobe_Reader folder, double-click the Adobe Reader disk image icon; this will mount the
disk image on your computer. Then open the mounted image and copy the Adobe Reader folder
to the Applications directory of your computer.

PDF version of book with topical references
In many places throughout the reference chapters of Parts III and IV, you see notations directing you to the
CD-ROM for a particular topic being discussed. All of these topics are located in the chapters as they appear
in complete Adobe Acrobat form on the CD-ROM. A single PDF file is located on the CD-ROM, and it
serves as an electronic version of the entire book, complete with full topics that are listed as CD-ROM refer-
ences in the printed book. For the fastest access to these topics, copy the entire PDF file for the book to
your hard disk.

Like any PDF document, the PDF version of the book is searchable. Current versions of Adobe Reader
should automatically load the index file (with the .pdx extension) to supply indexed search capabilities
(which is much faster than Acrobat’s Find command).

To begin an actual search, click the Search icon (binoculars in front of a sheet of paper). Enter the text for
which you’re searching. To access the index and search facilities in future sessions, the CD-ROM must be in
your CD-ROM drive; unless, of course, you’ve copied both the .pdx and .pdf files to your hard drive.

Troubleshooting
If you have difficulty installing or using the CD-ROM programs, try the following solutions:

n Turn off any anti-virus software that you may have running. Installers sometimes mimic virus
activity and can make your computer incorrectly believe that a virus is infecting it. (Be sure to
turn the anti-virus software back on later.)

n Close all running programs. The more programs you’re running, the less memory is available to
other programs. Installers also typically update files and programs; if you keep other programs
running, installation may not work properly.

n Reference the ReadMe file. Refer to the ReadMe file located at the root of the CD-ROM for the
latest product information at the time of publication.

Customer Care
If you have trouble with the CD-ROM, please call the Customer Support phone number at (800) 762-2974.
Outside the United States, call 1(317) 572-3994. You can also contact Wiley Product Technical Support at
http://support.wiley.com. John Wiley & Sons will provide technical support only for installation and
other general quality control items. For technical support on the applications themselves, consult the pro-
gram’s vendor or author.

To place additional orders or to request information about other Wiley products, please call (877) 762-2974.

1111

What’s on the CD-ROM E

50_069165 appe.qxp 3/1/07 3:59 PM Page 1111

50_069165 appe.qxp 3/1/07 3:59 PM Page 1112

Numbers
0 (zero), avoiding with Date objects, 115
1-12 nodeType property values, descriptions of, 235
32-bit Windows operating systems, using Internet Explorer

with, 173

Symbols
- (hyphens), prohibition in JavaScript, 173
! (Not) Boolean operator, operand and result for, 1010
!= (does not equal) comparison operator,

meaning of, 65, 1003
!== (strictly does not equal) comparison operator, operand

and result for, 1003
(hash mark) URL convention, property for, 498–500
placeholder, using with rollovers, 137
$ positional metacharacter, using in regular

expressions, BC243
$1...$9 property, using with RegExp object,

BC259–BC260
% (modulo) connubial operator, operand and result for, 1005
%= (modulo by value) assignment operator,

example of, 1008
& (bitwise And) operator, operands for, 1014
&& (And) Boolean operator

operand and result for, 1010
truth table for, 1011

&= (bitwise and by value) assignment operator,
example of, 1008

() (parentheses), using with regular expressions, BC244
* (multiply) connubial operator, operand and result for, 1005
* counting metacharacter, using in regular

expressions, BC243
*= (multiply by value) assignment operator,

example of, 1008
, (comma) operator

description of, 1018
evaluating left-to-right expressions with, 1018–1019

. (dot) matching metacharacter, using in regular
expressions, BC242

// (comment) global statement, explanation of, 1070
/ (divide) connubial operator, operand and result for, 1005
// (forward slashes), purpose of, 48–49, 147
/*...*/ (comment) global statement, explanation of, 1070
/= (divide by value) assignment operator, example of, 1008
? : operator, explanation of, 1019
? counting metacharacter, using in regular

expressions, BC243
@ (at) symbol, ensuring inclusion in e-mail addresses, 29–30
– (minus) connubial operator, operand and result for, 1005
– (minus) sign, checking for, BC266
– – (decrement) connubial operator, operand

and result for, 1005
–= (subtract by value) assignment operator, example of, 1008
[...] matching metacharacter, using in regular
expressions, BC242
[] (square brackets)

using in Internet Explorer, 202
using with repeat loops, 70

[^...] matching metacharacter, using in regular
expressions, BC242

\ (backslash) pairs, examples of, 885
^ (bitwise XOR) operator, operands for, 1014
^ positional metacharacter, using in regular

expressions, BC243
^= (bitwise XOR by value) assignment operator,

example of, 1008
_ (underscore), using with variable names, 59–60
{} (curly braces), using, 74
{n,} counting metacharacters, using in regular

expressions, BC243
| (bitwise Or) operator, operands for, 1014
| | (Or) Boolean operator

operand and result for, 1010
truth table for, 1011

|= (bitwise or by value) assignment operator,
example of, 1008

1113

Note: Page numbers preceded by BC refer to Bonus Chapters 36–58 on the CD-ROM.

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1113

~ (bitwise Not)operator, operands for, 1014
+ (addition) operator, joining strings with, 110
+ (plus) connubial operator, operand and result for, 1005
+ (plus) operator, concatenating strings with, 64
+ (plus) sign

after version numbers, 157
joining strings with, 62
stringing together batches of text with, 25

+ counting metacharacter, using in regular
expressions, BC243

++ (increment) connubial operator, operand and result
for, 1005

+= (add by value) assignment operator
example of, 1008
joining strings with, 110

+val (positive) connubial operator, operand and result
for, 1005

< (is less than) comparison operator, operand and result
for, 1003

< operator, meaning of, 65
<< (left shift) operator, operands for, 1014
<<= (left shift by value) assignment operator,

example of, 1008
<= (is less than or equal to) comparison operator, meaning of,

65, 1003
= (equals) operator, example of, 1008
== (equals) comparison operator

meaning of, 65
operand and result for, 1003
using with parallel arrays, 77

=== (strictly equals) comparison operator, operand and result
for, 1003

> (is greater than) comparison operator, operand and result
for, 1003

> operator, meaning of, 65
>= (is greater than or equal to) comparison operator, operand

and result for, 1003
>= (right shift by value) assignment operator, meaning of,

65, 1008
>> (right shift) operator, operands for, 1014
>>= (zero fill by value) assignment operator, example of, 1008
>>> (zero fill right shift) operator, operands for, 1014
>>>= (right shift by value) assignment operator, example

of, 1008
“ (quotes), including with element IDs, 24
“ “ (quote pair), using with String objects, 110–113
‘ ‘ (quote pair), using with String objects, 110–113

A
a element object

explanation of, 601
properties for, 600

 tag, explanation of, 527
abbr property, using with td and th element

objects, BC143
abort() method for XMLHttpRequest object, explanation

of, 878
absbottom value of align property, description of, 486
absmiddle value of align property, description of, 486
accelerator property, explanation of, 853
acceptCharset property for form object, explanation

of, 654
“Access disallowed from scripts at <URL> to documents at

<URL>” error message text, explanation of, BC330
“Access is denied” error message text, explanation of,

B330–B331
accessKey property

for HTML element objects, 199–201
using with label element object, BC14

action property for form object, explanation of, 655
activation and deactivation event handlers, using, 327
Active Desktop, adding web site to, 389–390
active elements, designating, 319
activeElement property for document object,

explanation of, 524
ActiveX control, accessing Windows Media Player as, 425
ActiveX objects, inclusion in Win32 versions of IE4, 216
ActiveXObject global statement, explanation of,

1073–1074
add by value (+=) assignment operator, example of, 1008
Add() method for Dictionary object, description

of, 1074
add() method for select element object, explanation

of, 730
addBehavior() method for HTML element objects

description of, 259–260
examples of, 260–262

add-by-value (+=) operator, joining strings with, 110
addEventListener() method for HTML element objects

description of, 263–264
example of, 264–266
parameters of, 189

addImport() method for styleSheet object,
explanation of, 823

1114

IndexA

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1114

addition (+) operator, joining strings with, 110
addRange() method, using with selection object, BC47
addReadRequest() method, using with userProfile

object, BC193–BC194
addRule() method for styleSheet object, explanation

of, 823–824
addTotals() method, using in order form application,

BC414–BC415
Adobe Reader, installing and running, 1110–1111
ADO-related event object properties, descriptions of, 769
afterBegin parameter

using with getAdjacentText() method, 287
using with insertAdjacent Element()

method, 297
using with replaceAdjacentText() method, 314

afterEnd parameter
using with getAdjacentText() method, 287
using with insertAdjacent Element()

method, 297
using with replaceAdjacentText() method, 314

Ajax (Asynchronous JavaScript and XML), significance of, 5
AJAX outline

accumulating HTML for, BC431–BC434
OPML outliner prep for, BC427–BC428
setting scripted stage for, BC429–BC431
toggling node expansion for, BC434–BC435
XML and HTML code for, BC428–BC429
XML specification related to, BC426

alert dialog box
displaying, 416
example of, 85
explanation of, 415

alert() method
displaying alert dialog box with, 42
using with String object, 110

alert() method for window object
example of, 416
explanation of, 415–416

align property
for applet object, BC227
for embed element object, BC237
for h1...h6 element objects, BC9
for hr element object, BC10–BC12
for iframe element object, 486, 610–611
for object element object, BC231
for table element object, BC119

aLink property for body element object, explanation
of, 588

alinkColor property for document object, explanation of,
524–527

all[] property for HTML element objects, explanation of,
201–202

allowTransparency property
for frame element object, 472
for iframe element object, 487

alpha() filter, description and properties for, 856
Alpha() filter, description and properties for, 862
alt property

for applet object, BC228
for area element object, 629
for img element object, 612
for object element object, BC231

altHTML property
for applet object, BC228
for object element object, BC231

altKey property
for NN6+/Moz/Safari event object, 789–790
for of IE4+ event object, 767–768

altLeft property for IE4+ event object, explanation
of, 768

alwaysLowered attribute of open() method, browsers for
and description of, 431

alwaysRaised attribute of open() method, browsers for
and description of, 431

alwaysRaised window, creating, BC358
anchor element objects, explanation of, 600
anchorNode property, using with selection object, BC45
anchorOffset property, using with selection

object, BC45
anchors[] property for document object, explanation of,

example of, 527–528
And (&&) Boolean operator

operand and result for, 1010
truth table for, 1011

API approach to plug-ins
building jukebox, BC313–BC317
initializing library for, BC311–BC312
invoking methods for, BC312
loading library for, BC311
sound player API objects, BC312

API customization, using for DHTML compatibility,
BC368–BC369

1115

Index A

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1115

API key, using with Google Maps, BC516–B517
appCodeName property, using with clientInformation

and navigator objects, BC155
appCore property for window object, explanation of, 380
appendChild() method

exceptions thrown by, 991
explanation of, 266–268
role in W3C DOM Level 2, 183

appendData() method, using with Text and TextNode
objects, BC52–BC55

applet element object, explanation of, BC226–BC227
applet object checks, explanation of, BC349
applets

calling HTML document with, BC309
controlling, BC290
data-type conversion concerns, BC302, BC305
faceless applets, BC298–BC302
limitations of, BC297
properties for, BC293
reading text files with, BC300–BC301
requirements for communication with scripts, BC303
scriptable methods for, BC293–BC297
source code for, BC299–BC300
stopping and starting, BC291–BC292

applets[] property for document object, explanation
of, 529

applet-to-script communication
applet requirements for, BC303
HTML requirements for, BC304
role of JSObject class in, BC304
sample application, BC306–BC309

apply() property for function object, explanation of,
1030–1031

applyElement() method for HTML element objects,
explanation of, 268–270

appMinorVersion property, using with
clientInformation and navigator objects,
BC162–BC163

appName property, using with clientInformation and
navigator objects, BC155

AppVersion property, using with clientInformation
and navigator objects, BC155–BC158

arc() method for canvas element object,
explanation of, 640

archive property
for applet object, BC228
using with object element object, BC232

arcTo() method for canvas element object, explanation
of, 640

area element object, explanation of, 626–627
areas[] property for map element object, explanation of,

631–633
arguments, using with DOM object methods, 41
arguments property for function object, explanation

of, 1027
arithmetic operators, using, 64
array concatenation code sample, 957–958
array data, accessing, 75–76
array entities, deleting, 948
array objects

methods, 955–968
properties of, 953–955

array of objects, creating in planetary objects example,
1047–1048

array syntax, using with document.forms[] property, 89
Array.join() method code sample, 959
Array.reverse() method code sample, 961–962
arrays

for area element objects, 631
creating, 75
creating empty arrays, 946
creation enhancements made to, 947–948
definition of, 945
indexes in, 74
multidimensional arrays, 950–951
parallel arrays, 76–77, 948–951
populating, 947
returning number of items in, 232–233
use of, 946
using document objects in, 78
using in image precaching, 132
using variables with, 77

assign() method for location object,
explanation of, 510

assignment operators, explanation of, 1008–1009
assignment statement, using with window.open()

method, 83
Asynchronous JavaScript and XML (Ajax), significance of, 5
at (@) symbol, ensuring inclusion in e-mail addresses, 29–30
atEnd() method for Enumerator object, description

of, 1075
attachEvent() method for HTML element objects,

explanation of, 270–271
attribute HTML-related node type, description of, 180

1116

IndexA

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1116

attribute object, explanation of, 289
attribute properties for W3C DOM-compatible browsers,

list of, 289
attributes

methods for, 564–565
methods used with, 295–296
for open() method for window object, 431
propagating, 304–305
removing, 310–312
removing from elements, 275
setting, 319–321

attributes attribute object property, description of, 203
attributes property for W3C DOM Level 2, description

of, 181
attributes[] property for HTML element objects,

explanation of, 203–204
aural properties, 854
authoring environment

Mac OS X, 20–21
reloading issues, 20
setting up, 18–20
window arrangement in Windows XP, 19
Windows, 19
workflow for, 18

autocomplete property for form object, explanation
of, 655

availHeight property, using with screen object,
BC188–BC189

availLeft property, using with screen object, BC189
availTop property, using with screen object, BC189
availWidth property, using with screen object,

BC188–BC189
axis property, using with td and th element

objects, BC143

B
\b matching metacharacter, using in regular

expressions, BC242
\B matching metacharacter, using in regular

expressions, BC242
back() method

for history object, 515–517
for window object, 417

BackColor command, parameter for and description
of, 575

background properties, 845–846

background property
for body element object, 589
using with table element object, BC120

backgrounds, changing for positioned elements,
BC198–BC201

backslash (\) pairs, examples of, 885
bar chart, including in Decision Helper application, BC479
Barn() filter, description and properties for, 862
base element object, explanation of, BC91–BC92
BaseHref property, using with object element

object, BC232
baseline value of align property, description of, 486
baseURI property

for HTML element objects, 204
for object element object, BC232

baseURI[] property for document object, explanation
of, 529

basic object model, significance of, 169–170
BasicImage() filter, description and properties for, 862
batch versus real-time validation, BC261–BC263,

BC272–BC273
BBedit text editor, downloading, 18
beforeBegin parameter

for getAdjacentText() method, 287
for insertAdjacent Element() method, 297
for replaceAdjacentText() method, 314

beforeEnd parameter
for getAdjacentText() method, 287
for insertAdjacent Element() method, 297
for replaceAdjacentText() method, 314

beginPath() method for canvas element object,
explanation of, 641

behavior property
explanation of, 853
using with marquee element object, BC16

behaviorCookie property for IE4+ event object,
explanation of, 768

behaviorPart property for IE4+ event object,
explanation of, 768

behaviors. See also Internet Explorer behaviors
detaching from objects, 312
importing and attaching to objects, 259–262

behaviorUrns[] property, using with HTML element
objects, 204

beta browsers, dealing with, 155
bezierCurveTo() method, using with canvas element

object, 640

1117

Index B

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1117

bgColor property
for body element object, 588
using with document object, 524–527
using with marquee element object, BC17–BC18
using with table element object, BC120

bgProperties property, using with body element
object, 589

bidirectional event model, availability in W3C DOM,
188–189

Bill of Rights example, using TDC objects with, 217–219
binding events

cross-browser solution for, 757–758
methods for, 270–271, 382
through IE attachments, 756
through object properties, 755–756
through tag attributes, 754–755
through W3C listeners, 756–757

bitwise operators, using, 1008, 1013–1014
blendTrans() transition filter, description and properties

for, 857
Blinds() filter, description and properties for, 863
blockquote element object, explanation of, BC4
blur() filter, description and properties for, 856
blur() method

for HTML element objects, 271–274
for text input object, 701

Body
examining in Decision Helper application, 126
scripts in, 47–48

Body and Head, scripts in, 47
body element object

event handlers for, 587
explanation of, 587–588
methods of DOM objects, 587
properties for, 587
syntax for, 587

body property for document object, explanation of,
529–530

body text objects, features of, BC3
book, support and updates for, 1105
bookmarks property for IE4+ event object, explanation

of, 769
Boolean data type, example and description of, 58
Boolean math, performing, 1010–1012
Boolean object, explanation of, 926
Boolean operators, using, 1009, 1012–1013
border and edge properties, 847–851

border elements, returning thickness of, 213
border property

for frameset element object, 480
for img element object, 612
for object element object, BC232
for table element object, BC120–BC121

borderCollapse property, explanation of, 851
borderColor property

for frame element object, 472–473
for frameset element object, 480
for table element object, BC121

borderColorDark property, using with table element
object, BC121

borderColorLight property, using with table element
object, BC121

borderSpacing property, explanation of, 851
bottom positioning property, explanation of, 843
bottom property, using with TextRectangle object,,

BC86–B88
bottom value of align property, description of, 486
bottomMargin property for body element object,

explanation of, 589–590
bound data, sorting, 220–221
boundElements property for IE4+ event object,

explanation of, 769
bounding rectangle, explanation of, 291
boundingHeight property, using with TextRange object,

BC60–BC62
boundingLeft property, using with TextRange object,

BC60–BC62
boundingTop property, using with TextRange object,

BC60–BC62
boundingWidth property, using with TextRange object,

BC60–BC62
br element object, explanation of, BC4–5
break statement, using with control structures, 77, 978
browser crashes, occurrence of, BC341
browser document objects

explanation of, 163–164
road map for, 165

browser information
accessing, BC357–BC358
getting for script1.html, 25

browser preferences, reading and writing, BC172–BC174
browser scripting, syntax for referencing objects in, 37
browser support, availability of, 168

1118

IndexB

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1118

browser version branching, using object detection for,
151–153

browser versions, detecting, 149–154
browser window, DOM in, 32–33
browserLanguage property, using with clientInformation

and navigator objects, BC163–BC164
browsers

basing on Mozilla engine, 157
choosing, 18
coding for nonscriptable browsers, 149–150
compatibility of, 9–10
dealing with beta browsers, 155
decrease in number of, 10
functions for examination of, BC159–BC162
handling non-JavaScript browsers, 48–49
hiding script statements from, 146–147
loading framesetting documents into, 120
modifying content for scriptable browsers, 153–154
placing in CSS standards-compatible mode, 192
plug-ins for, 6
scripting for, 150–154
switching from text editors in Mac OS, 19

brushes, setting, 638
bubbles property for NN6+/Moz/Safari event object,

explanation of, 790
bufferDepth property, using with screen object, BC189
button element object

event handlers for, 669
explanation of, 670–671
form property for, 671–672
method for, 669
properties for, 669
syntax for, 670

button input element, creating, 168
button input object

event handlers for, 669
explanation of, 670–671
form property for, 671–672
method for, 669
properties for, 669
syntax for, 670
using with form controls as objects, 100

button property
for IE4+ event object, 770
for NN6+/Moz/Safari event object, 790

buttons
displaying with applet, BC306–BC309
using in forms, 653

buttons in radio groups, determining number of, 101–102
buttons sharing function code sample, 673–674

C
calcBlockState() function, using in outline-style TOC

application, BC433
calculate() method

for Decision Helper application, BC477
for order form application, BC416

calculation, performing for resistor calculator, BC437–BC438
calculator

arrays for, BC440
calculation involved in, BC437–BC438
calculations and formatting for, BC440–BC441
changing images on the fly, BC442
creating select objects for, BC443–BC444
drawing initial images for, BC444–BC445
graphical user interface ideas for, BC438
preloading images for, BC441–BC442

calendar
generating via dynamic table, BC385–BC388
generating via static table, BC385–BC388
generating with dynamic HTML table, BC393–BC397

call() method for function object, explanation of,
1030–1031

caller property for function object, description of, 1028
Camino, relationship to other browsers, 157
cancelable property for NN6+/Moz/Safari event object,

explanation of, 791
cancelBubble property

for IE4+ event object, 770–771
for NN6+/Moz/Safari event object, 791

canHaveChildren property for HTML element objects,
explanation of, 204–206

canHaveHTM property for HTML element objects,
explanation of, 206

canvas
drawing curves on, 640
drawing images to context in, 641
drawing lines and adjusting stroke location on, 642
drawing lines on, 639
filling and clearing areas of, 642
joining lines on, 639
managing clipping paths on, 641
managing paths on, 641

canvas content, establishing shadow around, 639–640
canvas element object, explanation of, 634–637

1119

Index C

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1119

caption element object, explanation of, BC135–BC136
caption property, using with table element object,

BC121–BC122
captions, including with tables, BC104–BC105
captionSide property, explanation of, 852
captureEvents() method for document object,

explanation of, 563
carriage returns

appending to end of string, 581
inside textareas, 709–710

Cascading Style Sheets (CSS)
availability in Internet Explorer 4+, 173
significance of, 5, 13–14

case
changing for strings, 111
requirements for XHTML style, 23

case sensitivity
of JavaScript, 37
of property names, 167

catch block, example of, 992
CDATA section node, generating, 565
CDATA sections, encasing script statements in, 148
CD-ROM for JavaScript Bible

contents of, 1110–1111
Customer Support for, 1111
system requirements for, 1109
troubleshooting, 1111

cellIndex property, using with td and th element objects,
BC143–BC144

cellPadding property, using with table element object,
BC122

cells property
for table element object, BC122–BC123
using with tr element object, BC139–BC140

cellSpacing property, using with table element object,
BC122

center dialog box feature in IE, description of, 455
CGI programs, inspecting submitted forms with, 30
CGI prototyping, using JavaScript for, 30
ch property, using with tbody, tfoot, and thread

element objects, BC135
channelMode attribute of open() method, browsers for

and description of, 431
character conversions code sample, 892
character set, revealing, 541
characters

extracting copies of, 112–113
limitation on typing of, 696

characterSet property for document object, explanation
of, 530–531

charAt() method, extracting copies of characters and
substrings with, 112–113

charCode property for NN6+/Moz/Safari event object,
explanation of, 791–794

CharSet parameter for TDC, description of, 216
charset property

for document object, 530
for a element object, 602
using with link element object, BC94
using with meta element object, BC97

charts, using canvas element object with, 636–638
checkbox input object

event handler for, 675
explanation of, 675–676
methods of DOM objects, 675
properties for, 675
syntax for, 675
using with form controls as objects, 100

checked property
for checkbox input object, 676–677
for radio input object, 683–684

Checkerboard() filter, description and properties for, 863
child and parent nodes, roles in W3C DOM, 39
child elements, removing, 312
child frame, presence in parent window, 120–121
child node objects, swapping, 315
child nodes

explanation of, 223
inserting into existing elements, 300–301

childNodes attribute object property, description
of, 203

childNodes property for W3C DOM Level 2, description
of, 180

childNodes[] property for HTML element objects,
explanation of, 206–209

children, inserting elements as, 268–269
children property for HTML element objects, explanation

of, 209–210
child-to-child references, explanation of, 122–123
child-to-parent references, explanation of, 122
chOff property, using with tbody, tfoot, and thread

element objects, BC135
chroma() filter, description and properties for, 856
Chroma() filter, description and properties for, 863
chrome attribute of open() method, browsers for and

description of, 431

1120

IndexC

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1120

circ shape, coordinates for and example of, 629
circle shape, coordinates for and example of, 629
cite property

for HTML element objects, 210
using with blockquote and q element objects, BC4

classes, scripting Java classes directly, BC320–BC321
classid attribute, using with embedded objects

in IE, 216
classid property, using with object element object,

BC232–BC233
className property for HTML element objects, explanation

of, 211–212
clear() method

using with document object, 563
using with selection object, BC47

clear property
explanation of, 838
using with br element object, BC5

clearAttributes method for HTML element objects,
explanation of, 275

clearData() method
for clipboardData object, 381
for dataTransfer object, 777

clearInterval() method for window object, explanation
of, 417

clearRect() method for canvas element object,
explanation of, 642

clearRequest() method, using with userProfile
object, BC194

clearTimeout() method for window object, explanation
of, 418–420

click() method
of button element object, 672
of Button input object, 672
for checkbox input object, 679
for HTML element objects, 275–276
for radio input object, 686
for Reset input object, 672
for Submit input object, 672

clientHeight and clientWidth properties for HTML
element objects, explanations of, 212–213

clientInformation object, explanation of explanation of,
BC154–BC155

clientInformation property for window object,
explanation of, 380

clientLeft and clientTop properties for HTML element
objects, explanation of, 213

clientX property
for IE4+ event object, 771–776
using with NN6+/Moz/Safari event object, 794–797

clientY property
for IE4+ event object, 771–776
using with NN6+/Moz/Safari event object, 794–797

clip() method, using with canvas element object, 641
clip property, explanation of, 838
clipboardData property for window object, explanation

of, 380–381
clipBottom property, explanation of, 838
clipLeft property, explanation of, 838
clipping rectangles, working with, BC201–BC207
clipRight property, explanation of, 838
clipTop property, explanation of, 838
cloneContents() method, using with Range object, BC27
cloneNode() method for HTML element objects,

explanation of, 276–277
cloneNode(deep) node object method, role in W3C DOM

Level 2, 183
cloneRange() method, using with Range object, BC27
close attribute of open() method, explanation of, 431
close() method

for document object, 563–564
for window object, 420

closed property for window object, explanation of,
381–383

closePath() method for canvas element object,
explanation of, 641

closures, relationship to functions, 1038–1039
code, building incrementally, BC342
code property

for applet object, BC228
using with object element object, BC233

codebase principal, activating for digital certificates,
BC351–B352

codeBase property
for with applet object, BC228
for object element object, BC233

codeType property, using with object element object,
BC233

col and colgroup element objects, explanations of,
BC136–BC137

collapse() method
using with Range object, BC28
using with selection object, BC47–BC48
using with TextRange object, BC63

1121

Index C

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1121

collapsed property, using with Range object, BC24
collapseToEnd() method, using with selection

object, BC48
collapseToStart() method, using with selection

object, BC48
collapsible outlines, features of, BC426
collections of objects, returning number of items in,

232–233
color change, triggering from pop-up menu, 731–732
color properties, using with document object, 524–526
color property

explanation of, 833
using with font element object, BC6–BC7
using with hr element object, BC12

colorDepth property, using with screen object, BC190
colors, setting for layer backgrounds, BC200–BC201
cols property

for frameset element object, 480–483
for textarea element object, 710
using with table element object, BC123

colSpan property, using with td and th element objects,
BC144

columns in tables, modifying, BC114–BC117
comma (,) operator, explanation of, 1018
commands

converting to dot syntax, 164
executing, 574–576
methods as, 61

comment (//) global statement, explanation of, 1070
comment (/*...*/) global statement, explanation of, 1070
comment HTML-related node type, description of, 180
comment nodes, creating instances of, 565
comment symbol, // (forward slashes) as, 48–49
compact property, using with dl, dt, and dd element

objects, BC151
compareBoundaryPoints() method, using with Range

object, BC28–BC32
compareDocumentPosition() method for HTML

element objects, explanation of, 277
compareEndPoints() method, using with TextRange

object, BC64–BC67
compareNode() method, using with Range object, BC32
comparePoint() method, using with Range object, BC32
comparison operators, using, 64–65, 1002–1003
compatibility

designing for, 154–157
striving for, BC363

compatibility approaches
custom APIs, BC368–BC369
object detection, BC366–BC368

compatMode property for document object, explanation
of, 531

compile() method, using with regular expression object,
BC256

complete property
for image input object, 689
for img element object, 612–613

complete value for readyState property, description
of, 247

componentFromPoint() method for HTML element
objects, explanation of, 277–280

concatenating strings, 64, 110–111
condition expressions, satisfying for if and if...else

decisions, 970–971
condition item, using with repeat loops, 70
conditional expressions

explanation of, 974
using with object detection, 153

conditions, using with repeat loops, 975
confirm dialog box, example of, 85–86
confirm() method for window object, explanation of,

421–422
connubial operators, using, 1002, 1005–1007
const global statement, explanation of, 1071–1072
constructor property for string object, explanation

of, 888
container, form object as, 96
containment hierarchy, document object hierarchy as, 166
containment versus inheritance, 374
contains() method for HTML element objects,

explanation of, 280
containsNode() method, using with selection

object, BC48
content, separating from scripting, 190
content page code sample, 509
content property

explanation of, 839
for meta element object, BC98
for window object, 380

content selection, event handler for, 366–367
contentDocument property, 123

for frame element object, 473
for iframe element object, 487
for object element object, BC233

1122

IndexC

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1122

contentEditable property for HTML element objects,
explanation of, 214–215

contentType property for document object, explanation
of, 531

contentWindow property
for frame element object, 473–474
for iframe element object, 487

context menu, event handler for, 334
context-sensitive help

creating, 348–349
event handler for, 468

continue statement, directing loop traffic with, 979
control elements in forms, maintaining list of, 97
control panel frame code sample, 483
control structures

conditional expressions, 974
do-while loop, 980–981
for-in loop, 981–982
if and if...else decisions, 969–974
if constructions, 68–69
if...else constructions, 69
labeled statements, 983–985
for loops, 975–979
repeat loops, 975–979
with statement, 982–983
switch statement, 985–988
using break statement with, 77
while loop, 979–980

controllers[] property for window object,
explanation of, 380

controls
selecting for XML data transformation application, BC510
setting for Google Maps, BC517

cookie data, retrieving, 535–540
cookie file, explanation of, 532
cookie property for document object, explanation of, 531
cookie record, explanation of, 532–533
cookieEnabled property, using with

clientInformation and navigator
objects, BC164

cookies
accessing, 533
concatenating subcookies, 541
domain of, 535
expiration dates for, 534
managing in flag-update application, BC447–BC448
name/data for, 534

path of, 535
saving, 533
SECURE parameter, for

coords property
for a element object, 603
using with area element object, 629

copyhistory attribute of open() method, browsers for
and description of, 431

core language objects. See also objects
Date, 114–115
Math, 113
String , 110–113

core language standard
development of, 12
ECMAScript as, 144

Count property for Dictionary object,
description of, 1074

countdown timer code sample, 418–419
counterIncrement property, explanation of, 839
counterReset property, explanation of, 839
cpuClass property, using with clientInformation and

navigator objects, BC164–BC165
createAttribute() method for document object,

explanation of, 564–565
CreateBookmark command, parameter for and description

of, 575
createCaption() method, using with table element

object, BC131
createCDATASection() method for document object,

explanation of, 565
createComment() method for document object,

explanation of, 565
createContextualFragment() method, using with

Range object, BC33
createControlRange() method

for body element object, 593
for HTML element objects, 281

createDocumentFragment() method for document
object, explanation of, 565–566

createElement() method
using with document object, 566–568
using with nodes in W3C DOM, 184

createElementNS() method for document object,
explanation of, 566–568

createEvent() method for document object,
explanation of, 567

1123

Index C

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1123

createEventObject() method for document object,
explanation of, 567–568

createLinearGradient() method for canvas element
object, explanation of, 641

CreateLink command, parameter for and description
of, 575

createNSResolver() method for document object,
explanation of, 568

createPattern() method for canvas element object,
explanation of, 641

createPopup() method for window object, explanation
of, 422

createRadialGradient() method for canvas element
object, explanation of, 641

createRange() method
for document object, 568
for selection object, BC48

createStyleSheet() method for document object,
explanation of, 568–570

createTextNode() method
using with document object, 570–571
using with nodes in W3C DOM, 184

createTextRange() method
using with body element object, 593
using with textarea element object, 711

createTFoot() method, using with table element
object, BC131–BC132

createTHead() method, using with table element
object, BC131–BC132

createTreeWalker() method for document object,
explanation of, 571–572

cross-confirmation validation code sample, BC286
cross-platform modifier key check example, 760–763
crypto property for window object, explanation of, 383
CSS (Cascading Style Sheets)

availability in Internet Explorer 4+, 173
significance of, 5, 13–14

CSS features, incompatible implementation of, 191
CSS image rollovers code sample, 135–137
CSS rules, associating with document elements, 210
CSS standards-compatible mode, placing browsers in, 192
CSS style object, accessing, 425
cssFloat property, explanation of, 839
CSS-Positioning, significance of, 14
cssRule object

explanation of, 825
properties for, 825
syntax for, 825

cssRules property, using with styleSheet object, 817
cssText property

for cssRule object, 825
explanation of, 853
for styleSheet object, 817–818

Ctrl key. See keyboard shortcuts
ctrlKey property

for IE4+ event object, 767–768
for NN6+/Moz/Safari event object, 789–790

ctrlLeft property for IE4+ event object,
explanation of, 768

curly braces ({}), using, 74
current property for history object, explanation of, 514
currentNode method for TreeWalker object,

explanation of, 596
currentStyle object

explanation of, 828
syntax for, 828

currentStyle property for HTML element objects,
explanation of, 215

currentTarget property for NN6+/Moz/Safari event
object, explanation of, 798–799

cursor property, explanation of, 839
cursors, restoring to normal, 564
curves, drawing on canvas, 640
custom objects

creating methods for, 1041–1042
creating properties for, 1041

custom user data, accessing, 295
Customer Support, contacting for JavaScript Bible

CD-ROM, 1111

D
\d and \D matching metacharacters, using in regular

expressions, BC242
data

forms of, 54
reflecting state of, 337
sorting and filtering, 219

data collections, displaying records in, 219
data entry validation, example of, 30
data property

for object element object, BC233
using with Text and TextNode objects, BC51

data types
converting, 62–64
descriptions of, 58
equality of disparate data types, 1003–1005

1124

IndexC

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1124

data validation
controlling in Decision Helper application, BC462
of date entries in forms, 941–944
of dates and times, BC269–BC273
designing filters for, BC263–BC264
event handlers for, BC286
example of presubmission validation, 30
of forms, 106–108
real-time versus batch validation, BC261–BC263
of serverless database, BC404–BC405

database, sorting for XML data transformation application,
BC508. See also serverless database

dataFld property
using, 219
using with HTML element objects, 216–217
using with IE4+ event object, 769

dataFormatAs property, using with HTML element
objects, 216–217

dataPageSize property, using with table element object,
BC123

dataSrc property for HTML element objects, explanation
of, 216–217

dataTransfer property for IE4+ event object,
explanation of, 776–778

DataURL parameter for TDC, description of, 216
date and time arithmetic, performing, 936–937
date bugs, occurrence in early browsers, 940–941
date calculations, performing, 115–117
date entries, validating in forms, 941–944
date formats, using with older browsers, 935–936
Date object

creating, 929–930
explanation of, 929
methods, 931–934
native object properties and methods for, 931
syntax for, 929
using, 114–115

date validation sample, BC279–BC285
dates, treating as strings, 934–935
dates and times, validating, BC269–BC273
dateTime property for HTML element objects, explanation

of, 215. See also time
days, counting, 938–939
dd element object, explanation of, BC150–BC151
deactivation and activation event handlers, using, 327
debugging tools. See also troubleshooting techniques

embeddable Evaluator, BC336–BC337
emergency evaluation, BC337–BC338

Firefox’s FireBug Debugger, BC336
Mozilla’s Venkman Debugger, BC335
Safari’s Drosera Debugger, BC336
WinIE Script Debugger, BC335

decimal point, testing for, BC266
decimal-to-hexadecimal converter function code

sample, 916–917
Decision Helper application

controlling multiple frames in, 124–126
description of, BC457–BC458
design of, BC458–BC459
dh1.htm data-entry field in, BC467–BC468
dh2.htm data-entry screen in, BC468–BC470
dh3.htm data-entry screen in, BC470–BC473
dh4.htm data-entry fields in, BC473–BC476
dh5.htm decision support calculations in,

BC476–BC479
dhHelp.htm code in, BC480
files for, BC459
index.htm code for, BC460–BC464
navigation bar in, BC465–BC467

declare property, using with object element
object, BC234

decodeURI global function, explanation of, 1062–1063
decodeURIComponent() function, explanation of, 912,

1062–1063
decrement (– –) connubial operator, operand and result

for, 1005
defaultCharset property for document object,

explanation of, 541
defaultChecked property

for checkbox input object, explanation of, 677–678
for radio input object, explanation of, 685

defaultStatus property for window object, explanation
of, 383–384

defaultValue property for text input object, explanation
of, 695

defaultView property for document object, explanation
of, 541–542

defer property, using with script element object, BC99
deferred scripts, running, 50–52
defineGetter() method, using, 187
defineSetter() method, using, 187
delete object operator, explanation of, 1015
deleteCaption() method, using with table element

object, BC131
deleteCell() method, using with tr element

object, BC141

1125

Index D

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1125

deleteConstants() method, using with Range object,
BC34–BC35

deleteData() method, using with Text and TextNode
objects, BC52–BC55

deleteFromDocument() method, using with selection
object, BC48

deleteRow() method, using with table element
object, BC132

deleteRule() method for styleSheet object,
explanation of, 824

deleteTFoot() method, using with table element
object, BC131–BC132

deleteTHead() method, using with table element
object, BC131–BC132

dependent attribute of open() method, browsers for and
description of, 431

description property
for error object, 998
using with mimeType object, BC175
using with plugin object, BC179

descriptions of images, property for, 617
designMode property for document object, explanation

of, 542
detach() method, using with Range object, BC35
detachEvent() method for HTML element objects,

explanation of, 270–271
detail property for NN6+/Moz/Safari event object,

explanation of, 800
DHTML (Dynamic HTML). See also puzzle map game

DHTML application
handling non-DHTML browsers, BC369–BC370
significance of, 14, BC361–BC362

DHTML API, example of, BC370–BC372
DHTML behavior

availability in Internet Explorer 5+, 174
exploiting in W3C DOM, 177

DHTML compatibility tricks
inline branching, BC364–BC365
platform equivalency, BC365–BC366

DHTML interactivity, using JavaScript for, 30
DHTML techniques

changing stylesheet settings, 138
dynamic content via W3C DOM nodes, 138–139

dialog boxes, 439–441. See also modal dialog box document
code sample

advisory about, 456
displaying, 436–437
displaying with window properties and methods, 85–87

dialogArguments property for window object,
explanation of, 384–385

dialog-box data, retrieving with shoeModalDialog()
method, 454–455

dialog-box features, availability in Internet Explorer, 455
dialogHeight dialog box feature in IE, description of, 455
dialogheight property for window object, explanation

of, 386
dialogLeft dialog box feature in IE, description of, 455
dialogLeft property for window object, explanation of,

386–387
dialogTop dialog box feature in IE, description of, 455
dialogTop property for window object, explanation of,

386–387
dialogWidth dialog box feature in IE, description of, 455
dialogWidth property for window object, explanation

of, 386
Dictionary object, properties and methods for, 1074
digital certificates

activating codebase principal for, BC351–B352
obtaining, BC351

dimensions() method for VBArray object, description
of, 1076

dir element object, explanation of, BC151
dir property for HTML element objects, explanation of, 221
direction property

explanation of, 840
using with marquee element object, BC18

directive element, explanation of, BC89
directories attribute of open() method, browsers for

and description of, 431
directories property for window object,

explanation of, 387–388
disabled property

for HTML element objects, 221–222
for link element object, BC94
for styleSheet object, 818

disabled status, determining, 230
dispatch lookup table for validation, creating, BC274
dispatchEvent() method for HTML element objects,

explanation of, 281–283
display property, explanation of, 840
div element in script1.html, referring to, 24
<div> tag in script1.html, usage of, 23
divide (/) connubial operator, operand and result for, 1005
divide by value (/=) assignment operator, example of, 1008
dl element object, explanation of, BC150–BC151

1126

IndexD

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1126

doctype property for document object, explanation of,
542–543

DOCTYPE switching, significance of, 191–192
<!DOCTYPE> element, using with CSS standards-compatible

mode, 192
document fragments, creating instances of, 565–566
document HTML-related node type, description of, 180
document location, returning, 543
document object

automatic existence of, 178
capabilities of, 88
event handlers for, 520–521
explanation of, 522–523
methods of DOM objects, 520–521
properties for, 520–522
role in browser-window hierarchy, 33
syntax for, 522
using in arrays, 78

document object checks, explanation of, BC349
document object hierarchy, considering as containment

hierarchy, 166
document object model (DOM). See also W3C DOM

in browser window, 32–33
hierarchy of, 520
relationship to HTML structure, 31–32
standard negotiated for, 13

document objects. See also objects
establishment of, 166
event handlers for, 168
methods of, 167–168
properties for, 166–167
separating from language, 11

document property
for HTML element objects, 222
using with popup object, 491
using with window object, 388

document tree, navigating, 571–572
document writing code samples, 583–584
document.all array, inclusion in Internet Explorer 4+, 172
document.close() method versus

document.write(), 90
document.createElement() method, using, 92
document.createTextNode() method, using, 92
document.domain, setting, BC348
documentElement property for document object

explanation of, 543
document.forms[] property, using, 88–89

document.getElementById() method, using, 92
document.images[] property, using, 89
document-loading process, 33–36
documents

adding paragraph element to, 34
adding paragraph text to, 35
loading into windows or frames, 430
making new elements in, 35
opening, 578–579
placement of scripts in, 45–49

document.selection object code sample, BC46–BC47
DocumentType HTML-related node type, description of, 180
documentURI property for document object,

explanation of, 543
document.write() method

using, 89–91
using with Date object calculation, 116

document.write() method, parameter required for, 61
does not equal (!=) comparison operator, operand and result

for, 1003
does not equal operator, symbol for, 65
DOM (document object model). See also W3C DOM

in browser window, 32–33
hierarchy of, 520
relationship to HTML structure, 31–32
standard negotiated for, 13

DOM concepts in W3C DOM, element referencing, 177–178
DOM Level 0, script references to objects in, 177
DOM nodes, creating dynamic content with, 138–139
DOM objects. See objects
domain property for document object,

explanation of, 543–544
done() function, running relative to onload event

handler, 51
doReadRequest() method, using with userProfile

object, BC194–BC195
Dortch, Bill, cookie functions, 536–540
doScroll() method

for body element object, 593–594
for HTML element objects, 283–284

dot syntax
converting command to, 164
use of, 37, 40–41

dotted rectangle, appearance of, 226
double-click sequence, event handler for, 337–338
do-while loop, explanation of, 980–981
drag-and-drop operation, events and targets during, 339–340

1127

Index D

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1127

dragDrop() method for HTML element objects,
explanation of, 284

drag-related event handlers, using, 341–343
drawImage() method for canvas element object,

explanation of, 641
drop target element, firing ondrop event on, 345–346
dropEffect property for dataTransfer object,

description of, 776
dropShadow() filter, description and properties for, 856
DropShadow() filter, description and properties for, 863
dt element object, explanation of, BC150–BC151
dump() method for window object, explanation of, 423
duplicate() method, using with TextRange object,

BC67–BC68
dynamic content

through innerHTML property, 139
via W3C DOM nodes, 138–139

dynamic expressions, example of, 322–324
Dynamic HTML (DHTML). See also puzzle map game

DHTML application
handling non-DHTML browsers, BC369–BC370
significance of, 14, BC361–BC362

dynamic HTML tables, generating, BC393–BC397
dynamic tables, generating, BC389–BC392
dynsrc property for img element object,

explanation of, 614

E
ECMA standards body, significance of, 55
ECMA-262 specification, accessing, 144
ECMAScript, development of, 12
ECMAScript core language standard, significance of, 144
edge and border properties, 847–851
edge dialog box feature in IE, description of, 455
editable objects, determining, 229–230
effectAllowed property for dataTransfer object,

description of, 777
element containment hierarchy, availability in Internet

Explorer 4+, 172
element dragging IE behavior, example of, BC377–BC380
element HTML-related node type, description of, 180
element IDs, including quotes (“) with, 24
element methods, accessing, 199
element movement, event handlers for, 360
element objects

generating, 566–567
inserting, 297–298

element properties
accessing, 199
assigning text to, 25

element referencing, availability in W3C DOM, 177–178
elementFromPoint() method for document object,

explanation of, 572–573
elementObject.attributes example, 202–204
elements

creating, 92
designating active elements, 319
exposing to scripting, 241
inserting as last child of current element, 266–267
inserting as parent or child of current object, 268–269
relationship to nodes, 868
using document.getElementById() method

with, 92
elements and form data, passing to functions, 104–106
elements[] property for form object, explanation of,

655–657
e-mailing forms, 651–652
embed element object, explanation of, BC236
embeddable Evaluator, features of, BC336–BC337
embedded objects, using with of, BC226
embeds[] property for document object, explanation

of, 544
emergency evaluation, features of, BC337–BC338
empty and null entries, filtering, BC265
empty() method, using with selection object, BC49
emptyCells property, explanation of, 852
enabledPlugin property, using with mimeType

object, BC176
encapsulation, using in planetary objects example,

1046–1047
encodeURI global function, explanation of, 1062–1063
encodeURIComponent() function

explanation of, 1062–1063
using with URL strings, 912

encoding property for form object, explanation of, 658
enctype property for form object, explanation of, 658
endContainer property, using with Range object, BC25
endOffset property, using with Range object, BC25–BC26
Enter key, using with text boxes, 694
Enumerator object, methods for, 1075
environment objects. See navigator object
equality comparisons, performing on operand, 1004
equality operator, symbol for, 65
equality operator, using with parallel arrays, 77
equals (=) assignment operator, example of, 1008

1128

IndexD

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1128

equals (==) comparison operator, operand and result
for, 1003

error message text, interpreting, BC324–BC331
error object exception, throwing, 995
error object, explanation of, 997–998
error trapping techniques, dependence on JavaScript

version, 160
error-checking mode for documents, revealing, 561
errors

occurrence in scripts, 398
relationship to exceptions, 988–989
syntax versus runtime errors, BC323–BC324
viewing script errors, 52–54

escape codes, using with strings, 912
escape global function, explanation of, 1064
EscapeChar parameter for TDC, description of, 216
escaped characters, examples of, 885
eval global function, explanation of, 1064–1065
evaluate() method for document object,

explanation of, 574
Evaluator, debugging with, BC336–BC337
Evaluator Jr., testing expression evaluation with, 61
The Evaluator Sr., features of, 155–156
event binding

cross-browser solution for, 757–758
methods for, 270–271, 382
through IE attachments, 756
through object properties, 755–756
through tag attributes, 754–755
through W3C listeners, 756–757

event bubbling
availability in Internet Explorer 4+, 174
preventing in IE, 745

event capture
disengaging, 307
event handler for, 355–356

event handlers
assigning functions to, 168
assignment for IE behaviors, BC375–BC376
for body element object, 587
for body text objects, BC20
for button element object, 669
for Button input object, 669
for checkbox input object, 675
designing for text fields, 693
for document object, 520–521
for document objects, 168
for file input element object, 736
for form object, 646

for generic HTML element objects, 196–198
for img element objects, 608
of map element object, 630
in older browsers, 763–764
for Reset input object, 669
for select element object, 714
for Submit input object, 669
for text input object, 692
for textarea element object, 708
trends related to, 191
for validation, BC286
for window object, 376–377
for XMLHttpRequest object, 871

event listeners
availability in W3C event model, 188
modifying, 189
types of, 263

event models
cross-platform key capture, 761–763
cross-platform modifier key check, 760–761

event object
compatibility of, 758–760
explanation of, 767
properties and methods of, 759
referencing, 753
syntax for, 767

event object properties related to ADO, descriptions of, 769
event objects, creating, 567–568
event propagation

in IE4+, 743–747
in NN4, 741–743
in W3C, 748–753

event property
for script element object, BC100
for window object, 388–389

event types, in IE4+ and NN6+/W3C, 764–765
eventPhase property for NN6+/Moz/Safari event object,

explanation of, 800
event-related tasks, using componentFromPoint()

method for, 277–280
events

allowing firing of, 281–283
bidirectional event model in W3C DOM, 188–189
binding, 382
binding to scripts, 146
explanation of, 740
firing, 284–286
redirecting in IE4+, 745–746
static Event object, 741

1129

Index E

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1129

events of DOM objects, explanation of, 42
exception handling

exception mechanism, 989–990
exceptions and errors, 988–989

exceptions
error object exception, 995
object exception, 996–997
raising, 991
string exceptions, 994
throwing, 991, 993–997

exec() method, using with regular expression object,
BC256–BC257

execCommand() method
for document object, explanation of, 574–576
for TextRange object, BC68–BC70

execScript() method for window object, explanation
of, 423

Exists() method for Dictionary object, description
of, 1074

expand() method, using with TextRange object,
BC71

expandentityReference method for TreeWalker
object, explanation of, 597

expando property for document object, explanation of,
544–545

“Expected }” error message text, explanation of,
BC328–BC329

“Expected <something>” error message text, explanation of,
BC327

expression evaluation
explanation of, 60
testing, BC342

expression text, returning, 295
expressions

evaluating XPath expressions, 574
removing, 312–313
setting, 321–324
using in scripts, 60–-62
using with variables, 62

extend() method, using with selection object, BC49
extendRow() method, using in order form application,

BC413–BC414
external property for window object, explanation of,

389–390
extractContents() method, using with Range object,

BC35–BC36

F
face property, using with font element object, BC8
faceless applets, using, BC298–BC302
Fade() filter, description and properties for, 863
FAQs, consulting, 1106
fgColor property for document object, explanation of,

524–527
FieldDelim parameter for TDC

description of, 217
using, 219

fieldset element object
explanation of, 664
properties for, 663
syntax for, 664

file information for web page code sample, 546
file input element object, event handler for,

736–737
fileCreatedDate property

for document object, 545–546
for img element object, 614–615

fileModifiedDate property
for document object, 545–546
for img element object, 614–615

fileName property for error object, explanation of, 999
filename property, using with plugin object, BC179
fileSize property

for document object, 545–546
for img element object, 614–615

fileUpdatedDate property for img element object,
explanation of, 614–615

fill() method for canvas element object,
explanation of, 642

fillRect() method for canvas element object,
explanation of, 642

fillStyle property for canvas element object,
explanation of, 638

filter, using tags() method as, 325
filter method for TreeWalker object,

explanation of, 597
filter object, explanation of, 855
filter property, explanation of, 840
filter switching, event handler for, 345–346
filter syntax changes in WinIE4.5+, 861–865
filter-function libraries, building for data-validation,

BC264–BC267
filtering data, 219

1130

IndexE

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1130

filters
designing for data validation, BC263–BC264
IE4+ transition filters, 857–858
IE4-compatible static filter types, 856–857

filters[] property for HTML element objects, explanation
of, 222–223

finally block, example of, 992
find() method for window object, explanation of, 424
findText() method, using with TextRange object,

BC72–BC76
fireEvent() method for HTML element objects,

explanation of, 284–285
Firefox, relationship to other browsers, 157
Firefox’s FireBug Debugger, features of, BC336
firstChild attribute object property, description

of, 203
firstChild() method for TreeWalker object,

explanation of, 597
firstChild property

for HTML element objects, 223–225
for W3C DOM Level 2, 180, 183

firstPage() method, using with table element
object, BC132

flag-update application
<body> tags in, BC454
code for, BC451–BC453
date comparison aspect of, BC454
description of, BC449–BC450
managing cookies in, BC447–BC448
time tracking scheme for, BC448–BC449

flipH() filter, description and properties for, 856
flipV() filter, description and properties for, 856
floating-point numbers versus integers, 63, 913
focus

determining, 524
event handlers for, 347

focus() method
for HTML element objects, 271–274
for text input object, 701

focusNode property, using with selection object, BC45
focusOffset property, using with selection

object, BC45
font and properties, 833–838
font element object

explanation of, BC5–BC6
properties for, BC6–BC9

font properties, changing dynamically, BC7
font property, explanation of, 833
FontColor command, parameter for and

description of, 575
fontFamily property, explanation of, 833
FontName command, parameter for and description of, 575
FontSize command, parameter for and description of, 575
fontSize property, explanation of, 833
fontSizeAdjust property, explanation of, 833
fontSmoothingEnabled property, using with screen

object, BC190
fontStretch property, explanation of, 833
fontStyle property, explanation of, 834
fontVariant property, explanation of, 834
fontWeight property, explanation of, 834
for loop. See also loops

in puzzle map game DHTML application, BC492
using, 70, 975–979
using with form.elements[] property, 97
using with parallel arrays, 77

for-in loop, explanation of, 981–982
form attributes, changing, 652
form code sample, 548–549
form control elements

references to, 647
using blur() and focus() methods with, 272–273

form controls as objects
button input object, 100
checkbox input object, 100
considering, 97–98
radio input object, 101–102
select object, 102–104
text-related input objects, 98–100

form data and elements, passing to functions, 104–106
form element arrays, using, 653–654
form object

event handlers for, 646
explanation of, 646–647
methods of DOM objects, 646
as object and container, 96
passing as parameter, 648–649
properties for, 646
syntax for, 646
using, 96–97

form object checks, explanation of, BC349
form objects in documents, determining number of, 88–89

1131

Index F

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1131

form property
accessing, 96–97
for button element object, 671–672
for Button input object, 671–672
for label element object, BC14
for object element object, BC234
for Reset input object, 671–672
for Submit input object, 671–672
for text input object, 696

form values, clearing from Reload/Refresh actions, 510–511
<form> tag, elements nested in, 97
form.elements array code sample, 657
form.elements[] property, using, 97
form.reset() and form.submit() methods code

sample, 660–661
forms

buttons in, 653
e-mailing, 651–652
inspecting with CGI programs, 30
passing to functions, 648–651
redirecting after submission, 653
resetting, 660–661
sending reset event to, 662
submitting, 661
submitting and prevalidating, 106–108
using <input> element objects with, 654
using onsubmit event handler with, 106–107
validating date entries in, 941–944

forms[] property for document object, explanation of,
547–549

forward() method
for history object, 515–517
for window object, 417

forward slashes (//), purpose of, 48–49, 147
fragment HTML-related node type, description of, 180
frame content table of contents code sample, 482–483
frame element object, explanation of, 471–472
frame object model, explanation of, 370–371
frame property, using with table element object,

BC124–BC126
frame scripting, tips for, 123
frame source code, viewing, 375
frame versions, switching back to, 374
frameBorder property

for frame element object, 474
for frameset element object, 483

frameElement property for window object,
explanation of, 390

frames. See also iframe element object
controlling with navigation bars, 124–126
creating, 370
versus frame element objects, 375
hiding and showing, 481–482
loading documents into, 430
naming in Decision Helper application, 126
referencing, 372
synchronizing, 374–375
using blank frames, 375

frames property
for document object, 549
for window object, 390–393

frameset definition, example of, 120
frameset element objects, explanation of, 478
frameset for property picker code sample, 500
frameset for URL example, 554–555
frameset objects, properties for, 478
<frameset> tag, specifying onload event handler

in, 123
framesets

code sample, 508
for hiding/showing frame, 481–482
for navigation lab, 516
visualizing as window objects, 120

framesetting documents, loading into browsers, 120
frameSpacing property

for frameset element object, 484
for iframe element object, 487

framing
ensuring, 373–374
preventing, 373

fromElement property for IE4+ event object, explanation
of, 778–779

fullscreen attribute of open() method, browsers for and
description of, 431

fullScreen() function, invoking window object methods
with, 167

fullScreen property for window object, explanation
of, 393

function data type, example and description of, 58
“Function does not always return value” error message text,

explanation of, BC330
function object, explanation of, 1023–1024
function parameters, passing with setInterval()

function, 447–448
function workbenches, building, BC342

1132

IndexF

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1132

functions. See also global functions and statements
assigning to custom properties for objects, 187
assigning to event handlers, 168
capabilities of, 70–71, 160
creating, 1024–1025
for examining browsers, BC159–BC162
global and local variables, 1033–1035
invoking, 1032
making generalizable, 1037–1038
naming parameters for, 104
nesting, 1025–1026
parameter variables, 1035–1036
parameters for, 1026–1027
parameters of, 71–72
passing form data and elements to, 104–106
passing forms to, 648–651
recursion in, 1036
relationship to closures, 1038–1039
relationship to deferred scripts, 50
turning into libraries, 1037–1038
using this keyword with, 104
using variables with, 72

G
geckoActiveXObject() method for window object,

explanation of, 425
generic HTML element objects. See also HTML element

objects; objects
contextual objects, 196
event handlers for, 196–198
formatting objects, 196
methods of, 196–198
properties for, 196–198

getAdjacentText() method for HTML element objects,
explanation of, 287–288

getAllResponseHeaders() method for
XMLHttpRequest object, explanation of, 878

getAttribute() method
using with HTML element objects, 288
using with userProfile object, BC196

getAttributeNode() method for HTML element objects,
explanation of, 289–290

getAttributeNodeNS() method for HTML element
objects, explanation of, 290

getAttributeNS() method for HTML element objects,
explanation of, 290

getBookmark() method, using with TextRange
object, BC77

getBoundingClientRect() method for HTML element
objects, explanation of, 291–293

getClientRects() method for HTML element objects,
explanation of, 293–294

getComputedStyle() method for window object,
explanation of, 425

getContext() method for canvas element object,
explanation of, 642

getData() method for clipboardData object,
description of, 381

getData() method for dataTransfer object, description
of, 777

getElementById() command, using to reference
objects, 37

getElementById() method for document object,
explanation of, 576–577

getElementsByName() method for document object,
explanation of, 577

getElementsByTagName() method for HTML element
objects, explanation of, 294

getElementsByTagNameNS() method for HTML element
objects, explanation of, 294

getExpression() method for HTML element objects,
explanation of, 295

getFeature() method for HTML element objects,
explanation of, 295

getItem() method for VBArray object, description
of, 1076

getMonth() method, use of zero (0) with, 115
getRangeAt() method, using with selection

object, BC49
getResponseHeader() method for XMLHttpRequest

object, explanation of, 878
getSelection() method for window object, explanation

of, 425
getters and setters, defining for object properties,

1050–1051
getUserData() method for HTML element objects,

explanation of, 295
global functions and statements, list of, 1062. See also

functions
global property, using with regular expression

object, BC255
global scope, defining in JavaScript, 159

1133

Index G

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1133

global variables
defining newWindow variable as, 83
explanation of, 72
relationship to functions, 1033–1035
using with clipping rectangles, BC204

globalAlpha property for canvas element object,
explanation of, 638

globalComposietOperation property for canvas
element object, explanation of, 638

Globally Unique Identifier (GUID), using in IE, 216
glow() filter, description and properties for, 856
Glow() filter, description and properties for, 864
GMT (Greenwich Mean Time), relationship to time zones,

927–928
go() method for history object, explanation of,

517–518
goNext() function, using in Decision Helper

application, 126
Google Maps application

creating markers on, BC518
designing mashup for, BC519
displaying customization of, BC521–BC524
getting API key for, BC516–B517
haunted place customization example, BC519–BC521
local search feature of, BC515
markers in, BC514
mashups in, BC514
obtaining geocoordinates of locations in, BC518–BC519
opening, reading, and processing XML document for,

BC523–BC524
resources for, BC516
RideFinder feature of, BC515
search matches in, BC514
setting control for, BC517
setting default area for, BC517–BC518
style sheet for, BC525
styling custom information window in, BC524–BC525
testing, BC525–BC527
using GMap() function with, BC517

graphic context, saving and restoring state of, 643
graphical user interface, creating for resister

calculator, BC438
gray() filter, description and properties for, 856
greater than (>) comparison operator, operand and

result for, 1003
greater than or equal to (>=) comparison operator, operand

and result for, 1003

Greenwich Mean Time (GMT), relationship to time zones,
927–928

GUID (Globally Unique Identifier), using in IE, 216

H
h1...h6 element objects, explanation of, BC9
hasAttribute() method for HTML element objects,

explanation of, 295
hasAttributeNS() method for HTML element objects,

explanation of, 296
hasAttributes() method for HTML element objects,

explanation of, 296
hasChildNodes() method for HTML element objects,

explanation of, 296–297
hasChildNodes() node object method, role in W3C DOM

Level 2, 183
hash property for a element object, explanation of, 603
hash property for location object, explanation of,

498–500
hash table, simulating, 952–953
hasOwnProperty() method for object object,

explanation of, 1057
Haunted Places map, testing, BC525–BC527
hauntmap.htm web page code sample, BC521–BC522
Head, scripts in, 46–47
Head and Body, scripts in, 47
head element object, explanation of, BC91
headers property, using with td and th element

objects, BC143
height and width of elements, reporting, 237–238
height and width settings for windows code sample, 395–396
height attribute of open() method, browsers for and

description of, 431
height of windows, adjusting, 394–396
height property

for applet object, BC229
for document object, 550
for embed element object, BC237
explanation of, 844
for frame element object, 474–475
for HTML element objects, 225–226
for iframe element object, 488
for img element object, 615
for marquee element object, BC18
for object element object, BC234
for screen object, BC188–BC189
for table element object, BC126–BC127

1134

IndexG

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1134

for td and th element objects, BC145
for tr element object, BC140

help
creating context-sensitive help, 348–349
opening Winhelp window, 453

help dialog box feature in IE, description of, 455
helper applications, using with browsers, 6
hexadecimal and octal integers, using, 916–917
hidden input object, explanation of, 707–708
hidden property, using with embed element object, BC237
hide() method for popup object, explanation of, 492–494
hideFocus property for HTML element objects,

explanation of, 226
hideTip() function, using in Decision Helper

application, BC464
hiding scripts, explanation of, 49
hierarchy of object model, significance of, 163–165
HIERARCHY_REQUEST_ERR exception, throwing, 991
history list, counting items in, 514–515
history object

explanation of, 513
methods of DOM objects, 513
properties for, 513
role in browser-window hierarchy, 33
syntax for, 513

home() method for window object, explanation of, 427
host property

for a element object, 603
for location object, 500–503

hostname property
for a element object, 603
for location object, 503–504

hotkeys attribute of open() method, browsers for and
description of, 431

hr element object, explanation of, BC10
hr object properties, controlling, BC11–BC12
href attributes, applying javascript:pseudo-URL

to, 137
href property

for base element object, BC92
for a element object, 603
for link element object, BC94
for location object, 87, 504–505
for styleSheet object, 818

hreflang property for a element object,
explanation of, 604

hrefLang property, using with link element object, BC94

hspace property
for applet object, BC229
forth object element object, BC234
for iframe element object, 488
for img element object, 616
for marquee element object, BC18

HTAs (HTML applications), availability
in Internet Explorer 5+, 174

.htc behavior, explanation of, BC375
HTML (Hypertext Markup Language)

examining in script1.htm, 23
loading external HTML into layers, BC213–BC214
purpose of, 4
requirements for applet-to-script

communication, BC304
tags in, 4
transforming XML data into, BC524–BC525
treatment in W3C DOM, 177

HTML applications (HTAs), availability
in Internet Explorer 5+, 174

HTML content, determining acceptability of, 206
HTML directive objects, explanation of, BC89
HTML documents

calling with applets, BC309
code sample, 178
embedding scripts in, 145–149
minimum elements in, 32
nodes associated with, 179–180

html element object, explanation of, BC90
HTML element objects. See also generic HTML element

objects
adding read-only prototype property to, 188
inclusion in Internet Explorer 4+, 172
returning references to, 543

HTML forms. See forms
HTML structure, relationship to DOM, 31–33
HTML tags

adding id attributes to, 36–37
use of, 31

HTML text, inserting, 299–300
htmlFor property

for label element object, BC15, 666
using with script element object, BC100

htmlText property, using with TextRange object,
BC62–BC63

HTTP status codes for status property, 876–877
httpEquiv property, using with meta element object, BC98

1135

Index H

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1135

Hypertext Markup Language (HTML)
examining in script1.htm, 23
purpose of, 4
tags in, 4
transforming XML data into, BC524–BC525

hyphens (-), prohibition in JavaScript, 173

I
ibound() method for VBArray object,

description of, 1076
id attributes

adding to HTML tags, 36–37
getting elements by, 576–577
versus name attributes, 37
treatment in W3C DOM, 177

id property
generating, 257–259
for HTML element objects, 226–227
for styleSheet object, 819

IDs
assigning, 37
rules related to, 37

IE (Internet Explorer). See also Internet Explorer (IE)
all[] property for, 201–202
behaviorUrns property for, 204
data-binding facilities in, 216–221
dialog-box features in, 455
GUID (Globally Unique Identifier) in, 216
idiosyncrasies related to open() method, 436
preventing event bubbling in, 745
references in, 216
using with 32-bit Windows operating systems, 173
using classid attribute in, 216

IE attachments, binding events through, 756
IE browser versions, problems with, 155
IE query commands, descriptions of, 579
IE3, event types in, 763–764
IE4 extensions, browser support for, 168
IE4+

event object properties and methods for, 759
event propagation in, 743–747
event types in, 765–766
modifying select options in, 716–721
table modification methods for, BC109

IE4+ clientInformation object, explanation of,
BC154–BC155

IE4+ event object, explanation of, 767

IE4+ transition filters, 857–858
IE4-compatible static filter types, 856–857
IE5 extensions, browser support for, 168
IE5+, viewing script errors in, 53
if and if...else decisions, explanation of, 969–974
if constructions

indentation of, 973
structure of, 68–69
using with document.images[] property, 89
using with parallel arrays, 77

if...else constructions
code sample, 973
nesting, 972–974
structure of, 69

iframe element, explanation of, 124
iframe element object, explanation of, 484–485.

See also frames
ignoreCase property, using with regular expression

object, BC255
image arrays, maintaining collection of, 89
image input object, explanation of, 688–689
image object and rotating images code sample, 620–622
image object checks, explanation of, BC349
image objects

constructing in memory, 130
storage of references for, 129

image onload event handler code sample, 625–626
image precaching, 130–132, 619. See also images
image rollovers, creating, 132–135. See also rollover states
image size, control of, 130
image.complete code sample, 613
imageOff() function, invoking with onmouseout event

handler, 133–134
imageOn() function, invoking with onmouseover event

handler, 133–134
images. See also precaching images

drawing for resistor calculator, BC444–BC445
flagging, BC447
interchanging, 129–130

images[] property for document object, explanation of,
550–551

imeMode property, explanation of, 853
img align property code sample, 611
img element objects

event handlers for, 608
properties for, 608
syntax for, 608

img objects, explanation of, 609–610

1136

IndexH

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1136

implementation property for document object,
explanation of, 551

@import selector, using with stylesheets, 813
importNode() method for document object, explanation

of, 578
imports property for styleSheet object, explanation

of, 819
in object operator, explanation of, 1016
increment (++) connubial operator, operand and result for,

1005
Indent command, parameter for and description of, 575
index value, setting in select object, 724
indexes, role in arrays, 74
index.htm code, using in Decision Helper application,

BC460–BC464
inheritance in OOP, relationship to prototypes, 1053–1054
inheritance versus containment, 374
init() function, using in puzzle map game DHTML

application, BC494
initEvent() method for NN6+/Moz/Safari event object,

explanation of, 807–808
initial expression item, using with repeat loops, 70
initialize() function, using in flag-update

application, BC453
initKeyEvent() method for NN6+/Moz/Safari event

object, explanation of, 807–808
initMouseEvent() method for NN6+/Moz/Safari event

object, explanation of, 807–808
initUIEvent() method for NN6+/Moz/Safari event

object, explanation of, 807–808
inline branching, using for DHTML compatibility,

BC364–BC365
inline characters, examples of, 885
inline display and layout properties, 838–843
innerHeight attribute of open() method, browsers for

and description of, 431
innerHeight property for window object, explanation of,

394–396
innerHTML property

advisory about use of, 154
dynamic content through, 139
explanation of, 227–229
implementation of, 186–187

innerText property for HTML element objects,
explanation of, 227–229

innerWidth attribute of open() method,
explanation of, 431

innerWidth property for window object, explanation of,
394–396

input element, using with form controls as objects,
100–102

input property, using with RegExp object, BC258
<input> element objects, using with forms, 654
inputEncoding property for document object,

explanation of, 552
inRange() method, using with TextRange object, BC77
insertAdjacentElement() method for HTML element

objects, explanation of, 297–299
insertAdjacentHTML() method for HTML element

objects, explanation of, 299–300
insertAdjacentText() method for HTML element

objects, explanation of, 299–300
insertBefore() method

for HTML element objects, 300–301
role in W3C DOM Level 2, 183

insertCell() method, using with tr element
object, BC141

insertData() method, using with Text and TextNode
objects, BC52–BC55

insertNode() method, using with Range object,
BC36–BC38

insertRow() method, using with table element
object, BC132

insertRule() method for styleSheet object
description and example of, 824
description of, 824

instanceof object operator, explanation of, 1016
integers

versus float-point numbers, 63, 913–916
hexadecimal and octal integers, 916–917

interactive value for readyState property,
description of, 247

interCap format, using with variable names, 60
international characters, avoiding in signed scripts, BC360
Internet Explorer (IE). See also IE (Internet Explorer)

all[] property for, 201–202
behaviorUrns property for, 204
data-binding facilities in, 216–221
dialog-box features in, 455
GUID (Globally Unique Identifier) in, 216
idiosyncrasies related to open() method, 436
preventing event bubbling in, 745
references in, 216
using with 32-bit Windows operating systems, 173
using classid attribute in, 216

1137

Index I

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1137

Internet Explorer 3
dominance of, 12
scripting included in, 12

Internet Explorer 4+ extensions
CSS (Cascading Style Sheets), 173
element containment hierarchy, 172
event bubbling, 174
HTML element objects, 172
phantom page syndrome in, 173

Internet Explorer 5+ extensions
DHTML behaviors, 174
HTAs (HTML applications), 174

Internet Explorer behavior examples
element dragging, BC377–BC380
text rollover, BC380–BC383

Internet Explorer behaviors. See also behaviors
component structure, BC375–BC376
enabling and disabling, BC374
linking in behavior component, BC374
resources for, BC383
stylesheets for scripts, BC373–BC374

Internet Explorer (IE)
GUID (Globally Unique Identifier) in, 216
preventing event bubbling in, 745
references in, 41
using classid attribute in, 216

intersectsNode() method, using with Range
object, BC38

interval loop action, turning off, 417
intervals, setting, 446–450
invert() filter, description and properties for, 856
Iris() filter, description and properties for, 864
is greater than (>) comparison operator, operand and

result for, 1003
is greater than operator, symbol for, 65
is greater than or equal to (>=) comparison operator, operand

and result for, 1003
is greater than or equal to operator, symbol for, 65
is less than (<) comparison operator, operand and result

for, 1003
is less than operator, symbol for, 65
is less than or equal to (<=) comparison operator, operand

and result for, 1003
is less than or equal to operator, symbol for, 65
isChar property for NN6+/Moz/Safari event object,

explanation of, 800
isCollapsed property, using with selection

object, BC45

isContentEditable property for HTML element objects,
explanation of, 229–230

isDefaultNamespace() method for HTML element
objects, explanation of, 302

isDisabled property for HTML element objects,
explanation of, 230

isEmpty() function, using in data validation,
BC264–BC265

isEqual() method, using with TextRange object, BC78
isEqualNode() method for HTML element objects,

explanation of, 302
isFinite() global function, explanation of, 1065
isInteger() function, using in data validation,

BC265–BC266
isMap property for img element object, explanation of, 616
isMultiLine property for HTML element objects,

explanation of, 230–231
isNan() global function, explanation of, 1065–1066
isNumber() function, using in data validation, BC266
isOpen property for popup object, explanation of, 491–492
isPointIRange() method, using with Range

object, BC38
isPrototypeOf() method for object object,

explanation of, 1057
isSameNode() method for HTML element objects,

explanation of, 302
isSupported() method

for HTML element objects, 302
role in W3C DOM Level 2, 183

isTextEdit property for HTML element objects,
explanation of, 231

isTrusted property for NN6+/Moz/Safari event object,
explanation of, 800

item() method
for Enumerator object, 1075
for HTML element objects, 302–303
for select element object, explanation of, 730–731

Item() property for Dictionary object,
description of, 1074

Items() method for Dictionary object,
description of, 1074

J
Jasob obfuscator, downloading, 147
Java

building block classes in, BC290
methods in, BC291–BC293

1138

IndexI

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1138

Java classes, scripting directly, BC320–BC321
Java fields, accessing, BC293
Java language, derivation of, 6
Java sandbox, explanation of, BC346–BC347
javaEnabled() method, using with clientInformation

and navigator objects, BC171
JavaScript

built-in objects, 158
case sensitivity of, 37
control structures in, 160
global scope defined in, 159
guidelines for use of, 30–31
limitations of, 8
loosely typed feature of, 159
object-based feature of, 158
as scripting language, 158
solutions offered by, 8
transition from LiveScript, 7
treatment of functions in, 160
versions of, 12, 143–144

JavaScript Bible
contents of CD-ROM for, 1110–1111
support and updates for, 1105

JavaScript expression evaluation, testing, 61
JavaScript Obfuscator, downloading, 147
javascript: pseudo-URL

using, 137
using void operator with, 1020

JavaScript resources, consulting, 1106–1107
.js files, using, 148–149
JSObject class, role in applet-to-script communication,

BC304
jukebox, scripting, BC313–BC317
Justify commands, parameters for and

descriptions of, 575

K
key presses

checking events for, 762–763
preventing from becoming typed characters, 351

Key() property for Dictionary object,
description of, 1074

keyboard events
scripting, 349–350
typical tasks for, 351–355

keyboard shortcuts
reloading saved source files, 19
save-switch-reload sequence steps, 19

switching between text editor and browser in Mac OS, 19
using accessKey property for HTML element objects

with, 199
keyCode property

for IE4+ event object, 779–782
for NN6+/Moz/Safari event object, 791–794

Keys() method for Dictionary object,
description of, 1074

L
label element object, explanation of, BC13–BC14, 665–666
label property

for optgroup element object, 734–736
for option element object, 733–734

labeled statements, explanation of, 983–985. See also
statements

lang property for HTML element objects,
explanation of, 231

language, separating from document objects, 11
language attribute of <script> tag, use of, 46, 145–146
Language parameter for TDC, description of, 217
language property for HTML element objects

explanation of, 232
using with clientInformation and navigator

objects, BC165
lastChild attribute object property, description

of, 203
lastChild() method for TreeWalker object,

explanation of, 597
lastChild property for HTML element objects, explanation

of, 223–225
lastChild property for W3C DOM Level 2, significance of,

180, 183
lastIndex property, using with regular expression

object, BC255
lastMatch property, using with RegExp object, BC259
lastModified property for document object, 552

description of, 552
example of, 552–553

lastPage() method, using with table element
object, BC132

lastParen property, using with RegExp object, BC259
layer, definition of, BC197
layer and clip location properties, comparing, BC205–BC207
layer backgrounds

setting, BC198–BC199
setting colors for, BC200–BC201

layer clipping, implementing, BC201–BC207

1139

Index L

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1139

layer element, inclusion in Navigator 4 object model, 171
layer source content, setting, BC214
layer stacking order, scripting, BC216–BC218
layers

dragging, BC219–BC221
loading external HTML into, BC213–BC214
resizing, BC221–BC224
scripting nested layers, BC207–BC213
visibility relationships of nested layers, BC215–BC216

layers property for document object, explanation of, 553
layerX property for NN6+/Moz/Safari event object,

explanation of, 794–797
layerY property for NN6+/Moz/Safari event object,

explanation of, 794–797
layout and inline display properties, 838–843
layoutGrid property, explanation of, 840
layoutGridChar property, explanation of, 840
layoutGridLine property, explanation of, 841
layoutGridMode property, explanation of, 841
layoutGridType property, explanation of, 841
layout-operation completion, event handler for, 355

try-catch routine, 992
left attribute of open() method, browsers for and

description of, 431
left property

explanation of, 844
using with TextRectangle object,, BC86–B88

left shift (<<) operator, operands for, 1014
left shift by value (<<=) assignment operator, example

of, 1008
left value of align property, description of, 486
leftContext property, using with RegExp object, BC259
leftMargin property for body element object, explanation

of, 589–590
legend element object

explanation of, 664
properties for, 663
syntax for, 664

length property
for array object, 953
for form object, 659
for function object, 1029–1030
for history object, 514–515
for HTML element objects, 232–233
for plugin object, BC179
for radio input object, 685
for select element object, 723
for string object, 888–889

less than (<) comparison operator, operand and
result for, 1003

less than or equal to (<=) comparison operator, operand and
result for, 1003

letterSpacing property, explanation of, 834
Level 0 of DOM, script references to objects in, 177
Level 2 of W3C DOM, node object properties for, 180
Levels 0-3 in W3C DOM, explanations of, 175–176
li element

explanation of, BC149
using with rollovers, 135–137

libraries, turning functions into, 1037–1038
light() filter, description and properties for, 857
Light() filter, description and properties for, 864
line terminator, treatment as statement delimiter, 161
lineBreak property, explanation of, 834
lineCap property for canvas element object, explanation

of, 639
lineHeight property, explanation of, 834
lineJoin property for canvas element object, explanation

of, 639
lineNumber property for error object, explanation

of, 999
lines, drawing and joining on canvas, 639
lines of text, determining display of, 230–231
lineTo() method for canvas element object, explanation

of, 642
lineWidth property for canvas element object,

explanation of, 639
link element object, explanation of, BC92–BC94, 600
link property for body element object, explanation of, 588
linkColor property for document object, explanation of,

524–527
linked script library object checks, explanation of,

BC349
links[] property for document object, explanation of,

553–554
list properties, 850–851
Listings

accessKey property for HTML element objects,
200–201

addBehavior() and removeBehavior(), 261–262
addBehavior() makeHot.htc behavior component,

260
alert dialog box, 416
anchors for navigating page, 527–528
anchors in document, 499
appendChild()child methods, 267–268

1140

IndexL

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1140

applyElement() method, 269–270
area elements modified on the fly, 631–633
array concatenation, 957–958
array generation and population, 947
Array.join() method, 959
Array.reverse() method, 961–962
Array.sort() method, 965–966
binding data to page, 218–219
blur() and focus() methods, 273–274
Boolean operators, 1012–1013
bubble and capture prevention in W3C, 750–752
button with event handler, 42
buttons sharing function, 673–674
canHaveChildren property for HTML element

objects, 205–206
canvas containing simple chart, 636–637
canvas skeleton, 635
character conversions, 892
charCode and keyCode property values, 792–793
checkbox and onclick event handler, 680–681
checkbox object’s checked property, 100–101
checked property as conditional, 677
child elements, 209–210
child nodes, 207–209
className property for HTML element objects,

211–212
clearTimeout() method of window object, 418–419
clientheight and clientWidth properties for

HTML element objects, 212–213
client-side image map, 628
closed property of window object, 382–383
color change triggered from pop-up menu, 731–732
color tweaked for page elements, 525–526
componentFromPoint() method, 279–280
confirm dialog box, 421–422
const keyword, 1071–1072
content for scriptable and nonscriptable browsers,

153–154
content page, 509
contentEditable property for HTML element objects,

214–215
context-sensitive help, 348–349
control panel frame, 483
cookie functions, 536–540
countdown timer, 418–419
counting days until Christmas, 938
CSS image rollovers, 135–137

currentTarget and eventPhase properties,
798–799

cutting and pasting under script control, 336–337
data validation via onchange event handler, 706
date string for older browser, 935
date validation in form, 941–944
decimal-to-hexadecimal converter function, 916–917
defaultStatus property of window object, 384
directory of current document extracted, 505
dispatchEvent() method, 282–283
document writing based on user input, 583–584
document writing example, 583
document writing example placeholder page, 584
document.write() method on current window, 90
document.write() method used on other window, 91
DOM content added and replaced, 186
drag-related event handlers, 341–343
dynamic properties, 322–323
error object exception, 995
event bubbling, 743–744
event cancellation and redirection in IE4.5+, 746–747
event cancellation and redirection in W3C DOM,

752–753
Event Lab in W3C, 265–266
eventPhase and currentTarget properties,

798–799
events checked for key and mouse button pressed,

762–763
events checked for modifier keys, 760–761
field selection, 702–703
file information for web page, 546
file input element object, 738
fireEvent() method for HTML element objects,

285–286
firstChild and lastChild properties, 224–225
focus() and blur() methods, 273–274
form, 548–549
form object and form element passed to function,

105–106
form object passed as parameter, 648–649
form.elements array, 657
form.reset() and form.submit() methods,

660–661
frame, 375
frame content table of contents, 482–483
frame.scrolling property, 477
frameset, 508
frameset and script forhiding/showing frame, 481–482

1141

Index L

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1141

Listings (continued)
frameset for property picker, 500
frameset for URL example, 554–555
frameset forced to load, 374
framesetting document, 392
framesetting document for two-frame window in

planetary objects example, 1042–1043
framing prevented, 373
function called from event handler, 71
generalizable function, 1037
getBoundingClientRect() method for HTML

element objects, 292–293
global and local variable scope, 73
graphical navigation bar, 125
hash property of location object, 499
height and width settings for windows, 395–396
HTML document, 178
HTML page with immediate script statements, 50
IE4+ event coordinate properties, 773–775
image object and rotating images, 620–622
image onload event handler, 625–626
image rollovers, 132
image.complete, 613
img align property, 611
innerHTML property for HTML element objects,

228–229
innerText property for HTML element objects,

228–229
insertBefore() method for HTML element

objects, 301
keyboard event handler laboratory, 353–355
keyCode property values, 780–781
labeled statements, 984–985
lastChild and firstChild properties, 224–225
links with custom Status-bar messages, 412
local and global variable scope, 73
location information for different controls, 555–556
location.replace() method, 512
for loop, 978
looping array lookup, 950–951
main window document generating second window, 402
mergeAttributes() method for HTML element

objects, 304–305
modal dialog box document, 457–460
modeless dialog box document, 462–464
mouse tracked while passing over elements, 572–573
moveBy() method of window object, 428–429

navigation bar, 125
navigation lab control panel, 516
navigation lab frameset, 516
navigation to history item, 519
nested if...else constructions, 973
nested string methods, 911–912
NN6+/Moz/Safari event coordinate properties, 796–797
node-related methods, 316–318
<noscript> tag, 150
number-formatting routine, 915
object exception, 996–997
object property, 1056
object-oriented planetary data presentation, 1043–1044
offsetParent property for HTML element objects,

240–241
onbeforecopy event handler, 328
onbeforepaste and onpaste event handlers,

361–362
onbeforeunload() event handler for window

object, 467
onblur and onfocus event handlers, 331
onchange event handler for text input object, 706
onclick and ondblclick event handlers, 333–334
onclick event handler for radio buttons, 687–688
oncopy and oncut event handlers, 336–337
ondragenter and ondragleave event handlers, 344
onFilterChange event handler, 346
onfocus and onblur event handlers, 331
onfocus event handler for text input object, 704–705
onmousedown and onmouseup event handlers,

356–357
onmouseover and onmouseout event handlers, 359
onPropertyChange property, 363–364
onreset and onsubmit event handlers, 662–663
onselectstart event handler for HTML element

objects, 366–367
onstop event handler, 586–587
open() method new window laboratory, 433–434,

436–437
opener property of window object, 402–403
options[].text property of select element

object, 726
options[].value property of select element

object, 726
outerHTML and outerText properties, 242–243
page functionality exercise, 55, 66
parallel array lookup, 949–950

1142

IndexL

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1142

parent property of window object, 406–407
parentTextEdit property for HTML element objects,

245–246
placeholder page for URL example, 556
pop-up shown and hidden, 493–4
precaching images, 131
prevalidation of form, 107
print example frameset, 438
printing control, 438–439
prompt dialog box, 440
Property Inspector function, 981–982
property picker, 501–503
prototype property for array object, 954
radio input object, 684
radio objects, 102
read-only prototype property added to HTML element

objects, 188
recordNumber property data binding, 248–249
recursion in function, 1036
referrer page, 559
regular expression match workshop, 896
relatedTarget property of NN6+/Moz/Safari event

object, 801–803
release() method for HTML element objects,

308–310
reloading, 511
resizing windows, 442
reveal transition between images, 859
reveal transitions chosen between images, 860–861
script errors, 399–400
script in Body, 47
script in Head and Body, 47
script run from onload event handler, 51
script run from user action, 52
script1.html source code, 22
scripts hidden from most old browsers, 48–49
scripts in Head, 46–47
scroll values, 591–592
scrollBy() method of window object, 444, 445–446
scrolling banner, 413–414
scrolling of image, 444–445
scrolling prevention, 470
scrolling property of frame element object, 477
select() method of text input object, 702–703
select object used for navigation, 103–104
select options modified, 717–719
select options modified in IE4+, 720–721

select options modified in W3C DOM, 722
selected text retrieval, 426
selectedIndex property of select element

object, 728
selection list, 725
self property of window object, 411
server submission action adjustment, 678–679
setCapture() method for HTML element objects,

308–310
setExpression() method for HTML element objects,

322–323
setInterval() method of window object, 448–450
setTimeout() method of window object, 452
showModalDialog() main page, 456–457
showModelessDialog() main page, 460–461
slicing a string, 901–902
sorting bound data, 220–221
srcElement property, 785–786
status message changes, 413
status property of window object, 412
stopping script using onstop event handler, 586–587
string exceptions, 994
string handlers, 908–909
string methods, 910–911
string object prototype, 889
string portion, 904–907
string.replace() and string.search(),

899–900
style sheets, 569–570
submission action adjustment, 678–679
summer games countdown, 939–940
switch construction, 987–988
tabIndex property for HTML element objects, 254–255
table of contents, 509
target property of NN6+/Moz/Safari event object,

804–805
text object passed to function, 700
text objects reset to default values, 695
text object’s value property, 99–100
text object’s value property, 699
time display, 452
time stamp on page, 552–553
timeStamp property of NN6+/Moz/Safari event object,

805–806
title property for HTML element objects, 257
toElement and fromElement properties, 778–779
toString() global function custom method, 1069

1143

Index L

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1143

Listings (continued)
toString() global function with radix values, 1068
variable scope workbench page, 1033
W3C event capture and bubble, 748–749
W3C Event Lab, 265–266
Welcome message, 937
while loop, 980
window chrome, 387–388
window object references for, 84
window properties, 392
window-related properties, 406–407
XML data reading script, 874

literal notation, using with arrays, 947–948
LiveScript, transition to JavaScript, 7
load event, using with window object, 87
loadCached() function, using with precaching images,

131–132
loaded value for readyState property, description of, 247
loading process, event handler for, 468–469
loading value for readyState property, description

of, 247
loadXMLDoc() function, using in outline-style TOC

application, BC430–BC431
local scope of variables, explanation, 73
local variables

explanation of, 72
relationship to functions, 1033–1035

localName attribute object property, description
of, 203

localName property
for HTML element objects, 233
for W3C DOM Level 2, description of, 181

location attribute of open() method, browsers for and
description of, 431

location information, displaying for different controls,
555–556

location object
explanation of, 496–498
methods of, 496
properties for, 496–497
references in two-frame browser window, 496
role in browser-window hierarchy, 33
syntax of, 496
using, 87

location object checks, explanation of, BC348
locationbar property for window object, explanation of,

387–388
location.replace() method, invoking, 512

longDesc property
description of, 475
for frame element object, 475
for iframe element object, 488
for img element object, 616

lookup table. See serverless database
lookupNamespaceURI() method for HTML element

objects, explanation of, 303
lookupPrefix() method for HTML element objects,

explanation of, 303
loop counter, using, 976–977
loop property

for img element object, 616–617
for marquee element object, BC18

loop traffic, directing with continue statement, 979
loops. See also for loop

breaking out of, 978
do-while, 980–981
for, 975–979
for-in, 981–982
using, 69–70
while, 979–980

lowercase
converting strings to, 111
using with XHTML style, 23

lowsrc property for img element object, explanation
of, 617

lowSrc property for img element object, explanation
of, 617

M
Mac HTML text editors, suggestions for, 18
Mac OS authoring environment, setting up, 19–20
mail:to URL, unreliability of, 651–652
makeNewWindow() function, invoking for

document.write() method, 91
makeTitleRow() method, using in order form application,

BC416–BC417
map element object

explanation of, 630
event handlers for, 630
explanation of, 631
properties for, 630
syntax for, 630

margin properties, explanation of, 848–849
marginHeight property

for frame element object, 475
for iframe element object, 488

1144

IndexL

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1144

margins, properties for, 591
marginWidth property

for frame element object, 475
for iframe element object, 488

markerOffset property, explanation of, 841
marks property, explanation of, 841
marquee element object, explanation of, BC15
marquee object properties, controlling, BC16–BC17
mashups

designing, BC519
using in Google Maps application, BC514

mask() filter, description and properties for, 857
MaskFilter() filter, description and properties for, 864
match found array object proerties, descriptions of, BC256
matches

getting information about, BC250
searching with regular expressions, BC249

Math object
explanation of, 919
methods for, 920–921
properties for, 919–920
shortcut for, 921–922
syntax for, 919
using, 113

MAX_VALUE property for Number object, explanation of, 923
maxHeight property, explanation of, 841
maxLength property for text input object, explanation

of, 696
maxValue placeholder, using with repeat loops, 70
maxWidth property, explanation of, 841
media property

for document object, 557
for link element object, BC95
for style element object, 815
for styleSheet object, 819

memory management, handling of, 160
menu element object, explanation of, BC151
menubar attribute of open() method, browsers for and

description of, 431
menubar property for window object, explanation of,

387–388
mergeAttributes() method for HTML element objects,

explanation of, 303–305
message property for error object, explanation of, 999
meta element object, explanation of, BC96–BC97
metaKey property for NN6+/Moz/Safari event object,

explanation of, 789–790
method property for form object, explanation of, 659

methods. See also string parsing methods
accessing for elements, 199
accessing for windows, 82–83
adding to working objects, 159
for body element object, 587
for button element object, 669
for Button input object, 669
calling directly, 167
for canvas element object, 634
as commands, 61
for custom objects, 1041–1042
for dataTransfer object, 777
for Date object, 115, 931–934
for Dictionary object, 1074
for document object, 520–521
for document objects, 167–168
for Enumerator object, 1075
for error object, 997
for event object, 759
for file input element object, 736
for function object, 1023
for generic HTML element objects, 196–198
for history object, 513
invoking for DOM objects, 41
for location object, 496
for Math object, 920–921
for object object, 1055
for popup object, 490
for Reset input object, 669
for select element object, 714
for string object, 886
for Submit input object, 669
testing availability of, 152
for text input object, 692
for TreeWalker object, 595
for VBArray object, 1076
for window object, 376–377
for XML element reading, 868–869
for XMLHttpRequest object, 871

Methods property for a element object, explanation
of, 604

Microsoft, implementation of JavaScript by, 7
middle value of align property, description of, 486
MIME type, specifying for JavaScript, 145
mime types, verifying, BC181–BC183
mimeType object

explanation of, BC174–BC175
using, BC180–BC181

1145

Index M

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1145

mimeType property
for a element object, 604
for document object, 557
for img element object, 617

mimeTypes property, using with clientInformation
and navigator objects, BC165–BC166

MIN_VALUE property for Number object, explanation of, 923
minHeight property, explanation of, 841
minimizable attribute of open() method, browsers for

and description of, 431
minus (–) connubial operator, operand and result for, 1005
minus sign (–) sign, checking for, BC266
minWidth property, explanation of, 841
“Missing } after function body” error message text,

explanation of, BC328
miterLimit property for canvas element object,

explanation of, 639
modal attribute of open() method, browsers for and

description of, 431
modal dialog box document code sample, 457–460. See also

dialog boxes
modeless dialog box document code sample, 462–464
modifier keys, checking events for, 760–761
modulo (%) connubial operator, operand and result for, 1005
modulo by value (%=) assignment operator, example of,

1008
month lengths, checking, BC284–BC285
MotionBlur() filter, description and properties for, 864
mouse, tracking while passing over elements, 572–573
mouse actions, event handlers for, 356–360
mouse button presses, checking events for, 762–763
mouse button, using onclick event handler with, 332–334
mouse events, capturing, 306
mouse rollovers, relationship to DOM, 13
mouse wheel, event handler for, 360
move() method, using with TextRange object,

BC78–BC79
moveBy() method for window object, explanation of,

427–430
moveEnd() method, using with TextRange object,

BC79–BC80
moveFirst() method for Enumerator object, description

of, 1075
movement of elements, event handlers for, 360
moveNext() method for Enumerator object, description

of, 1075
moveRow() method, using with table element object,

BC132–BC133

moveStart() method, using with TextRange object,
BC79–BC80

moveTo() method for canvas element object, explanation
of, 642

moveToBookmark() method, using with TextRange
object, BC80–BC81

moveToPoint() method, using with TextRange object,
BC81–BC82

Moz1 DOM, description of, 187
Moz1.4 browsers, geckoActiveXObject() method

in, 425
mozBorder properties, explanation of, 849
Mozilla, relationship to other browsers, 157
Mozilla console windows, error message notification in,

BC324
Mozilla engine

attributes property for, 202
browsers based on, 157

Mozilla-based browsers
viewing script errors in, 53
web resource for, 380

Mozilla.org, formation of, 13
Mozilla’s console, warnings in, BC331
Mozilla’s SignTool, downloading, BC352
Mozilla’s Venkman Debugger, features of, BC335
Moz/NN6+/Safari event object

explanation of, 788–789
methods of DOM objects, 787–788
properties for, 787–788
syntax for, 788

mozOpacity property, explanation of, 842
multidimensional arrays, using, 950–951
multiline property, using with RegExp object, BC258
multiline property, using with regular expression object,

BC255
multiple property for select element object, explanation

of, 723
multiply (*) connubial operator, operand and result for, 1005
multiply by value (*=) assignment operator, example of, 1008
myAge variable, creating, 59

N
name attribute, getting elements by, 577
name attribute object property, description of, 203
name property

for applet object, BC229
for button element object, 672

1146

IndexM

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1146

for Button input object, 672
for a element object, 604
for embed element object, BC237
for error object, 999–1000
for form object, 659
for frame element object, 475
for iframe element object, 489
for img element object, 618
for meta element object, BC98
for object element object, BC234
for plugin object, BC179
for radio input object, 685–686
for Reset input object, 672
for Submit input object, 672
for text input object, 697
for window object, 396

name versus id attributes, 37
namedItem() method for select element object,

explanation of, 730–731
nameProp property

for document object, 557
for a element object, 605
for img element object, 618

namespaces
checking matching of, 302
resolving, 568

namespaces[] property for document object,
explanation of, 557

nameSpaceURI attribute object property, description
of, 203

namespaceURI property
for HTML element objects, 233
for W3C DOM Level 2, 181

NaN (Not a Number) value
checking for, 1065
significance of, 918–919

NaN property for Number object, explanation of, 924
naturalHeight property for img element object,

explanation of, 618–619
naturalWidth property for img element object,

explanation of, 618–619
navigate() method for window object, explanation

of, 430
navigation bars, controlling frames with, 124–126
navigation lab

control panel code sample, 516
frameset code sample, 516

navigation to history item code sample, 519

Navigator 3
dominance of, 12, 171
release of, 169

Navigator 4-only extensions
event capture model in, 171
layers in, 171

navigator object
explanation of, BC154–BC155
fetching browser information with, 25
role in browser-window hierarchy, 33
using, 88

navigator property for window object, explanation
of, 397

negation (val) connubial operator, operand and result for,
1005

NEGATIVE_INFINITY property for Number object,
explanation of, 923

nested if...else constructions code sample, 973
nested layers

scripting, BC207–BC213
visibility relationships of, BC215–BC216

Netscape
relationship to other browsers, 157
specifying targets in, BC354–BC355

Netscape Navigator 2, DOM implemented by, 169
Netscape Plugin Application Programming Interface (NPAPI),

significance of, BC289–BC290
netscape property for window object, explanation of, 397
Netscape signed script policy, explanation of, BC349–BC351
Netscape/Mozilla-only signed scripts, using open() method

with, 432–434
network-oriented information, using location object

properties with, 497
new object operator, explanation of, 1017
newsgroups, consulting, 1106
newWindow function, generating windows with, 127
newWindow variable, defining as global variable, 83, 91
next property for history object, explanation of, 514
nextNode() method for TreeWalker object, explanation

of, 597–598
nextPage() method, using with table element object,

BC133
nextPage property for IE4+ event object, explanation

of, 782
nextSibling attribute object property, description

of, 203
nextSibling() method for TreeWalker object,

explanation of, 597

1147

Index N

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1147

nextSibling property
for HTML element objects, 233–234
for W3C DOM Level 2, 181

NN2, event types in, 763–764
NN3, event types in, 763–764
NN3+, modifying select options in, 716–720
NN4

event propagation in, 741–743
event types in, 763–764

NN4 extensions, browser support for, 168
NN6, event types in, 765–766
NN6+, table modification methods for, BC109
NN6+/Moz/Safari event object

explanation of, 788–789
methods of DOM objects, 787–788
properties for, 787–788
syntax for, 788

NO_MODIFICATION_ALLOWED_FOR exception,
throwing, 991

node content
generating in W3C DOM, 184
replacing in W3C DOM, 185–186

node hierarchy in W3C DOM, significance of, 178–180
node maps, use of, 223
node methods in W3C DOM, explanation of, 183
Node object property constants, support for, 235
node objects, copying, 276–277
node properties in W3C DOM, explanation of, 180–183
nodeName attribute object property, description of, 203
nodeName property

for HTML element objects, 234
for W3C DOM Level 2, 180

nodes
adding user data to, 324
checking equality and sameness of, 302
child and parent nodes, 39
creating dynamic content with, 138–139
exchanging positions of, 324–325
importing, 578
inserting into ranges, BC37–BC38
relationship to elements, 868
relationship to HTML documents, 179–180
removing, 313–314
replacing, 315–318
role in W3C DOM, 38–39
significance of, 179
types of, 38–39, 179–180

nodeType attribute object property, description of, 203
nodeType property

for HTML element objects, 234–236
for W3C DOM Level 2, 180, 182

nodeValue attribute object property, description
of, 203

nodeValue property
for HTML element objects, 236–237
for W3C DOM Level 2, description of, 180

noHref property for area element object, explanation
of, 630

non-JavaScript browsers, handling, 48–49
noResize property for frame element object, explanation

of, 476
normalize() method for HTML element objects,

explanation of, 305–306
<noscript>...</noscript> tags, inclusion in

JavaScript-capable browsers, 149
noShade property, using with hr element object,

BC12–BC13
Not (!) Boolean operator, operand and result for, 1010
Not a Number (NaN) value

checking for, 1065
significance of, 918–919

noWrap property
for body element object, 590
for td and th element objects, BC145

NPAPI (Netscape Plugin Application Programming Interface),
significance of, BC289–BC290

null and empty entries, filtering, BC265
null data type, example and description of, 58
null value, interpretation relative to window object, 83
number data type, example and description of, 58
Number() global function, explanation of, 1066–1067
Number object, explanation of, 922–923
number property for error object, explanation of, 1000
number-formatting routine code sample, 915
numbers

converting strings to, 63, 917–918
converting to strings, 62, 63–64, 918

number.toExponential() method for Number object,
explanation of, 924–925

number.toFixed() method for Number object,
explanation of, 924–925

number.toLocaleString() method for Number object,
explanation of, 925

1148

IndexN

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1148

number.toPrecision() method for Number object,
explanation of, 924–925

number.toString() method for Number object,
explanation of, 925–926

O
obfuscators, using, 147
object data type, example and description of, 58
object detection

using for browser version branching, 151–153
using for DHTML compatibility, BC366–BC368

“Object doesn’t support this property or method” error
message text, explanation of, BC328

object element object, explanation of, BC230–BC231
object exception code sample, 996–997
“Object expected” error message text, explanation of, BC327
object IDs

assigning, 37
rules related to, 37

object model families. See also W3C DOM
basic object model, 169–170
basic object model plus images, 170–171
Internet Explorer 4+ extensions, 171–174
Internet explorer 5+ extensions, 174

object model, hierarchy of, 163–165
object naming, importance in puzzle map DHTML

application, BC496
object object

explanation of, 1055–1057
methods for, 1055
properties for, 1055
syntax, 1055

object operators
delete, 1015
in, 1016
instanceof, 1016
new, 1017
this, 1017–1018

object properties, binding events through, 755–756
object property

defining getters and setters for, 1050–1051
using with applet object, BC229
using with object element object, BC235

object signing, explanation of, BC350
object-oriented concepts

adding prototypes, 1052
prototype inheritance, 1053

object-oriented programming (OOP), explanation of, 1040.
See also planetary objects example

object-oriented W3C DOM, significance of, 182
objects. See also core language objects; document objects;

DOM objects; generic HTML element objects
adding properties and methods to, 159
assigning functions to custom properties for, 187
attaching behaviors to, 259–262
browser document objects, 163–164
built-in objects for JavaScript, 158
creating, 1049–1050
creating array of, 1047–1048
customizing, 1041–1042
detaching behaviors from, 312
embedding in planetary objects example, 1048–1049
events of, 42
explanation of, 39, 1040–1041
methods of, 40–41
naming, 36–37
nesting relative to prototype inheritance, 1053–1054
properties for, 40
prototype-based inheritance employed by, 159–160
referencing, 37
relationships between, BC244–BC248
separating from language, 11
using VBScript with, BC186
void, 1020

octal and hexadecimal integers, using, 916–917
offscreenBuffering property for window object,

explanation of, 397
offset properties, availability in Internet Explorer 4+, 172
offsetHeight property for HTML element objects,

explanation of, 237–238
offsetLeft property for HTML element objects,

explanation of, 238–239
offsetParent property for HTML element objects,

explanation of, 239–241
offsetTop property for HTML element objects, explanation

of, 238–239
offsetWidth property for HTML element objects,

explanation of, 237–238
offsetX property for IE4+ event object, description of,

771–776
ol element object, explanation of, BC146
onabort event handler for img element object, explanation

of, 624
onactivate event handler for HTML element objects,

explanation of, 326–327

1149

Index O

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1149

onafterprint() event handler for window object,
explanation of, 466

onafterupdate event handler
for HTML element objects, 327–328
for text input object, 703

onbeforecopy event handler code sample, 328
onbeforecut event handler for HTML element objects,

explanation of, 328–329
onbeforeeditfocus event handler for HTML element

objects, explanation of, 329
onbeforepaste event handler for HTML element objects,

explanation of, 329–330
onbeforeprint() event handler for window object,

explanation of, 466
onbeforeunload() event handler for window object,

explanation of, 467
onbeforeupdate event handler

for HTML element objects, 327–328
for text input object, 703

onblur event handler
for HTML element objects, 330–331
for text input object, 703–704

oncellchange event handler for HTML element objects,
explanation of, 332

onchange event handler
for select element object, 103, 731–732
for text input object, 705–706

onclick event handler
assigning, 168
for button element object, 673–674
for Button input object, 673–674
for checkbox input object, 679–681
for HTML element objects, 332–334
for radio input object, 686–688
for Reset input object, 673–674
for Submit input object, 673–674

oncontextmenu event handler for HTML element objects,
explanation of, 334

oncontrolselect event handler for HTML element
objects, explanation of, 335

oncopy event handler for HTML element objects,
explanation of, 335–337

oncut event handler for HTML element objects, explanation
of, 335–337

ondataavailable event handler for HTML element
objects, explanation of, 337

ondatasetchanged event handler for HTML element
objects, explanation of, 337

ondatasetcomplete event handler for HTML element
objects, explanation of, 337

ondblclick event handler for HTML element objects,
explanation of, 337–338

ondeactivate event handler for HTML element objects,
explanation of, 326–327

ondrag event handler for HTML element objects,
explanation of, 338–343

ondragend event handler for HTML element objects,
explanation of, 338–343

ondragenter event handler for HTML element objects,
explanation of, 343–344

ondragleave event handler for HTML element objects,
explanation of, 343–344

ondragover event handler for HTML element objects,
explanation of, 343–344

ondragstart event handler for HTML element objects,
explanation of, 338–343

ondrop event handler for HTML element objects,
explanation of, 345

onerror event handler
for img element object, 624
using with runtime errors, 988
for window object, 467

onerror property for window object, explanation of,
398–401

onerrorupdate event handler
for HTML element objects, 345
for text input object, 703

onfilterchange event handler for HTML element objects,
explanation of, 345–346

onfocus event handler
for HTML element objects, 347
for text input object, 703–705

onfocusin event handler for HTML element objects,
explanation of, 347

onfocusout event handler for HTML element objects,
explanation of, 347

onhelp event handler
for HTML element objects, 348–349
for window object, 468

onkeydown event handler for HTML element objects,
explanation of, 349–351

onkeypress event handler for HTML element objects,
explanation of, 349–351

onkeyup event handler for HTML element objects,
explanation of, 349–351

1150

IndexO

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1150

onlayoutcomplete event handler for HTML element
objects, explanation of, 355

online documentation, consulting, 1107
onLine property, using with clientInformation and

navigator objects, BC166–BC167
onload event handler

advisory about using with frameset frames, 374
for document.write() method, 91
for img element object, 625–626
for link element object, BC96
relationship to phantom page syndrome, 173
specifying in <frameset> tag, 123
for window object, 468–469

onload property for window object, relationship to deferred
scripts, 50–51

onlosecapture event handler for HTML element objects,
explanation of, 355–356

onmousedown event handler
for button element object, 674
for Button input object, 674
for Reset input object, 674
for Submit input object, 674

onmousedown event handler for HTML element objects,
explanation of, 356–357

onmouseenter event handler for HTML element objects,
explanation of, 357–358

onmouseleave event handler for HTML element objects,
explanation of, 357–358

onmousemove event handler for HTML element objects,
explanation of, 358

onmouseout event handler
for HTML element objects, 358–359
for imageOff() function with, 133–134

onmouseover event handler
for HTML element objects, 358–359
invoking imageOn() function with, 133–134

onmouseup event handler
for button element object, 674
for Button input object, 674
for HTML element objects, 356–357
for Reset input object, 674
for Submit input object, 674

onmousewheel event handler for HTML element objects,
explanation of, 360

onmove event handler for HTML element objects,
explanation of, 360

onmoveend event handler for HTML element objects,
explanation of, 360

onmovestart event handler for HTML element objects,
explanation of, 360

onpaste event handler for HTML element objects,
explanation of, 360–362

onpropertychange event handler for HTML element
objects, explanation of, 363–364

onreadystatechange event handler for HTML element
objects, explanation of, 364

onreset event handler form object, explanation of,
662–663

onresize event handler
for HTML element objects, 364
for window object, 469

onresizeend event handler for HTML element objects,
explanation of, 365

onresizestart event handler for HTML element objects,
explanation of, 365

onrowenter event handler for HTML element objects,
explanation of, 365

onrowexit event handler for HTML element objects,
explanation of, 365

onrowsdelete event handler for HTML element objects,
explanation of, 365

onrowsinserted event handler for HTML element objects,
explanation of, 365

onscroll event handler
for HTML element objects, 365–366
for window object, 470

onselect event handler for text input object, explanation
of, 703–704

onselectionchange() event handler for document
object, explanation of, 585

onselectstart event handler for HTML element objects,
explanation of, 366–367

onstop() event handler for document object, explanation
of, 585–586

onsubmit event handler form object, explanation of,
106–107, 663

onunload() event handler for window object, explanation
of, 470–471

OOP (object-oriented programming), explanation of, 1040.
See also planetary objects example

opacity property, explanation of, 842
open() method

for document object, 578–579
for window object, 430–434, 436–437
for XMLHttpRequest object, 878–879

1151

Index O

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1151

openDialog() method for window object, explanation of,
436–437

opener property for window object, explanation of, 126,
401–404

operand, performing equality comparisons on, 1004
operators

, (comma), 1018
? :, 1019
arithmetic, 64
assignment, 1002, 1008–1009
bitwise, 1002, 1013–1014
Boolean, 1002, 1009–1013
comparison, 64–65, 1002
connubial, 1002, 1005–1007
object, 1014–1018
objects, 1002
precedence of, 1020–1022
typeof, 1019

OPML (Outline Processor Markup Language), using with
AJAX outline, BC426

OPML outliner, preparing, BC427–BC428
optgroup element object, explanation of, 734
option element object, explanation of, 732–733
options[] property for select element object,

explanation of, 723–724
options[].defaultSelected property for select

element object, explanation of, 724
options[].index property for select element object,

explanation of, 724
options[].selected property for select element

object, explanation of, 724–725
options[].text property for select element object,

explanation of, 726
options[].value property for select element object,

explanation of, 726
options.add() method for select element object,

explanation of, 730
options.remove() method for select element object,

explanation of, 730
Or (| |) Boolean operator

operand and result for, 1010
truth table for, 1011

order form application
defining data-entry fields in, BC416–BC417
design of, BC412
global adjustments in, BC413–BC414
HTML aspect of, BC415–BC416

math aspect of, BC415
writing to screen, BC417–BC418

origin checks, types of, BC348–BC349
originalTarget property for NN6+/Moz/Safari event

object, explanation of, 801
orphans property, explanation of, 852
oscpu property, using with clientInformation and

navigator objects, BC167
Outdent command, parameter for and description of, 575
outerHeight attribute of open() method, browsers for

and description of, 431
outerHeight property for window object, explanation of,

394–396
outerHTML property for HTML element objects, explanation

of, 241–243
outerText property for HTML element objects, explanation

of, 241–243
outerWidth attribute of open() method, browsers for and

description of, 431
outerWidth property for window object, explanation of,

394–396
Outline Processor Markup Language (OPML), using with

AJAX outline, BC426
outline properties, explanation of, 849–850
outline-style TOC application

assembling outline content for, BC423–BC426
implementation plan for, BC419–BC420
outline code for, BC421–BC423
setting frames for, BC421

output local variable, purpose of, 73
overflow property, explanation of, 842
overflowX property, explanation of, 842
overflowY property, explanation of, 842
ownerDocument attribute object property, description

of, 203
ownerDocument property

for HTML element objects, 243
for W3C DOM Level 2, 181

ownerElement attribute object property, description
of, 203

ownerNode property for styleSheet object, explanation
of, 820

ownerRule property for styleSheet object, explanation
of, 820

owningElement property for styleSheet object,
explanation of, 820

1152

IndexO

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1152

P
<p> tags, including in documents, 34
padding properties, explanation of, 850
page and printing properties, 852–853
page property, explanation of, 852
pageBreakAfter property, explanation of, 852
pageBreakBefore property, explanation of, 852–853
pageBreakInside property, explanation of, 853
pages, testing, BC342–BC343. See also URLs
pages property for styleSheet object,

explanation of, 821
pageX property for NN6+/Moz/Safari event object,

explanation of, 794–797
pageXOffset property for window object, explanation of,

404–405
pageY property for NN6+/Moz/Safari event object,

explanation of, 794–797
pageYOffset property for window object, explanation of,

404–405
paragraph element, adding to document, 34
paragraph text, adding to documents, 35
parallel arrays, using, 76–77, 948–951
param element, explanation of, BC238
parameter variables, relationship to functions, 1035–1036
parameters

for document.write() method, 61
for doScroll() method for body element object, 594
of functions, 71–72
for functions, 1026–1027
naming for functions, 104
for TDC (Tabular Data Control), 216
using with DOM object methods, 41

parent and child nodes, roles in W3C DOM, 39
parent container, use of, 223
parent object, role in frame object model, 371
parent property for window object, explanation of,

405–407
parent reference, using with frames, 373
parent window, loading framesetting document into,

120–121
parentElement() method, using with TextRange

object, BC82
parentElement property for HTML element objects,m

explanation of, 243–244
parentheses (()), using with regular expressions, BC244
parentNode attribute object property,

description of, 203

parentNode() method for TreeWalker object,
explanation of, 597

parentNode property
for HTML element objects, 244
for W3C DOM Level 2, 180, 183

parents, inserting elements as, 268–269
parentStyleSheet property

for cssRule object, 826
for styleSheet object, 821

parentTextEdit property for HTML element objects,
explanation of, 245–246

parent-to-child references, explanation of, 122
parentWindow property for document object,

explanation of, 557–558
parse() method, using with Date object, 936
parseFloat() function

explanation of, 1066–1067
using in data type conversions, 63
using in order form application, BC415

parseInt() function
description of, 1066–1067
using in data type conversions, 63
using in serverless database, BC404
using with Decision Helper applicationi, BC478
using with string conversions, 917

parsing methods for strings
string.charAt(index), 890–892
string.charCodeAt(), 890–892
string.concat(), 893
string.fromcharCode(), 890
string.indexOf(), 894
string.lastIndexOf(), 894–895
string.localCompare(), 895
string.match(), 895–897
string.replace(), 897–900
string.search(), 900
string.slice(), 900–902
string.split(), 903
string.substr(), 903–904
string.substring(), 905–906
string.toLocalLowerCase(), 907
string.toLocalUpperCase(), 907
string.toLowerCase(), 907
string.toStrinig(), 908
string.toUpperCase(), 907
string.valueOf(), 908

password input object, explanation of, 707

1153

Index P

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1153

paste edit action, event handler for, 360–362
pasteHTML() method, using with TextRange object, BC83
pathname property

for a element object, 603
for location object, 505

paths
adding rectangles to, 642
managing in canvas, 641

personalBar attribute of open() method, browsers for
and description of, 431

personalbar property for window object, explanation of,
387–388

phantom page syndrome, occurrence in Internet Explorer 4,
173

pixel height and width, revealing, 212
pixel width, controlling, 616
pixelBottom positioning property, explanation of, 844
pixelDepth property, using with screen object, BC190
pixelHeight positioning property, explanation of, 844
pixelLeft positioning property, explanation of, 844
pixelRight positioning property, explanation of, 844
pixelTop positioning property, explanation of, 844
pixelWidth positioning property, explanation of, 844
pkcs11 property for window object, explanation of, 383
placeholders

for URL example, 556
using # with rollovers, 137
using with repeat loops, 70

planet web page exercise, 79
planetary objects example. See also object-oriented

programming (OOP)
creating array of objects in, 1047–1048
data presentation for, 1043–1044
encapsulation in, 1046–1047
framesetting document for two-frame window in,

1042–1043
using embedded objects in, 1048–1049

platform equivalency, using for DHTML compatibility,
BC365–BC366

platform property, using with clientInformation and
navigator objects, BC167–BC168

plug-in installation, managing, BC183
plugin object

explanation of, BC177–BC178
using, BC180–BC181

plug-ins
API approach toward, BC311–BC313
detecting in WinIE, BC183–BC186

embedding multiple sounds, BC317–BC320
HTML side of, BC310
scripting, BC309–BC310
using with browsers, 6
verifying, BC181–BC183

plugins property, using with clientInformation and
navigator objects, BC168

plugins[] property for document object, explanation
of, 558

pluginspage property, using with embed element
object, BC237

plus (+) connubial operator, operand and result for, 1005
plus (+) operator, concatenating strings with, 64
plus (+) sign

after version numbers, 157
joining strings with, 62
stringing together batches of text with, 25

poly shape, coordinates for and example of, 629
polygon shape, coordinates for and example of, 629
popup object

explanation of, 490–491
methods of, 490
properties for, 490
syntax for, 490

pop-up window, creating, 421–422
port property for a element object, explanation of, 603
port property for location object, explanation of, 506
posBottom positioning property, explanation of, 844–845
posHeight positioning property, explanation of, 844–845
position positioning property, explanation of, 845
positioned elements

changing backgrounds of, BC198–BC201
layers as, BC197
visibility behavior of, BC215–BC216

positioning properties, 843–845
positive (+val) connubial operator, operand and result for,

1005
positive integers, testing for, BC265
POSITIVE_INFINITY property for Number object,

explanation of, 923
posLeft positioning property, explanation of, 844–845
posRight positioning property, explanation of, 844–845
posTop positioning property, explanation of, 844–845
posWidth positioning property, explanation of, 844–845
precaching images, using src property for img element

object with, 130–132, 619. See also images
precedence of operators, levels of, 1021–1022

1154

IndexP

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1154

preference() method, using with clientInformation
and navigator objects, BC171–BC174

prefix attribute object property, description of, 203
prefix property for HTML element objects, explanation

of, 233
Prefix property for W3C DOM Level 2, description of, 181
preventDefault() method for NN6+/Moz/Safari event

object, explanation of, 808
previous property for history object, explanation of, 514
previousNode() method for TreeWalker object,

explanation of, 597–598
previousPage() method, using with table element

object, BC133
previousSibling attribute object property,

description of, 203
previousSibling() method for TreeWalker object,

explanation of, 597
previousSibling property

for HTML element objects, 233–234
for W3C DOM Level 2, description of, 180

print() method for window object, explanation of,
438–439

printing, event handlers for, 466
printing and page properties, 852–853
privilege targets, descriptions of, BC355–BC356
PrivilegeManager errors, handling, BC359
privileges

blending into scripts, BC356–BC357
gaining, BC352

problems, preventing, BC341–BC342. See also
troubleshooting techniques

processData() function, using with form object, 650
product property, using with clientInformation and

navigator objects, BC169
productSub property, using with clientInformation

and navigator objects, BC169
profile property, using with head element object, BC91
programming versus scripting, 54
prompt dialog box, example of, 86–87
prompt() method for window object, explanation of,

439–441
prompter property for window object, explanation of, 380
properties

accessing for elements, 199
accessing for form object, 96–97
accessing for windows, 82–83
adding to working objects, 159
for anchor element objects, 600

for area element object, 626
for array objects, 953–955
aural, 854
for background, 845–846
for body element object, 587
for borders and edges properties, 847–851
for button element object, 669
for Button input object, 669
for canvas element object, 634
for checkbox input object, 675
creating for custom objects, 1041
for cssRule object, 825
customizations for, 545–546
for Dictionary object, 1074
for doctype object in NN6+Moz, 542
for document object, 520–522
for document objects, 166–167
for edges and borders, 847–851
for a element objects, 600
for Enumerator object, 1075
for error object, 997
event handler for, 363–364
for event object, 759
for fieldset element object, 663
for file input element object, 736
font and text properties, 833–838
for form object, 646
for frame element objects, 471, 478
for function object, 1023
for generic HTML element objects, 196–198
for history object, 513
for IE4+ event object, 766–767
for IE4+ transition filters, 857–858
for IE4-compatible static filter types, 856–857
for IE5.5 DXImageTransform.Microsfort filters,

862–865
for iframe element objects, 484
for image input object, 688
for img element objects, 608
for inline display and layout, 838–843
for label element object, 665
for layout and inline display, 838–843
for legend element object, 663
for link element objects, 600
for lists, 850–851
for location object, 496–497
looping through, 981–982
for map element object, 630

1155

Index P

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1155

properties (continued)
for Math object, 113, 919–920
for NN6+/Moz/Safari event object, 787–788
for object object, 1055
for optgroup element object, 734
for option element object, 732
for pages and printing, 852–853
for popup object, 490
for positioning, 843–845
for printing and pages, 852–853
for Reset input object, 669
for scroll bars, 851
for select element object, 714
for string object, 886
for style element object, 814
for styleSheet object, 816
for Submit input object, 669
for table properties, 851–852
for text and font properties, 833–838
for text input object, 692
for textarea element object, 708
tracking values for, 1056–1057
for TreeWalker object, 595
for window object, 376–378
for xml element object, 869
for XML element reading, 868–869
for XMLHttpRequest object, 871

properties and methods, exposing relative
to IE behaviors, BC376

properties of DOM objects, accessing, 40
properties of elements, assigning text to, 25
property names, case sensitivity of, 167
property picker code sample, 501–503
propertyIsEnumerable() method for object object,

explanation of, 1058
propertyName property for IE4+ event object,

explanation of, 782
protected properties and methods, accessing,

BC354–BC356
protocol property

for document object, 558
for a element object, 603
for img element object, 619
for location object, 506

prototype inheritance
explanation of, 1053
relationship to nested objects, 1053–1054

prototype property
for array object, 954
for RegExp object, BC259
for string object, 889–890

prototype-based inheritance, use by JavaScript objects,
159–160

prototypes, adding in OOP (object-oriented
programming), 1052

puzzle map game DHTML application. See also DHTML
(Dynamic HTML)

calculating data for x and y coordinates in, BC487
clearInterval() function in, BC493–BC494
custom API for, BC485
design of, BC483–BC484
dragIt() function in, BC490
engage() function in, BC489
init() function in, BC494
loading .js library file for, BC486
for loop in, BC492
main program for, BC485
main script for, BC486–BC487
moveHelp() function in, BC493
onTarget() function in, BC491, BC495
release() function in, BC490–BC491
setSelectedMap() function in, BC488–BC489
setting label layer’s background color in, BC489
shiftTo() API function in, BC491
showHelp() function in, BC492
state object for, BC488
structure of, BC485–BC486

Q
q element object, explanation of, BC4
quadraticCurveTo() method for canvas element

object, explanation of, 640
qualifier property for IE4+ event object, explanation

of, 769
query commands, using, 579–580
queryCommandCommandState() method for document

object, explanation of, 579–580
queryCommandEnabled() method

for document object, 579–580
for TextRange object, BC84

queryCommandIndeterm() method
for document object, 579–580
for TextRange object, BC84

1156

IndexP

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1156

queryCommandState() method, using with TextRange
object, BC84

queryCommandSupported() method
for document object, 579–580
for TextRange object, BC84

queryCommandText() method
for document object, 579–580
for TextRange object, BC84

queryCommandValue() method
document object, 579–580
for TextRange object, BC84

quote pair (“ “), using with String objects, 110–113
quote pair (‘ ‘), using with String objects, 110–113
quotes (“), including with element IDs, 24
quotes property, explanation of, 834

R
radio input object

explanation of, 682–683
using with form controls as objects, 101–102

radix values, using with toString() function, 1068
random numbers, using Math object with, 113, 921
RandomBars() filter, description and properties for, 865
RandomDissolve() filter, description and properties

for, 865
Range object

creating, 568
explanation of, BC20–22
versus TextRange object, BC59

rangeCount property, using with selection object, BC45
ranges

inserting nodes into, BC37–BC38
working with text ranges, BC23, BC58–BC59

readOnly property
for cssRule object, 826
for styleSheet object, 821
for text input object, 697–698

read-only prototype, adding to HTML element objects, 188
read-only style object, returning, 215
read/write access, availability in Internet Explorer 4+, 172
read/write status, determining for document object

properties, 167
ready state, event handler for, 364
readyState property

for HTML element objects, 246–247
for XMLHttpRequest object, 875

real-time versus batch validation, BC261–BC263

reason property for IE4+ event object, explanation
of, 769

recalc() method for document object, explanation
of, 580

recordNumber property for HTML element objects,
explanation of, 247–249

records, displaying in data collections, 219
recordset property for IE4+ event object, explanation

of, 769
rect() method for canvas element object, explanation

of, 642
rect shape, coordinates for and example of, 629
rectangle shape, coordinates for and example of, 629
recursion of functions, explanation of, 1036
references

child-to-child, 122–123
child-to-parent, 122
for control objects in W3C DOM, 177
to form control elements, 647
for form controls as objects, 97–98
for form object, 95
for frame element object, 123
for frames, 372
for image objects, 129
for location object in two-frame browser window, 496
for multiple windows, 126–128
parent-to-child, 122
passing to form elements and forms, 105–106
to style element objects, 561
for window object, 83
for window objects, 84
for window.alert() method, 85

referrer property for document object, explanation of,
558–559

Refresh command, parameter for and description of, 575
refresh() method,

for plugin object, BC179–BC180
for using with table element object, BC133

RegEx constructor, using with of, BC245
RegExp object, explanation of, BC257–BC258
regular expression match workshop code sample, 896
regular expression object, explanation of, BC254
regular expressions

counting metacharacters for, BC243
grouping and backreferencing, BC244
matching metacharacters for, BC242
patterns related to, BC239–BC240
performing matches with, BC248–BC249

1157

Index R

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1157

regular expressions (continued)
positional metacharacters for, BC243
relationship to objects, BC244–BC248
simple patterns related to, BC241
source property for, BC245
special characters used with, BC241–BC244
using, BC248–BC253
using to replace strings, BC252–BC253

rel property
for a element object, 605
for link element object, BC95

relatedTarget property for NN6+/Moz/Safari event
object, explanation of, 801–803

releaseCapture() method for HTML element objects,
explanation of, 306

reload() method for location object, explanation
of, 510

Remove() method for Dictionary object, description
of, 1074

remove() method for select element object, explanation
of, 730

RemoveAll() method for Dictionary object, description
of, 1074

removeAllRanges() method, using with selection
object, BC49

removeAttribute() method for HTML element objects,
explanation of, 310

removeAttributeNode() method for HTML element
objects, explanation of, 310–311

removeAttributeNS() method for HTML element
objects, explanation of, 311–312

removeBehavior() method for HTML element objects
code sample, 261–262
explanation of, 312

removeChild() method for HTML element objects
explanation of, 312
role in W3C DOM Level 2, 183

removeEventListener() method for HTML element
objects, explanation of, 263–266

removeExpression() method for HTML element objects,
explanation of, 312–313

RemoveFormat command, parameter for and description
of, 575

removeNode() method for HTML element objects,
explanation of, 313–314

removeRange() method, using with selection
object, BC49

repeat loops
explanation of, 975–979
using, 69–70

repeat property for IE4+ event object, explanation of, 783
replace() method for location object,

explanation of, 512
replaceAdjacentText() method for HTML element

objects, explanation of, 314–315
replaceChild() method

for HTML element objects, 315
for W3C DOM Level 2, 183, 185

replaceData() method, using with Text and TextNode
objects, BC52–BC55

replaceNode() method for HTML element objects,
explanation of, 315–318

reset event, sending to forms, 662
Reset input object

event handlers for, 669
explanation of, 670–671
form property for, 671–672
method for, 669
properties for, 669
syntax for, 670

reset() method for form object, explanation of, 660–661
resistor calculator

arrays for, BC440
calculation involved in, BC437–BC438
calculations and formatting for, BC440–BC441
changing images on the fly, BC442
creating select objects for, BC443–BC444
drawing initial images for, BC444–BC445
graphical user interface ideas for, BC438
preloading images for, BC441–BC442

resizable attribute of open() method, , explanation
of, 431

resizable dialog box feature in IE, description of, 455
resizeBy() method for window object, explanation of,

441–442
resized objects, event handlers for, 364–365
resizeTo() method for window object, explanation of,

441–442
resizing windows, event handler for, 469
responseText property for XMLHttpRequest object,

explanation of, 875
responseXML property for XMLHttpRequest object,

explanation of, 875

1158

IndexR

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1158

restore() method for canvas element object, explanation
of, 642–643

Return key, using with text boxes, 694
returnValue property

for IE4+ event object, 783–784
for window object, 408

rev property
for a element object, 605
for link element object, BC95

revealTrans() transition filter, description and properties
for, 858

right property
explanation of, 843
using with TextRectangle object,, BC86–B88

right shift (>>) operator, operands for, 1014
right shift by value (>=) assignment operator, example

of, 1008
right value of align property, description of, 486
rightContext property, using with RegExp object, BC259
rightMargin property for body element object,

explanation of, 589–590
rollover dynamism, accomplishing without scripts, 135–137
rollover IE behavior, example of, BC380–BC383
rollover states, image sizes used with, 130. See also image

rollovers
rollovers, using li elements with, 135–137
root method for TreeWalker object, explanation of, 597
rotate() method for canvas element object, explanation

of, 643
rotating images and image object code sample, 620–622
row property for frameset element object, explanation of,

480–483
RowDelim parameter for TDC

description of, 217
using, 219

rowIndex property, using with tr element object, BC140
rows. See also tables

event handlers for, 365
modifying, BC108–BC114
placing at tops of table columns, BC104

rows property
for textarea element object, 710
for table element object, BC127

rowSpan property, using with td and th element
objects, BC144

rubyAlign property, explanation of, 835
rubyOverhang property, explanation of, 835

rubyPosition property, explanation of, 835
rules property

for styleSheet object, 822
for table element object, BC127–BC130

runtime error, explanation of, 988
runtime versus errors, BC323–BC324
runtimeStyle property for HTML element objects,

explanation of, 249–250

S
\S matching metacharacter, using in regular expressions,

BC242
Safari, recording script errors in, 54
Safari errors, notification of, BC324–BC325
Safari/Moz/NN6+ event object

explanation of, 788–789
methods of DOM objects, 787–788
properties for, 787–788
syntax for, 788

Safari’s Drosera Debugger, features of, BC336
salesrpt.xml XML report

constructing table for, BC508–BC510
converting data for, BC502–BC504
implementation plan for, BC500
initialization sequence for, BC501–BC502
select elements in, BC499
selecting controls for, BC510
sorting JavaScript database for, BC504–BC505
structure of, BC498
styleSheet object for, BC500–BC501

same origin policy, explanation of, BC347–BC348
sandbox in Java, explanation of, BC346–BC347
save() method for canvas element object, explanation of,

642–643
saveCurrentVisit() function, using in flag-update

application, BC452
saved source files, reloading, 19
save-switch-reload sequence

considering in authoring environment, 18
keyboard shortcuts for, 19

saveType property for IE4+ event object, explanation
of, 784

scale() method for canvas element object, explanation
of, 643

scope of variables, significance of, 72–74
scopeName property for HTML element objects, explanation

of, 250

1159

Index S

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1159

screen object
explanation of, BC187
role in browser-window hierarchy, 33

screenLeft property for window object, explanation of,
408–409

screenTop property for window object, explanation of,
408–409

screenX attribute of open() method, explanation of, 431
screenX property

for IE4+ event object, 771–776
for NN6+/Moz/Safari event object, 794–797
for window object, 409

screenY attribute of open() method, browsers for and
description of, 431

screenY property
for IE4+ event object, 771–776
for NN6+/Moz/Safari event object, 794–797
for window object, 409

script element object, explanation of, BC98–BC99
script errors, viewing, 52–54
<script for> tags, using, 146
script libraries, using, 148–149
script references, naming objects for, 36–37
script statements. See also statements

encasing in CDATA sections, 148
executing, 423
execution of, 49–52
hiding from older browsers, 146–147
relationship to IE behaviors, BC375

script structure, refining, BC341–BC342
<script> tag

attributes of, 45–46
including closing tags with, 45
positions of, 46–48
using, 23, 45–46
using with HTML documents, 145–146

<script>...</script> tags, inclusion in JavaScript-
capable browsers, 149

script1.html

<div> tag in, 23
getting browser information, 25
HTML in, 23
inserting text in, 24–25
modifying, 25
<script> tag in, 23
source code, 22
trigger used for running of, 24
troubleshooting, 25

scriptable browsers, modifying content for, 153–154
Scriptableclock.java/* code sample, BC294
scripted clock code sample, BC295–BC297
scripting

exposing elements to, 241
separating content from, 190

scripting language, JavaScript as, 158
scripting strategy, development of, 14–15
scripting trends

handling events, 191
separating content from scripting, 190
using W3C DOM where possible, 190–191

scripting versus programming, 54
scripts. See also signed scripts

behavior of first script, 21
binding events to, 146
communication with applets, BC303
embedding in HTML documents, 145–149
entering and previewing first script, 21–23
errors in, 398
establishing goals of, 150–151
hiding entirely, 147
hiding from XHTML validators, 148
placement in documents, 45–49
running deferred scripts, 50–52
running in response to user actions, 52
signing, BC352–BC354
stopping, 586–587
using expressions in, 60–-62
using repeat loops with, 69–70

scripts[] property for document object, explanation
of, 560

scroll bar properties, 851
scroll box, event handler for, 365–366
scroll() method for window object, explanation of, 443
scroll property for body element object, explanation

of, 591
scroll values, determining, 591–592
scrollAmount property, using with marquee element

object, BC19
scrollbars attribute of open() method, browsers for and

description of, 431
scrollbars property for window object, explanation of,

387–388
scrollBy() method for window object, explanation of,

443–446
scrollByLines() method for window object, explanation

of, 446

1160

IndexS

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1160

scrollByPages() method for window object, explanation
of, 446

scrollDelay property, using with marquee element
object, BC19

scrollHeight property for HTML element objects,
explanation of, 250–251

scrolling
activating unwanted scrolling, 443
event handler for, 470

scrolling banner, creating, 413–414
scrolling elements, 283–284
scrolling methods, using with body element object, 593–594
scrolling property

for frame element object, 476–477
for iframe element object, 489

scrollIntoView() method for HTML element objects,
explanation of, 318–319

scrollLeft property
for body element object, 591–592
for HTML element objects, 251–252

scrollMaxX property for window object, explanation
of, 410

scrollMaxY property for window object, explanation
of, 410

scrollTo() method for window object, explanation of,
443–444

scrollTop property
for body element object, 591–592
for HTML element objects, 251–252

scrollWidth property for HTML element objects,
explanation of, 250–251

scrollX property for window object, explanation of, 410
scrollY property for window object, explanation of, 410
search property

for a element object, 603
for location object, 506–510

search-and-replace approaches with Undo, BC72–BC76
sectionRowIndex property, using with tr element object,

BC140–BC141
security policies, types of, BC347
security[] property for document object, explanation

of, 560
securityPolicy property, using with

clientInformation and navigator
objects, BC169

select element
explanation of, 714–715
using in XML data transformation application, BC499
using with precaching images, 131–132

select() method
for text input object, 701–703
for TextRange object, BC84

select object
creating for resistor calculator, BC443–BC444
using with form controls as objects, 102–104

select options
modifying in IE4+, 720–721
modifying in NN3+ and IE4+, 716–720
modifying in W3C DOM, 721–722

SelectAll command, parameter for and description
of, 575

selectAllChildren() method, using with selection
object, BC50

selectedIndex property for select element object,
explanation of, 102–104, 728

selection object, explanation of, BC43–BC44
selection property for document object, explanation

of, 561
selectNode() method, using with Range object, BC38
selectNodeContents() method, using with Range

object, BC38–BC39
selectorText property for cssRule object, explanation

of, 826
self property for window object

description of, 410–411
example of, 411

send() method for XMLHttpRequest object, explanation
of, 879

server programming, varieties of, 5–6
serverless database. See also database

arrays for, BC402–BC403
Body part of, BC407
data validation functions for, BC404–BC405
developing, BC399–BC400
document title for, BC401
implementation plan for, BC400
searching, BC406

servers, offloading busy servers with JavaScript, 30
server-side image map, property for, 617
setActive() method for HTML element objects,

explanation of, 319
setAttribute() method for HTML element objects,

explanation of, 319–320
setAttributeNode() method for HTML element objects,

explanation of, 310–311
setAttributeNS() method for HTML element objects,

explanation of, 320–321

1161

Index S

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1161

setCapture() method for HTML element objects,
explanation of, 306–310

setCookie() function, calling in Decision Helper
application, BC461

setCookieData() function, using in flag-update
application, BC452

setData() method
for clipboardData object, 381
for dataTransfer object, 777

setEnd() method, using with Range object, BC39–BC40
setEndAfter() method, using with Range object, BC41
setEndBefore() method, using with Range object, BC41
setEndPoint() method, using with TextRange object,

BC84–BC85
setExpression() method for HTML element objects,

explanation of, 321–324
setInterval() method for window object, explanation

of, 446–450
setMonth() method, use of zero (0) with, 115
setMsg() function, using with image rollovers, 134
setRequestHeader() method for XMLHttpRequest

object, explanation of, 879
setStart() method, using with Range object,

BC39–BC40
setStartAfter() method, using with Range

object, BC41
setStartBefore() method, using with Range

object, BC41
setters and getters, defining for object properties, 1050–1051
setTimeout() method for window object, explanation of,

450–453
setUserData() method for HTML element objects,

explanation of, 324
shadow() filter, description and properties for, 857
Shadow() filter, description and properties for, 865
shadowBlur property for canvas element object,

explanation of, 639–640
shadowColor property for canvas element object,

explanation of, 639–640
shadowOffsetX property for canvas element object,

explanation of, 639–640
shadowOffsetY property for canvas element object,

explanation of, 639–640
shape property

for area element object, 629
for a element object, 603

sheet property, using with link element object, BC95

shiftKey property
for IE4+ event object, 767–768
for NN6+/Moz/Safari event object, 789–790

shiftLeft property for IE4+ event object, explanation
of, 768

show() method for popup object, explanation of,
492–494

showHelp() method for window object, explanation
of, 453

showModalDialog() main page code sample, 456–457
showModalDialog() method for window object,

explanation of, 453–456
showModelessDialog() main page code sample,

460–461
showTip() function, using in Decision Helper

application, BC464
sibling node, explanation of, 234
sidebar property for window object, explanation of, 380
signed pages, locking down, BC360
signed script policy in Netscape, explanation of,

BC349–BC351
signed scripts. See also scripts

avoiding international characters in, BC360
exporting and importing, BC359–BC360

signed-script examples
accessing private browser information,

BC357–BC358
accessing protected window property, BC358

signing scripts, BC352–BC354
SignTool application, downloading, BC352
size property

explanation of, 853
for font element object, BC8–9
for hr element object, BC13
for select element object, explanation of, 729
for text input object, 698

sizeToContent() method for window object, explanation
of, 465

slicing a string code sample, 901–902
software tools

browsers, 18
text editors, 17–18

“<Something> * error message text, explanations of,
BC328–BC330

sorting data, 219
sounds, scripting, BC317–BC320
source code, viewing for frames, 375

1162

IndexS

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1162

source files
referencing in src attributes, 148
reloading saved source files, 19

source property, using with regular expression
object, BC255

sourceIndex property for HTML element objects,
explanation of, 252

space characters, omitting from variable names, 59
span property, using with col and colgroup element

objects, BC137–BC138
specified attribute object property, description

of, 203
splitText() method, using with Text and TextNode

objects, BC55–BC56
square brackets ([])

using in Internet Explorer, 202
using with repeat loops, 70

src attribute, referencing source file in, 148
src property

for embed element object, BC238
for frame element object, 478
for iframe element object, 489–490
for image input object, 689
for img element object, 619–623
for script element object, BC100
for xml element, 870

srcElement property for IE4+ event object, example of,
784–786

srcFilter property for IE4+ event object, explanation
of, 786

srcUrn property for IE4+ event object, explanation of, 786
standard output, outputting string of text to, 423
standby property, using with object element object,

BC235
start() method, using with marquee element object, BC19
start property

for img element object, 623
for ol element property, BC146–BC147

startContainer property, using with Range object, BC25
startOffset property, using with Range object,

BC25–BC26
startValue placeholder, using with repeat loops, 70
statement delimiter, treatment of line terminator as, 161
statements. See also labeled statements; script statements

execution of, 49–52
hiding script statements from older browsers, 146–147
uses of, 49

static tables, generating, BC385–BC388
static W3C DOM HTML objects, using, 187–188
status attribute of open() method, browsers for and

description of, 431
status dialog box feature in IE, description of, 455
status property

for XMLHttpRequest object, 876–877
window object, 412–414

statusbar property for window object, explanation of,
387–388

statusText property for XMLHttpRequest object,
explanation of, 877

sticky wait cursor, fixing, 564
Stop button

clicking, 466
event handler for, 585–587

stop() method
for marquee element object, BC19
for window object, 466

stopPropagation() method for NN6+/Moz/Safari event
object, explanation of, 809

strictErrorChecking property for document object,
explanation of, 561

strictly does not equal (!==) comparison operator, operand
and result for, 1003

strictly equals (===) comparison operator, operand and result
for, 1003

string case, changing, 111
string comparisons, calculating, 1003
string data type, example and description of, 58
string exceptions, throwing, 994
string literals

explanation of, 110
joining with variables, 884–885

string methods
charAt(), 112–113
nesting, 911–912
string.IndexOf(), 111–112
string.substring(), 112

string object
explanation of, 887
methods for, 886
properties for, 886
syntax for, 887

string object methods, formatting methods, 910–912
String objects, using, 110–113

1163

Index S

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1163

string parsing methods. See also methods
string.charAt(index), 890–892
string.charCodeAt(), 890–892
string.concat(), 893
string.fromcharCode(), 890
string.indexOf(), 894
string.lastIndexOf(), 894–895
string.localCompare(), 895
string.match(), 895–897
string.replace(), 897–900
string.search(), 900
string.slice(), 900–902
string.split(), 903
string.substr(), 903–904
string.substring(), 905–906
string.toLocalLowerCase(), 907
string.toLocalUpperCase(), 907
string.toLowerCase(), 907
string.toStrinig(), 908
string.toUpperCase(), 907
string.valueOf(), 908

string portion code sample, 904–907
string utility functions, using, 908–910
string values

assigning to variables, 110
versus string objects, BC302–BC303

string variables, building, 884
string.IndexOf() method, using, 111–112
strings

comparing, 1003
components of, 883
converting numbers to, 62, 63–64, 918
converting to numbers, 63, 917–918
joining, 110–111
joining with plus (+) symbol, 62
replacing via regular expressions, BC252–BC253
returning, 325
searching, 111–112
treating dates as, 934–935
using escape codes with, 912

string.substring() method, using, 112
Stripes() filter, description and properties for, 865
stripZeros() function, using in serverless

database, BC404
stroke() method for canvas element object, explanation

of, 643
strokeRect() method for canvas element object,

explanation of, 643

strokeStyle property for canvas element object,
explanation of, 640

style element object
explanation of, 812, 814–815
properties for, 814
references to, 561
syntax for, 814

style object
explanation of, 812
returning, 215
returning with runtimeStyle property, 249
syntax for, 828

style object properties
color values for, 830–831
combination values for, 832
explanation of, 829
length values for, 830
rectangle sides for, 831–832
URLs for, 832

style object property, explanation of, 828
style properties, reading, 813–814
style property

availability in Internet Explorer 4+, 172
for cssRule object, 826–827
for HTML element objects, 253

style property settings, changing, 249–250
styleFloat property, explanation of, 842
stylesheet headings, changing in DHTML, 138
styleSheet object

creating, 568–570
explanation of, 816–817
methods of DOM objects, 816
properties for, 816
syntax for, 816
for XML data transformation application, BC500–BC501

stylesheet properties, scriptability of, 173
styleSheet property, using with link element

object, BC95
stylesheets

importing, 813
rules related to, 812

styleSheets[] property for document object,
description of, 561

SubEthaEdit text editor, downloading, 18
Submit input object

event handlers for, 669
explanation of, 670–671
form property for, 671–672

1164

IndexS

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1164

method for, 669
properties for, 669
syntax for, 670

submit() method for form object
explanation of, 661
quirky behavior of, 108
using, 106–107

submitted forms, inspecting with CGI programs, 30
substringData() method, using with Text and

TextNode objects, BC52–BC55
substrings, extracting copies of, 112–113
subtract by value (–=) assignment operator, example of, 1008
suffixes property, using with mimeType object, BC177
summary property, using with table element object, BC130
surroundContents() method, using with Range object,

BC41–BC42
swapNode() method for HTML element objects,

explanation of, 324–325
switch statement, explanation of, 985–988
syntax

for anchor element objects, 600
for area element object, 627
for body element object, 587
for button element object, 670
for Button input object, 670
for canvas element object, 634
for checkbox input object, 675
for cssRule object, 825
for currentStyle object, 828
for Date object, 929
for document object, 88, 522
for a element objects, 600
for elementObject.accesskey, 199
for error object, 998
for fieldset element object, 664
for file input element object, 737
for filter object, 855
for form controls as objects, 98
for form object, 646
for frame element objects, 472
for frameset element object, 478
for function object, 1023–1024
for functions, 71
for generic HTML element objects, 199
for history object, 513
for IE4+ event object, 767
for if constructions, 68
for if...else constructions, 69

for iframe element object, 485
for image input object, 688
for img element objects, 608
for label element object, 665
for legend element object, 664
for link element objects, 600
for map element object, 630
for Math object, 919
for NN6+/Moz/Safari event object, 788
for Number object, 922
for object object, 1055
for optgroup element object, 734
for option element object, 732–733
for radio input object, 682
for referencing objects, 37
for Reset input object, 670
syntax versus runtime errors, BC323–BC324
for runtimeStyle object, 828
for select element object, 714
for string object, 887
for style element object, 814
for style object, 828
for styleSheet object, 816
for Submit input object, 670
for text input object, 692
for textarea element object, 708
for TreeWalker object, 595
for window object, 83, 378
for xml element object, 869
for XMLHttpRequest object, 871

systemLanguage property, using with
clientInformation and navigator
objects, BC170

T
tabIndex property for HTML element objects, explanation

of, 253–255
table cells

modifying content of, BC106–BC108
populating, BC106

table columns, modifying, BC114–BC117
table element object, explanation of, BC118–BC119
table frame property values, cycling through, BC124–BC126
table object classes, availability in W3C DOM, BC117
table object, family hierarchy of, BC104–BC105
table of contents code sample, 509
table properties, 851–852

1165

Index T

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1165

table rows
modifyinig, BC108–BC114
placing at tops of table columns, BC104

table rules property values, cycling through, BC128–BC130
tableLayout property, explanation of, 852
tables

constructing for XML data transformation application,
BC508–BC510

generating dynamic HTML tables, BC393–BC397
generating dynamic tables, BC389–BC392
generating static tables, BC385–BC388
including captions in, BC104–BC105

Tabular Data Control (TDC)
loading data with, 216
power of, 219

tag attributes, binding events through, 754–755
tagging language, HTML as, 4
tagName property for HTML element objects, explanation

of, 255–256
tags in HTML

adding id attributes to, 36–37
use of, 31

tags() method for HTML element objects, explanation
of, 325

tagUrn property for HTML element objects, explanation
of, 250

target property
for a element object, 605–606
for base element object, BC92
for form object, 659–660
for link element object, BC96
for NN6+/Moz/Safari event object, 803–805

targets, specifying in Netscape, BC354–BC355
tBodies property, using with table element object, BC130
tbody element object, explanation of, BC133–BC135
td and th element objects, explanations of, BC142–BC143
TDC (Tabular Data Control)

loading data with, 216
power of, 219

“Test for equality (==) mistyped as assignment (=)?” error
message text, explanation of, BC330

test() method, using with regular expression
object, BC257

text
assigning to element properties, 25
inserting, 299–300
rendering to right or left, 221

replacing, 314
stringing together batches of, 24

text and font properties, 833–838
Text and TextNode objects, explanations of, BC50–BC51
text boxes, using Enter/Return key with, 694
text editors

choosing, 17–18
switching to browsers in Mac OS, 19

text fields, designing event handlers for, 693
text HTML-related node type, description of, 180
text input object

event handlers for, 692
explanation of, 692–693
method for, 692
properties, 692
syntax for, 692

text nodes
creating, 570
explanation of, 184
inserting as last child of current element, 266–267

text nodes, creating, 92
Text object data method laboratory, BC53–BC55
text objects

behavior of, 99
names of, 697
resetting to default values, 695
setting values of, 699

text property
for body element object, 588
for script element object, BC100
for select object, 103
for TextRange object, BC63
for title element object, BC101

text ranges
creating, 245–246
working with, BC58–BC59

text rollover IE behavior, example of, BC380–BC383
text strings, outputting to standard output, 423
textAlign property, explanation of, 835
textAlignLast property, explanation of, 835
textarea element object

carriage returns inside of, 709–710
event handlers for, 708
explanation of, 709
methods of DOM objects, 708
properties for, 708
syntax for, 708

1166

IndexT

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1166

textAutospace property, explanation of, 835
textContent property for HTML element objects,

explanation of, 256
textContext property, relationship to innerText, 227
textDecoration property, explanation of, 835
textDecorationBlink property, explanation of, 836
textdecorationLineThrough property, explanation

of, 836
textDecorationNone property, explanation of, 836
textDecorationOverline property, explanation of, 836
textDecorationUnderline property, explanation

of, 836
textIndent property, explanation of, 836
textJustify property, explanation of, 836
textJustifyTrim property, explanation of, 836
textKashidaSpace property, explanation of, 836
TextOverflow property, explanation of, 836
TextQualifier parameter for TDC, description of, 217
TextRange object

browser compatibility considerations, BC59
determining availability of, 231
explanation of, BC57–BC58
versus Range object, BC59

TextRange.execCommand() commands, descriptions of,
BC68–BC69

TextRectangle object
explanation of, BC86
returning array of, 293–294

text-related input objects, form controls as, 98–100
textShadow property, explanation of, 837
texttop value of align property, description of, 486
textTransform property, explanation of, 837
textUnderlinePosition property, explanation of, 837
tfoot element object, explanation of, BC133–BC135
tFoot property, using with table element object,

BC130–BC131
tHead property, using with table element object,

BC130–BC131
this keyword

relationship to encapsulation, 1046
using with form object, 650
using with functions, 104

this object operator, explanation of, 1017
thread element object, explanation of, BC133–BC135
throw statement, using, 993
time, displaying, 452. See also dateTime property for HTML

element objects

time and date arithmetic, performing, 936–937
time intervals, using with Date object, 116
time stamp on page code sample, 552–553
time tracking, managing in flag-update application,

BC448–BC449
time zones

accommodating, 934
relationship to GMT, 927–928

timeouts, setting, 450–453
times and dates, validating, BC269–BC273
timeStamp property for NN6+/Moz/Safari event object,

explanation of, 805–806
title element object, explanation of, BC100–BC101
title property

for document object,, 561–562
for HTML element objects, 256–257
for styleSheet object, 822

titlebar attribute of open() method, browsers for and
description of, 432

toArray() method for VBArray object, description
of, 1076

toElement property for IE4+ event object, explanation
of, 778–779

toggle() function, using in outline-style TOC application,
BC422, BC424, BC426, BC434

“Too many JavaScript errors” error message text, explanation
of, BC331

toolbar attribute of open() method, browsers for and
description of, 432

toolbar property for window object, explanation of,
387–388

toolbar-button actions, replicating, 427
top attribute of open() method, browsers for and

description of, 432
top positioning property, explanation of, 844
top property

for TextRectangle object, BC86–B88
for window object, 415

top reference, using with frames, 373
top value of align property, description of, 486
top-level objects

document, 88–92
location, 87
navigator, 88
window, 82–87

topMargin property for body element object, explanation
of, 589–590

1167

Index T

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1167

toSource() method for object object, explanation
of, 1058

toString() global function, explanation of, 1067–1069
toString() method

for error object, 1000
for HTML element objects, 325
for object object, 1058
for Range object, BC43
for selection object, BC50

toString() property for function object, explanation
of, 1031

tr element object, explanation of, BC138–BC139
trace() function

debugging with, BC338–BC339
invoking, BC340–BC341

trace.js, preparing documents for, BC339–BC340
translate() method for canvas element object,

explanation of, 643
transparency of canvas content, establishing, 638
TreeWalker object

creating instance of, 571–572
explanation of, 595–596
methods of, 595
properties for, 595
syntax for, 595

triggers for script1.html, significance of, 24
troubleshooting techniques. See also debugging tools;

problems
checking HTML tags, BC332
checking runtime expression evaluation, BC334
commenting out statements, BC334
finding out what works, BC333–BC334
reopening files, BC333
for timing problems, BC332–BC333
viewing source code, BC332

trueSpeed property, using with marquee element
object, BC19

try-catch-finally constructions, using, 990–993
type attribute, using with <script> tags, 145
type property

for button element object, 672
for Button input object, 672
for checkbox input object, 678
for cssRule object, 827–828
for a element object, 606
for IE4+ event object, 786–787
for image input object, 689
for li element property, BC149–BC150

for link element object, BC96
for mimeType object, BC176–BC177
for NN6+/Moz/Safari event object, 806–807
for object element object, BC235
for ol element property, BC147–BC148
for radio input object, 686
for Reset input object, 672
for script element object, BC100
for select element object, 729
for selection object, BC45–BC47
for style element object, 815
for styleSheet object, 822
for Submit input object, 672
for text input object, 698
for ul element property, BC148–BC149

typeDetail property, using with selection object, BC47
typeof operator, explanation of, 1019

U
ubound() method for VBArray object, description of,

1076
ul element object, explanation of, BC148
UnBookmark command, parameter for and description

of, 575
“Uncaught exception” error message text,

explanation of, BC331
underscore (_), using with variable names, 59–60
Undo, using with search-and-replace approaches,

BC72–BC76
unescape global function, explanation of, 1064
unicodeBidi property, explanation of, 837
Uniform Resource Names (URNs), providing address lists

as, 204
uninitialized value for readyState property,

description of, 247
unique identifiers, getting elements by, 576–577
uniqueID property for HTML element objects, explanation

of, 258–259
units property, using with embed element object, BC238
Unlink command, parameter for and description of, 575
unloading, event handler for, 470–471
Unselect command, parameter for and description of, 575
unselectable property for HTML element objects,

explanation of, 259
“Unspecified error” error message text, explanation

of, BC331

1168

IndexT

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1168

“Unteriminated string constant” error message text,
explanation of, BC328

“Unterminated string literal” error message text, explanation
of, BC328

unwatch() global function, explanation of, 1069
unwatch() method for object object, explanation of,

1056–1058
update expression item, using with repeat loops, 70
updateInterval property, using with screen

object, BC190
uppercase letters, converting strings to, 111
URIs, determining base URI, 529
URL example, frameset for, 554–555
URL property for document object, explanation of,

554–556
url property, using with meta element object, BC98
URLs. See also pages

assigning, 510
describing hostnames and ports of, 500–503
hostname of, 503–504
passing data among pages by means of, 507
pathname component of, 505
port numbers for, 506
protocols of, 506
providing to video source files, 614
replacing, 512
searching, 506–507
string encoding and decoding of, 912
using hash (#) marks with, 498–500
using location objects with, 497

URLs loaded in windows, representing with location
object, 87

URLUnencoded property for document object,
explanation of, 562

urn property for a element object, explanation of, 606
URNs (Uniform Resource Names), providing address

lists as, 204
urns() method for HTML element objects, explanation

of, 326
U.S. state name sample validation, BC276–BC279
UseHeader parameter for TDC, description of, 217
useMap property

for img element object, 623–624
for object element object, BC235

user actions, triggering scripts from, 52
user data

accessing, 295
adding to nodes, 324

userAgent property
for navigator object, 25
for clientInformation and navigator objects,

BC155, BC158–BC162
userLanguage property, using with

clientInformation and navigator
objects, BC170

userProfile object, explanation of, BC191–BC193
userProfile property, using with clientInformation

and navigator objects, BC170
user-selected text, capturing, 425–426
UTC

versus local date methods, 933
relationship to GMT, 928

UTC() method, using with Date object, 936

V
val (negation) connubial operator, operand and result for,

1005
validation

controllng in Decision Helper application, BC462
of date entries in forms, 941–944
of dates and times, BC269–BC273
designing filters for, BC263–BC264
event handlers for, BC286
example of presubmission validation, 30
of forms, 106–108
real-time versus batch validation, BC261–BC263
of serverless database, BC404–BC405

validation functions
combining, BC267–BC269
customizing, BC266–BC267

validation samples
cross-confirmation fields, BC285–BC286
date validation, BC279–BC285
U.S. state name, BC276–BC279

validation solution
dispatch mechanism for, BC273–BC275
structure of, BC273

validation.js code sample, BC287–BC288
vAlign property, using with tbody, tfoot, and thread

element objects, BC135
value attribute object property, description of, 203
value attribute, using with radio input object, 101–102
value property

for button element object, 672
for Button input object, 672

1169

Index V

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1169

value property (continued)
for checkbox input object, 678–679
for li element property, BC150
for radio input object, 686
for Reset input object, 672
for select element object, 729
for Submit input object, 672
for text input object, 698–700
using with text-related elements, 98–100

value types, descriptions of, 58
valueOf() method for object object, explanation

of, 1058
valueOf() property for function object, explanation

of, 1031
values

assigning to variables, 59
defining with typeof operator, 1019
passing by reference and by value, 160

var global statement, explanation of, 1072
var keyword, advisory about use of, 59
variable scope, relationship to IE behaviors, BC375
variable scope workbench code sample, 1033
variables

assigning string values to, 110
assigning values to, 59
declaring, 59
global and local types of, 72, 159
local and global scope of, 1033–1035
naming, 59–60
parameter variables, 1035–1036
scope of, 72–74
using with arrays, 77
using with expressions, 62
using with functions, 72

VBArray object
description of, 1075–1076
methods for, 1076

VBScript, using with objects, BC186
vendor property, using with clientInformation and

navigator objects, BC169
vendorSub property, using with clientInformation

and navigator objects, BC169
version numbers, plus (+) sign after, 157
version property, using with html element object, BC90
verticalAlign property, explanation of, 843
video clips

running, 617
using start property for img element object with, 623

video source files, providing URLs to, 614
view property for NN6+/Moz/Safari event object,

explanation of, 807
viewer, returning reference for, 542
visibility property, explanation of, 843
vlinkColor property for document object, explanation of,

524–527
void operator, explanation of, 1020
vspace property

for applet object, BC229
for iframe element object, 488
for img element object, 616
for marquee element object, BC18
for object element object, BC234

vtext property for body element object, explanation
of, 588

W
\w matching metacharacter, using in regular

expressions, BC242
\W matching metacharacter, using in regular

expressions, BC242
W3C DOM. See also DOM (document object model); object

model families
bidirectional event model in, 188–189
event listener types, 263
event object properties and methods for, 759
event propagation in, 748–753
event types in, 765–766
features missing from, 176
generating new node content in, 184
hierarchy of nodes in, 178–180
HTML practices in, 177
innerHTML property, 186–187
Levels 0-3 of, 175–176
modifying select options in, 721–722
node methods in, 183
node properties in, 180–183
nodes in, 38–39
object-oriented nature of, 182
replacing node content in, 185–186
significance of, 175
static W3C DOM HTML objects, 187–188
table modification methods for, BC109
table object classes for, BC117
trend toward using where possible, 190–191
underlying architecture of, 178

1170

IndexV

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1170

W3C DOM Level 2, node object properties for, 180
W3C DOM Node object inheritance tree, 182
W3C DOM nodes, creating dynamic content with, 138–139
W3C DOM-compatible browsers, attribute object properties

for, 289
W3C event model, event listeners in, 188–189
W3C listeners, binding events through, 756–757
watch() global function, explanation of, 1069
watch() method for object object, explanation of,

1056–1057, 1059
wave() filter, description and properties for, 857
Wave() filter, description and properties for, 865
WC3 DOM, browser support for, 168
Web Forms 2.0, features of, 666–667
web pages, testing, BC342–BC343. See also URLs
web sites

BBedit text editor, 18
ECMA-262 specification, 144
HTAs (HTML applications) resource, 174
Jasob obfuscator, 147
JavaScript Obfuscator, 147
JavaScript-related resources on, 1107
Mozilla-based browsers, 380
newsgroups and FAQs, 1106
obfuscators, 147
online documentation, 1106
SubEthaEdit text editor, 18
support and updates for book, 1105

Web technologies
CSS (Cascading Style Sheets), 5
helpers and plug-ins, 5–6
HTML (Hypertext Markup Language), 4–5
server programming, 5

Welcome message code sample, 937
whatToShow method for TreeWalker object, explanation

of, 597
wheelData property for IE4+ event object, explanation

of, 787
wheeled mice, unwanted scrolling activated by, 443
while loop, explanation of, 979–980
whitespace, insignificance of, 161
whiteSpace property, explanation of, 837
widows property, explanation of, 852
width and height of elements, reporting, 237–238
width and height settings for windows code sample, 395–396
width attribute of open() method, browsers for and

description of, 432

width of windows, adjusting, 394–396
width positioning property, explanation of, 844
width property

for applet object, BC229
for col and colgroup element objects, BC138
for document object, 550
for embed element object, BC237
explanation of, 843
for frame element object, 474–475
for hr element object, BC13
for HTML element objects, 225–226
for iframe element object, 488
for img element object, 615
for marquee element object, BC18
for object element object, BC234
for screen object, BC188–BC189
for table element object, BC126–BC127
for td and th element objects, BC145

window chrome code sample, 387–388
window features, setting, 430–432
window names, specifying with open() method, 435
window object checks, explanation of, BC348
window object methods, invoking with fullScreen()

function, 167
window objects

confusion about, 369
event handlers for, 376–377
explanation of, 82, 378–379
methods of, 376–377
naming, 396
properties for, 376–378
references for, 82–83
relationship to W3C DOM Level 2, 379
role in browser-window hierarchy, 33
role in frame object model, 371
synonym for, 83
syntax for, 378
using blur() method with, 271–272
using focus() method with, 272
using load event with, 87
using opener property with, 126

window properties and methods, accessing, 82–83
window properties, displaying, 392
window property for window object, explanation of, 415
window.alert() method, using, 85
window.confirm() method, using, 85–86
window.open() method, generating windows with, 83

1171

Index W

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1171

window.prompt() method, using, 86–87
windows

adjusting height and width of, 394–396
arranging in authoring environment, 19
controlling appearance of, 430
creating, 83–85, 436–437
generating with newWindow() function, 127
loading content into, 435–436
loading documents into, 430
references for, 126–128
repositioning onscreen, 427–430
resizing, 441–442, 469
sizing to content, 465

Windows 32-bit operating systems, using Internet Explorer
with, 173

Windows authoring environment, setting up, 19
Windows Media Player (WMP), relationship to

geckoAciveXObject() methods, 425
Winhelp window, opening, 453
WinIE, plug-in detection in, BC183–BC186
WinIE Objects global statement, explanation of, 1073
WinIE Script Debugger, features of, BC335
WinIE4+, keyboard event tasks in, 351–355
WinIE5.5+, filter syntax changes in, 861–865
with statement

explanation of, 982–983
using with Math object, 921–922

WMP (Windows Media Player), relationship to
geckoAciveXObject() methods, 425

wordBreak property, explanation of, 837
wordSpacing property, explanation of, 838
wordWrap property, explanation of, 838
workflow, establishing for authoring environment, 18
wrap property for textarea element object, explanation

of, 710
write() method

of document object, 581–585
using document.write() method, 89

writeln() method for document object, explanation of,
581–585

writingMode property, explanation of, 838
WRONG_DOCUMENT_ERR exception, throwing, 991

X
x property

for IE4+ event object, 771–776
for img element object, 624

XHTML style, case requirements for, 23
XHTML validators, hiding scripts from, 148
XML data reading script code sample, 874
XML data transformation application

constructing table for, BC508–BC510
converting data for, BC502–BC504
implementation plan for, BC500
initialization sequence for, BC501–BC502
select elements in, BC499
selecting controls for, BC510
sorting JavaScript database for, BC504–BC505
structure of, BC498
styleSheet object for, BC500–BC501

XML data, transforming into viewable HTML, BC524–BC525
XML document, manipulating in Google Maps application,

BC523–BC524
xml element object

explanation of, 869–870
properties for, 869
syntax for, 869

XML element objects, returning references to, 543
XML element reading, properties and methods for, 868–869
XML specification, relationship to AJAX outline, BC426
XML tags, associating namespace URIs with, 233
XMLDocument property for xml element, explanation of,

870–871
xmlEncoding property for document object, explanation

of, 562
XMLHttpRequest object

event handlers for, 871
explanation of, 871–875
methods for, 871
properties for, 871
syntax for, 871

xmlStandalone property for document object,
explanation of, 562

xmlVersion property for document object, explanation
of, 562

XPath expressions, evaluating, 574
xRay() filter, description and properties for, 857, 865

Y
y property

for IE4+ event object, 771–776
for img element object, explanation of, 624

1172

IndexW

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1172

Z
zero (0), avoiding with Date objects, 115
zero fill by value (>>=) assignment operator, example of, 1008
zero fill right shift (>>>) operator, operands for, 1014

zIndex positioning property, explanation of, 845
zIndex values, relationships among, BC216–BC218
z-lock attribute of open() method, explanation of, 432
zoom property, explanation of, 843

1173

Index Z

51_069165 bindex.qxp 3/1/07 3:59 PM Page 1173

	JavaScript Bible, Sixth Edition
	About the Authors
	Acknowledgments
	Contents
	Foreword
	Preface
	Organization and Features of This Edition
	Prerequisites to Learning JavaScript
	Formatting and Naming Conventions

	Part I: Getting Started with JavaScript
	Chapter 1: JavaScript’s Role in the World Wide Web and Beyond
	Competing for Web Traffic
	Other Web Technologies
	JavaScript: A Language for All
	JavaScript: The Right Tool for the Right Job

	Chapter 2: Authoring Challenges Amid the Browser Wars
	Leapfrog
	Duck and Cover
	Compatibility Issues Today
	Developing a Scripting Strategy

	Chapter 3: Your First JavaScript Script
	The Software Tools
	Setting Up Your Authoring Environment
	What Your First Script Will Do
	Entering Your First Script
	Examining the Script
	Have Some Fun

	Part II: JavaScript Tutorial
	Chapter 4: Browser and Document Objects
	Scripts Run the Show
	When to Use JavaScript
	The Document Object Model
	When a Document Loads
	Object References
	Node Terminology
	What Defines an Object?
	Exercises

	Chapter 5: Scripts and HTML Documents
	Where Scripts Go in Documents
	JavaScript Statements
	When Script Statements Execute
	Viewing Script Errors
	Scripting versus Programming
	Exercises

	Chapter 6: Programming Fundamentals, Part I
	What Language Is This?
	Working with Information
	Variables
	Expressions and Evaluation
	Data Type Conversions
	Operators
	Exercises

	Chapter 7: Programming Fundamentals, Part II
	Decisions and Loops
	Control Structures
	About Repeat Loops
	Functions
	About Curly Braces
	Arrays
	Exercises

	Chapter 8: Window and Document Objects
	Top-Level Objects
	The window Object
	Window Properties and Methods
	The location Object
	The navigator Object
	The document Object
	Exercises

	Chapter 9: Forms and Form Elements
	The form Object
	Form Controls as Objects
	Passing Form Data and Elements to Functions
	Submitting and Prevalidating Forms
	Exercises

	Chapter 10: Strings, Math, and Dates
	Core Language Objects
	String Objects
	The Math Object
	The Date Object
	Date Calculations
	Exercises

	Chapter 11: Scripting Frames and Multiple Windows
	Frames: Parents and Children
	References Among Family Members
	Frame-Scripting Tips
	About iframe Elements
	Controlling Multiple Frames: Navigation Bars
	References for Multiple Windows
	Exercises

	Chapter 12: Images and Dynamic HTML
	The Image Object
	Rollovers Without Scripts
	The javascript: Pseudo-URL
	Popular Dynamic HTML Techniques
	Exercises

	Part III: Document Objects Reference
	Chapter 13: JavaScript Essentials
	JavaScript Versions
	Core Language Standard: ECMAScript
	Embedding Scripts in HTML Documents
	Browser Version Detection
	Designing for Compatibility
	Language Essentials for Experienced Programmers
	Onward to Object Models

	Chapter 14: Document Object Model Essentials
	The Object Model Hierarchy
	How Document Objects Are Born
	Object Properties
	Object Methods
	Object Event Handlers
	Object Model Smorgasbord
	Basic Object Model
	Basic Object Model Plus Images
	Navigator 4– Only Extensions
	Internet Explorer 4+ Extensions
	Internet Explorer 5+ Extensions
	The W3C DOM
	Scripting Trends
	Standards Compatibility Modes (DOCTYPE Switching)
	Where to Go from Here

	Chapter 15: Generic HTML Element Objects
	Generic Objects

	Chapter 16: Window and Frame Objects
	Window Terminology
	Frames
	window Object
	frame Element Object
	frameset Element Object
	iframe Element Object
	popup Object

	Chapter 17: Location and History Objects
	location Object
	history Object

	Chapter 18: The Document and Body Objects
	document Object
	body Element Object
	TreeWalker Object

	Chapter 19: Link and Anchor Objects
	Anchor, Link, and a Element Objects
	Image and img Element Objects

	Chapter 20: Image, Area, Map, and Canvas Objects
	area Element Object
	map Element Object
	canvas Element Object
	The Form in the Object Hierarchy

	Chapter 21: The Form and Related Objects
	form Object
	fieldset and legend Element Objects
	label Element Object
	Scripting and Web Forms 2.0

	Chapter 22: Button Objects
	The button Element Object, and the Button, Submit, and Reset Input Objects
	checkbox Input Object
	radio Input Object
	image Input Object

	Chapter 23: Text-Related Form Objects
	Text Input Object
	password Input Object
	hidden Input Object
	textarea Element Object

	Chapter 24: Select, Option, and FileUpload Objects
	select Element Object
	option Element Object
	optgroup Element Object
	file Input Element Object

	Chapter 25: Event Objects
	Why “Events”?
	Event Propagation
	Referencing the event object
	Binding Events
	event Object Compatibility
	Dueling Event Models
	Event Types
	IE4+ event Object
	NN6+/Moz/Safari event Object

	Chapter 26: Style Sheet and Style Objects
	Making Sense of the Object Names
	Imported Stylesheets
	Reading Style Properties
	style Element Object
	styleSheet Object
	cssRule and rule Objects
	currentStyle, runtimeStyle, and style Objects
	filter Object

	Chapter 27: Ajax and XML
	Elements and Nodes
	xml Element Object
	XMLHttpRequest Object

	Part IV: JavaScript Core Language Reference
	Chapter 28: The String Object
	String and Number Data Types
	String Object
	String Utility Functions
	URL String Encoding and Decoding

	Chapter 29: The Math, Number, and Boolean Objects
	Numbers in JavaScript
	Math Object
	Number Object
	Boolean Object

	Chapter 30:The Date Object
	Time Zones and GMT
	The Date Object
	Validating Date Entries in Forms

	Chapter 31: The Array Object
	Structured Data
	Creating an Empty Array
	Populating an Array
	JavaScript Array Creation Enhancements
	Deleting Array Entries
	Parallel Arrays
	Multidimensional Arrays
	Simulating a Hash Table
	Array Object Properties
	Array Object Methods

	Chapter 32: Control Structures and Exception Handling
	If and If. . . Else Decisions
	Conditional Expressions
	Repeat (for) Loops
	The while Loop
	The do-while Loop
	Looping through Properties (for-in)
	The with Statement
	Labeled Statements
	The switch Statement
	Exception Handling
	Using try-catch-finally Constructions
	Throwing Exceptions
	Error Object

	Chapter 33: JavaScript Operators
	Operator Categories
	Comparison Operators
	Equality of Disparate Data Types
	Connubial Operators
	Assignment Operators
	Boolean Operators
	Bitwise Operators
	Object Operators
	Miscellaneous Operators
	Operator Precedence
	Function Object

	Chapter 34: Functions and Custom Objects
	Function Application Notes
	Creating Your Own Objects with Object-Oriented JavaScript
	Object-Oriented Concepts
	Object Object

	Global Functions and Statements
	Functions
	Statements

	Part V: Appendixes
	Appendix A: JavaScript and Browser Objects Quick Reference
	Appendix B: JavaScript Reserved Words
	Chapter 4 Answers

	Appendix C: Answers to Tutorial Exercises
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers
	Chapter 12 Answers

	Appendix D: JavaScript and DOM Internet Resources
	Support and Updates for This Book
	Newsgroups
	FAQs
	Online Documentation
	World Wide Web

	Appendix E: What’s on the CD-ROM
	System Requirements
	Disc Contents
	Troubleshooting
	Customer Care

	Index
	Wiley Publishing, Inc. End-User License Agreement

